
Statistical abduction with tabulation1

Taisuke SATOy and Yoshitaka KAMEYAz

Dept. of Computer Science, Graduate School of Information
Science and Engineering, Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo Japan 152-8552

(sato@mi.cs.titech.ac.jpy, kame@mi.cs.titech.ac.jpz)

Abstract.

We propose statistical abduction as a �rst-order logical framework
for representing, inferring and learning probabilistic knowledge. It
semantically integrates logical abduction with a parameterized dis-
tribution over abducibles. We show that statistical abduction com-
bined with tabulated search provides an e�cient algorithm for prob-
ability computation, a Viterbi-like algorithm for �nding the most
likely explanation, and an EM learning algorithm (the graphical
EM algorithm) for learning parameters associated with the distri-
bution which achieve the same computational complexity as those
specialized algorithms for HMMs (hidden Markov models), PCFGs
(probabilistic context-free grammars) and sc-BNs (singly connected
Bayesian networks).

1 Introduction

Abduction is a form of inference that generates the best explanation for observed
facts. For example, if one notices that the grass is wet in the yard, he/she might
abduce that it rained last night, or the sprinkler was on, by using general rules
such as \if it rains, things get wet." Abduction has been used for diagnosis
systems [30], planning [14, 41], natural language processing [5, 15], user modeling
[9] etc in AI.

It is possible to formalize (part of) abduction in logic programming as follows
[16, 17]. We have a background theory T consisting of clauses and an observed
fact G (usually a ground atom) to be explained, and the task of abduction
is to search for an explanation E = fa1; : : : ; ang by choosing ground atoms
ais from a particular class of primitive hypotheses called abducibles2 such that
T [E j= G and T [E is consistent.3 The quality of E, the abduced explanation,
is evaluated by various criteria such as precision, simplicity, abduction cost, and
so on [15, 16, 40].

1This paper is based on a workshop paper presented at the UAI-2000 workshop on Fusion
of Domain Knowledge with Data for Decision Support, Stanford, 2000.

2The term \explanation" is henceforth used as a synonym of a conjunction (or set) of
abducibles.

3Sometimes T [E is required to satisfy integrity constraints, but in this paper, we do not
consider them.

1

While the above framework is simple and logically sound, it is obviously
incomplete. Especially it entirely ignores the problem of uncertainty in the
real world. Our observations are often partial, inconsistent or contaminated
by noise. So the abduced explanation should be treated as being true only to
some degree. Also it must be noticed that our observations are always �nite
but potentially in�nite (we may have another observation inde�nitely), and it is
often critical to evaluate how far our explanation holds on average. Since these
problems are certainly not in the realm of logic, but belong to statistics, it is
natural and desirable to build an interdisciplinary framework that uni�es the
logical aspects and the statistical aspects of abduction.

There are many ways of doing this, but one of the simplest ways is to in-
troduce a parameterized probability distribution over abducibles. We term the
resulting logical-statistical framework statistical abduction, in which we calcu-
late the probabilities of explanations from the parameters associated with the
distribution and determine the most likely explanation among possible ones as
the one with the highest probability. Parameters are statistically learnable from
observations if they are unknown.

Observation

G

T, θ
Model

Probability
computation

Statistical
inference

E 1
2

E
...

,
, Best explanation

P()θG

P(), ...P(),E 1 θ θ2E

Estimation

θ

Figure 1: Statistical abduction

The idea of statistical abduction is illustrated above. We have abducibles
a1; a2; : : : with a probability distribution parameterized by �, and a clausal the-
ory T . For a givenG, observation, we search for possible explanations E1; E2; : : :
each of which is a conjunction of �nitely many abducibles. P (E1 j �); P (E2 j
�); : : : ; probabilities of explanations, are computed from marginal distributions
for these constituent abducibles. Their probabilities are used to select the best
explanation and also to compute P (G j �). The parameter � is estimated by
applying ML (maximum likelihood) estimation to P (G j �).

We would like to �rst emphasize that statistical abduction is not merely
abduction of logical explanations but aims at the inference of their distribution.
Second, it has wide coverage, as we will see, ranging from logic programming to
popular symbolic-statistical frameworks. By popular symbolic-statistical frame-
works, we mean for instance HMMs (hidden Markov Models), PCFGs (proba-
bilistic context free grammars) and BNs (Bayesian networks) explained below.

2

An HMM is a special type of Markov chain in which a symbol is emitted
at a state and we can only observe a sequence of emitted symbols whereas
state transitions are not observable, i.e. they are hidden. HMMs are used as
a modeling tool for speech recognition, genome informatics etc [22, 32]. Also
a PCFG is a context free grammar with probabilities assigned to each rule in
such a way that if there are n production rules A! B1; : : : ; A! Bn for a non-
terminal symbol A, probabilities pi is assigned to A ! Bi (1 � i � n) whereP

i pi = 1. The probability of a parse tree is the product of probabilities assigned
to rules appearing in the tree, and that of a sentence is the sum of probabilities
of possible parse trees for the sentence [6, 22, 43]. PCFGs form a basis of
stochastic natural language processing. Finally, a Bayesian network means an
acyclic directed graph consisting of nodes of random variables where a child node
conditionally depends on the parent nodes, and the dependency is speci�ed by
a CPT (conditional probability table) when nodes take discrete values. BNs are
used to model probabilistic-causal relationships. A singly connected BN is one
that does not include loops when directions are ignored in the graph [4, 28].

Turning back to statistical abduction, we note that all statistical techniques
from �tting test to random sampling and to parameter learning are applicable.
They provide us with powerful means for the statistical analysis of abduction
logically formalized.

There are however two fundamental problems; one is theoretical and the
other is practical. First of all, statistical abduction must deal with in�nitely
many objects sanctioned by the language of �rst-order logic and their joint
distributions, which raises the mathematical question of de�ning a probability
space consistently giving a joint distribution over a set of arbitrarily chosen
objects. It goes beyond probabilistic semantics often seen in AI that deals only
with �nite domains and �nitely many random variables.

Secondly, to apply it in practice, we need to know all values of statistical
parameters, but determining a large number of statistical parameters is a hard
task, known as the where-do-the-numbers-come-from problem. Although one
might hope that the problem is mitigated by learning, there has been little
work on parameter learning in the literature of logical framework of abduction.

The objective of this paper is to make it clear that there exists a �rm theo-
retical basis for statistical abduction and we have an e�cient algorithm for com-
puting probabilities, thereby being able to e�ciently determine the most likely
hypothesis and an e�cient EM algorithm for parameter learning.4 Since the sub-
ject is broad and the space is limited, we concentrate on putting the major ideas
across and details are left to the related literature [18, 33, 34, 35, 36, 37].5 In
what follows, after reviewing some historical background in Section 2, we sketch
our probabilistic semantics in Section 3, and explain in Section 4 PRISM, a
symbolic-statistical modeling language implementing distribution semantics as
an embodiment of statistical abduction. Section 5 is a main section. We �rst

4The EM algorithm is an iterative algorithm which is a standard method for ML estimation
of statistical parameters from incomplete data [23].

5We submitted a comprehensive paper on the subject [38].

