
Compiling Bayesian Networks by Symbolic Probability Calculation
Based on Zero-suppressed BDDs

Shin-ichi Minato
Div. of Computer Science

Hokkaido University
Sapporo 060–0814, Japan

Ken Satoh
National Institute of Informatics

Sokendai
Tokyo 101–8430, Japan

Taisuke Sato
Dept. of Computer Science

Tokyo Institute of Technology
Tokyo 152–8552, Japan

Abstract
Compiling Bayesian networks (BNs) is one of
the hot topics in the area of probabilistic model-
ing and processing. In this paper, we propose a
new method of compiling BNs into multi-linear
functions (MLFs) based on Zero-suppressed BDDs
(ZBDDs), which are the graph-based representa-
tion of combinatorial item sets. Our method is
different from the original approach of Darwiche
et. al which encodes BNs into Conjunctive Nor-
mal Forms (CNFs) and then translates CNFs into
factored MLFs. Our approach directly translates a
BN into a set of factored MLFs using ZBDD-based
symbolic probability calculation. The MLF may
have an exponential size, but our ZBDD-based data
structure provides a compact factored form of the
MLF, and arithmetic operations can be executed in
a time almost linear to the ZBDD size. Our method
is not necessary to generate the MLF for the whole
network, but we can extract MLFs for only a part
of network related to the query, to avoid unneces-
sary calculation of redundant terms of MLFs. We
show experimental results for some typical bench-
mark examples. Although our algorithm is simply
based on the mathematical definition of probability
calculation, the performance is competitive to the
existing state-of-the-art method.

1 Introduction
Compiling Bayesian Networks (BNs) is one of the hot top-
ics in the area of probabilistic modeling and processing. Re-
cently, the data structures of decision diagrams[9; 4; 5; 6; 2;
10] are effectively used for accelerating probability computa-
tion for BNs. Darwiche et. al[6; 2] have shown an efficient
method of compiling BNs into the factored forms of Multi-
Linear Functions (MLFs), whose evaluation and differentia-
tion solves the exact inference problem. In their method, at
first a given BN structure is encoded to a Conjunctive Normal
Form (CNF) to be processed in Boolean domain, and then the
CNFs are factored under Boolean algebra. The compilation
procedure generates a kind of decision diagram representing
a compact Arithmetic Circuit (AC) with the symbolic param-
eters.

In this paper, we propose a new method of compiling
BNs into factored MLFs based on Zero-suppressed BDDs
(ZBDDs)[7], which are the graph-based representation at first

proposed for VLSI logic design applications. Our method is
based on a similar MLF modeling with symbolic parameters
as well as Darwiche’s approach. However, our method does
not use CNF representation but directly translates a BN into a
set of factored MLFs. Our ZBDD manipulator can generate a
new ZBDD as the result of addition/multiplication operations
between a pair of ZBDDs. Using such inter-ZBDD opera-
tions with a bottom-up manner according to the BN structure,
we can produce a set of ZBDDs each of which represents the
MLF of each BN nodes. We can see an important property
that the total product of the ZBDDs for all BN nodes corre-
sponds to the factored MLF which is basically equivalent to
the Darwiche’s result. In addition, our method is not neces-
sary to calculate the MLF for the whole network, but we can
extract MLFs for only a part of network related to the query,
to avoid unnecessary calculation of redundant terms of MLFs.

In this paper, we show experimental results for some typ-
ical benchmark examples. Although our algorithm is simply
based on the mathematical definition of probability calcula-
tion, the performance is competitive to the existing state-of-
the-art method.

Our ZBDD-based method can also be compared with the
recent work by Sanner and McAllester[10], computing BN
probabilities using Affine Algebraic DDs (AADDs). Their
method generates AADDs as the results of inter-AADD op-
erations for a given BN and an inference query. This is some-
how a similar manner to us, but the semantics of decision
diagrams are quite different. We discuss the difference in a
later section.

In the following sections, we describe the basic concept of
BN compilation and existing method in Section 2. We then
show the data structure of ZBDDs for representing MLFs
in Section 3. In section 4, we describe the procedure of
ZBDD generation and online inference. Experimental result
is shown in Section 5, followed by conclusion.

