
A Viterbi-like algorithm and EM learning for statistical abduction

Taisuke SATO Yoshitaka KAMEYA
Dept. of Computer Science, Graduate School of Information Science and Engineering

Tokyo Institute of Technology
Ookayama 2-12-1 Meguro-ku Tokyo Japan 152-8552

sato@mi.cs.titech.ac.jp kame@mi.cs.titech.ac.jp

Abstract

We propose statistical abduction as a �rst-
order logical framework for representing and
learning probabilistic knowledge. It com-
bines logical abduction with a parameter-
ized distribution over abducibles. We show
that probability computation, a Viterbi-
like algorithm and EM learning for statis-
tical abduction achieve the same eÆciency
as specilzed algorithms for HMMs (hid-
den Markov models), PCFGs (probabilistic
context-free grammars) and sc-BNs (singly
connetcted Bayesian networks).

1 Introduction

Abduction is a form of inference that generates best
hypotheses explaining an observed fact. For example,
if one notices a fact that the grass is wet in the yard,
he/she might abduce that it rained last night, or the
sprinkler was on, by using general rules such as \if it
rains, things get wet." Abduction has been used for
diagnosis systems, planning, natural language process-
ing, etc in AI.

It is straightforward to formalize (part of) abduction
in the logic programming framework [6, 9]. We have
a background theory T consisting of clauses1 and an
observed fact G (usually a ground atom2) to be ex-
plained, and the task of abduction is to generate a
hypothesis H = fh1; . . . ; hng, i.e. an explanation, by
choosing his from a particular set of hypothesis can-
didates called abducibles,3 such that T [H ` G and

1Syntactically, a clause (in implicative form) is a logical
formula L0 L1 ^ . . .^Lm (m � 0) where Li (0 � i �m)
is an atom or its negation, and all variables are universally
quanti�ed at the outermost position. L0 is called a head
and L1 ^ . . . ^ Lm the body. A de�nite clause is one such
that every Li is an atom. Note that we adopt Prolog con-
ventions in this paper, so a conjunction A^B is expressed
as (A;B), and variables begin with an upper case letter.

2A ground atom is one that contains no variables.
3Usually abducibles are ground atoms.

T [H is consistent.4 The quality of H, the abduced
hypothesis, is evaluated by various criteia such as sim-
plicity, abduction cost, and so on [9, 8, 18].

While the above framework is logically sound, it is ob-
viously incomplete. Especially it entirely ignores the
problem of uncertainty in the real world. Our obser-
vations are often partial, inconsistent or contaminated
by noise. So the abduced hypothesis should be treated
as being true only to some degree. Also it must be
noticed that our obsevations are always �nite but po-
tentially in�nite (we may have another observation in-
de�nitely), and we would like to know the eventual
outcome of in�nitely many observations. It is there-
fore natural, even desirable, to build a new abductive
framework that uni�es the logical framework with a
statistical framework such as Bayesian networks.

This amalgamation is made possible by introducing
probabilistic elements into logic programs. More ex-
actly, it is made possible by introducing a (parame-
terized) probability distribution over abducibles, which
enables us to identify the best hypothesis as the most
likely hypothesis and the likelihood can be maximized
by statistical learning. The resulting logical-statistical
system will bene�t both abductive logic programming
and Bayesian networks, as the former is expected to
become robust against noise and missing data and the
latter gets �rst-order expressiveness as knowledge rep-
resentation language. We term this uni�cation statis-

tical abduction.

There are however theoretical and practical problems
to achieve the uni�cation. First of all, statistical ab-
duction must deal with in�nitely many objects sanc-
tioned by the language of �rst-order logic and their
joint distribution, which gives rise to a theoretical
problem of constructing an in�nite joint distribution
of structured objects. It requires to extend the realm
of traditional Bayesian networks considerably.

