
Propositionalizing the EM algorithm by BDDs

Masakazu Ishihata1, Yoshitaka Kameya1, Taisuke Sato1, and Shin-ichi Minato2

1 Graduate School of Information Science and Engineering,
Tokyo institute of Technology

{ishihata,kameya,sato}@mi.cs.titech.ac.jp
2 Graduate School of Information Science and Technology,

Hokkaido University
minato@ist.hokudai.ac.jp

Abstract. We propose an EM algorithm working on binary decision
diagrams (BDDs). It opens a way to applying BDDs to statistical infer-
ence in general and machine learning in particular. We also present the
complexity analysis of noisy-OR models.

1 Introduction

Binary decision diagrams (BDDs) have been popular as a basic tool for com-
pactly representing boolean functions [1, 2]. In this paper3 we present yet an-
other application of BDDs. We propose a new EM algorithm that works on
BDDs. Since the EM algorithm is a fundamental parameter learning algorithm
for maximum likelihood estimation in statistics [4], our proposal opens a way
to apply BDDs to statistical learning in general and to machine learning in
particular.

2 The EM algorithm

We here describe our unsupervised learning setting and review the expectation-
maximization (EM) algorithm [4]. First of all, we assume our problem domain is
modeled with k boolean random variables X1, X2, . . . , Xk, each taking 1 (true)
and 0 (false) independently of each other. Let F be a boolean function composed
of these k variables, and assume only the value of F is observable whereas those
of the Xi’s are not. Hereafter, to make notations simple, F is treated as a boolean
random variable as well that takes the value of (the function) F . We then call F
an observable variable, and the Xi’s basic variables. The EM algorithm proposed
in this paper aims to estimate the probabilities of basic variables being true from
the observed values of F .

Let φ be an assignment of the set of basic variables X = {X1, X2, . . . , Xk}.
φ maps each variable X ∈ X to its value x ∈ {0, 1}. We assume X is partitioned
3 This is a shortened version of [3], which deals with zero-suppressed BDDs (ZBDDs)

as well as BDDs.

into S, sets of i.i.d. variables, and each partition s ∈ S has a parameter θs,x,
a common probability of X ∈ s taking x. We use Φ to stand for the set of
all assignments. Since the value F = f ∈ {0, 1} is uniquely determined by φ,
F is a function F (φ) = f of assignments. Hence the set of assignments which
make F = f is written as F−1(f) = {φ ∈ Φ | F (φ) = f}. We introduce
σs,x(φ) = |{X ∈ s | φ(X) = x}| to denote the total number of i.i.d. variables in
the partition s that takes a value x by φ. The EM algorithm we develop for the
setting described above consists of two steps, the expectation step (E-step) and
the maximization step (M-step), defined as follows:

– E-step: Compute the conditional expectation Eθ[σs,x(·) | F =f] by
ηx

θ [s]/Pθ (F =f), where:

ηx
θ [s] =

∑
φ∈F−1(f)

σs,x(φ)
∏
s′∈S

∏
x′∈{1,0}

(θs′,x′)σs′,x′ (φ) (1)

Pθ (F =f) =
∑

φ∈F−1(f)

∏
s∈S

∏
x∈{1,0}

(θs,x)σs,x(φ). (2)

– M-step: Update θ to θ̂ by θ̂s,x ∝ Eθ[σs,x(·) | F =f].

3 BDDs and the EM algorithm

A BDD is a rooted directed acyclic graph representing a boolean function
as a disjunction of exclusive conjunctions. It has two terminal nodes, 1 (true)
and 0 (false). Each nonterminal node n is labeled with a binary random vari-
able denoted by Label(n), and has two outgoing edges called 1-edge and 0-edge,
indicating that Label(n) takes 1 and 0, respectively. Chx(n) stands for a child
node of n, connected by the x-edge (x ∈ {0, 1}).