2 Preliminary
Here we briefly review the method of compiling BNs.

2.1 Bayesian networks and MLFs
A Bayesian network (BN) is a directed acyclic graph. Each
BN node has a network variable X whose domain is a dis-
crete set of values. Each BN node also has a Conditional
Probability Table (CPT) to describe the conditional probabil-
ities of the variable X to be respective values for respective
conditions of the parent BN nodes. Figure 1 shows a small
example of BN with CPTs.

A Prb(A)
a1 θa1 = 0.4
a2 θa2 = 0.6

AB Prb(B|A)
a1b1 θb1|a1 = 0.2
a1b2 θb2|a1 = 0.8
a2b1 θb1|a2 = 0.8
a2b2 θb2|a2 = 0.2

AC Prb(C|A)
a1c1 θc1|a1 = 0.5
a1c2 θc2|a1 = 0.5
a2c1 θc1|a2 = 0.5
a2c2 θc2|a2 = 0.5

BC D Prb(D|B, C)
b1c1d1 θd1|b1c1 = 0.0
b1c1d2 θd2|b1c1 = 0.5
b1c1d3 θd3|b1c1 = 0.5
b1c2d1 θd1|b1c2 = 0.2
b1c2d2 θd2|b1c2 = 0.3
b1c2d3 θd3|b1c2 = 0.5
b2c1d1 θd1|b2c1 = 0.0
b2c1d2 θd2|b2c1 = 0.0
b2c1d3 θd3|b2c1 = 1.0
b2c2d1 θd1|b2c2 = 0.2
b2c2d2 θd2|b2c2 = 0.3
b2c2d3 θd3|b2c2 = 0.5

Figure 1: An example of BN.

The Multi-Linear Function (MLF)[5] consists of two types
of variables, indicator variable λx for each value X = x, and
parameter variable θx|u for each parameter Prb(x|u). The
MLF contains a term for each instantiation of the BN vari-
ables, and the term is the product of all indicators and pa-
rameters that are consistent with the instantiation. For the
example in Fig. 1, the MLF has the following forms.

λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1

+ λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1

+ λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1

+ λa1λb1λc2λd1θa1θb1|a1θc2|a1θd3|b1c2

+ . . .

+ λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2

Once we have generated the MLF for a given BN, the prob-
ability of evidence e can be calculated by setting indicators
that contradict e to 0 and other indicators to 1. Namely,
we can calculate the probability in a linear time to the size
of MLF. Obviously the MLF has an exponential size, so the
computation requires exponential time and space. The MLF
can be factored into an Arithmetic Circuit (AC) whose size
may not be exponential. If we can generate a compact AC for
a given BN, the probability calculation can greatly be accel-
erated. This means compiling BNs based on MLFs.

2.2 Compiling BNs based on CNFs
Darwiche et. al[6] have shown an efficient method for gen-
erating compact ACs without processing an exponential size
of MLFs. In their method, at first a given BN structure is en-
coded to a Conjunctive Normal Form (CNF) to be processed
in Boolean domain. The CNF is factored by all variables one
by one based on Boolean algebra, and a kind of decision di-
agram is obtained. The result of diagram has a special prop-
erty called smooth deterministic Decomposable Negational
Normal Form (smooth d-DNNF)[4], so it can directly be con-
verted to the AC for probability calculation.

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a ⊕ b
F3 = b
F4 = a ∨ b

Figure 2: Shared multiple BDDs.

In addition, the following two techniques are used in vari-
able encoding:
• If a parameter is deterministic (θx|u = 1 or 0), we do not

assign a parameter variable and just reduce the CNF.

• The different parameter variables related to the same BN
node do not coexist at the same term of MLF. Therefore,
if a CPT contains a number of parameters with a same
probability, we do not have to distinguish them and we
may assign only one parameter variable to share those.
This technique sometimes greatly reduces the CNF.

The experimental results reported that their method suc-
ceeded in compiling large-scale benchmark networks, such
as “pathfinder” and “Diabetes,” with a practical computation
time and space. The BN compilation method is one of the hot
topics on probabilistic modeling and inference for practical
problems.

3 Zero-suppressed BDDs
In this paper, we present a new method of manipulating MLFs
using Zero-suppressed BDDs (ZBDDs). Here we describe
our data structure.