Secondly, to use statistical abduction in practice, we
need to know all values of statistical parameters just

4Induction also has similar formalization, and the dis-
tinction between induction and abduction is a subtle issue
[7].

like conditional probabilities for Bayesian networks.
Determining a large number of statistical parameters
is a tough task, known as the where-do-the-numbers-
come-from problem. Although one might hope that
the problem is mitigated by using learning techniques,
there has been little work on statistical learning in the
literature of logical framework of abduction.

The objective of this paper is to point out that we have
now a thereoretical foundation for statistical abduc-
tion, an eÆcient algorithm for computing probabilities,
an eÆcient EM algorithm for parameter learning, and
�nally a Viterbi-like algorithm that generates the most
likely hypothesis. Since the subject is broad and the
space is limited, descriptions are necessarily sketchy,
and proofs and details are left to a full paper we are
preparing. Also, we assume that the reader is familiar
with the basics of logic programming [6].

In what follows, after a short review of background
in Sec. 2, we explain PRISM programs in Sec. 3.
Sec. 4 contains the description of eÆcient compu-
tation of probabilities, OLDT search, EM learn-
ing and a Viterbi-like algorithm, followed by the
complexity analysis of PRISM programs for HMMs,
PCFGs (probabilistic context-free grammars) and sc-
BNs (singly-connected Bayesian networks). Sec. 5 is a
conclusion.

2 Background

The use of �rst-order clauses in relation to Bayesian
networks has been pursued in the past decade in two
strands. In the KBMC (knowledge-based model con-
struction) approach [3, 1, 11, 14], initiated by Breese
in [3], they are used as a macro language to com-
pactly represent similar Bayesian networks. Basically
a knowledge base KB contains clauses representing
general rules and CPTs (conditional probability ta-
bles). Each time a set of evidence and context is
given as ground atoms, a specialized Bayesian network
is constructed by tracing logical/probabilistic depen-
dencies in KB to compute the probability of a query
atom. Uncertain parameters associated with CPTs
can be learned by applying the EM learning algorithm
for Bayesian networks [4] to the constructed network
[11]. The KBMC approach is characterized as a local
approach, implicitly de�ning a set of local distribu-
tions as Bayesian networks, each of which corresponds
to a query, evidence and context.

Statistical abduction on the other hand takes a global
approach which de�nes a single distribution over
ground atoms. It was began by Poole as \probabilis-
tic Horn abduction" [15]. In his approach, a program
contains non-probabilistic de�nite clauses and proba-
bilistic disjoint declarations. A disjoint declaration is
of the form disjoint([h1:p1,. . .,hn:pn]). It says
hi, an abducible atom, becomes exclusively true with
probability pi (0 � i � n). Abducibles in di�rent dec-
larations are supposed to be independent. The prob-

ability of a non-abducible ground atom is then cal-
culated by reduction in a top-down manner through
program clauses to a DNF formula made out of ab-
ducibles in the disjoint declarations. The probabilistic
Horn abduction not only de�nes probabilities of atoms
without referring to Bayesian networks but can repre-
sent Bayesian networks themselves [15].

While the probabilistic Horn abduction opened a new
vista on extending Bayesian networks to �rst-order
language, it left behind some problems. First it as-
sumed a priori the acyclicity condition5 and the cov-
ering property6 of programs. These assumptions are
hard to verify and could be severe restrictions in pro-
gramming.7 Also the de�ned probability measure is
not guaranteed to be completely additive. As a re-
sult, for instance, limn!1 Prob(p(t1) _ . . ._ p(tn)) =
Prob(9Xp(X)) where the tis are ground terms, is not
guaranteed. More serious is the problem of determin-
ing parameters in disjoint declarations. How can we
get them? It remained unanswered.

