
Prefix and infix probability computation in
PRISM

Ryosuke Kojima and Taisuke Sato

Tokyo Institute of Technology

Abstract. This paper presents the recent progress concerning prefix and
infix probability for PCFGs in a logic-based modeling language PRISM.
A prefix is an initial substring of a sentence and likewise an infix is a
substring that occurs within a sentence. The prefix probability computa-
tion is already introduced to PRISM but applications are still scarce. We
describe a new application to web data that identifies visitors’ intentions,
or goals visiting a website from observed sequences of their actions us-
ing prefix probability. We also discuss infix probability computation that
generalizes prefix probability computation. Unlike previous approaches,
we compute it through parsing followed by solving a set of non-linear
equations.

Keywords: prefix probability, infix probability, PCFG, session log

1 Introduction

Probability computation based on explanation graphs in a logic-based modeling
language PRISM has a rather long history [1, 2] where it is assumed that expla-
nation graphs are acyclic and finite so that dynamic programming is applicable.
Thanks to this dynamic programming feature, PRISM’s probability computa-
tion and parameter learning for standard probabilistic models such as Bayesian
networks (BNs), hidden Markov models (HMMs) and probabilistic context free
grammars (PCFGs) are highly efficient and can be performed in the same time
complexity as those algorithms specialized for each model class.

However there are cases where probability computation requires an infinite
sum of probabilities, typically probabilistic model checking using Markov chains
[3] and prefix probability computation in PCFGs [4, 5]. They are already made
possible in probabilistic logic programming (PLP) [6, 7].

We present here two developments of our previous work [7] which introduces a
basic mechanism of prefix probability computation by cyclic explanation graphs
to PRISM. One is an application. We apply prefix probability computation to
the problem of estimating visitors’ goals who visit a website from their session
log data. In our setting, visitors are a mixture of various groups with different
goals. We analyze their action sequence as a sentence in some PCFG specialized
for each group or goal, and represent the whole session log data as a mixture of

2 Kojima, R. and Sato, T.

PCFGs, i.e., a combination of such specialized PCFGs1. The task is to estimate
the visitor’s goal as a most likely start symbol in the mixture of PCFGs. Our
analysis will give us two kinds of information. One is the visitor’s goal that is
useful, for example, for web marketing. The other is a most likely parse tree
for the visitor’s action sequence which also helps us understand the visitor’s
behavior and will give us a clue to improve the website.

Nevertheless the above approach has two problems. A bigger one is that we
cannot obtain any information until visitors complete their actions as sentences
in a PCFG. So it is impossible to obtain visitor information online and guide
them to a target page, say, by displaying affiliate links. The second one is the
problem of unachieved visitors. Unachieved visitors are those who quit the site
for some reason before they achieve their goals or purposes. Obviously their ac-
tion sequences should be considered as incomplete, not as complete sentences.
We solve these two problems by generalizing sentences to prefixes and by con-
sidering action sequences as prefixes in a PCFG. A prefix is an initial substring
of a sentence and since any incomplete sequence by an unachieved visitor can be
considered as a prefix, this generalization makes it possible to identify a visitor’s
goal online and estimate the most likely parse tree for it.

The other development is a further generalization of prefixes to infixes, or pre-
fix probability computation to infix probability computation. Unlike the former
computation, infix probability computation is much harder and early attempts
put some restrictions on it. However Nederhof and Satta recently proposed a
completely general method to compute infix probability [8]. One thing we have
to note is that their method only gives us probability. It never gives parse trees
of prefixes or infixes, and hence Viterbi inference, obtaining a most likely tree
for a prefix or an infix is impossible by their method. So we propose a new
method, computing infix probability via parse trees expressed by cyclic expla-
nation graphs in PRISM.

In the following, we first review prefix probability computation in PRISM and
then look at the application of prefix probability computation to web session log
data and then discuss infix probability computation implementable in PRISM.
We assume the reader has a basic knowledge of PCFGs.

