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Abstract

The purpose of this report is to op-

timize the Inside-Outside algorithm

and realize fast EM learning of var-

ious extensions of PCFGs. The

point of our optimization is the in-

troduction of a new data structure

called support graphs hierarchically

representing a set of parse trees

and a new EM learning algorithm

called the graphical EM algorithm

that runs on them. Learning exper-

iments with PCFGs using Japanese

corpora of moderate size with con-

trasting characters indicate that in

terms of updating time per itera-

tion, the graphical EM algorithm

can learn parameters of PCFGs or-

ders of magnitude faster than the

Inside-Outside algorithm. We also

experimentally show that the graph-

ical EM algorithm requires at most

about twice as much time as a pure

PCFG to learn parameters of ex-

tended PCFGs (a Pseudo PCSG and

and a lexicalized PCFG).

1 Introduction

PCFGs (probabilistic context free grammars)

have been recognized as a basic mechanism

to express a probability distribution over syn-

tactic objects described by CFGs (Manning

and Sch�utze, 1999). Despite their popular-

ity however, they have two major problems.

One is their poor modeling capability as a

statistical language model and the other is

their slow speed of unsupervised parameter

learning (Pereira and Schabes, 1992; Lari and

Young, 1990). As solutions to the �rst prob-

lem, several elaborations of PCFGs were pro-

posed including Pseudo PCSGs (probabilistic

context sensitive grammars) (Charniak and

Carroll, 1994) and lexicalizations (Charniak,

1997; Collins, 1997; Carroll and Rooth, 1998;

Beil et al., 1999; Charniak, 2000).

The second problem, the computational

cost of unsupervised parameter learning, on

the other hand, has been paid relatively little

attention since the proposal of the I-O (inside-

outside) algorithm by Baker (Baker, 1979) as

the EM algorithm for PCFGs.1 Time com-

plexity in one iteration of the I-O algorithm

is known to be O(N3L3) where N is the num-

ber of symbols in a grammar and L the length

of an input sentence (Lari and Young, 1990).

And it is not unusual for the I-O algorithm

to take days to learn parameters from a large

corpus.2

The purpose of this paper is to optimize

the I-O algorithm and realize fast EM learn-

ing for various extensions of PCFGs. The op-

timization is done by introducing a new data

structure called support graphs representing

a set of parse trees and a new EM learning

algorithm called the graphical EM algorithm

(Kameya and Sato, 2000) that runs on them.

They are explained in Section 3. Learning

experiments with PCFGs in Section 4 using

Japanese corpora of moderate size with con-

trasting characters indicate that the graphical

EM algorithm can learn parameters of PCFGs

orders of magnitude faster than the I-O algo-

rithm, thus solving the second problem to a

large extent.

We also experimentally show by learning

experiments with the graphical EM algorithm

in Section 5 that although extended PCFGs

mentioned above require learning time longer

than pure PCFGs, they do so only marginally

(at most twice), which makes it computation-

ally feasible to adopt even more linguistically

sophisticated models in natural language pro-

cessing, thereby indirectly contributing to the

solution of the �rst problem.

1The EM algorithm is an iterative algorithm for
maximum likelihood estimation. It �nds parameters
values that maximize the likelihood of observations
by repeating the E(-expectation) step and the M(-
aximization) step alternately (Dempster et al., 1977).

2It is reported in (Beil et al., 1999) that to train
a PCFG with 5,508 rules from a corpus of 450,526
German subordinate clauses whose average ambiguity
is 9,202 trees/clause, it takes 2.5 hours for 4 CPUs to
complete one iteration of the I-O algorithm.