Aiming at providing a broader theoretical basis and
a learning algorithm of uncertain parameters for the
global approach, Sato proposed distribution semantics

[19] and developed a �rst-order statistical modeling
language PRISM8 [19, 20]. The proposed semantics
de�nes an in�nite joint distribution over ground atoms
as the denotation of a given program containing ab-
ducibles with statistical parameters declared just like
those in Poole's disjoint declarations. It is a probabilis-
tic extension of the least Herbrand model semantics
for de�nite clause programs [6] to the possible world
semantics with a completely additive probability mea-
sure. Since our extension is based on the least Her-
brand model semantics, we don't need the covering
assumption or the acyclicity condition (because ev-
ery de�nite program has a least Herbrand model and
the i� completion [6] holds in it.). Similarly, neither
the range-restrictedness condition nor normalization is
necessary in our approach, which is required in proof-
theoretic approaches to assigning probabilities to logic
programs [5, 13].

5It says that every ground atom A must be assigned a
unique integer n(A) such that n(A) > n(B1); . . . ; n(Bn)
for every ground instance of a clause of the form A

B1; . . . ;Bn.
6It requires that when there are �nite ground instnaces

A �i (1 � i � m) about a ground atom A in the pro-
gram, A, �1_ . . ._�m holds. The case of in�nitely many
ground instances is not mentioned. Intuitively the property
ensures every observation has an explanation. Logically it
is equivalent to assuming the i� completion [6].

7Under the acyclicity condition, when a clause in-
cludes local variables like Y in p(X) q(X;Y); . . .
we cannot write recursive clauses about q such as
member(X; cons(H;Y)) member(X;Y). Also it is not
clear how to check the covering property, as it speci�es the
relationship between what is potentially observable (which
depends on nature) and what we can explain (which de-
pends on the program).

8URL is http://sato-www.cs.titech.ac.jp/prism/

Theoretically, we may use as many constant symbols,
function symbols and predicate symbols as we need,
and can write whatever program. Of course, in ac-
tual programming, we have to care about eÆciency,
termination, etc.

Syntacticaly, our programDB is a set of clauses F [R
where F is a set of unit clauses and R is a set of def-
inite clauses. For the purpose of theoretical explana-
tion however, we consider DB as a set of in�nitely
many ground clauses made up of all possible ground
instances of original clauses in DB. F then is a set
of in�nitely many ground atoms. We associate with
F an in�nite joint distribution PF . So atoms in F
are probabilistically true and random sampling deter-
mines a set of true atoms F 0. Then think of a new
de�nite clause program DB0 = F 0 [R and its least
Herbrand modelM (DB0) [6]. M (DB0) determines the
truth values of all ground atoms in DB, which implies
that every ground atomA is a random variable (taking
1 when A true and 0 otherwise), and therefore a joint
distribution PDB for all ground atoms is de�nable. PF
is constructed from a collection of �nite joint distritu-

ions P
(n)

F
(A1 = x1; . . . ; An = xn) (n = 1; 2; . . .) where

Ais are random variables (abducibles). The resulting
PDB becomes a �-additive probability measure over
f0; 1g! (the set of all countably in�nite sequences of 0
and 1).

For statistical abduction to be useful however, we need
eÆcient methods for

� computing the probabilities of observations,

� computing the most likely explanation for the
given observation, and

� learning parameters

As for HMMs, these methods correspond to the for-
ward procedure, the Viterbi algorithm, and the Baum-
Welch algorithm respectively [17].

PRISM, an implementation of the statistical abduc-
tion with PF being constrained to a speci�c form, has
been developed as a modeling language designed for
complex symbolic statistical phenomena [19, 20]. It
comes with a built-in EM algorithm9 for parameter
learning, but still lacks eÆciency compared to HMMs.

In what follows, we show that there exist algorithms
for PRISM programs that run as eÆciently as special-
ized ones when they are applied to HMMs, PCFGs and
sc-BNs.

3 PRISM programs

A PRISM program is de�ned as a de�nite clause pro-
gram DB = F [R which satis�es the following condi-
tions on facts F , their distribution PF and rules R.

9The EM algorithm is a standard statistical method for
MLE (maximum likelihood estimation) [23].