2 Prefix probability computation

A PCFG GΘ is a CFG G augmented with a parameter set Θ =
∪

Ni∈N{θr}Ni

where N is a set of nonterminals, and N1 a start symbol and {θr}Ni the set of
parameters associated with rules {r | r = N i → ζ} for a nonterminal N i where
ζ is a sequence of nonterminal and terminal symbols . We assume that the θr’s
satisfy 0 < θr < 1 and

∑
ζ:Ni→ζ θNi→ζ = 1.

1 A mixture of PCFGs is a combination of component PCFGs. It specifies a distribu-
tion P (w | N1) of sentences w derived from the start symbol N1 as P (w | N1) =
P

A P A(w | A)P (A | N1) where P A(w | A) is a distribution defined by a component
PCFG with a start symbol A.

Prefix and infix probability computation in PRISM 3

There are a couple of methods to compute prefix probabilities in PCFGs [4].
We briefly describe prefix probability computation in PRISM based on expla-
nation graphs [7]. A prefix v is an initial substring of a sentence and the prefix
probability PN1

pre (v) of v is defined as an infinite sum of probabilities of sentences
extending v:

PN1

pre (v) =
∑
w

PG(vw)

where w ranges over strings such that vw is a sentence in G. Prefix probabilities
are computed in PRISM by way of cyclic explanation graphs. Due to space
limitations, we only sketch our prefix probability computation following [7]. We
use a PCFG G0 = { s → s s : 0.4, s → a : 0.3, s → b : 0.3 } where “s” is a
start symbol and “a” and “b” are terminals and consider to compute the prefix
probability P s

pre(a) of prefix a. To compute P s
pre(a), we first parse “a” as a prefix

by the PRISM program below.

values(s,[[s,s],[a],[b]]).

:- set_sw(s,[0.4,0.3,0.3]).

pre_pcfg(L):- pre_pcfg([s],L,[]). % (1) L is a prefix

pre_pcfg([A|R],L0,L2):- % (2) L0 is ground when called

(get_values(A,_) -> msw(A,RHS), % (3) if A is a nonterminal

pre_pcfg(RHS,L0,L1) % (4) select rule A->RHS

; L0=[A|L1]), % (5) else consume A in L0

(L1=[] -> L2=[] % (6) (pseudo) success

; pre_pcfg(R,L1,L2)). % (7) recursion

pre_pcfg([],L1,L1). % (8) termination

Fig. 1. Prefix parser DB0

DB0 in Fig. 1 is a prefix parser for G0. As can be seen from the comments, it
runs exactly like a standard top-down CFG parser except pseudo success at line
(6). pseudo success means an immediate return with success on the consumption
of the input prefix L1 ignoring the remaining nonterminals in R at line (2)2.

By running a command ?-probf(pre pcfg([a])), we obtain an explanation
graph in Fig. 2 (left) for pre pcfg([a]). It is a set of boolean formulas defining
intermediate goals by equivalence formulas. It represents all possible derivation
paths of the top-goal pre pcfg([a]) in terms of AND/OR formulas comprised

2 This is justified because we assume the consistency of PCFGs [9] that implies the
probability of remaining nonterminals in R yielding some terminal sequences is 1.

4 Kojima, R. and Sato, T.

pre_pcfg([a]) <=> pre_pcfg([s],[a],[]) : P(pre_pcfg([a])) = X = Y

pre_pcfg([s],[a],[]) <=> : P(pre_pcfg([s],[a],[])) = Y

pre_pcfg([s,s],[a],[]) & msw(s,[s,s]) = Z · θs→ss + W · θs→a

v pre_pcfg([a],[a],[]) & msw(s,[a])

pre_pcfg([s,s],[a],[]) <=> : P(pre_pcfg([s,s],[a],[])) = Z

pre_pcfg([a],[a],[]) & msw(s,[a]) = W · θs→a + Z · θs→ss

v pre_pcfg([s,s],[a],[]) & msw(s,[s,s])

pre_pcfg([a],[a],[]) : P(pre_pcfg([a],[a],[])) = W = 1

Fig. 2. Explanation graph for prefix “a” (left) and associated probability equations
(right)

of msw atoms representing probabilistic choices. Note a cycle in the explanation
graph: pre pcfg([s,s],[a],[]) calls itself in the third equivalence formula.

