
Logic-based Probabilistic Modeling

Taisuke Sato

Tokyo Institute of Technology, Ookayama Meguro Tokyo Japan,
http://sato-www.cs.titech.ac.jp/

Abstract. After briefly mentioning the historical background of PLL/SRL,
we examine PRISM, a logic-based modeling language, as an instance of
PLL/SRL research. We first look at the distribution semantics, PRISM’s
semantics, which defines a probability measure on a set of possible Her-
brand models. We then mention characteristic features of PRISM as a
tool for probabilistic modeling.

1 Introduction

Logic has long been considered as a discipline concerning certainty with ma-
jor attention on deductive inference. However recent developments in machine
learning and other related areas are expanding the role of logic from a vehicle
for deductive inference to the one for probabilistic knowledge representation and
statistical inference, and has spawned an interdisciplinary subfield of machine
learning called PLL (probabilistic logic learning) and/or SRL (statistical rela-
tional learning) that combine logic and probability for probabilistic modeling1.

As its name suggests, PLL[1] has LP (logic programming) and ILP (inductive
logic programming) as its backbone. PLL however adds to LP/ILP probability
and makes logical formulas random variables taking true and false probabilisti-
cally. With such probabilistic formulas we can express logical yet probabilistic
phenomena such as gene inheritance cleanly at predicate level. Moreover prob-
abilities statistically learned from real data makes it possible to evaluate how
probable a given formula is in the real world.

Furthermore by amalgamating with probability, LP/ILP, or more generally
logic, acquires an ability to cope with missing information. Suppose we are going
for a picnic tomorrow (P) if the weather is clear (W). Also suppose we have to
prepare a lunch box tonight (L) if we go for a picnic tomorrow (P). Then it
follows by deduction that we have to prepare a lunch box tonight if the weather
is clear tomorrow (L ⇐ W). However we do not know the truth value of W ,
tomorrow’s weather. Should we prepare a lunch box tonight? In such a case a
purely logical inference would completely get stuck as we do not know the truth
value of W . The amalgamated system on the other hand will be able to help
our decision on whether we should prepare a lunch box or not by looking at the
probability associated with W .

1 SRL seems more often used than PLL now.

2 Taisuke Sato

SRL [2], independently of PLL, originated from uncertainty reasoning in BNs
(Bayesian networks)[3]. BNs are a graphical representation of joint distributions
in terms of directed acyclic graphs. BNs are powerful. First they can visual-
ize complex dependencies among random variables graphically as parents-child
nodes. Second they allow us to perform various types of probabilistic inference
and parameter learning such as maximum likelihood inference, MAP (maximum
a posteriori) inference and Bayes inference. These inferences are efficiently car-
ried out by well-developed algorithms including the celebrated BP (belief propa-
gation) algorithm. Also there are ones for structure learning as well that learn a
directed graph from data. As a result BNs are used as one of the standard tools
for handling uncertainty and applied to bioinformatics, natural language pro-
cessing, speech recognition, planning, diagnosis, datamining, decision support
and so on.

Nevertheless from a viewpoint of knowledge representation in AI, BNs are
primitive. Basic assertions available in BNs are limited to X = x type such that
X is a random variable and x is a value. In other words, BNs are a propositional
system where X = x is a propositional variable which is true with probability
P (X = x). BNs’ lack of logical variables, relations and quantifiers, the hallmark
of predicate calculus, implies we have no way to express (probabilistic) rules such
as “a friend of a friend is a friend with probability 0.3.” One might say BNs is
a low level language just like machine code.

The low-levelness of BNs prompted the emergence of the KBMC (knowledge-
based model construction) approach in the nineties. Initially KBMC built BNs
from a knowledge base using a high level language mostly as a matter of conve-
nience. But later it evolved to SRL which upgrades BNs themselves by explic-
itly introducing variables and relations and/or by embedding them in a richer
programming language be it logical or otherwise. Variables in such a language
recover an ability to express general patterns. More importantly the introduction
of relations opened a new dimension for feature-based probabilistic modeling2

by using relations themselves as new features [2].
Currently SRL and PLL are moving toward unification but it remains to

be seen whether they are eventually unified or not. In this talk, we look into
some details of PRISM [4–6]3 as an instance of ongoing PLL/SRL research.
PRISM is a probabilistic extension of Prolog with a declarative semantics called
distribution semantics which is a probabilistic generalization of the standard
least model semantics of logic programs [7]. Despite the fact that PRISM adopts
a single data structure, a single probability computation algorithm and a single
parameter learning algorithm, all independent of target models, it universally
covers generative models from Bayesian networks to probabilistic grammars with
efficiency supported by the PRISM architecture. In what follows we review the