3

describe three basic computational tasks required for statistical abduction. We
then propose the use of tabulated search and combine it with general algorithms
for PRISM programs to perform the three tasks, and �nally state the time com-
plexity of PRISM programs for the case of HMMs, PCFGs and sc-BNs (singly
connected Bayesian networks), which indicates that the proposed algorithms run
as e�ciently as specialized algorithms for HMMs, PCFGs and sc-BNs. Section 6
is a conclusion.

2 Background

Looking back on the role of probabilities in logic programming, two approaches,
\constraint approach" and \distribution approach," are distinguishable. The
former focuses on the inference of probability intervals assigned to atoms and
clauses as constraints, whereas the prime interest of the latter is to represent
a single probability distribution over atoms and formulas, from which various
statistics are calculated.

The constraint approach is seen in the early work of Nilsson [27] where he
tried to compute, by using linear programming technique, the upper and lower
bound of probability of a target sentence consistent with a �rst-order knowledge
base in which each sentence is assigned a probability. In logic programming, Ng
and Subrahmanian took the constraint approach to formulate their probabilistic
logic programming [25] (see [12] for recent development). Their program is a
set of annotated clauses of the form A : �0 F1 : �1; : : : ; Fn : �n where A
is an atom, Fi (1 � i � n) a basic formula, i.e. a conjunction or a disjunction
of atoms, and the annotation �j (0 � j � n) a sub-interval in [0; 1] indicating
a probability range. A query 9(F1 : �1; : : : ; Fn : �n) is answered by an
extension of SLD refutation. Their language contains only a �nite number of
constant and predicate symbols, and no function symbols are allowed.

A similar probabilistic framework was proposed by Lakshmanan and Sadri
under the same syntactic restrictions (�nitely many constant, predicate sym-
bols, no function symbols) in a di�erent uncertainty setting [21]. They used

annotated clauses of the form A
c
 B1; : : : ; Bn where A and Bi are atoms

and c = h[�; �]; [
; �]i, the con�dence level, represents the belief interval [�; �]
(0 � � � � � 1) and doubt interval [
; �] (0 �
 � � � 1) which an expert has
in the clause [21].

By comparison, the distribution approach has been actively pursued out-
side logic programming. In particular, researchers in the Bayesian network
community have been using de�nite clauses with probabilities attached to ex-
press probabilistic events such as gene inheritance. In the framework of KBMC
(knowledge-based model construction) [1, 3, 19, 26] for instance, clauses are
used as a macro language to compactly represent similar Bayesian networks.
Basically a knowledge base KB contains clauses representing general rules and
CPTs (conditional probability tables). Every time a set of evidence and con-
text is given as ground atoms, a specialized Bayesian network is constructed
by tracing logical/probabilistic dependencies in KB to compute the probability

4

of a query atom. Uncertain parameters associated with CPTs can be learned
by applying the EM learning algorithm for Bayesian networks [4] to the con-
structed network [19]. It can be said that KBMC implicitly de�nes a collection
of local distributions in the form of Bayesian networks, each corresponding to
a pair of evidence and context. The question of whether there exists a single
distribution compatible with these implicitly de�ned (and in�nitely many) local
distributions or not remains open.

In contrast to KBMC, statistical abduction explicitly de�nes a single dis-
tribution (probability measure) over ground atoms. It was begun by Poole as
\probabilistic Horn abduction" [31]. In his approach, a program is comprised
of non-probabilistic de�nite clauses and probabilistic disjoint declarations. A
disjoint declaration is of the form disjoint([h1:p1,...,hn:pn]). It says hi,
an abducible atom, becomes exclusively true with probability pi (1 � i � n).
Abducibles in di�erent declarations are independent. The probability of a non-
abducible ground atom is then calculated by reduction in a top-down man-
ner through program clauses to a DNF formula made out of abducibles in the
disjoint declarations. The probabilistic Horn abduction is able to represent
Bayesian networks [31].

While the probabilistic Horn abduction opened a new vista on extending
Bayesian networks to �rst-order languages, it makes various assumptions on
programs such as the acyclicity condition6 and the covering property.7 These
assumptions are not easy to verify and could be severe restrictions in program-
ming. For example, under the acyclicity condition, when a clause includes local
variables like Y in p(X) q(X;Y); : : : one cannot write recursive clauses about
q such as member(X; cons(H;Y)) member(X;Y). Also the de�ned probabil-
ity measure is not proved to be completely additive either. In other words, the
continuity limn!1 P (p(t1) _ : : : _ p(tn)) = P (9Xp(X)) where tis are ground
terms, is not necessarily guaranteed. More serious is the problem of determin-
ing parameters in disjoint declarations. How can we get them? It remained
unanswered.

SLP (stochastic logic programming) proposed by Muggleton [24] is another
attempt to de�ne probabilities over ground atoms. He associated, analogously
to PCFGs, probabilities pi's with range-restricted clauses8 Ci's like pi : Ci (
1 � i � n). The probability of a ground atom G is de�ned as the product of
such pis appearing in G's SLD refutation, but with a modi�cation such that if a
subgoal g can invoke n clauses, pi : Ci (1 � i � n) at some derivation step, the
probability of choosing k th clause is normalized to pk=

Pn

i=1 pi. More recently,
Cussens extended SLP by introducing the notion of loglinear models for SLD
refutations and de�ned probabilities of ground atoms in terms of their SLD-

6It says that every ground atom A must be assigned a unique integer n(A) such that
n(A) > n(B1); : : : ; n(Bn) for every ground instance of a clause of the form A B1; : : : ; Bn.

7It requires that when there are �nite ground instances A �i (1 � i � m) about a
ground atom A in the program, A$ �1 _ : : : _ �m holds. Intuitively the property ensures
every observation has an explanation. Logically it is equivalent to assuming the i� completion
[13].

8A clause is range-restricted if variables appearing in the head also appear in the body.
So, a unit clause must be ground.

5

trees and \features" [10]. To de�ne the probability of a ground atom s(a), he
�rst de�nes the probability P (R) of an SLD refutation R for the most general

goal s(X) as P (R)
def
= Z�1 exp (

P
i log(�i)f (R; i)). Here �i is a number

(parameter) associated with a clause Ci and f (R; i) is a feature such as the
number of occurrences of Ci in R. Z is a normalizing constant. The probability
assigned to a ground atom s(a) is the sum of probabilities of all possible SLD
refutations for s(a) [10]. An EM algorithm for inferring parameters taking
failures into account is proposed in [11]. Presently, assigning probabilities to
arbitrary quanti�ed formulas is out of the scope of both of SLPs.

Looking at the distribution approach to probabilistic functional languages,
we notice that Koller et al. proposed a probabilistic functional language which
can represent HMMs, PCFGs and BNs [20], but neither the problem of de�n-
ing declarative semantics nor that of learning parameters in a program was
not discussed. Later Pfe�er developed it into another functional language with
declarative semantics which is based on the products of countably in�nite uni-
form distributions over the unit interval [0; 1). EM learning is sketched [29].

