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Abstract

We present an efficient learning algo-
rithm for probabilistic context-free gram-
mars based on the variational Bayesian ap-
proach. Although the maximum likeli-
hood method has traditionally been used
for learning probabilistic language mod-
els, Bayesian learning is, in principle, less
likely to cause overfitting problems than
the maximum likelihood method. We
show that the computational complexity
of our algorithm is equal to that of the
Inside-Outside algorithm. We also report
results of experiments to compare preci-
sions of the Inside-Outside algorithm and
our algorithm.

1 Introduction

In natural language processing, one of the main
problems is a reduction of syntactic ambiguity of
sentences. Generally, a sentence can have so many
syntactic structures that we need to decide which
structure is the most likely. Probabilistic language
models have been used to solve this problem. The
maximum likelihood method is well-known as a
learning algorithm for parameters of probabilistic
models. Especially, the expectation maximization
(EM) algorithm, a class of the maximum likelihood
method, has been developed for learning with in-
complete data. For example, Baum-Welch algorithm
for hidden Markov models and the Inside-Outside
algorithm for probabilistic context-free grammars

(PCFGs) are well-known. However, the maximum
likelihood method is known to be likely to cause
overfitting problems. Recently, it has been showed
that Bayesian learning is theoretically more reliable
than the maximum likelihood method in some mod-
els (Hartigan, 1985; Watanabe, 2001). As an effi-
cient approximation of Bayesian learning, the vari-
ational Bayesian approach has been developed (At-
tias, 1999).

Although the variational Bayesian approach looks
promising, the variational Bayesian approach has
not been applied to PCFGs to our knowledge. In this
paper, we apply the variational Bayesian approach
to PCFGs and derive an efficient learning algorithm
based on dynamic programming. We show that the
computational complexity of our algorithm is equal
to that of the Inside-Outside algorithm. We also re-
port the results of comparing our algorithm with the
Inside-Outside algorithm.

2 Probabilistic Context-Free Grammar

In this section, we define some notation. LetG =
(VN , VT , R, S) be a PCFG, whereVN , VT andR
are respectively a set of non-terminals, terminals and
rules, andS is a start symbol.θ(r) (r ∈ R) is a
parameter ofr. Especially,θA(α) stands forθ(A→
α) (A ∈ VN , α ∈ (VN ∪ VT )+). We assume that a
prior probability over the parametersθ is a product
of Dirichlet distributions as follows

p(θ) =
∏

A∈VN

PD(θA,uA), (1)

whereuA is a vector of the hyperparameters ofθA:

uA = {uA→α|A→α ∈ R}. (2)



Dirichlet distributionPD is defined by

PD(θA,uA) =
1
Z

∏

α;A→α∈R

θA(α)uA→α−1, (3)

Z =

∏
α;A→α∈R Γ(uA→α)

Γ
(∑

α;A→α∈R uA→α

) , (4)

whereΓ is the gamma function.

3 Variational Bayesian Approach for
Probabilistic Context-Free Grammar

While the maximum likelihood method optimize a
point estimate of parameters, Bayesian learning es-
timates a posterior distribution of the parameters
p(θ|C). Since Bayesian learning is difficult due to
its intractable integration, the variational Bayesian
approach assumes simplifying constraints to esti-
mate an approximate posterior distributionq(θ|C)
efficiently.

3.1 Posterior Distribution

In this section, we derive a basic learning algorithm
for PCFGs to calculate the approximate posterior
distributionq(θ|C).

Let C be a training corpus andR be a set of
derivation sequences, and put

C = (s1, s2, · · · , sN ), R = (r1, r2, · · · , rN ),

whereri is a derivation sequence of a sentencesi.
We defineF using Jensen’s inequality as follows

L(C) = log p(C)

= log
∑

R

∫
p(C,R,θ)dθ

= log
∑

R

∫
q(R,θ|C)

p(C,R,θ)
q(R,θ|C)

dθ

≥
∑

R

∫
q(R,θ|C) log

p(C,R,θ)
q(R,θ|C)

dθ = F

whereL(C) is a log likelihood of the training cor-
pus C, p(R,θ|C) is a posterior distribution and
q(R,θ|C) is a free distribution.