2 Previous EM algorithms for

PCFGs

In this section, we review previous EM algo-

rithms for PCFGs. The �rst EM algorithm

for PCFGs was the I-O algorithm proposed

by Baker (Baker, 1979). The grammar it

uses must be in Chomsky normal form and

contains all possible rules expressed by num-

bers like i ! j; k (1 � i; j; k � N , for N

non-terminals). Let w1; : : : ; wn be an input

sentence of length n and S (= 1) the start-

ing symbol.3 In each iteration, the algorithm

�rst computes in a bottom up manner in-

side probabilities e(s; t; i), i.e. the probability

P (i
�
) ws; : : : ; wt) while trying every possible

combination of rules. It next computes out-

side probabilities f(s; t; i), i.e. the probabil-

ity P (S
�
) w1; : : : ; ws�1 i wt+1; : : : ; wn) in a

top-down manner using previously computed

inside probabilities. After computing inside

and outside probabilities, parameters are up-

dated by using them. Update iterates until

the likelihood of the input sentence saturates.

When the grammar does not allow arbi-

trary rules, it is apparent that only combina-

tions of rules appearing in parse trees are rele-

vant to the computation of inside and outside

probabilities. Nonetheless the I-O algorithm

repeats in every iteration all possible combi-

nations of the rules that derive the input sen-

tence. In other words, the I-O algorithm lacks

parsing.

By contrast the EM algorithm proposed

by Fujisaki et al. used probability P (Dm)

of the m-th derivation Dm of an input sen-

tence (Fujisaki et al., 1989).4 So irrele-

vant rules are excluded by parsing. Unfor-

tunately, while inside probabilities are recur-

sively computed like the I-O algorithm, out-

side probabilities are naively computed as a

sum
P
m
P (Dm)#(i! j; k 2 Dm) in each it-

eration, where #(i ! j; k 2 Dm) is the num-

ber of occurrences of the rule i ! j; k in the

m-th derivation. Since m can be exponential

in the length of an input sentence, it is di�-

3We assume only one input sentence for simplicity.
4P (Dm) is computed as the products of probabil-

ities associated with production rules involved in the
derivation.

cult to perform large scale learning by their

approach.

Later Stolcke used an Earley chart gener-

ated by an Earley parser to compute inside

and outside probabilities (Stolcke, 1995). The

chart is comprised of items augmented with

two types of probabilities and inside and out-

side probabilities are computed from them.

Accordingly, unlike (Fujisaki et al., 1989), his

approach incorporates both parsing and the

sharing of processes of sentence derivations.

The problem is that the Earley chart may

possibly contain items not contributing to the

�nal outcome, a parse tree, but probabilities

are still computed for them as well.

To solve these problems, we completely sep-

arate EM learning from parsing. We �rst in-

troduce a new data structure, support graphs

for EM learning. A support graph (explained

in next section) is constructed from a WFST

(well-formed substring table) such as a tri-

angular table used by a CYK parser and an

Earley chart used by an Earley parser. It is

an ordered set of applied rules compactly rep-

resenting all parse trees by structure sharing.

We also introduce a new EM algorithm called

the graphical EM algorithm that runs on the

graph to compute inside and outside proba-

bilities.

Computationally, construction of a support

graph is an extra burden, but it pays o� just

like compilation of programs pays o� as time

per iteration in the EM algorithm can im-

prove by orders of magnitude as we will see

in Section 4.

3 Support graphs and the

graphical EM algorithm

Suppose we are given a PCFG G5 and T sam-

pled sentences w(1); : : : ;w(T ) whose distribu-

tion is supposedly modeled by G. In our

approach to EM learning, for each sentence

w
(`) (1 � ` � T ), we �rst parse w(`), con-

struct a WFST and extract from the WFST

a support graph �` = h�1; : : : ; �j�`ji for w
(`).

We then run the graphical EM algorithm on

5We assume that there is neither the empty pro-

duction rule nor non-terminal A such that A
+
) A in

the grammar.
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Figure 1: Parsing \astronomers saw stars with ears" and its support graph

f�` j 1 � ` � Tg to statistically learn param-

eters associated with G.

In the following, we use R for the rule set of

G, Vn for its non-terminal set and �(A ! �)

for the parameter associated with a rule A!

