
Parameterized Logic Programs

where Computing Meets Learning

Taisuke SATO?

Dept. of Computer Science
Tokyo Institute of Technology

2-12-1 Ôokayama Meguro-ku Tokyo Japan 152

Abstract. In this paper, we describe recent attempts to incorporate
learning into logic programs as a step toward adaptive software that can
learn from an environment. Although there are a variety of types of learn-
ing, we focus on parameter learning of logic programs, one for statistical
learning by the EM algorithm and the other for reinforcement learning
by learning automatons. Both attempts are not full-edged yet, but in
the former case, thanks to the general framework and an e�cient EM
learning algorithm combined with a tabulated search, we have obtained
very promising results that open up the prospect of modeling complex
symbolic-statistical phenomena.

1 Introduction

We start by assuming that reproducing intelligence in a computer constitutes a
great challenge to human intelligence in the 21st century. We on the other hand
recall that the assumption held by AI researchers in the late seventies was such
that it would be achieved by writing a huge program with a huge knowledge
base (though no one knew how large it would be). The �rst assumption is taken
undebatable in this paper but the second one, once thought to be undebatable,
raises a serious question in light of the fact that OS, software comprising tens
of millions of codes, is far short of being intelligent. We must admit that the
size of a program has little to do with its intelligence. It is also recognized that
intelligence is something very complex and the most feasible way of building a
very complex object comprised of tens of millions of components is to write a
program. So we are trapped in a kind of dilemma that writing a huge program
may not be a solution to building intelligence, but we seem to have no way other
than that (at least at the moment).

One way out is to note that programs can be smarter if they are born with the
ability of learning, and it might be possible, instead of writing a huge complete
program from the beginning, to let them learn how to behave more intelligently.
Think of the following. Why is a program called a program? Because it speci�es
things to happen beforehand. And people have been taking it for granted that
programs never change spontaneously regardless of how many times they are

? email: sato@mi.cs.titech.ac.jp

used. Aside from the positive side, the negative side of this property is well-
known; once an error occurs, the same error recurs inde�nitely many times under
the same condition. This stubbornness, \once built, no change," of programs
exhibits a striking contrast to human beings who grow with time and learn from
mistakes. After learning, we expect that something changes for the better, but
programs lack any means of learning as they are designed to be just symbolic
constructs for de�ning recursive functions, mathematically speaking.

The lack of learning ability is a common feature of deductive symbolic sys-
tems in general, and programs in particular, but there are well-established sym-
bolic systems that have a close relationship to learning. For instance, there exist
stochastic formal languages such as hidden Markovmodels (HMMs) [15].1 HMMs
are used in many �elds from speech recognition to natural language processing
to bioinformatics as a versatile modeling tool, and learning their parameters is
a key step in their applications. Probabilistic context free grammars (PCFGs)
[30, 9],2 an extension of HMMs, have also statistical parameters learnable from
linguistic data [1]. Turning to knowledge representation, we notice (discrete)
Bayesian networks, a graphical representation of a �nite joint distribution,3 4

are used to represent knowledge about uncertainty in the real world at propo-
sitional level [13, 2], and there is a standard way of statistically learning their
parameters. Unfortunately, all these symbolic systems do not work as a program
as they don't have a means of expressing control and data structures.

In the following,5 we propose to integrate logic programs with parameter
learning in hopes that they supply new building blocks for AI [16, 17, 7, 21, 22].
Resulting systems have the ability of expressing programs and the ability of
learning at the same time. They can compute as they are logic programs and
can learn parameters as well. There exist a couple of problems with this ap-
proach though. The most basic one is semantics. Notice that the basic principle

1 A hidden Markov model is a stochastic �nite automaton in which a transition is
made probabilistically and a probabilistically chosen alphabet is output on each
transition. The state transition is supposedly not observable from the outside.

2 A probabilistic context free grammar is a CFG with probabilities assigned to each
production rule. If a nonterminal A has N production rules fA ! �i j 1 � i � Ng,
probability pi is assigned to each rule A ! �i (1 � i � N) in such a way thatP

N

i=1
pi = 1. The probability of a sentence s is the sum of probabilities of each

(leftmost) derivation of s. The latter is the product of probabilities of rules used in
the derivation.

3 By a joint distribution, we mean a joint probability density function [3].
4 A Bayesian network is a graphical representation of a joint distribution P (X1 = x1;

: : : ; XN = xN) by a directed acyclic graph where each node is a random variable. A
conditional probability table (CPT) representing P (Xi = xi j i = i) (1 � i � N)
is associated with each node Xi where i represents the parent nodes (1 � i � N)
and i are their values. When Xi has no parent, i.e. a topmost node in the graph,
the table is just a marginal distribution P (Xi = xi). The whole joint distribution is

given by
Q

N

i=1
P (Xi = xi j i = i).

5 The content of Section 2 and Section 3 is based on [22]. Related work is omitted due
to space limitations.

of logic is that \nothing is connected unless otherwise speci�ed by axioms" while
the general rule of thumb in statistics is that \everything is connected unless
otherwise speci�ed by independence assumptions." This fundamental di�erence
is carried over to semantics in such a way that logic has a compositional se-
mantics, i.e. the meaning of A ^ B is a function of the meaning of A and that
of B, but probability is not compositional, i.e. P (A ^ B) is not a function of
P (A) and P (B). We are going to synthesize a new semantics by mixing these
somewhat conicting semantics in the next section for a class of parameterized

logic programs, de�nite clause programs with a parameterized distribution over
facts.

The new semantics is called distribution semantics [16]. It considers a param-
eterized logic program as de�ning a joint distribution (of in�nite dimensions),
and subsumes the standard least model semantics and the above mentioned sym-
bolic systems, HMMs, PCFGs and Bayesian networks [17, 22]. In the following,
after having established distribution semantics for parameterized logic programs
in Section 2, we apply it to symbolic-statistical modeling [17, 18] in Section 3
and show that three basic tasks, i.e.