Then we convert the equivalence formulas to a set of probability equations
about X, Y, Z and W as in Fig. 2 (right). We use the fact that goals are independent
(P (A ∧ B) = P (A)P (B)) and discjuntions are exclusive (P (A ∨ B) = P (A) +
P (B)). By solving them using parameter values θs→ss = 0.4 and θs→a = 0.3
set by :-set_sw(s,[0.4,0.3,0.3]) in the program DB0, we eventually obtain
X = Y = Z = 0.53. So we have P s

pre(a) = X = 0.5. In general, a set of probability
equations generated from a prefix in a PCFG using DB0 is always linear and
solvable by matrix operation [7].

3 Action sequences as prefixes in a PCFG

Here we tackle the problem of identifying visitors’ purposes, or goals who visit
a website from their session logs. We first abstract a visitor’s session log into a
sequence of actions comprised of five basic actions: up, down, sibling, reload
and move. The first two, up and down, describe that a visitor moves respectively to
a page in the parent directory and a subdirectory in the site’s directory structure.
An action sibling says that a visitor moves to a page in a subdirectory of the
parent directory. An action reload means that a visitor requests the same page.
An action move categorizes remaining miscellaneous actions. Moving between
web pages is expressed by a sequence of basic actions. For example moving
from /top/index.html to /top/child/a.html is a down action and moving from
/top/index.html to /top/b.html is a sibling action.

We consider an action sequence generated by a visitor who has achieved the
intended goal as a sentence in a PCFG. We parse it using rules like those in
Table 1 and obtain a parse tree illustrated in Fig. 3. The CFG rules in Table
1 describe the visitors’ goal-subgoal structure behind the action sequence. For
example, the second and fourth rules say that when visitors’ intention is Survey,

3 W = 1 because pre pcfg([a],[a],[]) is logically proved without involving msws.

Prefix and infix probability computation in PRISM 5

Table 1. CFG rules

S → Survey

Survey → Search Destination

Search → Down Up Search | Down

Destination → sibling Destination | sibling

Down → Down down | down

Up → Up up | up

Fig. 3. Example of parse tree using rules in Table 1

they perform Search for a target page, reach a Destination page and looks around
the Destination page.

Since diverse visitors visit a website with different goals, we capture action
sequences w made by those diverse visitors in terms of a mixture of PCFGs
P (w | N1) =

∑
A PA(w | A)P (A | N1) where PA(w | A) is the probability

of w being generated by a visitor whose goal is represented by a nonterminal
A and P (A | N1) is the probability of A being derived from the start symbol
N1 respectively. We call such A a goal-nonterminal and assume that there is a
unique rule N1 → A for each goal-nonterminal A and also assume that it has a
parameter θN1→A = P (A | N1).

Finally to be able to estimate visitor goals online and also from action se-
quences generated by unachieved visitors, we replace a sentence probability
PA(w | A) in a mixture of PCFGs P (w | N1) =

∑
A PA(w | A)P (A | N1)

by a prefix probability PA
pre(w | A).

Hence given a prefix wk with length k as an action sequence, we estimate
the most likely goal-nonterminal A† for wk by

A† = argmax
A

PA
pre(wk)θN1→A (1)

where A ranges over possible goal-nonterminals. PA
pre(wk) is computed just like

PN1

pre (w) in the previous section.