3 Distribution semantics: an overview

Aiming at providing a broader theoretical basis and a learning algorithm for
statistical parameters of statistical abduction, Sato proposed distribution se-

mantics [33] and developed a �rst-order statistical modeling language PRISM
(http://mi.cs.titech.ac.jp/prism/) [33, 34]. The proposed semantics rig-
orously de�nes a probability measure over the set of Herbrand interpretations
as the denotation of a PRISM program. It is exactly a probabilistic extension
of the least Herbrand model semantics to the possible world semantics with a
probability measure, but eliminates extraneous assumptions made in the previ-
ous approaches. For example, there is no need for the covering assumption or
the acyclicity condition [31] (because every de�nite program has a least Her-
brand model and the i� completion [13] holds in it.). Similarly, neither the
range-restrictedness condition nor normalization in SLPs [10, 24] is necessary.
What is more, there is no vocabulary restriction. We may use as many constant
symbols, function symbols and predicate symbols as we need, and can write
whatever program we want, though in actual programming, we have to care
about e�ciency, termination, etc.

Syntactically, our program DB is a set F [R where F is a set of atoms
(abducibles) and R is a set of de�nite clauses such that no clause head in R
is uni�able with an atom in F . In the theoretical context however, we always
consider DB as a set of ground clauses made up of all possible ground instances
of the original clauses in DB. F then is a set of in�nitely many ground atoms.
We associate with F a basic probability measure PF . It is de�ned over the
set of Herbrand interpretations of F and makes every atom A in F a random
variable taking on 1 when A is true and 0 otherwise. Hence atoms in F are
probabilistically true and random sampling determines a set of true atoms F 0.
Then think of a new de�nite clause programDB0 = F 0[R and its least Herbrand

6

model M(DB0) [13]. M(DB0) determines the truth values of all ground atoms
in DB, which implies that every ground atom in DB is a random variable.
Therefore a probability measure PDB over the set of Herbrand interpretations
of DB is de�nable [33]. PF mentioned above is constructed from a collection of

�nite joint distributions P
(n)
F (A1 = x1; : : : ; An = xn) (n = 1; 2; : : :) where Ais

(� F) are random variables (abducibles) such that

P
(n)
F (A1 = x1; : : : ; An = xn) =

X
xn+12f0;1g

P
(n+1)
F (A1 = x1; : : : ; An+1 = xn+1):

In the following, for the sake of intuitiveness, we use a joint distribution and a
probability measure interchangeably. This is because the probability measure
PF behaves as if it were an in�nite probability distribution whose marginal

distribution is P (n)
F (�) (n = 1; 2; : : :).9

PRISM, an implementation of the distribution semantics with PF chosen to
be a speci�c form (the direct products of in�nitely many random switches) has
been developed as a symbolic-statistical modeling language for complex phe-
nomena governed by rules and probabilities [33, 34, 35]. It is a general logic
programming language equipped with a built-in EM algorithm by which we can
learn parameters associated with PF from observations represented by ground
atoms. As PRISM allows us to use programs to specify distributions (programs

as distributions), we have an enormous degree of freedom and
exibilities in
modeling complex symbolic-statistical phenomena. Actually, we have found
it rather easy to write a PRISM program modeling complicated interactions
between gene inheritance and social rules (bi-lateral cross cousin marriage) ob-
served in the Kariera tribe, an anthropological tribe which lived 80 years ago in
the west Australia [35, 44].

4 PRISM programs

In this section, we explain PRISM programs by examples. In our framework,
observations are represented by ground atoms and the role of PRISM programs
is to specify their joint distributions in terms of built-in probabilistic atoms
(abducibles).

A PRISM program is a de�nite clause program DB = F [R such that R,
a set of de�nite clauses, represents non-probabilistic rules such as Mendel's law
whereas F , a set of ground atoms, represents basic probabilistic events and has
an in�nite joint distribution PF . F and PF must satisfy the following.

1. F is a set of probabilistic atoms of the form msw(i,n,v). They are random
variables taking on 1 (resp. 0) when true (resp. false). The arguments i
and n are ground terms called switch name and trial-id, respectively. We
assume that Vi, a �nite set of ground terms, is associated with each i, and
v 2 Vi holds. Vi is called the value set of i.

9This also applies to PDB .

7

2. Let Vi be fv1; v2; : : : ; vjVijg. Then, one of the ground atoms msw(i,n,v1),
msw(i,n,v2), . . . , msw(i,n,vjVij) becomes exclusively true on each trial.
For each i, �i;v 2 [0; 1] is a parameter of the probability of msw(i,�,v)
being true (v 2 Vi), and

P
v2Vi

�i;v = 1 holds.

3. For arbitrary i, i0, n, n0, v 2 Vi and v
0 2 Vi0 , random variable msw(i,n,v)

is independent of msw(i0,n0,v0) if n 6= n0 or i 6= i0.

A ground atom msw(i,n,v) represents an event \a probabilistic switch named
i takes on v as a sample value on the trial n" (msw stands formulti-valued switch).
The second and the third condition say that a logical variable V in msw(i,n,V)
behaves like a random variable which is realized to vk with probability �i;vk
(k = 1 : : : jVij). Moreover, from the third condition, the logical variables V1 and
V2 in msw(i,n1,V1) and msw(i,n2,V2) can be seen as independent and iden-

tically distributed (i.i.d.) random variables if n1 and n2 are di�erent ground
terms. From an abductive point of view, msw atoms are abducibles.10

To get a feel for PRISM programs, we �rst take a look at a non-recursive
PRISM program. Imagine a lawn beside a road and their observations such as
\the road is dry but the lawn is wet." Assume that the lawn is watered by a
sprinkler that (probabilistically) works only when it does not rain. The process
that generates an observation observed(road(X),lawn(Y)) (\the road is X and
the lawn is Y") where X; Y 2 fwet; dryg is described by the program DBrs in
Figure 2.

(1) target(observed/2).

(2) values(rain,[yes,no]).

(3) values(sprinkler,[on,off]).

(4) observed(road(X),lawn(Y)):-

msw(rain,once,A),

(A = yes, X = wet, Y = wet

; A = no, msw(sprinkler,once,B),

(B = on, X = dry, Y = wet

; B = off, X = dry, Y = dry)).

Figure 2: DBrs

This program �rst declares observed/2 as a target predicate corresponding
to our observations by clause (1). (2) and (3) declare the use and value sets
of msw atoms. For example (2) declares a probabilistic multi-ary switch named
rain whose values are fyes; nog. (4), the main clause de�ning observed/2

is read like an ordinary Prolog clause. The di�erence between (4) and usual
clauses is two usages of built-in msw atoms in the body. msw(rain,once,A) for
example returns in A one of fyes; nog sampled according to a parameterized

10The second and the third condition correspond to the disjoint declaration in Poole's
framework [31]: disjoint([msw(i,N,v1):�i;v1,..., msw(i,N,vjVij):�i;vjVij

]).

8

distribution PFr
(� j �r) described below. msw(sprinkler,once,B) behaves sim-

ilarly.11 If disjunctions look messy, by the way, it is possible to split the clause
into three clauses each of which has a conjunctive body. By doing so however,
we will have a multiple occurrences of the same msw atom.