1. F is a set of ground atoms of the form
msw(i,n,v). The arguments i and n are called
group-id (or switch name) and trial-id, respec-
tively. We assume that a �nite set Vi of ground
terms is associated with each i, and v 2 Vi
holds.10 Vi corresponds to a set of values of switch
i.

2. Let Vi be fv1; v2; . . . ; vjVijg. Then, one of the
ground atoms msw(i,n,v1), msw(i,n,v2), . . . ,
msw(i,n,vjVij) becomes exclusively true (takes

the value 1) on each trial. For each i, �i;v 2 [0; 1]
is a parameter of the probability of msw(i,�,v)
being true (v 2 Vi), and

P
v2Vi

�i;v = 1 holds.

3. For each ground terms i, i0, n, n0, v 2 Vi and v
0 2

Vi0 , random variable msw(i,n,v) is independent
of msw(i0,n0,v0) if n 6= n0 or i 6= i0.

4. De�ne head(R) as a set of atoms appearing in the
head of R. Then, F \ head (R) = ;.

msw=3 in the �rst condition is to represent a basic
probabilistic choice such as coin-tossing (msw stands
for multi-valued switch). A ground atom msw(i,n,v)
represents an event \a switch named i takes on v as a
sample value on the trial n." The second and the third
condition say that a logical variable V in msw(i,n,V)
behaves similarly to a random variable which is re-
alized to vk with probability �i;vk (k = 1 . . . jVij).11

Moreover, from the third condition, the logical vari-
ables V1 and V2 in msw(i,n1,V1) and msw(i,n2,V2)
can be seen as independent and identically distributed

(i.i.d.) random variables if n1 and n2 are di�erent
ground terms. From an abductive point of view, msws
are all abducibles, and the fourth condition requires
that no msw appears in the heads of R.

As an example of representing temporal processes in
an abductive framework, we describe an HMM as a
PRISM program. It looks like a usual Prolog pro-
gram, but denotes a discrete stochastic process (of �-
nite length, 3 in this case).

1) target(hmm/1). 4) values(init,[s0,s1]).

2) data('hmm.dat'). 5) values(out(_),[a,b]).

3) table([hmm/1,hmm/3]). 6) values(tr(_),[s0,s1]).

7) hmm(Cs):- msw(init,null,Si),hmm(1,Si,Cs).

8) hmm(T,S,[C|Cs]):- T=<3,

msw(out(S),T,C),msw(tr(S),T,NextS),

T1 is T+1,hmm(T1,NextS,Cs).

9) hmm(T,_,[]):- T>3.

Procedurally, the above HMM program simulates the
generation process of strings. Clauses 7�9 repre-
sent the probabilistic behavior of the HMM. In clause
8, to output a symbol C, we use di�erent switches

10We consider DB as a countably in�nite set of ground
clauses, and i and n are arbitrary ground terms in the
Herbrand universe.

11Recall however that, in distribution semantics, logical
variables themselves are not random variables.

out(S) conditioned on the state S.12 Note that T

in msw(out(S),T,C) is used to guarantee indepen-
dency among the choices at each time step. Recursive
clauses like 8 are allowed in PRISM. Clauses 1�6 con-
tain additional information about the program (they
are called control declarations). Clause 1 declares
only ground atoms containing hmm=1 are observable.13

hmm([a,b,a]) being true means this HMM generates
the string aba. Clause 2 speci�es a �le storing learn-
ing data. Clause 3 speci�es the table predicates (de-
scribed later) are hmm=1 and hmm=3. We can read that
Vinit = fs0; s1g, Vout(�) = fa; bg, Vtr(�) = fs0; s1g
from clauses 4�6.

4 Three basic tasks

To apply statistical abduction to the real world, we
consider, based on the analogy of HMMs [17], three

basic tasks: (1) computing PDB(G=1j~�),14 the prob-
ability of an atom G representing an observation, (2)
�nding S�, the most likely explanation for G, and (3)
adjusting the parameters to maximize the probabil-
ity of a given sequence G = hG1; G2; . . . ; GT i of ob-
servations. All solutions should be computationally
tractable.