� 2 R. n` stands for jw
(`)j, i.e. the length of

w
(`) and w(`)[i; j] denotes a substring of w(`)

starting at the i + 1-th word and ending at

the j-th word.

A support graph �` for w(`) is a linearly

ordered set h�1; : : : ; �M i of disconnected sub-

graphs �k (1 � k �M) which can be read o�

from the WFST for w(`). Each �k is labeled

like A(i; j) and comprised of linear graphs �

of the form

start-(A! B1 � � �BM )-

B1(i; h1)-� � �-BM (hM ; j)-end

which records that A is expanded by rule

A ! B1 � � �BM to span w(`)[i; j] in some

parse of w(`). Here start is a fork node and

end is a join node and Bk(hk�1; hk) (1 � k �

M;h0 = i; hM = j) is the label of the corre-

sponding subgraph which is recursively con-

structed. De�ne N (�) and ~ `(�) by

N (�)
def
= fA! B1 � � �BM ;

B1(i; h1); : : : ;BM (hM ; j)g

~ `(�k)
def
= fN (�) j � is a linear graph in �kg

Suppose for example A is expanded by A !

BC and A! D respectively in some parse of

w
(`) and happens to span the same substring

w
(`)[i; j]. Then the disconnected subgraph

� labeled A(i; j) contains two linear graphs,

start-(A ! BC)-B(i; k)-C(k; j)-end and

start-(A ! D)-D(i; j)-end, and we have
~ (�)) = ffA ! BC;B(i; k); C(k; j)g; fA !

D;D(i; j)g.

The total ordering �1 < � � � < �M over the

disconnected subgraphs is introduced as fol-

lows. First de�ne a partial ordering � over

the �k's as A(i; j) � B(i
0; j0) i� B is expanded

in a partial derivation from A of w(`)[i; j]

and spans a substring w(`)[i0; j0] of w(`)[i; j]

(i � i0 � j 0 � j) in some successful parse of

w
(`). A support graph �` for w

(`) is then ob-



1: procedure Extract-CYK () begin

2: for ` := 1 to T do begin

3: Initialize all ~ `(�) to ; and

4: all Visited[�] to NO;

5: ClearStack(U);

6: Visit-CYK (`; S; 0; n`);

7: for k := 1 to jU j do �k := PopStack(U);

8: �` := h�1; �2; : : : ; �jUji

9: end

10: end.

1: procedure Visit-CYK (`; A; i; j) begin

2: Put � = A(i; j); Visited[� ] := YES;

3: if j = i + 1 and A(i; j)@w
(`)

j
2 T

(`)

i;j

4: then Add a set fA!w
(`)

j
g to ~ `(�)

5: else

6: foreach

7: A(i; j)@B(i; k)C(k; j) 2 T
(`)

i;j

8: do begin

9: Add to ~ `(� ) a set

10: fA!BC; B(i; k); C(k; j)g;

11: if Visited[B(i; k)] = NO

12: then Visit-CYK (`; B; i; k);

13: if Visited[C(k; j)] = NO

14: then Visit-CYK (`; C; k; j)

15: end;

16: PushStack(�; U )

17: end.

Figure 2: A routine for support graph extrac-

tion from a triangular table generated by a

CYK parser

tained by topologically sorting the �k's so that

�k < �k0 implies �k � �k0 . As a result, the la-

bel of �1 always takes the form S(0; n`) where

S is the starting symbol of the grammar.

In what follows, for descriptive conve-

nience, we sometimes treat �` = h�1; : : : ; �M i

as an ordered labels of the �k's together with

a function ~ `(�) de�ned over them.

Fig. 1 illustrates parses of sentence \as-

tronomers saw stars with ears" (taken from

(Manning and Sch�utze, 1999)) by a CYK

parser and the resulting triangular table, i.e.

a WFST for CYK parsing. \@" in the table is

a symbol separating a parent label from child

labels. The right graph in Fig. 1 is a support

graph extracted from the triangular table by

the procedure Extract-CYK() in Fig. 2.6 It is

(we only show labels)

� =< S(0,5), VP(1,5), PP(3,5), VP(1,3),

NP(2,5), PP(3,5), NP(4,5), P(3,4),

NP(2,3), V(1,2), NP(0,1) > :

Note that in the support graph, two dis-

connected graphs VP(1,5) and NP(2,5) have

PP(3,5) as a child node and precede it in �.