6 Kojima, R. and Sato, T.

4 Comparative experiment

In this section, we empirically evaluate our method, the prefix method , and
compare it to two other methods: the PCFG method and logistic regression.
The PCFG method naively uses a PCFG. It applies a mixture of PCFG to
action sequences wk. So every sequence is considered as a sentence and the most
likely goal-nonterminal A∗ is estimated from wk by

A∗ = argmax
A

PA(wk)θN1→A (2)

where A ranges over possible goal-nonterminals. PA(wk) is the probability of
wk being derived by a component PCFG from goal-nonterminal A.

We also compare the prefix method with logistic regression which is a stan-
dard discriminative model that does not assume any structure behind data like
the prefix and PCFG methods. For a fixed length k, the most likely visitor goal
is estimated from wk considered as a feature vector where features are five basic
visitor actions introduced in Section 3.

4.1 Data sets and the universal session grammar

We prepare three data sets of action sequences by preprocessing web server logs
of U of S (University of Saskatchewan), ClarkNet and NASA [10] in the Internet
Traffic Archive [11]. We consider solely for convenience action sequences with
length greater than 20 as sentences and exclude those with length greater than
30 as the latter’s computation is too costly. As a result we obtain three data
sets of action sequences referred to here as U of S, ClarkNet and NASA, each
containing 652, 4523 and 2014 action sequences respectively.

With data sets prepared, we next specify a CFG to build a mixture of PCFGs
applied to the data sets. To do so in turn requires to determine the number of
goal-nonterminals. In other words, we have to know how many goals or intentions
visitors have who visit a web site. So we perform clustering on action sequences
assuming that one cluster corresponds to one goal, i.e., the number of clusters
gives the number of goal-nonterminals.

We use a mixture of PCFGs again for clustering4 in such a way that although
component PCFGs share a common CFG, their parameters are independent.
While varying the number of component PCFGs, we choose the clustering giv-
ing the highest Bayesian information criterion (BIC) [12]. We construct a small
CFG for clustering, containing 30 rules and 12 nonterminals because clustering
by a mixture of PCFGs tends to suffers very high memory usage. As a result
of this clustering, we got five clusters which are listed in Table 2. Visitors be-
longing to Survey cluster survey wide area of a website and visitors belonging
to News cluster find news and updates of a website. Survey(SpecificAreas) and
News(SpecificAreas) clusters are similar to these clusters but visitors belonging

4 Clustering is done by PRISM.

Prefix and infix probability computation in PRISM 7

to them tend to stay in a specific area of a website. Other visitors including those
who don’t move in a web site along directory structure belong to Other cluster.

Table 2. Result of clustering

Cluster Features and major action
(goal-nonterminal)

Survey up/down moves in the hierarchy of a website

News up/down moves in the hierarchy of a website + reload a same page

Survey(SpecificAreas) access to same layer

News(SpecificAreas) access to same layer + reload a same page

Other other

Finally we manually expand the small CFGs, which we use for clustering, into
a large CFG called the universal session grammar that has five goal-nonterminals
corresponding to five visitor clusters in Table 2. Some rules relating to Survey
are listed Table 3. The universal session grammar contains 102 rules and 32 non-
terminals and reflects our observation that visitors have different action patterns
between initial, middle and end parts in a session.

Table 3. Part of the universal session grammar

S → Survey

Survey → InitialSearch Destination EndSearch | Destination EndSearch

Destination→UpDownSearch Search | UpDownSearch

Search→InternalSearch Destination | InternalSearch

4.2 Measuring accuracy

We apply the three methods to the task of estimating visitors’ goals from prefixes
of action sequences and compare their accuracy while varying prefix length. We
also include a mixture of hidden Markov models (HMMs) in the comparison as
a reference method.

To prepare a teacher data set to measure accuracy, we need to label each
action sequence generated by a visitor by the visitor’s true intention or goal,
which is impossible. As substitution, we define a correct top-goal for an action
sequence in a data set to be the most likely goal-terminal for the sequence
estimated by a mixture of PCFGs with the universal session grammar whose

8 Kojima, R. and Sato, T.

parameters are learned by MLE from the data set. This strategy seems to make
sense as long as the universal session grammar is reasonably constructed.