We note that the difference betweenL(C) andF
is Kullback-Leibler (KL) distance as follows

L(C)−F =
∑

R

∫
q(R,θ|C) log

q(R,θ|C)
p(R,θ|C)

dθ

= KL(q(R,θ|C), p(R,θ|C)). (5)

SinceL(C) is constant whenC is fixed, maximizing
F is equivalent to minimizing KL distance between
q(R,θ|C) andp(R,θ|C). Therefore, we can obtain
an approximate posterior distributionq(R,θ|C) by
maximizingF as a functional ofq(R,θ|C).

Here, we constrain thatq(θ|C) andq(R|C) are
independent such that

q(R,θ|C) = q(R|C)q(θ|C)

=

{
N∏

i=1

q(r|si)

}



∏

A∈VN

q(θA|C)



 .

By maximizingF as a functional ofq(θ|C) with
q(R|C) fixed,q(θ|C) is obtained as

q(θ|C) =
∏

A∈VN

PD(θA, ûA) (6)

where

ûA = {ûA→α|A→α ∈ R}, (7)

ûr = ur +
N∑

i=1

∑

r∈Φ(si)

q(r|si)c(r; r), (8)

ur is a hyperparameter of the prior distribution,
c(r; r) is the number of occurrences of the ruler in
r andΦ(si) is a set of derivation sequences which
derivesi.

Similarly, q(R|C) is calculated as

q(R|C) =
N∏

i=1

q(r|si)

=
N∏

i=1

∏
r∈R π(r)c(r;r)

∑
r∈Φ(si)

∏
r∈R π(r)c(r;r)

, (9)

where

π(A→α) = exp


ψ(ûA→α)− ψ


 ∑

α;A→α∈R

ûA→α




 ,

andψ is the digamma function.
Sinceq(θ|C) andq(R|C) depend on each other,

the optimal distributionq(θ|C) can be computed by
updatingq(θ|C) andq(R|C) alternately with equa-
tions (6) and (9). During updating equations (6) and
(9), F increases monotonically. Finally, equations



for updating hyperparametersu for q(θ|C) are ex-
pressed as follows.

u(0)
r = ur

u(k+1)
r = ur +

N∑

i=1

∑

r∈Φ(si)

q(k)(r|si)c(r; r) (10)

q(k)(r|si) =
∏

r∈R π
(k)(r)c(r;r)

∑
r∈Φ(si)

∏
r∈R π

(k)(r)c(r;r)

π(k)(A→α)= exp


ψ(u(k)

A→α)− ψ


 ∑

α;A→α∈R

u
(k)
A→α






The optimal distributionq∗(θ|C) is obtained as

q∗(θ|C) =
∏

A∈VN

PD(θA,u
∗
A), (11)

whereu∗ is the convergent value ofu(k).

3.2 Calculation of Hyperparameters

Since the size ofΦ(si) isO(exp(li)) whereli is the
length ofsi, equation (10) requires exponential time.
To reduce this computational complexity, we apply
dynamic programming to equation (10).

3.2.1 Inside-Outside Algorithm

First, we briefly review the Inside-Outside algo-
rithm which is the first EM algorithm for PCFGs
based on dynamic programming (Baker, 1979). The
Inside-Outside algorithm estimates optimal parame-
tersθ, which are updated iteratively by the following
equation

θ̂(A→α) =
1
ZA

N∑

i=1

c(A→α; si) (12)

where

c(r; si) =
∑

r∈Φ(si)

p(r|si,θ)c(r; r)

=
∑

r∈Φ(si)

∏
r∈R θ(r)c(r;r)

∑
r∈Φ(si)

∏
r∈R θ(r)c(r;r)

c(r; r).

(13)

We assume that the grammar is in Chomsky normal
form. Thus, each rule is either of the formA→BC
or A → a (A,B,C ∈ VN , a ∈ VT ). Let s =

(w1, w2, · · · , wl) and wj
i = (wi, wi+1, · · · , wj).

We define the outside probabilityα and the inside
probabilityβ as follows

αi,j(A) = p(S ∗⇒ wi−1
1 Awl

j+1) (14)

βi,j(A) = p(A ∗⇒ wj
i ). (15)

Finally, c(r; s) can be calculated efficiently as fol-
lows

c(A→BC; s) =
θ(A→BC)
p(s|θ)

×
l−1∑

n=1

l−n∑

i=1

n∑

j=1

αi,i+n(A)βi,i+j−1(B)βi+j,i+n(C),

c(A→a; s) =
θ(A→a)
p(s|θ)

l∑

n=1

αi,i(A),

whereA,B,C ∈ VN anda ∈ VT (Lafferty, 1993).