After constructing support graphs f�` j

1 � ` � Tg, we run the graphical EM al-

gorithm on them. It is driven by one main

routine gEM () (Fig. 3) for updating parame-

ters7 and two subroutines, Get-Inside-Probs()

(Fig. 4) for computing inside probabilities

and Get-Expectations() (Fig. 5) for comput-

ing outside probabilities and the expected

number of occurrences �[A � ] of a produc-

tion rule A � 2 R given the sentence.

Let A(i; j) be the label of a discon-

nected subgraph �k in �`. In each

iteration of gEM (), Get-Inside-Probs()

is called and recursively computes in a

bottom-up manner the inside probability

P (A
�
) w

(`)[i; j]) and stores it in ar-

ray P [`; A(i; j)].8 Get-Inside-Probs() also

uses array R[`; A(i; j); E] to store probability

P (E) where E = fe0; : : : ; eMg 2 ~ (�k). P (E)

is computed as a product P (e1) � � �P (eM)

where P (e) = �(A  �) if node e is a rule

A  � 2 R, or P (e) = P [`; B(i0; j0)]

if e is a label B(i0; j0). We see

P[`; A(i; j)] =
P
E2 ~ (�k)

P (E).

After computing all P [`;A(i; j)]s,

Get-Expectations() is called to compute

each Q[`; A(i; j)], the outside probability

6Here U in Extract-CYK() is a stack holding dis-
connected subgraphs (or equivalently their labels)

constituting a support graph �`. T
(`)

i;j
in Visit-CYK ()

is an element stored at (i; j) in the triangular ta-

ble T (`)(�; �) for w(`). w
(`)

j
is the j-th word of w(`).

Since there exist only O(N3L3) elements possibly �ll-

ing T (`)(�; �) where L = jw(`)j and V = jVnj, and
�lled elements are all di�erent, time complexity of
Extract-CYK() is O(N3L3). Another support graph
extraction routine for an Earley parser is described in
(Kameya et al., 2001).

7P (� j �) in gEM () stands for a distribution under
the current parameter values �.

8For intuitiveness and readability, we use A(i; j) as
a substitute for �k.



1: procedure gEM () begin

2: Initialize all parameters �(A!�);

3: such that P (w(`)
j�) > 0 for all ` = 1; : : : ; T ;

4: Get-Inside-Probs();

5: �(0) :=
P

T

`=1
logP[`; S(0; n`)];

6: repeat

7: Get-Expectations();

8: foreach (A!�) 2 R do

9: �(A!�) := �[A!�]=
P

�0
�[A!�0];

10: m += 1;

11: Get-Inside-Probs();

12: �(m) :=
P

T

`=1
logP[`; S(0; n`)]

13: until �(m)
� �(m�1) is su�ciently small

14: end.

Figure 3: Main routine gEM

P (S
�
) w

(`)[0; i] A w(`)[j; n`]) in a top-down

manner from �1 = S(0,n`) where n` = jw
(`)j

(the length of w(`)), while incrementing the

expected counts �[A  � ] of A  � in a

parse of w(`).

gEM () iterates to update parameters un-

til an increase in the log likelihood of

w
(1); : : : ;w(T ) is less than a threshold, say

10�6.