A reduced ordered BDD (ROBDD) is a BDD which is a unique representation
of the target boolean function. Fig. 1 illustrates some different representations
of a boolean function F = (A ∨ B) ∧ C̄. Fig. 1 (a) is a truth table, in which a
row corresponds to an assignment φ for X = {A,B,C}. One way to obtain the
ROBDD for F (Fig. 1 (d)) is to consider a binary decision tree (BDT) (b) and
apply two reduction rules, the deletion rule and the merging rule, as many times
as possible to reach (d).

Consider a BDT like the one in Fig. 1 (b). In a BDT, there is a unique path
πφ from the root to a terminal for an assignment φ, in which every basic variable
appears once as a node label. We rewrite Eq. 1 to Eq. 3 so that ηx

θ [s] is computed
on a BDD:

ηx
θ [s] =

∑
πφ:φ∈F−1(f)

∑
n′∈πφ:Ln′∈s

1φ(Ln′)=x

∏
n∈πφ

(θ[Ln])φ(Ln)(θ[Ln])
1−φ(Ln) (3)

Here n ∈ πφ says that the node n is on the path πφ. Ln is a shorthand for Label(n)
and [Ln] is the partition to which Ln belongs. 1φ(Ln′)=x = 1 if φ(Ln′) = x is
true, and 0 otherwise.

�

�

�

�

� �

�

� �

�

� �

�

� �

�

�

�

� �

���	��

�����
��	���
�	�����
�	����
������
���	���
������
�����

�

�

�

�

�

�

�

����� � ��� ����� �����

� � �

Fig. 1. Examples of (a) a truth table, (b) a binary decision tree (BDT), (c) a BDD
which is ordered but is not reduced, (d) the ROBDD, for F = (A ∨ B) ∧ C̄.

4 The BDD-EM algorithm

We here present the BDD-EM algorithm which is an EM algorithm working
on BDDs. There are four auxiliary procedures for the procedure BDD-EM(), i.e.
IterateEM(), GetBackward(), GetForward() and GetExpectation().

1: Procedure: BDD-EM()
2: Initialize all parameters θ;
3: repeat
4: IterateEM();
5: until the parameters θ converge;
6: end

1: Procedure: IterateEM()
2: // E-step
3: GetBackward();
4: GetForward();
5: GetExpectation();
6: // M-step
7: for each s ∈ S do
8: θs,1 ∝ η1

θ [s]/Pf
θ [F];

9: θs,0 ∝ η0
θ [s]/Pf

θ [F];
10: end for
11: end

1: Procedure: GetBackward()

2: B1
θ [1] = 1, B1

θ [0] = 0;

3: B0
θ [1] = 0, B0

θ [0] = 1;

4: N = Par(1) ∪ Par(0);
5: // Par(n): the set of parents of n.
6: while N 6= φ do
7: n = argmaxn′∈N Ord (n′)
8: // Ord (n) is the index of Label(n)
9: // in the variable order.

10: X = Label(n);
11: B1

θ [n] = θ[X]B1
θ [Ch1(n)]

12: +θ[X̄]B1
θ [Ch0(n)];

13: B0
θ [n] = θ[X]B0

θ [Ch1(n)]
14: +θ[X̄]B0

θ [Ch0(n)];
15: N = N\{n} ∪ Par(n);
16: end while
17: end

Backward and forward probabilities: We compute backward and forward
probabilities like those in hidden Markov models. The procedure GetBack-
ward() calculates backward probabilities for each node in the BDD representing
F . A backward probability B1

θ[n] (resp. B0
θ[n]) is the sum of the probabilities

of all paths from node n to 1 (resp. 0). We set B1
θ[1] = 1 and B0

θ[0] = 1
respectively. They are calculated from terminals to the root. Contrastingly the
procedure GetForward() calculates forward probabilities for each node from
the root to terminals. A forward probability Fθ[n] is the sum of the probabilities

1: Procedure: GetForward()
2: InitializeF();
3: Fθ [root] = 1;
4: N = {root};
5: while N 6= φ do
6: n = argminn′∈N Ord (n′);
7: X = Label(n);
8: Fθ [Ch1(n)] += Fθ [n]θ[X];
9: Fθ [Ch0(n)] += Fθ [n]θ[X̄];