Poole [15] described a method for the �rst task. Let us
consider the following if-and-only-if (i�) relation under
comp(R), the Clark's completion of the rules R [6]:

comp(R) j= G$ S(1) _ � � � _ S(m) : (1)

He assumes that all abducibles in S(j) (a �-
nite conjunction of abducibles) are independent and

S(1); . . . ; S(m) are exclusive to each other (we say
DB satis�es the exclusiveness condition). Let

 DB (G)
15 be fS(1); � � � ; S(m)g and �i;v(S) the number

of msw(i,�,v)s occurring in S. His method for solving
the �rst task is formulated in our notation as follows:

PDB(G=1j~�) =
P
S2 (G)

Q
i2I;v2Vi

�
�i;v (S)

i;v :

A little modi�cation of the above formula would give
one for the second task:

S� = argmaxS2 (G)
Q
i2I;v2Vi

�
�i;v(S)

i;v :

Unfortunately, j (G)j, the number of explanations for
G, often grows exponentially in the complexity of the
model (e.g. the number of states in an HMM), or in the
complexity of each observation (e.g. the string length).

12Generally, a CPT of a random variable X is repre-
sentable as a switch msw(fX(c1,c2,. . . ,cn),�,x), where
fX is the id of X, n is the number of conditional variables,
ci (i = 1; . . . ; n) is the value of each conditional variable
Ci, and x is the value of X. Of course, X's possible values
should be declared in advance like Clause 4�6.

13This is just for the ease of implementation.
14~� is the vector consisting of parameters associated with

all abducibles which forms the explanations for the ob-
served fact G or an observation in G.

15For simplicity, we hereafter omit the subscript DB

(Similar abbreviation may occur later).

4.1 OLDT search for factorized explanations

In order to derive eÆcient algorithms for the three
tasks, comparable to the forward procedure and the
Viterbi algorithm, we need to add a couple of assump-
tions about programs. We assume that DB satis�es
the exclusiveness condition, and that m is �nite in
Eq. 1 (we say DB satis�es the �nite support condi-

tion).16 Furthermore, we assume that the following
i�-relational formula holds for some �nite ordered set
�DB (G) = f�1; . . . ; �Kg of table atoms (atoms contain-
ing the table predicate17):

comp(R) j= (G$ S0;1 _ � � � _ S0;m0
) (2)

^ (�1 $ S1;1 _ � � � _ S1;m1
)

^ � � � ^ (�Kt
$ SK;1 _ � � � _ SK;mK

);

where, letting G be a special table atom �0, each

in ~ DB (�k)
def
= fSk;1; . . . ; Sk;mk

g (1 � k � K) is a
subset of F [f�k+1; . . . ; �Kg called a factorized-(or
tabled-)explanation for �k, and each of Sk;1; . . . ; Sk;mk

(0 � k � K) is a set of independent atoms.

~ DB (�k) and �DB (G) can be obtained by OLDT
search18[22], a complete refutation technique with tab-
ulation for logic programs. We �rst translate the
source PRISM program to Prolog similarly to de�nite

clause grammars (DCGs) [21], or Poole's Theorist [16].
The following Prolog program is a translation of the
HMM program in Sec. 3. Clauses Tj and Tj' are gen-
erated from the clause j:

T1) top_hmm(Cs,X):- tab_hmm(Cs,X,[]).

T3) tab_hmm(Cs,[hmm(Cs)|X],X):- hmm(Cs,_,[]).

T3') tab_hmm(T,S,Cs,[hmm(T,S,Cs)|X],X):-

hmm(T,S,Cs,_,[]).

T4) e_msw(init,T,s0,[msw(init,T,s0)|X],X).

T4') e_msw(init,T,s1,[msw(init,T,s1)|X],X).