It is proved in (Kameya, 2000; Kameya et

al., 2001) that the graphical EM algorithm

computes the same values (inside and outside

probabilities, update values of parameters) as

the I-O algorithm, hence the di�erence only

lies in computational e�ciency. Since time

complexity of parsing and that of one itera-

tion for updating all parameters in one itera-

tion by the graphical EM algorithm are both

O(N3L3) where N is the number of termi-

nal symbols in a grammar and L the length

of an input sentence,9 we can say that the

graphical EM algorithm is as e�cient as the

I-O algorithm. Likewise we can analyze time

complexity by the graphical EM algorithm of

various extensions of PCFGs. For example,

parsing and parameter updating in one iter-

ation for Pseudo PCSGs (Charniak and Car-

roll, 1994) take O(N4L3). In what follows, we

9It is easy to see that time complexity of the graph-
ical EM algorithm in one iteration is proportional
to the size of a support graph which is O(N3L3)
(Kameya, 2000; Kameya et al., 2001).

focus on the actual behavior of the graphical

EM algorithm w.r.t. real corpora.

1: procedure Get-Inside-Probs() begin

2: for ` := 1 to T do begin

3: Put �` = h�1; �2; : : : ; �j�`ji;

4: for k := j�`j downto 1 do begin

5: foreach E 2 ~ (�k) do begin

6: R[`; �k; E] := 1;

7: foreach e 2 E do

8: if e = (A!�)

9: then R[`; �k; E] �= �(A!�)

10: else R[`; �k; E] �= P[`; e];

11: end;

12: P[`; �k] :=
P

E2 ~ (�k)
R[`; �k ; E]

13: end /* for k */

14: end /* for ` */

15: end.

Figure 4: Subroutine Get-Inside-Probs

4 Learning experiments with pure

PCFGs using two corpora

In this section, we experimentally compare

the graphical EM algorithm with the I-O al-

gorithm in terms of time per iteration (= time

for updating parameters) by letting them

learn PCFG parameters from a corpus. Sup-

port graphs were generated by using a Tomita

(Generalized LR) parser.10 All measurements

were made on a 296MHz Sun UltraSPARC-II

with Solaris 2.6.

We used two corpora. One was a POS

(part of speech)-tagged corpus converted from

ATR corpus and the other is EDR corpus.

ATR corpus is a Japanese-English corpus (we

used only the Japanese part) developed by

ATR (Uratani et al., 1994). It contains

10,995 conversational sentences, whose min-

imum length, average length and maximum

length are respectively 2, 9.97 and 49. As a

skeleton of PCFG, we employed a context free

10More speci�cally, we combined MSLR (Morpho-
logical and Syntactic LR) parser with our routine for
the graphical EM algorithm. MSLR parser is a Tomita
parser, developed by Tanaka-Tokunaga Laboratory in
Tokyo Institute of Technology (Tanaka et al., 1997).
Although MSLR parser provides several useful func-
tions (e.g. morphological analysis), we used only the
basic one (i.e. parsing of the tagged sentence).



1: procedure Get-Expectations() begin

2: foreach (A!�) 2 R do �[A!�] := 0;

3: for ` := 1 to T do begin

4: Put �` = h�1; �2; : : : ; �j�`ji;

5: Q[`; �1] := 1;

6: for k := 2 to j�`j do Q[`; �k] := 0;

7: for k := 1 to j�`j do

8: foreach E 2 ~ (�k) do

9: foreach e 2 E do

10: if e = (A!�) then �[A!�] += Q[`; �k] � R[`; �k; E]=P[`; S(0; n`)]

11: else if P[`; e] > 0 then Q[`; e] += Q[`; �k] � R[`; �k ; E]=P[`; e]

12: end /* for ` */

13: end.

Figure 5: Subroutine Get-Expectations

grammar Gatr comprising 860 rules (172 non-

terminals and 441 terminals) manually devel-

oped for ATR corpus (Tanaka et al., 1997)

which generates 958 parses/sentence.

Because the I-O algorithm only accepts

CFGs in Chomsky normal form, we converted

Gatr into Chomsky normal form G�

atr. G
�

atr
contains 2,105 rules (196 non-terminals and

441 terminals). We then divided the corpus

into subgroups of similar length like (L =

1; 2); (L = 3; 4); : : : ; (L = 25; 26), each con-

taining randomly chosen 100 sentences. After

these preparations, we compare the graphi-

cal EM algorithm applied to Gatr and G
�

atr
against the I-O algorithm applied to G�

atr in

terms of updating time per iteration.11 The

results are shown in Fig. 6.