Task-1: computing probabilities
Task-2: �nding out the most likely computation path
Task-3: learning parameters from data

are solved e�ciently[7, 20{22]. Furthermore, in the case of PCFGs, we experimen-
tally discovered that our learning algorithm called the graphical EM algorithm

outperforms the Inside-Outside algorithm [1], the standard parameter learning
algorithm for PCFGs, by orders of magnitudes [22]. In Section 4, we investigate
another direction of combining logic programming and learning by incorporat-
ing reinforcement learning. Reinforcement learning is a method of online training
by reward and penalty [5]. We show that logic programs incorporating learning

automatons, simple reinforcement learning devices [12, 14], can be trained to
behave desirably for our purpose.

The reader is supposed to be familiar with the basics of logic programming
[8, 4], probability theory [3], Bayesian networks [13, 2] stochastic grammars [15,
9], reinforcement learning [5] and learning automatons [12].

2 Semantic framework

In this section, we de�ne distribution semantics. Although it was already ex-
plained in various places [16, 17, 21, 22], we repeat the de�nition for the sake
of self-containedness. First of all, our program is a de�nite clause program
DB = F [R in a �rst-order language L with countably many constant symbols,
function symbols and predicate symbols where F is a set of unit clauses and R,
a set of non-unit clauses. To avoid mathematical complications, we pretend that
DB consists of countably many ground clauses and no clause head in R appears
in F . Our intention is that non-unit de�nite clauses represent eternal laws in the
universe whereas unit clauses represent probabilistic facts which happen to be

true or happen to be false. So we introduce a probability measure PF over the
set of ground atoms in F and extend it to a probability measure PDB over the
set of Herbrand interpretations for L.

Let
F be the set of Herbrand interpretations for the set of ground atoms
in F and �x an enumeration A1; A2; : : : of ground atoms in F .6 A Herbrand
interpretation has a one-to-one correspondence to an in�nite series hx1; x2; : : :i
of 1s and 0s by stipulating that xi = 1 (i = 1; 2; : : :) (resp. = 0) if and only if
Ai is true (resp. false). So
F is identi�ed with the direct product

Q
1

i=1f0; 1gi
of f0; 1gs. The existence of a probability measure PF over
F is not self-evident
but actually it is constructed freely from a collection of �nite joint distributions

P
(n)
F (A1 = x1; : : : ; An = xn) (n = 1; 2; : : : ; xi 2 f0; 1g; 1 � i � n) such that

8>>><
>>>:

0 � P
(n)
F (A1 = x1; : : : ; An = xn) � 1P

x1;:::;xn
P
(n)
F (A1 = x1; : : : ; An = xn) = 1P

xn+1
P
(n+1)
F (A1 = x1; : : : ; An+1 = xn+1)

= P
(n)
F (A1 = x1; : : : ; An = xn)

(1)

It is proved [3] that if P (n)
F (�)s satisfy the three conditions of (1), there exists a

�-additive probability measure PF such that for (n = 1; 2; : : : ; xi 2 f0; 1g; 1 �
i � n),

PF (A1 = x1; : : : ; An = xn) = P
(n)
F (A1 = x1; : : : ; An = xn):

P
(n)
F (�)s are presentable as an in�nite binary tree like Figure 1. In the tree,
p1; p21; p22; : : : (0 � p1; p21; p22; : : : � 1) are free parameters, and the tree speci-
�es PF (A1 = 1; A2 = 0) = p1(1� p21) and so on.

A1

A2

A1

A2 A2 A2

1-p 1-pp

1
p 1-p

p
2221

1

2221

Fig. 1. Making a collection of �nite distributions

Conversely, Figure 1 describes a general method of constructing P
(n)
F but

for practical reason, we assume that each probabilistic atom in F independently
represents a probabilistic choice from a set of �nitely many alternatives. So we
introduce atoms of the form msw(i,n,v) which simulates a multi-ary random

6 we assume that F contains countably many ground atoms.

switch whose name is i and whose outcome is v on trial n as a generalization
of primitive probabilistic events such as coin tossing and rolling a dice. We
henceforth assume that PF is speci�ed in the following way.

1. F consists of probabilistic atoms msw(i,n,v). The arguments i and n are
arbitrary ground terms. We assume that a �nite set Vi of ground terms is
associated with each i, and v 2 Vi holds.

2. Write Vi as fv1; v2; : : : ; vmg (m = jVij). Then, one of the ground atoms
fmsw(i,n,v1), msw(i,n,v2), . . . , msw(i,n,vm)g becomes exclusively true
(takes value 1) on each trial. With each i and (v 2 Vi), a parameter �i;v 2
[0; 1] such that

P
v2Vi

�i;v = 1 is associated. �i;v is the probability of msw(i,�,v)
being true.

3. For each ground terms i, i0, n, n0, v 2 Vi and v0 2 Vi0 , random variable
msw(i,n,v) is independent of msw(i0,n0,v0) if n 6= n0 or i 6= i0.

Speaking more formally, we introduce a family of parameterized �nite distribu-
tion P(i;n) such that

P(i;n)(msw(i,n,v1) = x1; : : : ; msw(i,n,vm) = xm j �i;v1 ; : : : ; �i;vm)

def
=

�
�
x1
i;v1
� � � �xmi;vm if

Pm

k=1 xk = 1
0 o.w.