3.1 ZBDDs and combinatorial item sets
Reduced Ordered BDD (ROBDD)[1] is a compact graph rep-
resentation of the Boolean function. It is derived by reducing
a binary tree graph representing recursive Shannon’s expan-
sion. ROBDDs provide canonical forms for Boolean func-
tions when the variable order is fixed. (In the following sec-
tions, we basically omit “RO” from BDDs.) As shown in
Fig. 2, a set of multiple BDDs can be shared each other under
the same fixed variable ordering. In this way, we can handle a
number of Boolean functions simultaneously in a monolithic
memory space.

A conventional BDD package supports a set of basic logic
operations (i.e. AND, OR, XOR) for given a pair of operand
BDDs. Those operation algorithms are based on hash table
techniques, and the computation time is almost linear to the
data size unless the data overflows the main memory. By us-
ing those inter-BDD operations, we can generate BDDs for
given Boolean expressions or logic circuits.

BDDs are originally developed for handling Boolean func-
tion data, however, they can also be used for implicit repre-
sentation of combinatorial item sets. A combinatorial item
set consists of the elements each of which is a combination of
a number of items. There are 2n combinations chosen from n
items, so we have 22n

variations of combinatorial item sets.
For example, for a domain of five items a, b, c, d, and e, we
can show examples of combinatorial item sets as:

{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, 0.

Figure 3: A Boolean function and a combinatorial item set.

Figure 4: An example of
ZBDD.

0

0

x
1

Jump

f f

Figure 5: ZBDD reduction rule.

Here “1” denotes a combination of null items, and 0 means an
empty set. Combinatorial item sets are one of the basic data
structure for various problems in computer science.

A combinatorial item set can be mapped into Boolean
space of n input variables. For example, Fig. 3 shows a truth
table of Boolean function: F = (a b c)∨(b c), but also repre-
sents a combinatorial item set S = {ab, ac, c}. Using BDDs
for the corresponding Boolean functions, we can implicitly
represent and manipulate combinatorial item set.

Zero-suppressed BDD (ZBDD)[7] is a variant of BDDs for
efficient manipulation of combinatorial item sets. An exam-
ple of ZBDD is shown in Fig. 4. ZBDDs are based on the
following special reduction rules.
• Delete all nodes whose 1-edge directly points to the 0-

terminal node, and jump through to the 0-edge’s desti-
nation, as shown in Fig. 5.

• Share equivalent nodes as well as ordinary BDDs.
The zero-suppressed deletion rule is asymmetric for the two
edges, as we do not delete the nodes whose 0-edge points to a
terminal node. It is proved that ZBDDs are also gives canon-
ical forms as well as ordinary BDDs under a fixed variable
ordering. Here we summarize the properties of ZBDDs.
• The nodes of irrelevant items (never chosen in any com-

bination) are automatically deleted by ZBDD reduction
rule.

• Each path from the root node to the 1-terminal node cor-
responds to each combination in the set. Namely, the
number of such paths in the ZBDD equals to the number
of combinations in the set.

• When many similar ZBDDs are generated, their ZBDD
nodes are effectively shared into a monolithic multi-
rooted graph, so the memory requirement is much less
than storing each ZBDD separately.

Table 1 shows the most of primitive operations of ZBDDs.
In these operations, ∅, 1, P.top are executed in a constant

Table 1: Primitive ZBDD operations.
“∅” Returns empty set. (0-termial node)
“1” Returns the set of only null-combination.

(1-terminal node)
P .top Returns the item-ID at the root node of P .
P .factor0(v) Subset of combinations not including

item v.
P .factor1(v) Gets P − P .factor0(v) and then deletes v

from each combination.
P .attach(v) Attaches v to all combinations in P .
P ∪ Q Returns union set.
P ∩ Q Returns intersection set.
P − Q Returns difference set. (in P but not in Q.)
P .count Counts number of combinations.

time, and the others are almost linear to the size of graph. We
can describe various processing on sets of combinations by
composing of these primitive operations.

3.2 MLF representation using ZBDDs
An MLF is a polynomial formula of indicator and parameter
variables. It can be regarded as a combinatorial item set, since
each term is just a combination of variables. For example, the
MLF at Node B in Fig. 1 can be written as follows.