In the left graph, the I-O algorithm draws

a cubic curve labeled \I-O".12 The curves

drawn by the graphical EM algorithm coin-

cide with the x axis and are not plotted. The

middle graph magni�es the left graph. The

curve labeled \gEM (original)" is drawn by

the graphical EM algorithm applied to the

original grammar Gatr whereas the one la-

beled \gEM (Chomsky CF)" used G�

atr. See-

ing \gEM (original)" at length 10, the aver-

age sentence length, we know that the graphi-

cal EM algorithm runs about 850 times faster

11The stopping threshold was 10�6.
12An x-axis is the length L of an input sentence and

a y-axis is time taken by the EM algorithm to update
all parameters in the grammar in one iteration.

than the I-O algorithm. The right graph

shows (almost) linear dependency of updat-

ing time of the graphical EM algorithm on

the sentence length.

This rather striking di�erence needs expla-

nation, but the reason looks simple. When

the I-O algorithm is applied to a speci�c

grammar such as G�

atr, it tries all possible

combinations of CFG rules in every iteration.

In other words, it parses a sentence anew in

each iteration. The graphical EM algorithm

on the other hand uses support graphs repre-

senting already parsed trees.

It is conceivable however that such a big

di�erence in updating time is ascribed to the

fact that ATR corpus only contains short sen-

tences and Gatr is not very ambiguous so that

the resulting WFST is sparse. If the WFST

is not sparse, and hence the support graph is

larger, we might not be able to expect such a

big di�erence.

We therefore conducted the same exper-

iment with another corpus, EDR Japanese

corpus which contains much longer sentences

using a highly ambiguous grammar. EDR

Japanese corpus (Japan Electronic Dictionary

Research Institute, 1995) contains 220,000

Japanese news article sentences. It is how-

ever under the process of re-annotation, and

only part of it (randomly sampled 9,900 sen-

tences) is available as a labeled corpus at the

moment. Compared with ATR corpus, sen-

tences are much longer (the average length
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Figure 7: Time per iteration : I-O vs. gEM (EDR)

of 9,900 sentences is 20, the minimum length

5, the maximum length 63) and a CFG gram-

mar Gedr (2,687 rules, converted to Chomsky

normal form grammarG�

edr containing 12,798

rules) developed for it is very ambiguous, hav-

ing 3:0�108 parses/sentence at length 20 and

6:7� 1019 at length 38. The graphs in Fig. 7

show the results of the same experiment with

EDR corpus as with ATR corpus, i.e. the

graphical EM algorithm applied Gedr vs. the

I-O algorithm applied to G�

edr
.

We found that at average sentence length

20, the former runs 1,300 times faster the lat-

ter per iteration. Thus the speed ratio even

widens compared to the case of ATR corpus.

This can be explained by the mixed e�ects

of time complexity O(L3) for the I-O algo-

rithm and a slow increase in the size of sup-

port graphs for the graphical EM algorithm.

One might argue that the comparison we

made is not fair as what we are comparing is

time per iteration of the EM algorithms, but

proper comparison must be based on the total

learning time which is calculated as

(A : time for constructing support graphs)

+ (B : time per iteration)

� (C : the number of iterations)

for the graphical EM algorithm whereas it is

merely B�C for the I-O algorithm. To an-

swer this question, we estimated total learn-

ing time for both of the EM algorithms using

the entire ATR corpus as input.