(2)

where m = jVij, xk 2 f0; 1g (1 � k � m), and de�ne PF as the in�nite-
dimensional product measure

PF
def
=
Y
i;n

P(i;n):

Based on PF , another probability measure PDB over the set of Herbrand
interpretations
DB for L is constructed as an extension of PF by making use of
the least Herbrand model semantics of logic programs [16]. Think of a Herbrand
interpretation � 2
F . It de�nes a set F� of true atoms in F , and hence de�nes
the least Herbrand modelMDB(�) of F�[R.MDB(�) determines all truth values
of ground atoms in L. A sampling � from PF thus determines all truth values
of ground atoms. In other words, every ground atom in L becomes a random
variable in this way. We formalize this idea. Enumerate all ground atoms in

L and put it as A1; A2; : : : Then introduce a collection of �nite disrtibutions

P
(n)
DB(A1 = x1; : : : ; An = xn) (n = 1; 2; : : :) by

[Ax11 ^ � � � ^A
xn
n]F

def
= f� 2
F jMDB(�) j= Ax11 ^ � � � ^A

xn
n g

P
(n)
DB(A1 = x1; : : : ; An = xn)

def
= PF ([A

x1
1 ^ � � � ^A

xn
n]F)

where Ax = A if x = 1 and Ax = :A if x = 0. Note that [Ax11 ^ � � � ^ A
xn
n]F is

PF -measurable. Since P
(n)
DB (n = 1; 2; : : :) satis�es (1), there exists a probability

measure PDB over
DB , an extension of PF , such that

PDB(A1 = x1; : : : ; An = xn) = PF (A1 = x1; : : : ; An = xn)

for every �nite sequence of atoms A1; : : : ; An in F and for every binary vector
hx1; : : : ; xni (xi 2 f0; 1g; 1 � i � n). We consider PDB(�) as a joint distribu-
tion of countably in�nite dimensions and de�ne the denotation of the program
DB = F [R w.r.t. PF as PDB (distribution semantics). DB then becomes a
random vector of in�nite dimensions having the distribution PDB whose sample
realization is a Herbrand interpretation for L.

Distribution semantics subsumes the least Herbrand semantics in logic pro-
gramming as a special case in which PF places all probability mass on one
interpretation, i.e. making a speci�c set of ground atoms in F always true. On
the contrary, it is also possible to de�ne a uniform distribution over F (like the
one over the unit interval [0; 1]) in which every Herbrand interpretation for F
is equally probable. Since the cardinality of interpretations is just that of real
numbers (
DB is isomorphic to Cantor set), each probability of an MDB(�) is
0 in this case. What we are interested in however is distributions between these
extremes which better reect our observations in the real world such as a corpus.
The characteristics of distribution semantics are summarized as follows.

{ It is applicable to any parameterized logic programs. The underlying �rst-
order language is allowed to contain countably many symbols be they func-
tions or predicates, and programs can be arbitrary.

{ Since it is based on the least model semantics, both sides of the i� de�ni-
tion of a predicate7 p(x) $ 9y1(x = t1 ^ W1) _ � � � _ 9yn(x = tn ^ Wn)
unconditionally coincide as a random variable for any ground instantiation
p(t).

{ Unfold/fold transformation [25] preserves the denotation of parameterized
logic programs.

Owing to PDB , we may regard every ground atom (and closed formula) as a
random variable on
DB . We apply our semantics in two directions, one for
symbolic-statistical modeling described in Section 3, and the other for reinforce-
ment learning described in Section 4.

Before proceeding, we explain how to execute a parameterized logic pro-
gram. Suppose DB = F [R is a parameterized logic program such that F =
fmsw(i,n,v)g has a distribution PF =

Q
i;n P(i;n) mentioned before, and also

suppose a goal G is given. We execute G w.r.t. DB by a special SLD
interpreter whose only di�erence from the usual one is an action taken for a goal
msw(I,N,V). When it is called with ground I = i and N = n, two cases occur.8

{ msw(i,n,V) is called for the �rst time. The interpreter chooses some ground
term v from Vi with probability �i;v, instantiates V to v and returns success-
fully.

7 Here x is a vector of new variables of length equal to the arity of p, p(ti) Wi

(1 � i � n; 0 � n), an enumeration of clauses about p in DB, and each yi, a vector
of variables occurring in p(ti) Wi.

8 If either I or N is non-ground, the execution of msw(i,n,V) is unspeci�ed.

{ msw(i,n,V) was called before, and the returned value was v. If V is a free
variable, the interpreter instantiates V to v and returns successfully. If V is
bound to some non-free variable v0, the interpreter tries to unify v0 with v
and and returns successfully if the uni�cation is successful, or fails otherwise.

Execution of this type is called sampling execution because it corresponds to
sampling from PDB.

3 Statistical learning and parameterized logic programs

3.1 Blood type example

Parameterized logic programs de�ne probabilities of ground atoms. Our aim
here is to express our observations of symbolic-statistical phenomena such as
observations of blood types by ground atoms, and write a parameterized logic
program for them and adjust their parameters so that the distribution de�ned
by the program closely approximates to their empirical distribution. Let's take
ABO blood types. Possible types are 'A', 'B', 'O' and 'AB'. We declaratively
model by a parameterized logic program DB1 = F1 [R1 in Figure 2 how
these blood types are determined from inherited blood type genes fa; b; og. Note
that we employ Prolog conventions [23]. So strings beginning with a upper-
case letter are variables. Quoted atoms are constants. The underscore \ " is
an anonymous variable. Apparently clauses in DB1 are direct translation of ge-

R1 =

8>>>>><
>>>>>:

btype('A'):- (gtype(a,a) ; gtype(a,o) ; gtype(o,a)).

btype('B'):- (gtype(b,b) ; gtype(b,o) ; gtype(o,b)).

btype('O'):- gtype(o,o).

btype('AB'):- (gtype(a,b) ; gtype(b,a)).

gtype(X,Y):- gene(fa,X),gene(mo,Y).

gene(P,G):- msw(gene,P,G).

F1 = fmsw(gene,P,a); msw(gene,P,b); msw(gene,P,o)g

Fig. 2. ABO blood type program DB1

netic knowledge about blood types. btype('A'):- (gtype(a,a) ; gtype(a,o)

; gtype(o,a)) for instance says one's blood type is 'A' if the inherited genes
are ha; ai, ha; oi or ho; ai.9 gene(fa,X) (resp. gene(mo,Y)) means one inherits
a blood type gene X from the father (resp. Y from the mother). msw(gene,P,G)
represents an event that G, gene, is probabilistically chosen to be inherited from
P, a parent.