:

T7) hmm(Cs,X0,X1):-

e_msw(init,null,Si,X0,X2),

tab_hmm(1,Si,Cs,X2,X1).

T8) hmm(T,S,[C|Cs],X0,X1):- T=<3,

e_msw(out(S),T,C,X0,X2),

e_msw(tr(S),T,NextS,X2,X3),

T1 is T+1, tab_hmm(T1,NextS,Cs,X3,X1).

T9) hmm(T,S,[],X,X):- T>3.

As can be seen, in translation, we add two arguments
to collect factorized explanations and rename the pred-
icates of abducibles (msws) and table atoms. We then
perform OLDT search, noting extra arguments do not
inuence the search procedure, while saving in the so-
lution table a list of factorized explanations every time

16This condition says that every observation has a �nite
number of explanations. Without it, our search for expla-
nations would not terminate.

17Table predicates are assumed to be declared by the
programmer in advance, like Clause 3 in the HMM pro-
gram.

18OLDT stands for Ordered Linear resolution for De�-

nite clauses with Tabulation.

hmm([a,b,a]): [hmm([a,b,a]):[[msw(init,null,s0),hmm(1,s0,[a,b,a])],

[msw(init,null,s1),hmm(1,s1,[a,b,a])]]]

hmm(1,s0,[a,b,a]): [hmm(1,s0,[a,b,a]):[[msw(out(s0),1,a),msw(tr(s0),1,s0),hmm(2,s0,[b,a])],

[msw(out(s0),1,a),msw(tr(s0),1,s1),hmm(2,s1,[b,a])]]]

hmm(1,s1,[a,b,a]): [hmm(1,s1,[a,b,a]):[[msw(out(s1),1,a),msw(tr(s1),1,s0),hmm(2,s0,[b,a])],

: [msw(out(s1),1,a),msw(tr(s1),1,s1),hmm(2,s1,[b,a])]]]

Figure 1: Solution table for the observation hmm([a,b,a]).

the table atom is solved. For example, the OLDT
search for the above translation yields Fig. 1. Finally,

we extract ~ , the set of all factorized explanations from
the solution table. The remaining task is to get totally
ordered table atoms, i.e. the ordered set �DB (G), re-
specting the acyclicity in Eq. 2, which can be done by
topological sorting.

4.2 Computing the observation probability
and the most likely explanation

Given the i�-relational formula in Eq. 2, an eÆcient

algorithm for computing PDB(G=1j~�) (the �rst task)
is derivable based on the analogy of the inside proba-

bilities in Baker's Inside-Outside algorithm [2]. In our
formulation however, the inside probability of a table

atom � is PDB(� =1j~�), the probability of � being true.
It should be noted that, when computing P[�k], the
inside probabilities P[�K];P[�K�1]; . . . ;P[�k+1] have
been already computed. The computation terminates
with P[G](= P[�0]), the inside probability of G.

procedure Get-Inside-Probs (DB ;G) begin

Put G = �0;

for k := K downto 0 do

P [�k] :=P
S2 ~ (�k)

Q
msw(i,�,v)2S

�i;v
Q
�2S\f�k+1 ;...;�Kg

P[�]

end.

Similarly, an eÆcient algorithm for computing the
most likely explanation S� (i.e. the second task) is de-
rived. The algorithm Get-ML-Expl �rst computes
Æ[�k], the maximum probability of factorized explana-
tions for each table atom �k. E [�k], the most likely fac-
torized explanation for �k, is then constructed. Finally,
we construct S� from E [�]. For an HMM program (see
Sec. 3), Get-ML-Expl is equivalent to the Viterbi
algorithm, a standard algorithm for �nding the most
likely state-transition path of HMMs. Furthermore,
when we write a probabilistic context-free grammar
(PCFG) in PRISM, it is easily shown that probabilis-
tic parsers for PCFGs, which �nds most likely parse
of a given sentence, are equivalent to Get-ML-Expl.