3.2.2 Efficient Estimation of Hyperparameters

By defining γ(r; s) like c(r; s) in the Inside-
Outside algorithm,

γ(k)(r; si) =
∑

r∈Φ(si)

q(k)(r|si)c(r; r),

=
∑

r∈Φ(si)

∏
r∈R π

(k)(r)c(r;r)

∑
r∈Φ(si)

∏
r∈R π

(k)(r)c(r;r)
c(r; r),

(16)

equation (10) is rewritten as

u(k+1)
r = ur +

N∑

i=1

γ(k)(r; si). (17)

Since equation (16) is just equation (13) withθ(r)
replaced byπ(k)(r), equation (16) can be calculated
efficiently with the Inside-Outside algorithm.

3.3 Predictive Posterior Distribution

Once we have obtained the optimal posterior dis-
tribution q∗(θ|C), we can predict the most likely
derivation sequence of an unknown sentences us-
ing a predictive posterior distribution ofr defined
by

p(r|s, C) =
∫
p(r|s,θ)q∗(θ|C)dθ

∝
∏

r∈R Γ(u∗r + c(r; r))∏
A∈VN

Γ(
∑

α;A→α∈R u
∗
A→α+ c(A→α; r))

. (18)



Table 1: Evaluation of the Inside-Outside algorithm
and the proposed algorithm with 2,199 sentences
and 8,796 sentences as training corpora

2,199 sentences LP Exact 0 CB
Inside-Outside 95.05 75.24 87.03
proposed algorithm 95.89 76.73 89.13

8,796 sentences LP Exact 0 CB
Inside-Outside 96.19 77.39 89.18
proposed algorithm 96.25 77.41 89.37

Since we can’t apply a Viterbi-style algorithm to
equation (18), we need to calculate equation (18) for
all the derivations in order to decide the most likely
derivation.

4 Experiments

We conducted learning experiments to compare our
algorithm with the Inside-Outside algorithm. The
used training corpus was ATR corpus (Uratani,
1994), which contains labeled 10,995 sentences and
a context-free grammar with 861 rules. The mean
value of the length of the sentences is 9.97. In this
study, we converted the grammar to Chomsky nor-
mal form. The converted grammar has 2,336 rules,
226 non-terminals and 441 terminals. The train-
ing data has no labels or brackets. We performed
a five fold cross validation and evaluated the results
based on labeled precision (LP), exact match and
zero crossing brackets (0 CB). Labeled precision is
equal to labeled recall, since the grammar we used
is in Chomsky normal form. For the Inside-Outside
algorithm, we set initial parameters to an uniform
distribution. For our algorithm,ur = 2 (∀r ∈ R)
was used.

We used two sets of test and training corpora. One
set contained 2,199 sentences for training and 8,796
sentences for the test. The other set contained 8,796
sentences for training and 2,199 sentences for the
test.

Table 1 shows the evaluations of the predictions.
In this figure, our algorithm achieves better predic-
tive accuracy than the EM algorithm. Especially, the
differences of two algorithms are slightly larger with
2,199 training sentences than with 8,796 sentences.

These results imply that the variational Bayesian ap-
proach is more reliable than the EM algorithm espe-
cially with small training corpora.

5 Related Work

MacKay has applied the variational Bayesian ap-
proach to hidden Markov models and derived an al-
gorithm whose computational complexity is equal to
that of Baum-Welch algorithm (MacKay, 1997). He
has also pointed out difficulty in finding the most
likely derivation as we mentioned in section 3.3.

6 Conclusion

We applied the variational Bayesian approach to pa-
rameter learning of PCFGs and derived an learning
algorithm. In addition, We improved the algorithm
using dynamic programming so that the computa-
tional complexity of the improved algorithm is re-
duced to that of the Inside-Outside algorithm. The
experiments show the variational Bayesian approach
is better than the EM algorithm.

As the future work, it is required to overcome
computational difficulty in prediction of the most
likely derivation. Currently, prediction is a compu-
tationally intractable task as the Viterbi-style algo-
rithm is not applicable.

We also need to evaluate the performance of the
variational Bayesian approach for other types of cor-
pora, especially partially bracketed corpora.
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