9 The left gene (resp. the right gene) is supposed to come from the father (resp. from
the mother).

PF1 , a joint distribution over the set of fmsw(gene,t,g) j t 2 ffa; mog; g 2
fa;b; ogg, is given as the product PF1 = Pfa � Pmo.

Pt(msw(gene,t,a) = x; msw(gene,t,b) = y;

msw(gene,t,o) = z j �a; �b; �o)
def
= �xa�

y
b �
z
c

Here t 2 ffa; mog and one of fx; y; zg is 1 and the remaining two are 0. �a is the
probability of inheriting gene a from a parent and so on. When t 62 ffa; mog, we
put PFt

(�; �; � j; �a; �b; �o) = 0.

Suppose we observed blood types. We represent such observations by atoms
chosen from obs(DB1) = fbtype('A'); btype('B'); btype('O'); btype('AB')g.
Our concern then is to estimate hidden parameters �a; �b; �o from the observed
atoms. First we reduce an observed atom to a disjunction of conjunction of
msw atoms by unfolding [25]. Take btype('A') for instance. btype('A') is
unfolded by comp(R1) [8, 4] into S1 _ S2 _ S3 such that

comp(R1) ` btype('A')$ S1 _ S2 _ S3
where

S1 = msw(gene,fa,a) ^ msw(gene,mo,a)
S2 = msw(gene,fa,a) ^ msw(gene,mo,o)
S3 = msw(gene,fa,o) ^ msw(gene,mo,a)

Each Si is called an explanation for btype('A') and fS1; S2; S3g is called the
support set of btype('A').10 Taking into account that S1, S2 and S3 are mutually
exclusive and msw atoms are independent, PDB1(btype('A') is calculated as

PDB1 (btype('A') j �a; �b; �o) = PFb (S1) + PFb (S2) + PFb(S3)

= �2a + 2�a�o

Hence, the values of �a, �b and �o are determined as the maximizers of �2a+2�a�o
(maximum likelihood (ML) estimation). When there are multiple observations,
say T observations G1; : : : ; GT , all we need to do is to maximize of the likelihoodQT

t=1 PDB1(Gt j �a; �b; �o), and this optimization problem is solvable by the EM
algorithm [10], an iterative algorithm for ML estimation. We face a fundamental
problem here however because the EM algorithm in statistics has been de�ned
only for numerically represented distributions and no EM algorithm is available
for parameterized logic programs. So we have to derive a new one. Fortunately,
thanks to the rigorous mathematical foundation of distribution semantics, it is
straightforward to derive a (naive) EM algorithm for parameterized logic pro-
grams [16, 6, 22].

Given T observations G = hG1; : : : ; GT i of observable atoms and a parame-
terized logic program DB that models the distribution of observable atoms, the

10 An explanation S for a goal G w.r.t. a parameterized logic program DB = F [R is
a minimal conjunction S (� F) of msw atoms such that S; R ` G. The support set
 DB(G) of G is the set of all explanations for G.

parameter set � which (locally) maximizes the likelihood
QT

t=1 PDB1(Gt j �) is
computed by an EM algorithm learn-naive(DB;G) below [16, 6]. Here DB(Gt)
(1 � t � T) is the support set of Gt and � is the set of parameters associated
with msw atoms appearing in some DB(Gt). �i;v(S) is

��� n �� msw(i,n,v) 2 S	��,
the number of how many times an atom of the form msw(i,n,v) appears in an
explanation S.

procedure learn-naive(DB;G) begin
Initialize � with appropriate values and " with a small positive number ;
�(0) :=

PT

t=1 lnPDB(Gt j �); % Compute the log-likelihood.
repeat

foreach i 2 I; v 2 Vi do

�[i; v] :=
TX
t=1

1

PDB(Gt j �)

X
S2 DB(Gt)

PF (S j �)�i;v(S);

foreach i 2 I; v 2 Vi do

�i;v :=
�[i; v]P

v02Vi
�[i; v0]

; % Update the parameters.

m := m+ 1;
�(m) :=

PT

t=1 lnPDB(Gt j �) % Compute the log-likelihood again.
until �(m) � �(m�1) < " % Terminate if converged.
end.

Our modeling process by a parameterized logic programDB of an observation
G is summarized as follows (the case of multiple observations is analogous).

Search of all explanations for G

+

Support set DB(G) for G

+

EM learning applied to DB(G)

+

Parameter values for msw atoms

3.2 OLDT and the graphical EM algorithm

Symbolic-statistical modeling by parameterized logic programs has been for-
mulated, but the real problem is whether it scales up or not. This is because
for example the �rst step in the modeling process includes the search of all
explanations for G, and it can be prohibitively time consuming. If there are
exponentially many explanations for G as is the case with HMMs, search by
backtracking would take also exponential time. We circumvent this di�culty by

employing OLDT search [26]. OLDT is a complete refutation procedure for def-
inite clause programs which reuses previously computed results saved in a table.
Because it avoids computing the same goal twice, the search of all explanations
by OLDT often can be done in polynomial time. In case of HMMs, search time
is O(N2L) (N the number of states, L the length of an input string) and in case
of PCFGs, it is O(N 3L3) (N the number of non-terminals, L the length of an
input sentence).

The adoption of OLDT search yields a very favorable side e�ect on achieving
Task-1, Task-2 and Task-3 in Section 1.11 Since OLDT search shares sub-
refutations, corresponding partial explanations are factored out, which makes
it possible to represent the support set DB(G) compactly as a hierarchical
graph called a support graph reecting the sharing structure between explana-
tions for G. Look at learn-naive(DB;G), especially the computation of PDB(Gt j
�) and

P
S2 DB(Gt)

PF (S j �)�i;v(S). The computation of PDB(Gt j �) =P
S2 DB(Gt)

PF (S j �) takes time proportional to the number of explanations
for Gt if it is implemented faithfully to this formula. We reorganize this compu-
tation by introducing inside probabilities for logic programs as a generalization
of the backward algorithm for HMMs [15] and the inside probabilities for PCFGs
[1] in order to share subcomputations in

P
S2 DB(Gt)

PF (S j �). They are just a

probability PDB(A j �) but recursively computed from the set of i� de�nitions
of predicates and e�ciently perform Task-1 in time proportional to the size of
a support graph.