MLF(B) = λa1λb1θa1θb1|a1 + λa1λb2θa1θb2|a1

+ λa2λb1θa2θb1|a2 + λa2λb2θa2θb2|a2

Here, we rename the parameter variables to share the same
probabilities.
MLF(B) = λa1λb1θa(0.4)θb(0.2) + λa1λb2θa(0.4)θb(0.8)

+ λa2λb1θa(0.6)θb(0.8) + λa2λb2θa(0.6)θb(0.2)

Then, we show an example of ZBDD for MLF(B) in Fig. 6.
In this example, there are four paths from the root node to the
1-terminal node, each of which corresponds to a term in the
MLF. Namely, it is an implicit representation of the MLF. At
the same time, the structure of ZBDD also represents a com-
pact factored form of MLF. As shown in Fig. 7, each ZBDD
decision node can be interpreted as a few AC nodes with the
simple mapping rule. This means that a compact AC is quite
easily obtained when we have generated a ZBDD for MLF.

We can see an important property that our ZBDD repre-
sentation for an MLF is basically equivalent to a smooth d-
DNNF, obtained by Darwiche’s CNF-based method[6; 2]. In
the following sections, we show our new method for generat-
ing ACs without CNFs but only using ZBDD operations.

3.3 Comparison to AADDs
Sanner and McAllester[10] presented Affine Algebraic De-
cision Diagrams (AADDs), another variant of decision dia-
gram, for computing BN probabilities. AADD is a factored
form of ADD, which contains indicator variables for splitting
conditions, and the results of respective conditional probabil-
ities are written in the leaves of the graph. This is somehow
similar to our approach since they generate AADDs as the re-
sult of algebraic operations of AADDs. The most different
point is that they numerically calculate the probability values
with a floating-point data format, not using symbolic proba-
bility parameters as our MLFs. It is an interesting open prob-
lem which is more efficient to handle probabilities in sym-
bolic or numerical. It may depend on the instances of proba-
bility values written in CPTs.

Figure 6: An example of ZBDD for MLF(B).

Figure 7: Mapping from a ZBDD node to an AC node.

4 ZBDD-based MLF calculation
4.1 ZBDD construction procedure
BDDs are originally developed for VLSI logic circuit
design[1], and the basic technique of BDD construction is
shown in Fig. 8. First we make trivial BDDs for the primary
inputs F1 and F2, and then we apply the inter-BDD logic op-
erations according to the data flow, to generate BDDs for F3

to F7. After that, all the BDDs are shared into a monolithic
multi-rooted graph. This procedure is called symbolic simu-
lation for the logic circuit.

Our ZBDD construction procedure for the MLF is based on
a similar manner to the symbolic simulation of logic circuit.
The different points are:
• BNs do not only assume binary values. The MLF uses

multiple variables at each node for respective values.
• The BN node is not a logic gate. The function of each

node is specified by a CPT.
As shown in Fig. 9, we first make MLF(A), and then we gen-
erate MLF(B) and MLF(C) using the result of MLF(A). Fi-
nally we generate MLF(D) using the results for the node B
and C. After the construction procedure, all MLFs for respec-
tive nodes are compactly represented by the shared ZBDDs.

On each BN node X , the MLF is calculated by the follow-
ing operations using the MLFs at the parent nodes of X .

MLF(Xi) = λxi ·
∑

u∈CPT(X)

(
θx(Pu) ·

∏
Yv∈u

MLF(Yv)
)

Figure 8: Conventional BDD construction procedure.

Figure 9: ZBDD construction procedure for BN.

Here MLF(Xi) denotes the MLF for the node X to be a value
xi. Namely, MLF(X) =

∑
MLF(Xi).

When calculating this expression using the ZBDD opera-
tions, we have to consider the differences between the arith-
metic algebra and combinatorial set algebra. For considering
arithmetic sum, we may use union operation to perform arith-
metic sum, because the MLF does not contain the same term
more than once. We should be more careful for arithmetic
product operation. Product of two MLFs produces all pos-
sible combinations of two terms from the respective MLFs.
Here, probabilistic algebra does not produces x2 for dupli-
cate variables, but just returns x. In addition, λxi and λxj

(same node but different values) cannot coexist in one term
since at least either becomes zero.