Write the program as DBrs = Frs[Rrs where Frs = fmsw(rain; once;yes),
msw(rain; once; no), msw(sprinkler; once; on), msw(sprinkler; once; off)g and
Rrs is the set of ground instantiations of (4). To de�ne a basic distribution PFrs

over Frs, put Fr = fmsw(rain; once; yes); msw(rain; once; no)g and introduce
a distribution PFr

(�; �) over Fr parameterized by �r (0 � �r � 1) such that12

PFr
(msw(rain; once; yes) = 1; msw(rain; once; no) = 1) = 0

PFr
(msw(rain; once; yes) = 1; msw(rain; once; no) = 0) = �r

PFr
(msw(rain; once; yes) = 0; msw(rain; once; no) = 1) = 1� �r

PFr
(msw(rain; once; yes) = 0; msw(rain; once; no) = 0) = 0:

Introduce analogously another distribution PFs
(�; �) parameterized by �s over the

set Fs = fmsw(sprinkler; once; on); msw(sprinkler; once; off)g. The basic
distribution PFrs

is then de�ned as the products of PFr
and PFs

. Hereafter for
simplicity, we use P (A) as a synonym for P (A = 1), and P (:A) for P (A = 0).
Accordingly we write PDB rs

(observed(road(dry); lawn(wet))) = (1� �r)�s etc.
PRISM provides the user with not only various built-ins to set statistical

parameter values and compute probabilities of atoms using them, but a built-in
EM learning routine for ML (maximum likelihood) estimation to infer parameter
values from observed atoms. That is if we have a random sample such as

observed(road(wet); lawn(wet)); observed(road(dry); lawn(wet)); : : :

we can statistically infer �r and �s from them as the maximizers of the likelihood
of the sample (we further discuss EM learning later).

Now we turn to another feature of PRISM, recursion. The existence of
recursion in a program potentially introduces a countably in�nite number of
random variables and the construction of an underlying probability space is an
absolute necessity for their joint distributions to be consistently de�ned, but
presents some technical di�culties. Distribution semantics however achieves it
through the least model semantics [33].

As an example of recursive PRISM program, we look at an HMM program
DBhmm in Figure 4 describing a two state HMM in Figure 3 that generates strings
fa; bg� (of �nite length, 3 in this case). In the program, clause (1) declares that
only ground atoms containing hmm=1 are observable. (2) is concerned with tab-
ulated search which will be explained later. Since msw atoms that can appear
as goals during execution have similar patterns, (4) and (5) declare them by

11If a ground msw atom such as msw(rain,once,yes) is called, we �rst execute
msw(rain,once,A) and then execute A = yes. So the goal fails if the sampled value returned
in A is no.

12\once" in msw(rain,once,yes) is a constant to identify a trial that is attempted only once
in the program.

9

s s

a,b

a,b

a,b a,b

10

Figure 3: Two state HMM

(1) target(hmm/1).

(2) table([hmm/1,hmm/3]).

(3) values(init,[s0,s1]).

(4) values(out(_),[a,b]).

(5) values(tr(_),[s0,s1]).

(6) hmm(Cs):- msw(init,once,Si),hmm(1,Si,Cs).

(7) hmm(T,S,[C|Cs]):- T=<3,

msw(out(S),T,C),msw(tr(S),T,NextS),

T1 is T+1,hmm(T1,NextS,Cs).

(8) hmm(T,_,[]):- T>3.

Figure 4: PRISM program DB hmm for the two state HMM

terms containing \ " that matches anything. Clauses (6)�(8) specify the prob-
abilistic behavior of the HMM. T is a time step and S and NextS are states. Cs
represents a list of output symbols. Clause (7) probabilistically chooses an out-
put symbol C and the next state NextS. To represent switches sampled at each
state S, it uses non-ground terms out(S) and tr(S). T is used to guarantee in-
dependence among choices at di�erent time steps. DBhmm as a whole describes a
process of stochastic generation of strings such as hmm([a,b,a]). The program
is procedurally understandable by Prolog reading except msw atoms. That is,
given ground S and T, C in msw(out(S),T,C) behaves like a random variable
taking discrete values fa,bg declared by clause (4).

5 Three computational tasks

To apply statistical abduction to the real world, we need computational tractabil-
ity in addition to expressive power. We here consider three basic computational
tasks based on the analogy of HMMs [32]:

(1) computing PDB (G j ~�),
13 the probability of an atom G representing an

observation,

13~� is the vector consisting of parameters associated with all abducibles which forms the
explanations for the observed fact G or an observation in G.

10

(2) �nding E�, the most likely explanation for G, and

(3) adjusting the parameters so that the probability of a given sequence G =
hG1;G2; : : : ; GT i of observations is maximized.

All solutions should be computationally tractable.

As for HMMs, these methods correspond to the forward procedure, the
Viterbi algorithm and the Baum-Welch algorithm respectively [32, 22].

Poole [31] described a method for the �rst task. Let us consider a program
DB = F [R and the following if-and-only-if (i�) relation under comp(R), the
Clark's completion of the rules R [7]:

comp(R) j= G$E(1) _ � � � _E(m): (1)

He assumes that there exist �nitely many explanations DB(G) = fE
(1); � � � ; E(m)g

for G as above each of which is a �nite conjunction of independent abducibles
and they are mutually exclusive, i.e. PDB(E

(i) ^E(j)) = 0 (1 � i 6= j � m) (we
say DB satis�es the exclusiveness condition). Let I be the set of switch names
and �i;v(E) the number of occurrences of msw(i,�,v) in an explanation E. His
method for solving the �rst task is formulated in our notation as follows:

PDB(G j ~�) =
P

E2 DB(G)
PF (E) =

P
E2 DB (G)

Q
i2I;v2Vi

�
�i;v(E)
i;v : (2)

A little modi�cation of the above formula would give one for the second task:

E� = argmaxE2 DB (G)
Q
i2I;v2Vi

�
�i;v(E)
i;v : (3)

Unfortunately, j DB(G)j, the number of explanations for G, often grows expo-
nentially in the complexity of the model (e.g. the number of states in an HMM),
or in the complexity of each observation (e.g. the string length).

5.1 OLDT search and support graphs

For the three basic computational tasks to be practically achievable, it is a
must to suppress computational explosions. De�ne anew DB (G), the set of all

explanations for a goal G, by DB(G)
def
= fE j minimal E � F;R [E ` Gg.

Statistical abduction has two potential sources of computational explosions.
One is a search phase searching for DB(G). It will be explosive if the search is
done by backtracking as can be easily con�rmed by the HMM program DB hmm.
The other is a probability computation phase corresponding to (2) and/or (3).
They would be explosive without factoring computations. Suppose we have
a program fg:-m1,m2,m3. g:-m4,m2,m3.g in which g is a goal. (2) leads us
to P (g) = P (m1)P (m2)P (m3) + P (m4)P (m2)P (m3). However this computation
repeats the same computation P (m2)P (m3) twice.

It is possible to avoid these computational redundancies all at once by
adopting tabulated search that results in a compact graphical representation

11

of all solutions, which in turn makes it possible to factor probability com-
putations. The point is to introduce intermediate atoms between a goal and
abducibles called table atoms to factor out common probability computations
and let them store the computed results. In the above case, we should write
fg:-m1,h. g:-m4,h. h:-m2,m3.g using a new table atom h. We compute
P (h) = P (m2)P (m3) once and use the result twice later in the computation
of P (g) = P (m1)P (h) + P (m4)P (h). The remaining of this subsection and the
next subsection detail the idea sketched above.