The same optimization can be done for the computation of
P

S2 DB(Gt)
PF (S j

�)�i;v(S) by introducing outside probabilities for logic programs as a generaliza-
tion of the forward algorithm for HMMs [15] and the outside probabilities for
PCFGs [1]. They represent the probability of \context" in which a speci�c atom
occurs. Inside probabilities and outside probabilities are recursively computed
from a support graph and the computation takes time only proportional to the
size of the graph. Thus a new EM algorithm called the graphical EM algorithm

incorporating inside probabilities and outside probabilities that works on sup-
port graphs has been proposed in [7]. We omit the description of the graphical
EM algorithm though (see [22] for the detailed description). When combined
with OLDT search, it is shown [7, 22] that

OLDT search + (support graphs) + the graphical EM algorithm

is as e�cient as specialized EM algorithms developed domain-dependently (the
Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs and
the one for singly connected Bayesian networks) complexity-wise.12 So Task-3
is e�ciently carried out in our framework.

It is also easy to design an algorithm for Task-2 that �nds out the most likely
explanation in time linear in the size of a support graph [20], which generalizes

11 Detailed explanations are found in [7, 22].
12 This is a bit surprising as the graphical EM algorithm is a single algorithm generally

designed for de�nite clause programs (satisfying certain conditions [7, 22]) allowing
recursion and in�nite domains.

the Viterbi algorithm for HMMs [15]. We therefore can say that the introduction
of support graphs (constructed from OLDT search) and that of inside probabili-
ties and outside probabilities for logic programs computed from a support graph
e�ciently solve the three tasks laid in Section 1.

3.3 Learning experiments

It is appropriate here to report some performance data about the graphical
EM algorithm. We conducted learning experiments to compare the performance
of the graphical EM algorithm with that of the Inside-Outside algorithm, the
standard parameter learning algorithm for PCFGs, by using a real corpus and
a PCFG developed for it.

We used ATR corpus [28] containing 10,995 sentences whose minimum length,
average length and maximum length are respectively 2, 9.97 and 49. The gram-
mar, GATR, is a hand crafted CFG comprising 860 rules (172 nonterminals and
441 terminals) [27] developed for ATR corpus. GATR, being not in Chomsky
normal form, was translated into CFG G�ATR in Chomsky normal form for the

Inside-Outside algorithm to be applicable.13 G�ATR contains 2,105 rules (196
nonterminals and 441 terminals).

We created subgroups SL (1 � L � 25) of sentences with length L and L+1
by randomly choosing 100 sentences for each L from the corpus. Support graphs
for SLs w.r.t. GATR and G�ATR were generated by Tomita (Generalized LR)
parser by the way. After these preparations, for each SL, we compared time per
iteration for the Inside-Outside algorithm to update the parameters of G�ATR

14

with that for the graphical EM algorithm to update the parameters of GATR
and G�ATR. The results are shown in Figure 3.

A vertical axis shows the required time. A horizontal axis is L, the length
parameter of learned sentences. A curve labeled I-O in the left graph15 is drawn
by the Inside-Outside algorithm. It is cubic as O(N3L3) predicts. The curves
labeled gEM in the right graphs are drawn by the graphical EM algorithm. One
with a comment \original" is for GATR. As seen from the graph, the graphical
EM algorithm runs almost 850 times faster than the Inside-Outside algorithm
at length 10 (the average sentence length in the ATR corpus is 9.97). The other
one with \Chomsky NF" is the curve obtained by applying the graphical EM
algorithm to G�ATR.

16 The graphical EM algorithm still runs 720 times faster
than the the Inside-Outside algorithm. Further more, a closer inspection reveals
that update time by the graphical EM algorithm is almost linearly dependent

13 The Inside-Outside algorithms requires a CFG to be in Chomsky normal form while
the graphical EM algorithm accepts every form of production rules.

14 We used a somewhat improved version of the Inside-Outside algorithm that avoids
apparently redundant computations. For instance p �

P
x
q(x) is immediately evalu-

ated as 0 if p = 0.
15 The right graph is an enlarged version of the left one.
16 We would like to emphasize again that the graphical EM algorithm does not require

a CFG in Chomsky normal form. This comparison is only made to measure time for
updating parameters of a common PCFG.

5

10

15

20

25

30

35

40

45

0 5 10 15 20

I-O

L

(sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

(sec)

I-O
gEM (original)

gEM (Chomsky NF)

L

Fig. 3. The Inside-Outside algorithm vs. the graphical EM algorithm

on L, not on L3. The conclusion is that although the graphical EM algorithm
has the same time complexity as the Inside-Outside algorithm, the di�erence in
their performances is enormous when applied to real data, and the almost linear
dependency of the graphical EM on the sentence length suggests that it can cope
with the learning of a complex stochastic grammar applied to a bigger corpus
with longer sentences.

3.4 PRISM

As an implementation of distribution semantics, a symbolic-statistical modeling
language PRISM (URL = http://sato-www.cs.titech.ac.jp/prism/) has
been developed [16{18]. It is intended for modeling complex symbolic-statistical
phenomena such as discourse interpretation in natural language processing, con-
sumer behavior, gene inheritance interacting with complicated social rules [18].
As a programming language, it is an extension of Prolog with built-in predicates
including msw predicate and other special predicates for manipulating msw atoms
and their parameters.

A PRISM program is comprised of three parts, one for directives, one for
modeling and one for utilities. The directive part contains declarations telling the
system what msw atoms will be used in the program. The modeling part is a non-
unit de�nite clause program likeDB1 that de�nes the denotation of the program
containing msw atoms. The last part, the utility part, is an arbitrary Prolog
program which refers to predicates de�ned in the modeling part. We can use there
learn built-in predicate to carry out EM learning by learn-naive(DB;G) from

observed atoms. There are three modes of execution. The sampling execution
corresponds to a random sampling drawn from the distribution de�ned by the
modeling part. The second one computes the probability of a given atom. The
third one returns the support set for a given goal. These modes of execution
are available through built-in predicates. Currently the implementation of the
graphical EM algorithm and the simpli�ed OLDT searchmechanism is underway.