4.2 Multi-valued multiplication algorithm
The multiplication algorithm is a key technique in our com-
piling method. The conventional algorithm for product of two
ZBDDs has been presented in the article[8]. The sketch of
the algorithm is shown in Fig. 10. This algorithm is based
on a divide-and-conquer manner, with the two recursive calls
for the sub-graphs obtained by assigning 0 and 1 into the top
variable. It also uses a hash-based cache technique to avoid
duplicated recursive calls. The computation time is almost
linear to the ZBDD size.

Unfortunately, the conventional algorithm does not con-
sider multi-valued variable encoding, so the result of ZBDD
may contain redundant terms, such as one both λxi and λxj

coexist. Such redundant MLFs are still correct expressions
for probability calculation, however, the redundant terms
cause a significant overhead of computation time. For exam-

procedure(F ·G)
{ if (F.top < G.top) return (G · F) ;

if (G = 0) return 0 ;
if (G = 1) return F ;
H ← cache(“F ·G”) ;
if (H exists) return H ;
v ← F.top ; /* the highest item in F */
(F0, F1)← factors of F by v ;
(G0, G1)← factors of G by v ;
H ← ((F1 ·G1) ∪ (F1 ·G0) ∪ (F0 ·G1)).attach(v)
∪(F0 ·G0) ;

cache(“F ·G”)← H ;
return H ;

}

Figure 10: Conventional multiplication algorithm.

procedure(F ·G)
{ if (F.top < G.top) return (G · F) ;

if (G = 0) return 0 ;
if (G = 1) return F ;
H ← cache(“F ·G”) ;
if (H exists) return H ;
v ← F.top ; /* the highest item in F */
(F0, F1)← factors of F by v ;
(G0, G1)← factors of G by v ;
FZ ← F0 ; GZ ← G0 ;
while(FZ .top and v conflict) FZ ← FZ .factor0(FZ .top) ;
while(GZ .top and v conflict) GZ ← GZ .factor0(GZ .top) ;
H ← ((F1 ·G1) ∪ (F1 ·GZ) ∪ (FZ ·G1)).attach(v)
∪(F0 ·G0) ;

cache(“F ·G”)← H ;
return H ;

}

Figure 11: Improved multiplication algorithm.

ple, we analyzed our MLF construction for a BN in the bench-
mark set. It is a typical case that we have the two ZBDDs F
and G each of which has about 1,000 decision nodes, and the
product (F · G) grows as much as 200,000 nodes of ZBDD,
but it can be reduced to only 400 nodes after eliminating re-
dundant terms. This observation indicates that, the redundant
terms consume 500 times of overhead time and space in this
case.

To address this problem, we implemented an improved
multiplication algorithm devoted to the multi-valued variable
encoding. Figure 11 shows a sketch of new algorithm. Here
we assume that the indicator variables for a same BN node
have the consecutive positions in the ZBDD variable order-
ing. This algorithm does not produce any redundant terms in
the recursive procedure, and we can calculate MLFs without
any overhead related to the multi-valued encoding.

4.3 Online inference based on ZBDDs
After the compilation procedure, each BN node has its own
ZBDD for the MLF. The MLF(X) on a node X contains only
the variables at the ancestor nodes of X , since the other vari-
ables are irrelevant to the probabilities on X .

Here we describe the online inference method based on
ZBDDs. To obtain the joint probability for evidence e, we
first compute the product of MLF(Xv) for all Xv ∈ e by the
ZBDD multiplication operation. The contradicting terms are
automatically eliminated by our multiplication algorithm, so
the result of ZBDD contains only the variables related to the
joint probability computation. We then set all indicators to 1

and calculate the AC directly converted from the ZBDD.
For example, to compute Prb(b1, c2) for the BN of Fig. 1,

the two MLFs are the follows:
MLF(B1) = λa1λb1θa(0.4)θb(0.2) + λa2λb1θa(0.6)θb(0.8),
MLF(C2) = λa1λc2θa(0.4)θc(0.5) + λa2λc2θa(0.6)θc(0.5),
and then
MLF(B1) · MLF(C2) = λa1λb1λc2θa(0.4)θb(0.2)θc(0.5)

+λa2λb1λc2θa(0.6)θb(0.8)θc(0.5).
Finally we can obtain the probability as: 0.4 × 0.2 × 0.5 +
0.6 × 0.8 × 0.5.