10: N = N\{n} ∪ {Ch1(n), Ch0(n)};
11: end while
12: end

1: Procedure: GetExpectation()
2: InitializeEta();
3: for each n ∈ N do
4: X = Label(n);
5: e1

n = Fθ [n]Bf
θ [Ch1(n)]θ[X];

6: e0
n = Fθ [n]Bf

θ [Ch0(n)]θ[X̄];

7: η1
θ

ˆ

[X]
˜

+= e1
n, kη0

θ

ˆ

[X]
˜

+= e0
n;

8: for each Z ∈ Del1Y (n) do
9: η1

θ

ˆ

[Z]
˜

+= e1
nθ[Z];

10: η0
θ

ˆ

[Z]
˜

+= e1
nθ[Z̄];

11: end for
12: for each Z ∈ Del0Y (n) do
13: η1

θ

ˆ

[Z]
˜

+= e0
nθ[Z];

14: η0
θ

ˆ

[Z]
˜

+= e0
nθ[Z̄];

15: end for
16: end for
17: end

1: Procedure: GetExpectation*()
2: InitializeEta();
3: for each n ∈ N do
4: X = Label(n);
5: e1

n = Fθ [n]Bf
θ [Ch1(n)]θ[X]

6: e0
n = Fθ [n]Bf

θ [Ch0(n)]θ[X̄]

7: η1
θ

ˆ

[X]
˜

+= e1
n;

8: η0
θ

ˆ

[X]
˜

+= e0
n;

9: X ′ : Ord (X ′) = Ord (X) + 1;
10: ζ[X ′] += e1

n + e0
n;

11: ζ[Label(Ch1(n))] −= e1
n;

12: ζ[Label(Ch0(n))] −= e0
n;

13: end for
14: X = X;
15: X = argminX′∈X Ord (X ′);
16: z = ζ[X];
17: X = X\{X};
18: while X 6= φ do
19: X = argminX′∈X Ord (X ′);
20: η1

θ

ˆ

[X]
˜

+= zθ[X];
21: η0

θ

ˆ

[X]
˜

+= zθ[X̄];
22: z += ζ[X];
23: X = X\{X};
24: end while
25: end

Fig. 2. Improved GetExpectation()

of all paths from the root to node n. The procedure InitializeF() initializes
Fθ[n] = 0 for all n.

Conditional expectations: The procedure GetExpectation() updates ηx
θ

[
[X]

]
which is defined in Section 2 for each X ∈ X. The procedure InitializeEta()
sets each ηx

θ

[
[X]

]
= 0. In GetExpectation(), f ∈ {1, 0} is the observed value

of F , and N is the set of all nodes in the BDD.
Note that in order to compute probabilities properly, we need to recover

deleted nodes. So, to denote the nodes deleted by the deletion rule, Del1Y (n) and
Del0Y (n) are introduced in GetExpectation(). DelxY (n) (x ∈ {1, 0}) stands
for the set of labels (i.e. variables) of deleted nodes between n and Chx(n). So
we have DelxY (n) = {X ∈ V(δY) | Label(n) ≺ X ≺ Label(Chx(n))}. What
we actually use for the computation of conditional expectations is not GetEx-
pectation() however, as it incurs some inefficiency, but GetExpectation*()
shown in Fig. 2 which processes computation of the deleted nodes much more
efficiently (details omitted).