4 Reinforcement learning and parameterized logic
programs

4.1 Reinforcement learning

We turn our attention here to on-line learning, i.e. data come one by one and
learning is done each time. The idea is to use reinforcement learning [24, 29]
(see [5] for a survey) to reactively adjust parameters �i;k for msw(i,n,vk) (1 �
k � N). Reinforcement learning is a model of learning good behavior by trial
and error, by receiving reward and penalty from a random environment.17 For
instance, in Q-learning [29], one of the most popular reinforcement learning
methods based on MDP (Markov Decision Process) [11], an agent is expected
to learn, while randomly or systematically walking in the environment, a best
action among several ones at each state to maximize its discounted or total
expected reward. In this paper however, we adopt learning automatons [12, 14]
instead of MDP as an underlying theoretical framework because of their a�nity
with parameterized logic programs as a learning device for msw atoms.18

A learning automaton (henceforth referred to as LA) is a reactive learning
device working in a random environment. On each execution, it selects an action
in proportion to choice probabilities assigned to each action, and adjust them in
response to the gained reward so that pro�table actions are likely to be selected
again. The point is that, while it just makes a random choice in the beginning,
by repeatedly choosing an action and adjusting probabilities, it asymptotically
converges to a stage where it only takes the most rewarding action (in average
sense) [12, 14].

We embed LAs in a parameterized logic program to automatically adjust
parameters of msw atoms. Aside from the theoretical question about convergence
of their collective behavior, the learning ability of LAs added to logic programs
makes them reactive to the environment. We call such programs as reactive

logic programs. Reactive logic programs are intended to model an agent with
rich background knowledge working in an uncertain world who learns from the
environment how to behave optimally.

17 By random, we mean the reward returned for taking an action is a random variable.
In this paper, we assume the environment is stationary, i.e. the distribution of reward
does not change with time. Also we leave out penalty as a type of response for
convenience.

18 They require neither the notion of state nor that of state change.

4.2 Learning Automaton

A learning automaton (LA) [12, 14]19 is a learning device applicable to a situation
in which there are several possible actions with di�erent probabilistic rewards,
and we want to know the best one that maximizes the average reward. The most
typical situation would be gambling. Imagine playing with a slot machine that
has N levers (N -armed bandit). Pulling a lever gives us winnings if we are lucky.
We want to know the best lever yielding the maximum average payo� while
betting coins repeatedly. Which lever should we pull at nth time?

One way to solve this problem is to use an LA. Suppose there are N possible
actions �1; : : : ; �N . We associate a choice probability �i(n) with each �i (1 �
i � N) so that �i is chosen with probability �i(n) at time n. The distribution
for actions at time n is expressed by a random vector �(n) = h�1(n); : : : ; �N(n)i
(
P
i �i(n) = 1). Suppose �i is chosen. By executing �i, we get a reward from

an environment20, with which we update �(n) by using LR�I (Linear Reward-
Inaction) scheme [12]21

�i(n+ 1) = �i(n) + cn(1� �i(n))

�j(n+ 1) = (1 � cn)�j(n) (j 6= i)

where cn (0 � cn � 1) is a learning rate at time n. The scheme says that if the
reward is non-zero, we will give more chance of selection to action �i. Since
is a random variable, so are the �i(n)s. Figure 4 illustrates an LA where edges
denote actions and di is the average reward for action �i (1 � i � N).

Nθ1 2

d1 dNd2

reward

Environment

LA

θθ

Fig. 4. A learning automaton

It is known that the LR�I scheme can improve the average reward of the LA
[12]. To see it, let �(n) be a current distribution. M (n), the average reward at
time n conditioned on �(n), is derived as

M (n) = E[j �(n)]
19 The type of LAs we use is called a variable-structure stochastic automaton in [12].
20 We assume is normalized such that 0 � � 1.
21 There are other learning schemes [12]. The LR�I scheme is the simplest one.

=
NX
i=1

�i(n)di (3)

where E[�] denotes expectation and di is the average reward for taking action �i
(1 � i � N).M(n) is a random variable as a function of �(n).E[M(n+1) j �(n)],
the average reward at time n+ 1 conditioned on �(n), then comes out as

E[M (n+ 1) j �(n)] = E[
NX
i=1

�i(n+ 1)di) j �(n)]

=M (n) +
cn

2

X
i;j

(di � dj)
2�i(n)�j(n) (4)

�M (n) (5)

By taking expectation of both sides in (5), we conclude

E[M(n + 1)] � E[M (n)] (6)

i.e. the average reward is increasing at every time step.
It is also important to note that fM (n)gn=1;2;::: forms a submartingale. Since

E[M(n)] � 1 holds for all n, fM (n)g has an a.s.(almost sure) convergence, which

in turn implies, when the learning rate cn is kept constant c, we see �j(n)
a.s.
�! 0

or 1 for every �j(n) (1 � j � N). Regrettably, this does not necessarily mean
that the probability �i(n) corresponding to the maximum average reward di will
converge to 1 with probability 1 after in�nite trials. However, it was proved that
the probability of �i(n) not converging to 1 is made arbitrarily small by setting
c small enough [12]. Also, recently it also has been proved that if we decay the
learning rate cn like cn = b

n+a (a > b; 1 > b > 0), and if initial probabilities are

positive, i.e. �j(1) > 0 (1 � j � N) and di > dj for j 6= i, we have �i(n)
a.s.
�! 1

[14].