1: procedure Get-ML-Expl(DB ;G) begin

2: Put G = �0;

3: for k := K downto 0 do begin

4: foreach S 2 ~ (�k) do

5: Æ0[�k; S] :=

6:
Q

msw(i,�,v)2S
�i;v
Q
�2S\f�k+1 ;...;�Kg

Æ[�];

7: Æ[�k] := max
S2 ~ (�k)

Æ0[�k; S];

8: E[�k] := argmax
S2 ~ (�k)

Æ0[�k; S]

9: end;

10: s := fGg; S� := ;;

11: while s 6= ; do begin

12: Select and remove A from s;

13: if A = msw(�,�,�) then add A to S�

14: else s := s [E[A]

15: end

16: end

4.3 Learning algorithm

The learning of PRISM programs means MLE (max-
imum likelihood estimation) of statistical parameters
of msws embedded in a program, for which the EM
algorithm is appropriate [23]. A new EM algorithm
named graphical EM algorithm that takes advantage of
the structure of the i�-relational formula in Eq. 2 has
been derived on the analogy of computation of the out-
side probabilities in the Inside-Outside algorithm [10].
We added an assumption that all observable atoms are
exclusive to each other and the probabilities of these
atoms sum up to one (we say DB satis�es the unique-
ness condition).

The graphical EM algorithm �rst initializes the pa-

rameters ~� and then iterates re-estimation until the
likelihood saturates. In each iteration, the expected

occurrence is computed �rst for each abducible atom
msw(i,n,v) from its parameter �i;v, the inside prob-
abilities and the outside probabilities, and then all
parameters are simultaneously re-estimated by using
such expected occurrences. Final values of parameters
become learned ones.

4.4 Complexity

In this section, we primarily evaluate time com-
plexity of our methods for the �rst and the sec-
ond task due to space limitations. The method
for the �rst (resp. the second) task comprises
two phases | OLDT search and Get-Inside-Probs

(resp. Get-ML-Expl). Hence, we should estimate
each algorithm separately. Assuming that all ta-
ble operations can be performed in O(1) time, the
computation time of OLDT search is measured by

the size of the search tree. As for the computation
time of Get-Inside-Probs and Get-ML-Expl, it

is O(�num�maxsize),
19 where �num

def
= j�j, �maxsize

def
=

maxS2� jSj, and �
def
=
S
�2�

DB

~ DB (�). In the

case of the HMM program, �num = O(N2L) and
�maxsize = O(1). Hence, the computation time of
Get-Inside-Probs and Get-ML-Expl is O(N2L).
This is the same order as that of the forward procedure
and the Viterbi algorithm. So Get-ML-Expl (resp.
Get-Inside-Probs) is a generalization of the Viterbi
algorithm (resp. the forward procedure). For existing
symbolic-statistical models, we summarize computa-
tion time as follows:20

Model OLDT time GIP/GMLE time

HMMs O(N2L) O(N2L)

sc-BNs O(jV j) O(jV j)

PCFGs O(M3L3) O(M3L3)

The second (resp. the third) column\OLDT
time" (resp. \GIP/GMLE time") indicates that
the computation time of OLDT search (resp.
Get-Inside-Probs and Get-ML-Expl) for the
model in the �rst column. N , L, T , jV j and M are
the number of states of the target HMM, the maxi-
mum length of input strings, the size of training data,
the number of nodes in the target Bayesian network,
and the number of non-terminal symbols in the tar-
get PCFG, respectively. The above table exempli�es
that our general framework can subsume speci�c algo-
rithms such as the Viterbi algorithm.

5 Conclusion

We have proposed statistical abduction as the com-
bination of abductive logic programming with a dis-
tribution over abducibles. It has �rst-order expres-
sive power and integrates current most powerful prob-
abilistic knowledge representation frameworks such as
HMMs, PCFGs and Bayesian networks. Besides, our
general algorithms developed for the three tasks (prob-
ability computation, the search for the most likely
explanation, and EM learning) achieve the same eÆ-
ciency as specialized algorithms for above three frame-
works.