In the experiment5, accuracy is measured by 5-fold cross-validation for each
prefix length k (2 ≤ k ≤ 20). After parameter learning by a training data set,
prefixes with length k are cut out from action sequences in the test set and their
most likely goal-nonterminals are compared against correct top-goals labeling
them. Fig. 4 shows accuracy for each k with standard deviation.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16 18 20

ac
cu
rac

y

prefix length

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16 18 20

ac
cu
rac

y

prefix length
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20
ac
cu
rac

y
prefix length

NASA

U of S ClarkNet

Prefix
PCFG
Log-Reg
HMM

Fig. 4. Accuracy for U of S, ClarkNet and NASA

Here Prefix denotes the prefix method, PCFG the PCFG method6 and Log-
Reg logistic regression respectively. We also add HMM for comparison which uses
a mixture of HMMs instead of a mixture of PCFGs7 8.

Fig. 4 clearly demonstrates that the prefix method and the PCFG method
outperform logistic regression and HMM, a standard discriminative model and
5 It is conducted on a PC with Core i7 Quad 2.67GHz OpenSUSE 11.4 and 72GB

main memory.
6 We apply a PCFG to prefixes by regarding them as sentences. In this experiment,

the universal session grammar fails to parse at most two sequences for each dataset,
so we ignore these sequences.

7 We use a left-to-right HMM where the number of states is varied from 2 to 8. In
Fig. 4, only the highest accuracy is plotted for each k. Since logistic regression only
accepts fixed length data, we prepare 19 logistic regression models, one for each
length k (2 ≤ k ≤ 20).

8 We use PRISM [1, 2] to implement a mixture of HMMs and that of PCFG and also
to compute prefix probability. For the implementation of logistic regression we use
the ‘nnet’ package of R.

Prefix and infix probability computation in PRISM 9

a standard generative model without gramatical information respectively, when
prefix is long. Actually all differences at prefix length k = 20 in the graph are
statistically significant and confirmed by t-test at 0.05 significance level. Also
we can observe that the PCFG method rapidly deteriorates when prefix gets
shorter though the prefix method keeps fairly good performance comparable to
logistic regression and HMM.

5 Infix probability computation by parsing

The previous experiment deals with prefixes of action sequences. However if
we wish to estimate visitor goals from more incomplete sequences that lack
the beginning part in addition to the ending part, we have to compute infix
probability.

5.1 Nederhof and Satta’s algorithm

An infix v in a PCFG G is a substring of a sentence written as uvw for some
terminal sequences u and w. The infix probability PN1

in (v) is defined as

PN1

in (v) =
∑
u,w

PG(uvw)

where u and w range over strings such that uvw is a sentence. According to
Nederhof and Satta [8], roughly speaking, PN1

in (v) is computed by first construct-
ing an intersection PCFG G′ = G ∩ FA of G and a finite automaton FA which
accepts every string containing v, and second computing the sum of probabilities
of all sentences derived from G′. The second computation is reduced to solving
a set of multi-variate polynomial equations (details omitted).

The problem is that although their algorithm is completely general, building
the intersection PCFG G′ contains redundancy. Let A → BC be a CFG rule in G
and {s0, . . . , sn} a set of states in FA. To create G′, rules of the form 〈siAsk〉 →
〈siBsj〉〈sjCsk〉 are constructed for every possible i, j, k (0 ≤ i < j < k ≤ n)9but
some of these rules do not contribute to producing terminal sequences and hence
need to be removed.

5.2 Infix parsing and cyclic explanation graphs

To avoid blindly combining states and rules and removing them later, we here
propose to introduce parsing to their algorithm. More concretely we parse an
infix L by a PRISM program in Fig. 5. It is a modification of the prefix parser in
Fig. 1 that faithfully simulates the parsing action of the intersection PCFG G′.