4.3 LA networks

In reactive logic programming, parameters �i;k (1 � k � N) associated with
msw(i,n,�) in a parameterized logic program are trained by an LA. The em-
bedded LAs in the program as a whole constitute a tree, a dag (directed acyclic
graph) or a more general graph structure. Unfortunately, unlike a single LA, not
much has been known about the convergent behavior of the graph-structured
LAs.22 So we here introduce LA network s, the class of LAs organized as a dag
and discuss their mathematical properties. Although we are aware that our re-
active logic programming sometimes requires the use of a more general graph
22 When there are multiple LAs connected with each other, the analysis becomes much

harder. The reason is that for a given LA, other LAs are part of the environment
and the average reward for a selected action becomes non-stationary, i.e. changes
with time as the learning of the other LAs proceed, which prevents the derivation
of formulas (5) which entails (6).

structures containing loops, we introduce LA networks because they are rela-
tively expressive but yet analyzable.

Environment

reward

Fig. 5. A LA network

Formally, a LA network is a connected dag (Figure 5) such that a node and its
outgoing edges comprise an LA and there is the only one node with no incoming
edges called the root LA. A node which has no descendent node is called a leaf

LA. Each edge is labeled by an action and by the probability associated with it
(see Figure 4). Actions are chosen sequentially from the root LA to a leaf LA in
an obvious way and the reward is simultaneously given to each LA on the path
from the root to the leaf to update choice probabilities.

Let �(n) be probabilities for all edges in the graph at time n, and M (n)
the average reward at time n conditioned on �(n). When the shape of the LA
network is a tree, we can prove (6) w.r.t. the root LA by setting learning rates
di�erently for each LA and for each trial (hierarchical systems [12]). On the
other hand, the need of computing di�erent learning rates is computationally
disadvantageous compared to using a common constant learning rate, for which
case we can still prove (5) (and hence (6)) under the condition that the reward
is binary i.e. f0,1g (proof omitted).

For LA networks which are not trees, we do not know at the moment if (5)
holds w.r.t. the root LA for a constant learning rate. However, we proved in [19]
that (5), the increase of the average reward, holds for arbitrary LA networks
as long as a common learning rate 1

n+a with large enough a is used by all LAs
at time n. That is, with this decaying learning rate, an LA network gains more
reward on average every time the program is executed. What is disappointing
about it is that it gives too slow convergence, experimentally. So we decided
instead to use a constant learning rate set by a user.

4.4 LA library

We built a library called LA library so that various built-in predicates are avail-
able to manipulate LAs in a parameterized logic program. We here explain some
of them. First new choice(i,list) creates msw atoms fmsw(i,t,v) j (v 2 list)g
with an LA attached to them with equal values for vs. We use fresh t every on
every execution of such msw atom. new choice(sanfrancisco, [neworleans,

chicago]) for instance sets up a new LA named sanfrancisco that outputs
equiprobably neworleans or chicago. list is a list containing arbitrary terms
but i must be a ground term. choice(i,V) executes an LA named i with a
current distribution and the output is returned in V. reinforce choice(c,list)

adjusts according to the LR�I learning scheme choice probabilities in all LAs
contained in list using the base line cost c (see Section 4.5).

4.5 Reinforcement condition

It must be emphasized that we are a tackling optimization problem. We use a
reactive logic program expecting that by repeatedly running it, the parameters
of LAs are automatically adjusted, and the most rewarding choice sequence will
eventually gain the highest execution probability. In view of this, we should not
apply reinforce choice/2 unconditionally every time computation is done,
because we are not seeking for a correct answer but for a better answer that
corresponds to a more rewarding choice sequence and there is no reason for
giving out a reward to whatever answer is computed.

We try to obtain a better answer by comparing a new one and the old ones.
Suppose we run a program and the computed answer is judged better than
the old ones. We reinforce every LA involved in the computation by invoking
reinforce choice/2. The criterion for invocation is called a reinforcement con-

dition. We can conceive of several reinforcement conditions depending on the
type of problem, but in this paper, we use the following heuristic condition.23

Cs+Ca
2 > C

where C is the cost of the computed answer, Cs the least cost achieved so far
and Ca the average cost in the past M trials (M = 50 is used in this paper).

4.6 Going to the East

Now we present a very simple reactive logic program for a stochastic optimization
problem. The problem is to �nd a route in Figure 6 from San Francisco to New
York but a traveling cost between adjacent cities (cost attached to edges in
Figure 6) is supposed to vary randomly for various reasons on each trial. The
task is to �nd a route giving the least average cost.

We �rst de�ne travel/2 predicate to compute the route and cost of traveling
from the current city (Now) to New York.

23 Note that the condition is stated in terms of cost, so the lesser, the better.

SanFrancisco

Chicago

NewOrleans

St.Louis

Atlanta

Detroit

NewYork

15

12
6

8

6

8

11

15

18

5

5

Fig. 6. Going to the East

% Destination = New York

travel(newyork,0,[newyork]).

travel(Now,Cost,[Now|Route]) :-

choice(Now,Next),

travel(Next,C1,Route),

link_cost(Now,Next,C2),

Cost is C1 + C2.

link cost/2 returns the traveling cost of adjacent two cities. It consists of a basic
cost plus a random increment (uniform distribution, max 20%) determined by
random float/2.

link_cost(Now,Next,Cost) :-

cost(Now,Next,C1),

random_float(0.2,C2),

Cost is C1 * (1+C2).

A table of basic cost is given by unit clauses (numbers are arti�cial).

cost(sanfrancisco, neworleans, 10).

cost(sanfrancisco, chicago, 15).

cost(sanfrancisco, stlouis, 12).

...

cost(stlouis, newyork, 15).

cost(atlanta, newyork, 18).

After 10,000 trials of ?- travel(sanfrancisco, ,Route) with a learning
rate 0:01 and the reinforcement condition previously stated, we obtained the
following route. As can be seen, the recommended route (San Francisco, New

Orleans, St. Louis, New York) gives the least average cost. How learning
converges is depicted in Figure 8. It plotted the average cost in the past 50
trials. We see that the average cost decreases rapidly in the initial 1,000 trials
and then slowly. Theoretically speaking however, there is no guarantee of the

SanFrancisco

Chicago

NewOrleans

St.Louis

Atlanta

Detroit

NewYork

15

12
6

8

6

8

11

15

18

5

5

p=1.0
p=1.0

p=1.0

Fig. 7. A route to New York

decreasing average cost when the learning rate is kept constant in an LA network
with loops, but taking into account the fact that the average cost decreases with
a decaying learning rate (Section 4.3), we may reasonably expect it happens as
well provided the learning rate is kept su�ciently small.