5 Time complexities for noisy-OR models

The time complexity of building BDDs is NP-hard in general [5]. However,
there are efficient techniques to build BDDs using the Apply operation [2] and
those to find good variable orderings, be they dynamic or static [5, 6]. So building
BDDs can be done efficiently in practice. In this section, we evaluate the time
complexity of both building BDDs and running the BDD-EM algorithm for
noisy-OR models.4

A noisy-OR model represents a relation between multiple causes and an
effect. Let F be an observable variable representing an effect, and C1, C2 and C3

basic variables representing possible causes which make F true. While the logical
OR relation is represented as F ⇔ C1∨C2∨C3, the noisy-OR relation allows for
a situation where C1 is true but F is false. For this noisy-OR model, we introduce
inhibition variables, I1,I2 and I3, which inhibit F to be true with probabilities
θ[I1] = P (F =0 | C1 =1, C2 =0, C3 =0), θ[I2] = P (F =0 | C1 =0, C2 =1, C3 =0)
and θ[I3] = P (F =0 | C1 =0, C2 =0, C3 =1), respectively. An N -input noisy-OR
model between F and C1, C2, . . . , CN is described by:

F = (C1 ∧ Ī1) ∨ (C2 ∧ Ī2) ∨ · · · ∨ (CN ∧ ĪN).

Fig. 3 shows a BDD representing F under the variable ordering Ord such that
Ci ≺ Cj , Ii ≺ Ij (i < j) and Ci ≺ Ik (i ≤ k). We construct a BDD from
F using the Apply operation, denoted by Apply(δX , δY , 〈op〉), that builds a
BDD representing X〈op〉Y where δX and δY represent the boolean functions
X and Y , respectively. Although the time complexity of Apply(δX , δY , 〈op〉) is
O(NXNY) in general, where NX (resp. NY) is the number of nodes in the BDD
representing X (resp. Y), we can see an application of Apply(·) for an N -input
noisy-OR model takes just O(1). So the BDD is obtained by applying the Apply
operation N times, and the time complexity becomes O(N) under Ord . Also the
time complexity of the E-step is O(N) because |N| = 2N and |X| = 2N .

���

� �

���

� �

�����

�

�
	

� 	

��

��

Fig. 3. A BDD representing the noisy-OR model.

4 We confirmed the BDD-EM algorithm properly converges by numerical experiments.

6 Related work and concluding remarks

We have presented an EM algorithm that works on BDDs. Our work is con-
sidered as a succession to the previous work done by Minato et al. [7]. It shows
how to compile BNs into ZBDDs to compute probabilities but probability learn-
ing is left untouched. In [3], we supplemented a necessary algorithm to apply
ZBDDs to EM learning.

The introduction of BDDs solves a long-standing problem of PRISM [8],
a logic-based language for generative modeling. It employs a propositionalized
data structure called explanation graphs similar to decomposed BDDs to repre-
sent boolean formulas in disjunctive normal form. The current PRISM however
assumes the exclusiveness condition that the disjuncts are exclusive to make
sum-product probability computation possible. Since the proposed algorithms
are applicable to explanation graphs as well, it allows PRISM to abolish the
exclusiveness condition.

ProbLog is a recent logic-based formalism that computes probabilities via
BDDs [9]. A ProbLog program computes the probability of a query atom from a
disjunction of conjunctions made up of independent probabilistic atoms by con-
verting the disjunction to a BDD and applying the sum-product computation to
it. 5 Since our BDD-EM algorithm works on BDDs, integrating it with ProbLog
for probability learning seems an interesting future research topic.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6) (1978) 509–
516

2. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

3. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algorithm
by BDDs. Technical Report TR08-0004, Dept. of Computer Science, Tokyo Institute
of Technology (2008)

4. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. J. of the Royal Statistical Society B 39 (1977) 1–38

5. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Int’l J.
on Software Tools for Technology Transfer 3 (2001) 112–136

6. Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed
edges. Proc. ACM/IEEE Design Automation Conf. (1990) 52–57

7. Minato, S., Satoh, K., Sato, T.: Compiling Bayesian networks by symbolic prob-
ability calculation based on Zero-suppressed BDDs. In: Proc. of IJCAI’07. (2007)
2550–2555

8. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. of Artificial Intelligence Research 15 (2001) 391–454

9. De Raedt, L., Angelika, K., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discoverry. In: Proc. of IJCAI’07. (2007) 2468–2473

5 It should be noted that a special treatment is required for the computation of con-
ditional expectations (see [3] for details).