This program differs from the prefix parser in that an input infix w =
w1 · · ·wn is asserted in the memory as a sequence of state transitions: tr(0,w1,1),
9 This is to simulates a state transition of FA made by a string derived from the

nonterminal A using A → BC.

10 Kojima, R. and Sato, T.

values(s,[[s,s],[a],[b]]).

:- set_sw(s,[0.4,0.3,0.3]).

infix_pcfg(L):- % L : input infix

build_FA(L), % FA asserted in the memory

assert_last_state(L,End), % last_state($(End)) asserted

start_symbol(C),

infix_pcfg(0,End,[C]). % FA transits from state 0 to End

infix_pcfg(S0,S2,[A|R]):-

(get_values(A,_) -> % A : nonterminal

msw(A,RHS), % use A -> RHS to expand A

infix_pcfg(S0,S1,RHS)

; tr(S0,A,S1)), % state transition by A from S0 to S1

(last_state($(S1)) -> S2 = S1 % pseudo success

; infix_pcfg(S1,S2,R)).

infix_pcfg(S,S,[]).

Fig. 5. Infix parser DB2

. . . ,tr(n − 1,wn,n), together with other transitions constituting the finite au-
tomaton FA. In the program, tr(S0,A,S1) represents a state transition from S0
to S1 by a word A in the infix. infix pcfg(S0,S2,α) reads that α, a sequence
of terminals and nonterminals, spans a terminal sequence which causes a state
transition of FA from S0 to S2. Parsing an infix by the infix parser in Fig. 5
yields an explanation graph which usually is cyclic. For example parsing “a b”
by running ?- probf(infix_pcfg([$,a,b,$]))10yields an explanation graph
shown in Fig. 6 in which infix pcfg(0,0,[s,s]) and infix pcfg(0,0,[s])
call each other.

An infix parse tree for an infix w is defined to be a tree constructed by a
minimal derivation such that every node except for the leaf nodes spans a leaf
subsequence that intersects w. We allow here a leaf node to be a nonterminal.
The probability of an infix parse tree is defined to be the product of probabili-
ties associated with CFG rules appearing in the tree. Infix parsing by the infix
parser in Fig. 5 generates a set of infix parse trees compactly represented as an
explanation graph. Although details are omitted due to space limitations, it is
possible to extract the most likely infix tree for w from w’s explanation graph.

Equivalence formulas in the explanation graph are converted to a set of prob-
ability equations just like the case of prefix probability computation. From Fig. 6,
we obtain, for instance, the probability equations about X = P (infix pcfg(0, 0, [s, s])),
Y = P (infix pcfg(0, 0, [b])) and Z = P (infix pcfg(0, 0, [s])) in Fig. 7, which

10 probf/1 is a PRISM’s built-in predicate and displays an explanation graph.

Prefix and infix probability computation in PRISM 11

infix_pcfg([$,a,b,$]) <=> infix_pcfg(0,2,[s])

infix_pcfg(0,2,[s]) <=> infix_pcfg(0,2,[s,s]) & msw(s,[s,s])

...

infix_pcfg(0,0,[s,s])

<=> infix_pcfg(0,0,[b]) & infix_pcfg(0,0,[s]) & msw(s,[b])

v infix_pcfg(0,0,[s,s]) & infix_pcfg(0,0,[s]) & msw(s,[s,s])

infix_pcfg(0,0,[b]) <=> infix_pcfg(0,0,[])

infix_pcfg(0,0,[s])

<=> infix_pcfg(0,0,[b]) & infix_pcfg(0,0,[]) & msw(s,[b])

v infix_pcfg(0,0,[s,s]) & infix_pcfg(0,0,[]) & msw(s,[s,s])

...

infix_pcfg(0,0,[])