Acknowledgments

This research is supported by Grant-in-Aid for Sci-
enti�c Research on Priority Area \Discovery Science"

19By the way, our method for the third task (EM learn-
ing) comprises OLDT search and the graphical EM algo-
rithm whose computation is measured by the re-estimation
time (since we do not know the number of re-estimations in
advance). It is shown, analogously to Get-Inside-Probs

and Get-ML-Expl, to be O(�num�maxsizeT).
20In PCFGs, we assume grammars are in Chomsky nor-

mal form, and in sc-BNs, we assume the maximum number
of parent nodes are �xed.

1999 of the Ministry of Education, Science, Sports and
Culture, Japan.

References

[1] Bacchus, F. Using �rst-order probability logic for the
construction of Bayesian networks. Proc. of UAI'93,
1993.

[2] Baker, J. K. Trainable grammars for speech recog-
nition. Proc. of Spring Conference of the Acoustical
Society of America, 1979.

[3] Breese, J. S. Construction of belief and decision net-
works. Comput. Intell., 8(4), 1992.

[4] Castillo, E., Gutierrez, J. M., and Hadi, A. S. Expert
Systems and Probabilistic Network Models. Springer-
Verlag, 1997.

[5] Cussens, J. Loglinear models for �rst-order probabilis-
tic reasoning. Proc. of UAI'99, 1999.

[6] Doets, K. From Logic to Logic Programming. The MIT
Press, Cambridge, 1994.

[7] Flach, P. and Kakas, A. (eds). Abduction and In-
duction { essays on their relation and integration {.
Kluwer Academic Publishers, 2000.

[8] Hobbs, J. R., Stickel, M. E., Appelt, D. E. and Martin,
P. Interpretation as abduction. Artif. Intell., 63, 1993.

[9] Kakas, A. C., Kowalski, R. A. and Toni, F. Abductive
logic programming. J. Logic Comput., 2(6), 1992.

[10] Kameya, Y. and Sato, T., EÆcient EM learning with
tabulation for parameterized logic programs, to be
presented at the 1st Conf. on Computational Logic
(CL2000), 2000.

[11] Koller, D. and Pfe�er, A. Learning probabilities for
noisy �rst-order rules. Proc. of IJCAI'97, 1997.

[12] Manning, C. D. and Sch�utze, H., Foundations of Sta-
tistical Natural Language Processing, The MIT Press,
1999.

[13] Muggleton, S. Stochastic logic programs. In Advances
in Inductive Logic Programming (Raedt, L. De ed.),
OSP Press, 1996.

[14] Ngo, L. and Haddawy, P. Answering queries from
context-sensitive probabilistic knowledge bases. The-
oretical Computer Science, 171, 1997.

[15] Poole, D. Probabilistic Horn abduction and Bayesian
networks. Artif. Intell., 64, 1993.

[16] Poole, D., Compiling a default reasoning system into
Prolog, New Generation Comput., 9(1), 1991.

[17] Rabiner, L. and Juang, B. Foundations of Speech
Recognition, Prentice-Hall, 1993.

[18] Sakama,T. and Inoue,K., Representing Priorities in
Logic Programs, Proc. of JICSLP96, MIT Press, 1996.

[19] Sato, T. A statistical learning method for logic pro-
grams with distribution semantics. Proc. of ICLP'95,
1995.

[20] Sato, T. and Kameya, Y. PRISM: a language
for symbolic-statistical modeling. Proc. of IJCAI'97,
1997.

[21] Sterling, L. and Shaprio, E. The Art of Prolog, The
MIT Press, 1986.

[22] Tamaki, H. and Sato, T. OLD resolution with tabula-
tion. Proc. of ICLP'86, LNCS 225, 1986.

[23] Tanner, M. Tools for Statistical Inference (2nd ed.).
Springer-Verlag, 1986.