In OLDT search [42] which is a complete tabulated search method for logic
programs that adopts the tabling of goals, we store explanations for a goal
G in a global table called a solution table while letting them hierarchically
share common sub-explanations [18, 42]. Such hierarchical sharing re
ects on
factoring probability computations carried out after search. From the solution
table, a graph called support graph representing DB (G) is extracted as an
ordered set of disconnected subgraphs. Once the support graph is extracted,
it is relatively easy to derive algorithms for the three computational tasks that
run as e�ciently as specialized ones such as the forward procedure, the Viterbi
algorithm and the Baum-Welch algorithm in HMMs, as we see later.

Mathematically we need some assumptions to validate the derivation of these
e�cient algorithms. Namely we assume that the number of explanations for a
goal is �nite (we say DB satis�es the �nite support condition) and there exists

a linearly ordered set14 �DB(G)
def
= h�0; �1; : : : ; �Ki (�0 = G) of table atoms15

satisfying the following conditions:

� Under comp(R), a table atom �k (0 � k � K) is equivalent to a disjunction
Ek;1 _ � � � _ Ek;mk

. Each disjunct Ek;h (1 � h � mk) is called a tabled-

explanation for �k and made up of msw atoms and other table atoms. The
set ~ DB(�k) = fEk;1; : : : ; Ek;mk

g is called the tabled-explanations for �k.
Logically, it must hold that

comp(R) j= (G$ E0;1 _ � � � _E0;m0
) (4)

^ (�1 $ E1;1 _ � � � _E1;m1
)

^ � � � ^ (�K $ EK;1 _ � � � _ EK;mK
):

Also we require that table atoms be layered in the sense that atoms ap-
pearing in the right hand side of �k $ Ek;1 _ � � � _ Ek;mk

belong in
F [f�k+1; : : : ; �Kg (acyclic support condition). In other words, �k can
only refer to �k0 such that k < k0 in the program.

14Here we use a vector notation to emphasize the set is ordered.
15Table atoms mean atoms containing a table predicate. They make an entry for a table

to store search results. Table predicates are assumed to be declared by the programmer in
advance like table([hmm/1,hmm/3]) in DBhmm. We treat the top goal G as a special table atom
�0.

12

(T1) top_hmm(Cs,Ans):- tab_hmm(Cs,Ans,[]).

(T2) tab_hmm(Cs,[hmm(Cs)|X],X):- hmm(Cs,Ans,[]).

(T2') tab_hmm(T,S,Cs,[hmm(T,S,Cs)|X],X):- hmm(T,S,Cs,Ans,[]).

(T3) e_msw(init,T,s0,[msw(init,T,s0)|X],X).

(T3') e_msw(init,T,s1,[msw(init,T,s1)|X],X).

:

(T6) hmm(Cs,X0,X1):-

e_msw(init,once,Si,X0,X2),

tab_hmm(1,Si,Cs,X2,X1).

(T7) hmm(T,S,[C|Cs],X0,X1):- T=<3,

e_msw(out(S),T,C,X0,X2),

e_msw(tr(S),T,NextS,X2,X3),

T1 is T+1, tab_hmm(T1,NextS,Cs,X3,X1).

(T8) hmm(T,S,[],X,X):- T>3.

Figure 5: Translated program DB t
hmm

� PDB(Ek;i; Ek;j) = 0 if i 6= j for Ek;i; Ek;j 2 ~ DB (�k) (0 � k � K) (t-

exclusiveness condition) and each tabled-explanation in ~ DB(�k) is com-
prised of statistically independent atoms (independent condition).

�DB(G) satisfying these conditions (the �nite support condition, the acyclic
support condition, the t-exclusiveness condition and the independent condition)
is obtained, assuming due care is taken by the programmer, by (a specialization
of) OLDT search [42] as follows. We look at the HMM program DBhmm in
Section 4 as a running example. We �rst translate DB hmm to a Prolog program
similarly to DCGs (de�nite clause grammars). The Prolog program DB t

hmm
in

Figure 5 is a translation of DBhmm. Clauses (Tj) and (Tj') are generated from
the clause (j) in DB hmm. In translation, we add two arguments as di�erence-list
to atoms to hold a tabled-explanation. Table predicates do not change, so table
predicates in DB t

hmm
are hmm/3 and hmm/5. We rename the abducibles declared

by (3)�(5) in DBhmm so that they are placed in the callee's di�erence-list. We
treat table atoms just like msw atoms except that they invoke subsequent calls
to search for their tabled-explanations returned in Ans. For this purpose, we
add clauses with the head of the form tab ...() like (T2).

After translation, we �x the search strategy of OLDT to multi-stage depth-

�rst strategy [42] (it is like Prolog execution) and run DB t
hmm

for a top-goal, for
instance :- top_hmm([a,b,a],Ans,[]) to search for all tabled-explanations of
the tabled atom �0 = hmm([a,b,a]) corresponding to our observation. They
are returned in Ans as answer substitutions.

The top goal invokes a table atom hmm([a,b,a],Ans,[]) through clause
(T2). Generally in OLDT search, when a table atom hmm(t,Ans,[]) is called
for the �rst time, we create a new entry hmm(t) in the solution table. Every
time hmm(t,Ans,[]) is solved with answer substitutions t = t0 and Ans = e,
we store e (= a tabled-explanation for hmm(t0)) in the solution table under the

13

sub-entry hmm(t0) (in the current case however, t and t0 are ground, so they
coincide). If the entry hmm(t) already exists, hmm(t,Ans,[]) returns with one
of the unused solutions. The OLDT search terminates exhausting all solutions
for hmm([a,b,a],Ans,[]) and yields a solution table in Figure 6.

hmm([a,b,a]):

[hmm([a,b,a]): [[msw(init,once,s0),hmm(1,s0,[a,b,a])],

[msw(init,once,s1),hmm(1,s1,[a,b,a])]]]

hmm(1,s0,[a,b,a]):

[hmm(1,s0,[a,b,a]):[[msw(out(s0),1,a),msw(tr(s0),1,s0),hmm(2,s0,[b,a])],

[msw(out(s0),1,a),msw(tr(s0),1,s1),hmm(2,s1,[b,a])]]]

hmm(1,s1,[a,b,a]):

[hmm(1,s1,[a,b,a]):[[msw(out(s1),1,a),msw(tr(s1),1,s0),hmm(2,s0,[b,a])],

[msw(out(s1),1,a),msw(tr(s1),1,s1),hmm(2,s1,[b,a])]]]

:

Figure 6: Part of solution table for hmm([a,b,a]).

A list

[[msw(init,once,s0),hmm(1,s0,[a,b,a])],

[msw(init,once,s1),hmm(1,s1,[a,b,a])]]

under the sub-entry hmm([a,b,a]) in Figure 6 means

comp(Rhmm) ` hmm([a; b; a])$
(msw(init; once; s0) ^ hmm(1; s0; [a; b; a]) _
(msw(init; once; s1) ^ hmm(1; s1; [a; b; a])

where Rhmm = f(6), (7), (8)g in DB hmm in Section 4.
After OLDT search, we collect all tabled-explanations from the solution

table and topologically sort them to get linearly ordered table atoms �DB (G)
= h�0; �1; : : : ; �Ki (�0 = G) together with their tabled-explanations ~ DB (�k)
(0 � k � K) satisfying Equation (4).