2 Features are a function from an input to a real number that characterizes the input.
In statistical natural language proceeding for example, often an individual word is
used as a feature that returns 1 if the input contains the word, else 0.

3 http://sato-www.cs.titech.ac.jp/prism/index.html

Logic-based Probabilistic Modeling 3

distribution semantics in detail and then illustrate some aspects of PRISM from
a machine learning point of view.

2 Probabilistic semantics

2.1 The basic principle

The distribution semantics, PRISM’s declarative semantics, is a probabilistic
generalization of the least model semantics in logic programming. Before pro-
ceeding however, we look back on a fundamental theorem which underlies it.

When logic and probability are combined, probabilities P (ϕ) are assigned to
formulas ϕ. However since probabilities have to respect Kolmogorov’s axioms
while formulas obeys their own logical laws, it is not self-evident how to coher-
ently assign probabilities to formulas4. We here review Fenstad’s representation
theorem [8] in our context which states a formal relationship between formulas
and their probabilities.

We introduce some notations. Let L be a countable first order language
without equality and ω be a model on a certain fixed domain U5. We assume
variables are indexed by natural numbers N. We denote by ϕ[ω] {a ∈ UN |
ω |=a ϕ(xi, . . . , xj)} where a is an assignment for the variables such that a(i) is
assigned to xi etc. ϕ[ω] denotes the set of sequences of elements from U whose
substitution for the variables in ϕ makes ϕ true in the model ω.

Theorem 1 (Fenstad 67). Let ϕ, φ be formulas in L. Suppose probabilities
assigned to formulas satisfy the following.

(i) P (ϕ ∨ φ) + P (ϕ ∧ φ) = P (ϕ) + P (φ)
(ii) P (¬ϕ) = 1 − P (ϕ)

(iii) P (ϕ) = P (φ), if � ϕ ↔ φ
(iv) P (ϕ) = 1, if � ϕ

Then there is a σ-additive probability measure λ on the set Ω of models on U
for L. There is also for each ω ∈ Ω, a probability µω on the sets of ϕ[ω]’s such
that

P (ϕ) =
∫

S

µω(ϕ[ω]) dλ(ω).

When the domain U is finite and ϕ is closed, the above theorem reduces to

P (ϕ) =
∑
ω|=ϕ

λ({ω}).

So in this case, the probability is given as the sum of probabilities of the models
that satisfy the formula.
4 In addition since probabilities are supposed to be used in a probabilistic model, they

need to be computable and learnable from data.
5 U can be taken as a Herbrand universe for L.

4 Taisuke Sato

Fenstad’s theorem strongly suggests to us that if we assign probabilities to
formulas in a reasonable way, we should first define a probability measure over
models. The distribution semantics[4] we explain next follows this idea.

2.2 The distribution semantics

Formally a PRISM program DB is a set of definite clauses. We write it as
DB = F ∪ R where F is a set of ground atoms corresponding to primitive
probabilistic events such as coin tossing and R is a set of rules (definite clauses).
We assume no atom in F unifies with a head appearing in R.

We consider the set of Herbrand models (we often call them just worlds
for simplicity) ΩDB for DB and define a probability measure PDB over ΩDB

as follows. First enumerate ground atoms in F like A1, A2, . . . and identify a
Herbrand interpretation of F with a binary infinite vector (1, 0, . . .) that specifies
A1 is true (1), A2 is false (0) and so on. Let ΩF =

∏
i{0, 1}i be the set of

such binary vectors. We give ΩF a product topology where {0, 1} has a discrete
topology. Also let PF be a base distribution which is any probability measure on
the σ-algebra generated by open sets of ΩF .