Fig. 6. Part of the explanation graph for infix “a b”

are non-linear (see XZ). We use parameter values P (msw(s, [s, s]) = 0.4 and
P (msw(s, [b]) = 0.3 which are set in the program DB2. Solving the set of equa-
tions gives P (infix pcfg(0, 0, [s, s]) = X = 0.121 and P (infix pcfg(0, 0, [s])
= Z = 0.348. Similarly the infix probability of “a b” is computed as 0.464. As
can be seen from this example, unlike prefix probability, probability equations
for an infix are usually non-linear and we solve them by Broyden’s method, a
quasi-Newton method. In this way, we can compute infix probability by way of
explanation graphs and estimate a visitor’s goal from part of their session logs.

P (infix pcfg(0, 0, [s, s]) = X = 0.3 · YZ + 0.4 · XZ
P (infix pcfg(0, 0, [b]) = Y = 1
P (infix pcfg(0, 0, [s]) = Z = 0.3 · Y + 0.4 · X

Fig. 7. Probability equations for infix pcfg(0,0,[s,s]), infix pcfg(0,0,[b]) and
infix pcfg(0,0,[s])

6 Conclusion

We have presented the recent progress concerning prefix and infix probability
for PCFGs in PRISM. One is an application of prefix probability computation
to goal recognition of visitors from their action sequences who visit a website. A
comparative experiment using three real datasets is conducted using the prefix

12 Kojima, R. and Sato, T.

method which we proposed, the PCFG method that always treats action se-
quences as complete sentence, the HMM method that uses a mixture of HMMs
instead of a mixture of PCFGs, and logistic regression. The result demonstrates
the superiority of the prefix method for long action sequences. Another is in-
fix probability computation that generalizes prefix probability computation. We
proposed to compute it by way of cyclic explanation graphs to delete redundancy
in Nederhof and Satta’ method [8]. Our approach also gives infix parse trees as
side effect. Infix probability computation requires to solve a non-linear set of
probability equations unlike prefix probability computation. The implementa-
tion of infix probability computation using Broyden’s method is underway and
will be included in the future release of PRISM.

References

1. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

2. Sato, T., Kameya, Y.: New Advances in Logid-Based Probabilistic Modeling by
PRISM. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Proba-
bilistic Inductive Logic Programming. LNAI 4911, Springer (2008) 118–155

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In Gopalakrishnan, G., Qadeer, S., eds.: Proceeding of the 23rd
International Conference on Computer Aided Verification (CAV’11). Volume 6806
of LNCS., Springer (2011) 585–591

4. Jelinek, F., Lafferty, J.: Computation of the probability of initial substring genera-
tion by stochastic context-free grammars. Computational Linguistics 17(3) (1991)
315–323

5. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics 21(2) (1995) 165–201

6. Gorlin, A., Ramakrishnan, C., Smolka, S.: Model checking with probabilistic tabled
logic programming. Theory and Practice of Logic Programming (TPLP) 12(4-5)
(2012) 681–700

7. Sato,T. and Meyer,P.: Infinite probability computation by cyclic explana-
tion graphs. Theory and Practice of Logic Programming (TPLP) DOI:
http://dx.doi.org/10.1017/S1471068413000562, published online, Nov. 04
(2013) 1–29

8. Nederhof, M., Satta, G.: Computation of infix probabilities for probabilistic
context-free grammars. In: Proceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP’11). (2011) 1213–1221

9. Wetherell, C.S.: Probabilistic languages: a review and some open questions. Com-
puting Surveys 12(4) (1980) 361–379

10. Arlitt, M.F., Williamson, C.L.: Web server workload characterization: The search
for invariants. In: ACM SIGMETRICS Performance Evaluation Review. Vol-
ume 24. (1996) 126–137

11. ITA: The Internet Traffic Archive. http://ita.ee.lbl.gov/ (2001)
12. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2) (1978)

461–464