Since all the data we need in the subsequent computation of PDB(G j ~�) is
�DB(G) (and ~ DB (�)), and since it is much more natural from a computational
point of view to look upon �DB(G) as a graph than a set of atoms logically
connected, we introduce a graphical representation of �DB (G), and call it a
support graph. Namely, a support graph �DB (G) for G is a linearly ordered set
h�0; �1; : : : ; �Ki (�0 = G) of disconnected subgraphs. Each subgraph �k (0 � k �
K) (we identify a subgraph with the table atom labeling it) is comprised of linear
graphs of the form start-e1-� � �-eM-end representing some tabled-explanation
e1 ^ � � � ^ eM for �k. Here start is a fork node and end is a join node and eh
(1 � h � M) is either a msw atom or a table atom labeling the corresponding
subgraph in a lower layer. Part of the support graph for �DB (hmm([a;b; a])) is
described in Figure 7.

14

hmm([a,b,a]):

endstart

m(init,once,s0)

m(init,once,s1)

hmm(1,s0,[a,b,a])

hmm(1,s1,[a,b,a])

start

m(o(s0),1,a)

m(o(s0),1,a)

m(tr(s0),1,s0)

m(tr(s0),1,s1) hmm(2,s1,[b,a])

hmm(2,s0,[b,a])

end

:

hmm(1,s0,[a,b,a]):

Figure 7: Part of the support graph for hmm([a,b,a])

5.2 Computing the observation probability and the most
likely explanation

Given a support graph for G, an e�cient algorithm for computing PDB(G j ~�)
(the �rst task) is derived based on the analogy of the inside probabilities in
Baker's Inside-Outside algorithm [2]. In our formulation, the inside probabil-
ity of a table atom � (sometimes called the generalized inside probabilitiy of

�) is PDB (� j ~�). Recall that the computation of PDB(G j ~�) by Equation (2)
completely ignores the fact that PF (E) and PF (E

0) (E 6= E0) may have com-
mon computations, and hence always takes time proportional to the number of
explanations in DB (G).

The use of the support graph �DB (G) = h�0; �1; : : : ; �Ki (�0 = G) enables
us to factor out common computations. First note that distribution semantics
ensures that PDB (�k) =

P
Ek;h2 ~ DB (�k)

PDB(Ek;h) holds for every k (0 � k � K)

[33, 38]. Consequently from the support graph

�DBhmm
(hmm([a,b,a])) = hhmm([a,b,a]); hmm(1,s0,[a,b,a]); : : : ; hmm(4,s1,[])i

in Figure 7, we have

8>>>>>>>><
>>>>>>>>:

P (hmm([a,b,a]))
= �(init;s0)P (hmm(1,s0,[a,b,a])) + �(init;s1)P (hmm(1,s1,[a,b,a]))

P (hmm(1,s0,[a,b,a]))
= �(out(s0);a)�(tr(s0);s0)P (hmm(2,s0,[b,a]))

+ �(out(s0);a)�(tr(s0);s1)P (hmm(2,s1,[b,a]))
� � �

P (hmm(4,s1,[])) = 1

Here P (�) = PDB hmm
(�). Second note that by computing inside probabilities

sequentially from the bottom table atom hmm(4,s1,[]) to the top table atom
hmm([a,b,a]), we can obtain P (hmm(1; s1; [a;b; a])) in time proportional to the

15

size of the support graph which is O(N2L), not the number of all explanations
O(NL), where N is the number of states and L the length of an input string.

The program Get-Inside-Probs below generalizes this observation. It
takes as input a support graph �DB(G) = h�0; �1; : : : ; �Ki (�0 = G) for a goal G

and computes inside probabilities PDB(�k j ~�) starting from the bottom atom
�K whose tabled explanations only contain msw atoms and ending at the top goal
�0 = G. In the program, a tabled explanation E 2 ~ DB(�k) is considered as
a set and P[�] is an array storing inside probabilities. It should be noted that,
when computing P [�k], the inside probabilities P[�K], P [�K�1] ; : : : ; P [�k+1]
have already been computed. The computation terminates leaving the inside
probability of G in P[�0](= P[G]).

1: procedure Get-Inside-Probs(�DB (G)) begin

2: for k := K downto 0 do

3: P[�k] :=
P

E2 ~ DB (�k)

Q
msw(i,�,v)2E

�i;v
Q
�2E\f�k+1;:::;�Kg

P [�]

4: end.

Similarly, an e�cient algorithm for computing the most likely explanation
E� for G (i.e. the second task) is derived. The algorithm Get-ML-Expl below
�rst computes �[�k], the maximum probability of tabled-explanations for each
table atom �k 2 �DB(G). E[�k], the most likely tabled-explanation for �k, is
simultaneously constructed. Finally, we construct E� from E [�].

1: procedure Get-ML-Expl(�DB (G)) begin

2: for k := K downto 0 do begin

3: foreach E 2 ~ DB (�k) do

4: �0[�k; E] :=

5:
Q

msw(i,�,v)2E
�i;v
Q
�2E\f�k+1;:::;�Kg

�[�];

6: �[�k] := maxE2 ~ DB (�k)
�0[�k; E];

7: E[�k] := argmaxE2 ~ DB (�k)
�0[�k; E]

8: end;

9: s := fGg; E� := ;;

10: while s 6= ; do begin

11: Select and remove A from s;

12: if A = msw(�,�,�) then add A to E�

13: else s := s [E[A]

14: end

15: end

We remark that Get-ML-Expl is equivalent to the Viterbi algorithm, a
standard algorithm for �nding the most likely state-transition path of HMMs
[22, 32]. Furthermore, in case of PCFGs (probabilistic context-free grammars),
it is easily shown that a probabilistic parser for a PCFG in PRISM combined
with Get-ML-Expl can �nd the most likely parse of a given sentence.

16

5.3 Graphical EM algorithm

The third task, i.e. the parameter learning of PRISM programs means ML
estimation of statistical parameters ~� associated with msws in a program DB,
for which the EM algorithm is appropriate [23]. A new EM algorithm named
graphical EM algorithm that runs on support graphs has been derived based
on the analogy of computation of the outside probabilities in the Inside-Outside
algorithm [18, 37]. We added an assumption that all observable atoms are
exclusive to each other and their probabilities sum up to one to guarantee the
mathematical correctness of the algorithm (we say DB satis�es the uniqueness
condition).