In our method, each multiplication requires a time almost
linear to the ZBDD size, however, the ZBDD size may not
glow larger in repeating multiplications for the inference, be-
cause many of terms contradict the evidence and they are
eliminated. Therefore, the computation cost for the inference
will be much smaller than the cost for compilation.

An interesting point is that the above MLF for Prb(b1, c2)
does not contain the variables at the node D since they are
irrelevant to the joint probability. In other word, our inference
method provides dependency checking for a given query.

As another strategy, we can generate the MLF for the
whole networks by performing product of all MLF(X). Such
a global MLF is basically equivalent to the result of Dar-
wiche’s compilation[2]. After generating the global MLF, we
do not have to perform product of MLFs any more. However,
the MLF contains the parameters of all the BN nodes, and we
should sum up the parameters even if they are irrelevant to the
query. Having a set of local MLFs will be more efficient than
the global one since we can avoid unnecessary calculation of
parameters not related to the query.

Finally we note that our method can save the result of par-
tial product of MLFs in the shared ZBDD environment, so we
do not have to re-compute ZBDDs for the same evidence set.

5 Experimental Results
For evaluating our method, we implemented a BN com-
piler based on our own ZBDD package. We used a
Pentium-4 PC, 800MHz, 1.5GB of main memory, with
SuSE Linux 9 and gnu C++ compiler. In this platform,
we can manipulate up to 40,000,000 nodes of ZBDDs
with up to 65,000 different variables. We applied our
method to the practical size of BN examples provided at
http://www.cs.huji.ac.il/labs/compbio/Repository.

The experimental results are shown in Table 2. In this ta-
ble, the first four columns shows the network specifications,
such as BN name, the number of BN nodes, the indicator
variables, and the parameter variables to be used in the MLF.
The next three columns present the results of our compil-
ing method. “|ZBDDs|(total)” shows the number of decision
nodes in the multi-rooted shared ZBDDs representing the set
of MLFs. “|ZBDD|(a node)” is the average size of ZBDD
on each BN node. Notice that the total ZBDD size is usually
much less than numerical product of each ZBDD size because
their sub-graphs are shared each other.

After compilation, we evaluated the performance of on-
line inference. In our experiment, we randomly select a
pair of BN nodes with random values (xi, yj), then gener-
ate a ZBDD as the product of the two ZBDDs (MLF(Xi) ·
MLF(Yj)). After that we counted the number of decision
nodes “|ZBDD|(product)” and the number of the MLF terms.
We repeated this process for 100 times and show the av-
erage time and space. The inference time shown here is

Table 2: Experimental results.

BN name BN indi- para- offline compile inference (ave. for 100 cases) CNF-based[2](*)
nodes cator meter |ZBDDs| |ZBDD| time |ZBDD| MLF time comp. inf.

vars. vars. (total) (a node) (sec) (product) terms (sec) time time
alarm 37 105 187 34,299 1,863 0.2 4,139 3.70× 108 0.04 0.52 0.01
hailfinder 56 223 835 294,605 4,427 3.0 9,799 1.00× 1017 0.19 0.86 0.06
mildew 35 616 6,709 15,310,511 2,684,245 8019.4 593,469 6.60× 1016 43.43 7,483.80 3.35
pathfinder(pf1) 109 448 1,839 16,808 155 20.1 337 667 0.01 20.36 0.07
pathfinder(pf23) 135 520 2,304 17,557 135 19.6 188 212 0.01 (no data) (no data)
pigs 441 1,323 1,474 73,543 237 2.9 993 3.27× 107 0.01 17.84 1.60
water 32 116 3,578 25,629 611 6.1 974 6,295 0.02 4.83 0.21
diabetes 413 4,682 17,622 − − (>36k) − − − 2,269.05 16.27
munin1 189 995 4,249 − − (>36k) − − − 1,534.97 44.91
munin2 1,003 5,376 22,866 9,936,191 86,267 1,247.8 − − (>360) 225.46 6.59
munin3 1,044 5,604 24,116 11,191,778 100,640 777.7 − − (>360) 151.72 3.65
munin4 1,041 5,648 24,242 5,724,468 46,989 4,951.1 − − (>360) 677.92 7.70

(*) uses a PC twice faster than ours.

the total time of ZBDD multiplication and traversing ev-
ery decision node once in the ZBDD for calculating proba-
bility. From the experimental results, we can observe that
the size of “|ZBDD|(product)” is dramatically smaller than
“|ZBDDs|(total).” This indicates that we can avoid calculat-
ing so many redundant terms of MLFs, by using a product of
local MLFs instead of the global MLF.