33

34

35

36

37

38

39

40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

The average cost in
the past 50 trials

Trials

C
os

t i
n

un
its

Fig. 8. Learning curve

5 Conclusion

We have presented attempts to make programs more adaptive by adding learning
ability. In order to unify computing and learning at semantic level, distribution

semantics is introduced for parameterized logic programs that contain probabilis-
tic facts with a parameterized distribution. The new semantics is a generalization
of the least model semantics for de�nite clause programs to possible world se-
mantics with a distribution. We then apply the semantics to statistical modeling
in Section 3 and to reactive programming in Section 4. It is shown that e�cient
symbolic-statistical modeling is made possible by the graphical EM algorithm
working on a new data structure called support graphs. The learning experiments
have shown that the graphical EM algorithm combined with OLDT search is not
only as competitive as existing specialized EM algorithms complexity-wise, but
in the case of PCFGs, runs 850 times faster than the Inside-Outside algorithm, a
rather pleasant surprise. We also applied distribution semantics to reinforcement
learning of parameterized logic programs by learning automatons, and showed a
simple reactive programming example applied to a stochastic search problem.

References

1. Baker, J. K., Trainable grammars for speech recognition, Proc. of Spring Confer-
ence of the Acoustical Society of America, pp.547{550, 1979.

2. Castillo, E., Gutierrez, J.M., and Hadi, A.S., Expert Systems and Probabilistic
Network Models, Springer-Verlag, 1997.

3. Chow,Y.S. and Teicher, H., Probability Theory (3rd ed.), Springer, 1997.
4. Doets, K., From Logic to Logic Programming, MIT Press, Cambridge, 1994.
5. Kaelbling,L.P. and Littman,M.L., Reinforcement Learning: A Survey, J. of Arti�-

cial Intelligence Research, Vol.4, pp.237{285, 1996.
6. Kameya, Y., Ueda, N. and Sato, T., A graphical method for parameter learning of

symbolic-statistical models, Proc. of DS'99, LNAI 1721, pp.264{276, 1999.
7. Kameya, Y. and Sato, T., E�cient EM learning for parameterized logic programs,

Proc. of CL2000, LNAI 1861, pp.269{294, 2000.
8. Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, 1984.
9. Manning, C. D. and Sch�utze, H., Foundations of Statistical Natural Language Pro-

cessing, The MIT Press, 1999.
10. McLachlan, G. J. and Krishnan, T., The EM Algorithm and Extensions, Wiley

Interscience, 1997.
11. Monahan,G.E., A Survey of Partially Observable Markov Decision Processes: The-

ory, Models, and Algorithms, Management Science Vol.28 No.1, pp.1{16, 1982.
12. Narendra,K.S. and Thathacher,M.A.L., Learning Automata: An Introduction,

Prentice-Hall Inc., 1989.
13. Pearl, J., Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, 1988.
14. Poznyak,A.S. and Najim,K., Learning Automata and Stochastic Optimization, Lec-

ture Notes in Control and Information Sciences 225, Springer, 1997.
15. Rabiner, L. R. and Juang, B., Foundations of Speech Recognition, Prentice-Hall,

1993.
16. Sato, T., A statistical learning method for logic programs with distribution seman-

tics, Proc. of ICLP'95, pp.715-729, 1995.
17. Sato, T. and Kameya, Y., PRISM:A Language for Symbolic-Statistical Modeling,

Proc. of IJCAI'97, pp.1330{1335, 1997.
18. Sato, T., Modeling Scienti�c Theories as PRISM Programs, ECAI Workshop on

Machine Discovery, pp.37{45, 1998.

19. Sato, T., On Some Asymptotic Properties of Learning Automaton Networks, Te-
chinical report TR99-0003, Dept. of Computer Science, Tokyo Institute of Tech-
nology, 1999.

20. Sato,T. and Kameya, Y., A Viterbi-like algorithm and EM learning for statistical
abduction", Proc. of UAI2000 Workshop on Fusion of Domain Knowledge with
Data for Decision Support, 2000.

21. Sato,T., Statistical abduction with tabulation, submitted for publication, 2000.
22. Sato,T. and Kameya, Y., Parameter Learning of Logic Programs for Symbolic-

statistical Modeling, submitted for publication, 2000.
23. Sterling, L. and Shaprio, E. The Art of Prolog, The MIT Press, 1986.
24. Sutton,R.S., Learning to predict by the method of temporal di�erence, Machine

Learning, Vol.3 No.1, pp.9{44, 1988.
25. Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs, Proc. of

ICLP'84, Uppsala, pp.127{138, 1984.
26. Tamaki, H. and Sato, T., OLD resolution with tabulation, Proc. of ICLP'86, Lon-

don, LNCS 225, pp.84{98, 1986.
27. Tanaka, H. and Takezawa, T. and Etoh, J., Japanese grammar for speech recog-

nition considering the MSLR method (in Japanese), Proc. of the meeting of SIG-
SLP (Spoken Language Processing), 97-SLP-15-25, Information Processing Society
of Japan, pp.145{150, 1997.

28. Uratani, N. and Takezawa, T. and Matsuo, H. and Morita, C., ATR Integrated
Speech and Language Database (in Japanese), TR-IT-0056, ATR Interpreting
Telecommunications Research Laboratories, 1994.

29. Watkins,J.C.H. and Dayan,P., Q-learning, Machine Intelligence, Vol.8, No.3,
pp.279{292, 1992.

30. Wetherell, C.S., Probabilistic languages: a review and some open questions, Com-
puting Surveys, Vol.12, No.4, pp.361{379, 1980.