Although details of the graphical EM algorithm are left to [18, 37], we give
a brief account. The algorithm takes as input a set of support graphs f�DB (G1)
; : : : ; �DB(GT)g generated from a random sample of goals hG1; : : : ;GT i. It �rst

initializes the parameters ~� randomly and then iterates the simultaneous update
of ~� by executing the E(expectation) step followed by the M(aximization) step

until the likelihood of the observed goals saturates. Final values ~�� become
the learned ones that locally maximize

QT

t=1 PDB (Gt j
~�). The crux in the

graphical EM algorithm is the E step, i.e. the computation of the expected
counts of occurrences of msw(i,�,v) in a proof of the top goal G:

X
E2 DB (G)

�i;v(E)PF (E j G; ~�)

to update a parameter �i;v associated with msw(i,�,v). Naive computation of
the expected counts as above causes computation time to become proportional
to the number of explanations for G, which must be avoided. We compute
it indirectly using the generalized outside probabilities which are recursively
(and e�ciently) computed from the support graph �DB (G) = h�0; �1; : : : ; �Ki
for G like the inside probabilities but from �0 to �K . Update of parameters
per iteration completes by scanning the support graph twice, once for inside
probabilities and once for outside probabilities, and hence update time is linear
in the size of �DB (G) [18, 37].

5.4 Complexity

In this subsection, we �rst analyze the time complexity of our methods for
the �rst and the second task. The method for the �rst (resp. the second) task
comprises two phases { OLDT search to generate a support graph for a goal and
a subsequent computation by Get-Inside-Probs (resp. by Get-ML-Expl).
Hence, we should estimate each phase separately. First assuming that table
access can be performed in O(1) time,16 the computation time of OLDT search
is measured by the size of the search tree which depends on a class of models.

16In reality O(1) can be subtle. The worst case should be O(logn) for n data by using
balanced trees [8]. In the case of PCFGs, n is N3L3 with N non-terminals for a sentence of
length L, so O(logn) = O(logmaxfN;Lg). On the other hand, if we consider the abundance
of memory available nowadays, it seems technically and economically reasonable to employ an

17

As for the computation time of Get-Inside-Probs and Get-ML-Expl,
since both algorithms scan a support graph �DB(G) only once, it is linear in the

size of �DB (G), or O(�num�maxsize) in notation where �num
def
= j�j, �maxsize

def
=

maxE2� jEj, and �
def
=
S
�2�DB(G)

~ DB(�).

Now we examine concrete models. For an HMM program like DBhmm in Sec-
tion 4, OLDT time and the size of a support graph are both O(N2L) where N
is the number of states and L the length of an input string. This is because for
a ground top-goal hmm([w1; : : : ; wL]) (we are thinking of DBhmm), there are at
most NL goal patterns of table atom hmm(t,s,l) during the execution. Each
goal causes N recursive calls in the body of clause (7) in DBhmm. Thanks to
OLDT search, each table atom is computed once (we assume in the program-
ming, the arguments t and s in hmm(t,s,l) are numbers and O(1) table access
is available). Therefore the size of the search tree is O(N2L) and so is the
search time for all solutions. Also as each tabled-explanation is a conjunc-
tion of at most three atoms (see Figure 7), we conclude that �num = O(N2L)
and �maxsize = O(1). Hence, the time complexity of Get-Inside-Probs and
Get-ML-Expl for HMMs becomes O(N2L). This is the same order as that of
the forward procedure and the Viterbi algorithm. So Get-Inside-Probs (resp.
Get-ML-Expl) is a generalization of the forward procedure (resp. the Viterbi
algorithm).

For PCFGs, we assume grammars are in Chomsky normal form. Then it is
shown that the time complexity of OLDT search is O(M3L3) and so is the size of
a support graph (see [18]), and hence Get-Inside-Probs and Get-ML-Expl

run in time O(M 3L3). HereM is the number of non-terminals in the grammar,
L the length of an input sentence.

Compared to HMMs and PCFGs, Bayesian networks present harder prob-
lems as computing marginal probabilities in a Bayesian network is NP-hard. So
we focus on the sub-class, singly connected Bayesian networks [4, 28], though ex-
pressing general Bayesian networks by PRISM programs is straightforward [34].
By writing an appropriate PRISM program for a singly connected Bayesian
network which has a clause corresponding to each node in the singly connected
network, it is relatively easy to show that OLDT time for Get-Inside-Probs
and Get-ML-Expl is linear in the number of nodes in the network [38]. We
here assumed that the maximum number of parent nodes is �xed.

Our method for the third task (EM learning) comprises OLDT search and the
graphical EM algorithm. For the latter, time complexity is measured by the re-
estimation time per iteration (since we do not know how many times it iterates
until convergence in advance). It is shown, analogously to Get-Inside-Probs
and Get-ML-Expl however, to be O(�num�maxsize) for one goal. The reader is
referred to [18, 37, 38] for details.

array in order to ensure O(1) data access time, as has been traditionally assumed in parsing
algorithms. Also we note that hashing achieves average O(1) data access time under a certain
assumption [8].

18

Model OLDT time GIP/GMLE GEM

HMMs O(N2L) O(N2L) O(N2LT)

PCFGs O(M3L3) O(M3L3) O(M3L3T)

sc-BNs O(jV j) O(jV j) O(jV jT)

Table 1: Time complexity for the three computational tasks

We summarize computation time w.r.t. popular symbolic-statistical models
in Table 1. In the table, the second column\OLDT time" indicates that com-
putation time of OLDT search (assuming O(1) table access) for the models in
the �rst column. The third column \GIP/GMLE" means the time complexity
of Get-Inside-Probs (the �rst task) and Get-ML-Expl (the second task)
respectively corresponding to the model in the �rst column. The fourth column
\GEM" is the time complexity of (one iteration of) the graphical EM algorithm
(the third task, parameter estimation by EM learning). N , L, M , jV j and T
are respectively the number of states of the target HMM, the maximum length
of input strings, the number of non-terminal symbols in the target PCFG, the
number of nodes in the target singly connected Bayesian network and the size
of training data. In statistical abduction with OLDT search, time complexity
for each of the three computational tasks is the sum of OLDT time and the
subsequent probability computations which is linear in the total size of support
graphs.

Table 1 exempli�es that our general framework can subsume speci�c algo-
rithms in terms of time complexity. For HMMs, O(N2L) is the time complexity
of the forward algorithm, the Viterbi algorithm and one iteration of the Baum-
Welch algorithm [32, 22]. O(M 3L3) is the time complexity of one iteration of
the Inside-outside algorithm for PCFGs [2, 22]. O(jV j) is the time complexity of
a standard algorithm for computing marginal probabilities in singly connected
Bayesian networks [28, 4] and that of one iteration of the EM algorithm for
singly connected Bayesian networks [4].

6 Conclusion

We have proposed statistical abduction as a combination of abductive logic
programming and a distribution over abducibles. It has �rst-order expressive
power and integrates current most powerful probabilistic knowledge represen-
tation frameworks such as HMMs, PCFGs and (singly connected) Bayesian
networks. Besides, thanks to a new data structure, support graphs which are
generated from OLDT search, our general algorithms developed for the three
computational tasks (probability computation, the search for the most likely
explanation, and EM learning) accomplish the same e�ciency as specialized
algorithms for above three frameworks. On top of that, recent learning experi-
ments with PCFGs by the graphical EM algorithm using two Japanese corpora

19

of moderate size17 suggest that the graphical EM algorithm can run much (or-
ders of magnitude) faster than the Inside-Outside algorithm [37, 39].

There remains however a lot to be done including �nishing the implemen-
tation of OLDT search and the proposed algorithms in PRISM and the de-
velopment of various applications of statistical abduction. Also a theoretical
extension to programs containing negation is an important research topic.