In the last two columns, we referred the results of CNF-
based method[2]. For some of examples, our results are com-
petitive or better than theirs. Notice that we cannot directly
compare to their results because (1) the experimental setting
of online inference would be different, (2) we may use a dif-
ferent variable ordering since it is not shown in [2], and (3)
for larger examples, they applied another technique called de-
composition tree(dtree)[3], to reduce the original network of
CPTs

Currently, our simple variable ordering strategy is that a
variable appears at earlier stage of calculation will get a lower
position (near to the leaf) in ZBDDs. The ZBDD size is some-
times very sensitive to the variable ordering. For example, we
have observed that the ZBDDs for “munin2” can easily be re-
duced to a half by ad-hoc exchange of variable ordering. We
expect that a good variable ordering will bring a significant
improvement to the current results.

Our method is too time-consuming for larger examples,
such as “diabetes” and “munin”s. This would be because
we have not applied the dtree-based CPT network reduction.
This technique is independent of our ZBDD-based data struc-
ture, so we hope it will be effective as well as for the CNF-
based method.

6 Conclusion
We have presented a new method of compiling BNs, not us-
ing CNF encoding but directly calculate MLFs by using ZB-
DDs. Our method is not necessary to generate MLFs for the
whole networks, but we can extract MLFs for only selective
BN nodes related to the query, to avoid unnecessary calcula-
tion of redundant terms of MLFs. Our computation algorithm
is quite simple and just based on the mathematical definition
of probability calculation, and still efficiently calculates an
exponential size of MLFs in a compact ZBDD representation.
Our method will be improved more in combining with state-
of-the-art techniques developed in the history of BN process-
ing.

In this paper, we have shown that the BN compilation pro-
cess has a similarity to the symbolic simulation of VLSI logic
circuits. There have been so many heuristic techniques on
BDDs in VLSI logic design area, and some of them would be
useful for probabilistic inference on BNs or Markov Decision
Processes.

References
[1] R. E. Bryant, “Graph-based algorithms for Boolean

function manipulation,” IEEE Trans. Comput., C-35, 8
(1986), 677–691.

[2] M. Chavira and A. Darwiche, “Compiling Bayesian
Networks with Local Structure,” In Proc. 19th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-2005), pp. 1306–1312, Aug. 2005.

[3] A. Darwiche, “Recursive conditioning,” Artificial Intel-
ligence, vol. 126, No. 1–2, pp. 5–41, 2001.

[4] A. Darwiche, “A logical approach to factoring belief
networks,” In Proc. KR, pp. 409-420, 2002.

[5] A. Darwiche, “A differential approach to inference in
Bayesian networks,” JACM, Vol. 50, No. 3, pp. 280–
305, 2003.

[6] A. Darwiche, “New advances in compiling CNF to de-
composable negational normal form,” In Proc. Euro-
pean Conference on Artificial Intelligence (ECAI-2004),
pp. 328–332, 2004.

[7] S. Minato, “Zero-suppressed BDDs for set manipula-
tion in combinatorial problems,” In Proc. 30th Design
Automation Conf. (DAC-93), pp. 272–277, Jun. 1993.

[8] S. Minato, “Zero-Suppressed BDDs and Their Ap-
plications,” International Journal on Software Tools
for Technology Transfer, Vol. 3, No. 2, pp. 156–170,
Springer, May 2001.

[9] T. Nielsen, P. Wuillemin, F. Jensen, and U. Kjaerulff,
“Using ROBDDs for inference in Bayesian networks
with troubleshooting as an example,” In Proc. the 16th
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 426–435, 2000.

[10] S. Sanner and D. McAllester, “Affine Algebraic De-
cision Diagrams (AADDs) and their Application to
Structured Probabilistic Inference,” In Proc. 19th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-2005), Aug. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Emulate Acrobat 4)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 841.890]
>> setpagedevice