B for the I-O algorithm applied to G�

atr
was 1,215 seconds (average of 20 iterations)

whereas for the graphical EM algorithm ap-

plied to Gatr, A was 279 seconds and B was



0.661 second respectively.13 Assuming C =

100 iterations,14 the ratio of total learning

time using the entire corpus is calculated as

(1215� 100)=(279 + 0:661� 100) = 352, and

hence the graphical EM algorithm will still be

orders of magnitude faster than the I-O algo-

rithm in terms of total learning time.15

5 Learning experiments with

extended PCFGs

Finally we turn to extensions of PCFGs in-

corporating context sensitiveness in rule ap-

plication. We consider two extensions. One

is Pseudo PCSGs (pseudo probabilistic con-

text sensitive grammar) (Charniak and Car-

roll, 1994) in which the probability of select-

ing a rule for expanding a non-terminal de-

pends on its parent category. The other is

lexicalized PCFGs (Charniak, 1997; Collins,

1997; Carroll and Rooth, 1998; Beil et al.,

1999; Charniak, 2000) but in the most basic

form such that the probability of rule appli-

cation is conditioned on a \head" associated

with the non-terminal to be expanded.

We conducted learning experiments with

these extensions by the graphical EM algo-

rithm just like the experiments in Section 4,

using ATR corpus and Gatr. We, however,

had to modify the parser to generate ap-

propriate support graphs for each grammar

model, but the modi�cation was straightfor-

ward; just make every thing conditioned. For

example, in the case of a Pseudo PCSG, the

rule application of A ! � is conditioned on

the parent category A0 of A so that the la-

bel of a disconnected graph takes the form

13An attempt to measure B for the EDR corpus
available (9,900 sentences) was abandoned due to
memory overow.

14The plausible number of iterations until conver-
gence by the graphical EM algorithm using the entire
ATR corpus is 260 (this is the average of 3 trials),
which would give more favorable ratio to the graphi-
cal EM algorithm.

15We also conducted a learning experiment to
measure time per iteration for the entire ATR
corpus using an implementation by Mark John-
son of the I-O algorithm down-loadable from
http://www.cog.brown.edu/%7Emj/. This implemen-
tation turned out to be twice as fast as our naive im-
plementation but gave B=630 seconds which is orders
of magnitude slower than the graphical EM algorithm.

A(i; j j A0) and so on.

As Fig. 8 shows, despite higher time com-

plexity, extended models draw similar curves

to the PCFG model and they require at most

twice as much time as the PCFG model.
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Figure 8: Time per iteration w.r.t. various

extensions of PCFGs

For the sake of completeness, we summa-

rize the performance measures in the Table 1

which is obtained by 11 fold cross-validation

of various PCFGs using ATR corpus, Gatr
and the Viterbi-parser combined with learned

parameters.16 Clearly these extended mod-

els perform better than the pure PCFG, and

it appears that provided the grammar is not

very ambiguous, we may expect that perfor-

mance using parameters obtained by unsuper-

vised learning (EM) comes close to the per-

formance using those obtained by supervised

learning (counting).

6 Conclusion

We have proposed a new data structure, sup-

port graphs, and a new EM algorithm, the

graphical EM algorithm for PCFGs (and their

extensions) that runs on support graphs. We

have conducted learning experiments using

two corpora, ATR corpus and EDR corpus

which are contrasting in sentence length and

16PPCSG stands for Pseudo PCSG and LLPCFG
for lexicalized PCFG. \Labeled Tree" means exact
match and 0-CB is zero cross brackets. The base line
is the performance in the case of randomly choosing a
sentence and its labeled tree.



Labeled Tree PCFG PPCSG LPCFG

counting 81.09 84.90 83.97

EM 71.88 76.03 78.68

Baseline 64.37

0-CB PCFG PPCSG LPCFG

counting 87.89 92.08 92.39

EM 86.83 89.24 89.75

Table 1: Evaluation of extended PCFGs

the ambiguity of the CFG grammars devel-

oped for them. In both cases however, the

graphical EM algorithm outperformed the I-

O algorithm by orders of magnitude in terms

of updating time per iteration (and also in

terms of total learning time with ATR cor-

pus). We have also observed, experimentally

using ATR corpus, that learning time by the

graphical EM algorithm applied to extended

PCFGs (a Pseudo PCSG and a lexicalized

PCFG) does not deteriorate much compared

to a pure PCFG.
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