References

[1] Bacchus, F., Using First-Order Probability Logic for the Construction of
Bayesian Networks, Proc. of UAI'93, pp219-226, 1993.

[2] Baker,J.K., Trainable Grammars for Speech Recognition, Proc. of Spring
Conference of the Acoustical Society of America, pp547-550, 1979.

[3] Breese,J.S., Construction of Belief and Decision Networks, J. of Computa-
tional Intelligence, Vol.8 No.4 pp624-647, 1992.

[4] Castillo,E., Gutierrez,J.M., and Hadi,A.S., Expert Systems and Probabilistic
Network Models, Springer-Verlag, 1997.

[5] Charniak,E., A neat theory of marker passing, Proc. of AAAI'86, pp584-588,
1986.

[6] Charniak,E., Statistical Language Learning, The MIT Press, 1993.

[7] Clark, K., Negation as failure, In Gallaire, H., and Minker, J. (eds), Logic
and Databases, pp293-322, Plenum Press, 1978.

[8] Cormen,T.H., Leiserson,C. E. and Rivest,R.L., Introduction to Algorithms,
MIT Press, 1990.

[9] Csinger,A., Booth,K.S. and Poole,D., AI Meets Authoring: User Models for
Intelligent Multimedia, Arti�cial Intelligence Review 8, pp447-468, 1995.

[10] Cussens,J., Loglinear models for �rst-order probabilistic reasoning, Proc.
of UAI'99, pp126-133, 1999.

[11] Cussens,J., Parameter estimation in stochasitc logic programs, Machine
Learning 44, pp245-271, 2001.

[12] Dekhtyar,A.and Subrahmanian,V.S., Hybrid Probabilistic Programs, Proc.
of ICLP'97, pp391-405, 1997.

[13] Doets,K., From Logic to Logic Programming, MIT Press, Cambridge, 1994.

17One corpus contains 9,900 sentences. It has a very ambiguous grammar (2,687 rules),
generating 3:0�108 parses/sentence at the average sentence length 20. The other corpus con-
sists of 10,995 sentences, and has a much less ambiguous grammar (860 rules) that generates
958 parses/sentence.

20

[14] Eshghi,K. Abductive Planning with Event Calculus, Proc. of ILCP'88,
pp562-579, 1988.

[15] Hobbs,J.R., Stickel,M.E., Appelt,D.E. and Martin,P., Interpretation as ab-
duction, Arti�cial Intelligence 63, pp69-142, 1993.

[16] Kakas,A.C., Kowalski,R.A. and Toni,F., Abductive Logic Programming, J.
Logic Computation, Vol.2 No.6, pp719-770, 1992.

[17] Kakas,A.C., Kowalski,R.A. and Toni,F., The role of abduction in logic pro-
gramming, Handbook of Logic in Arti�cial Intelligence and Logic Program-
ming, Oxford University Press, pp235-324, 1998.

[18] Kameya,Y. and Sato,T., E�cient EM learning with tabulation for parame-
terized logic programs, Proc. of CL2000, LNAI 1861, Springer-Verlag, pp269-
284, 2000.

[19] Koller,D. and Pfe�er,A., Learning probabilities for noisy �rst-order rules,
Proc. of IJCAI'97, Nagoya, pp1316-1321, 1997.

[20] Koller,D., McAllester,D. and Pfe�er,A., E�ective Bayesian Inference for
Stochastic Programs, Proc. of AAAI'97, Rhode Island, pp740-747, 1997.

[21] Lakshmanan,L.V.S. and Sadri,F., Probabilistic Deductive Databases, Proc.
of ILPS'94 pp254-268, 1994.

[22] Manning, C. D. and Sch�utze, H., Foundations of Statistical Natural Lan-
guage Processing, The MIT Press, 1999.

[23] McLachlan, G. J. and Krishnan, T., The EM Algorithm and Extensions,
Wiley Interscience, 1997.

[24] Muggleton,S., Stochastic Logic Programs, in Advances in Inductive Logic
Programming (Raedt,L.De ed.) OSP Press, pp254-264, 1996.

[25] Ng,R. and Subrahmanian,V.S., Probabilistic Logic Programming, Informa-
tion and Computation 101, pp150-201, 1992.

[26] Ngo,L. and Haddawy,P., Answering Queries from Context-Sensitive Prob-
abilistic Knowledge Bases, Theoretical Computer Science 171, pp147-177,
1997.

[27] Nilsson,N.J., Probabilistic Logic, Arti�cial Intelligence 28, pp71-87, 1986.

[28] Pearl,J., Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-
mann, 1988.

[29] Pfe�er,A., IBAL:A Probabilistic Programming Language, Proc. of IJ-
CAI'01, pp733-740, 2001.

21

[30] Poole,D., Goebel,R. and Aleliunas,R., Theorist: a logical reasoning system
for default and diagnosis, In Cercone,N., and McCalla., eds., The Knowledge
Frontier, Springer, pp331-352, 1987.

[31] Poole,D., Probabilistic Horn abduction and Bayesian networks, Arti�cial
Intelligence 64, pp81-129, 1993.

[32] Rabiner, L. and Juang, B. Foundations of Speech Recognition, Prentice-
Hall, 1993.

[33] Sato,T., A Statistical Learning Method for Logic Programs with Distribu-
tion Semantics, Proc. of ICLP'95, pp715-729, 1995.

[34] Sato,T. and Kameya,Y., PRISM:A Language for Symbolic-Statistical Mod-
eling, Proc. of IJCAI'97, pp1330-1335, 1997.

[35] Sato,T., Modeling Scienti�c Theories as PRISM Programs, ECAI Work-
shop on Machine Discovery, pp37-45, 1998.

[36] Sato,T., Parameterized Logic Programs where Computing Meets Learning,
Proc. of FLOPS2001, LNCS 2024, 2001, pp40-60.

[37] Sato,T., Kameya,Y., Abe,S. and Shirai,K., Fast EM learning of a Family of
PCFGs, Titech Technical Report (Dept. of CS) TR01-0006, Tokyo Institute
of Technology, 2001.

[38] Sato,T. and Kameya, Y., Parameter Learning of Logic Programs for
Symbolic-statistical Modeling, submitted for publication.

[39] Sato,T., Abe,S., Kameya,Y. and Shirai,K., A Separate-and-Learn Ap-
proach to EM Learning of PCFGs, Proc. of NLPRS2001, Tokyo, 2001 (to
appear).

[40] Sakama,T. and Inoue,K., Representing Priorities in Logic Programs, Proc.
of JICSLP'96, MIT Press, pp82-96, 1996.

[41] Shanahan,M., Prediction is Deduction but Explanation is Abduction, Proc.
of IJCAI'89, pp1055-1060,1989.

[42] Tamaki, H. and Sato, T., OLD resolution with tabulation, Proc. of
ICLP'86, LNCS 225, pp84-98, 1986.

[43] Wetherell,C.S., Probabilistic Languages: A Review and Some Open Ques-
tions, Computing Surveys, Vol.12,No.4, pp361-379, 1980.

[44] White,H.C., An Anatomy of Kinship, Prentice-Hall INC., 1963.

22