Consider an arbitrary subset F ′ of F . DB ′ = F ′ ∪ R has the least Herbrand
model M(DB ′) defined as follows. Let T be the immediate consequence operator
[7]. It is applied to a set I of ground atoms and defined by T (I) = {A | A ⇐ B1∧
· · · ∧ Bh(h ≥ 0) is a ground instance of a clause in DB ′ and {B1, . . . , Bh} ⊆ I}.
Put I∞ = ∪∞

k=0T
k(∅) and verify I∞ is the least fixpoint of T , i.e. T (I∞) = I∞.

Define a Herbrand model M(DB ′) by a ground atom A is true in M(DB ′)
iff A ∈ I∞6. M(DB ′) is called the least Herbrand model of DB ′7. Using this
M(DB ′) = M(F ′ ∪ R) as a model parameterized by F ′, a subset of F , we can
extend PF by Kolmogorov’s extension theorem to a probability measure PDB on
the σ-algebra generated by open sets in ΩDB with a product topology (see [5]
for details). We consider PDB as the denotation of PDB (distribution semantics).

From the construction of PDB , it is easy to see every closed formula ϕ is
measurable when considered as a function from ΩDB to {0, 1} such that

ϕ(ω) =
{

1 if ω |= ϕ
0 else

and hence we define the probability PDB (ϕ) of ϕ as PDB (ϕ = 1). Probabilities
thus defined satisfy the conditions from (i) to (iv) of Fenstad’s representation
theorem. Also we can see the distribution semantics is a generalization of the
least model semantics because if the base distribution PF puts all probability
mass on one Herbrand model making F ′ ⊆ F true, PDB also will put all proba-
bility mass on the least Herbrand model of F ′ ∪ R.

6 Proof theoretically DB ′ � A iff A ∈ I∞ for every ground atom A.
7 In logic programming, the least Herbrand model is considered as the canonical de-

notation of definite clause programs.

Logic-based Probabilistic Modeling 5

3 PRISM: from semantics to implementation

The distribution semantics considers PDB as the denotation of a program DB =
F ∪ R. PDB always exists, uniquely, for any set F of ground atoms, any base
measure PF on F and any set R of definite clauses. Such “semantic robustness”
is one of the unique features of PRISM compared to other systems dealing with
infinite domains and infinitely many random variables [2, 1].

However defining a semantics is one thing and implementing it is another.
When implementing the distribution semantics as PRISM as an extension of
Prolog, we fix F and restrict the base measure PF to a denumerable product of
of Bernoulli distributions to make PDB computable in probabilistic modeling.

More concretely we introduce ground atoms called msw atoms8 representing
a probabilistic choice that take the form msw(i, v) where i is a choice name and
v is a chosen value and both are ground terms. We fix the set Fmsw of ground
msw atoms and give a (-n infinite) joint distribution Pmsw(·) in such a way that
if a probabilistic choice named i has k choices v1, . . . , vk, correspondingly, one
of nmsw(i,v1), . . . , msw(i,vk), say msw(i,vj) is exclusively true with probability
θvj

= Pmsw(msw(i,vj)) (
∑

j θvj
= 1). msw(i,v) is the only probabilistic built-in

predicate in PRISM and used to simulate simple probabilistic events such as coin
flipping and dice throwing. The role of definite clauses in R then is to organize
such simple events into a complex event corresponding to our observation in
the real world. The following is a PRISM program describing the inheritance of
ABO blood type. As you see a PRISM program is just liken an ordinary Prolog
program9.

values x(gene,[a,b,o],[0.5,0.2,0.3]).

bloodtype(P) :-

genotype(X,Y),

(X=Y -> P=X ; X=o -> P=Y ; Y=o -> P=X ; P=ab).

genotype(X,Y) :-

msw(gene,X), msw(gene,Y).

Fig. 1. ABO-blood type program DB1

The first clause values x(gene,[a,b,o],[0.5,0.2,0.3]) is a PRISM dec-
laration specifying Fmsw and Pmsw(·). It introduces a set of mutually exclusive
atoms {msw(gene, a), msw(gene, b), msw(gene, o)} corresponding to a probabilis-
tic choice named gene having three possible outcomes a, b and o, representing
three genes determing one’s ABO blood type. They are true with 0.5, 0.2 and
0.3 respectively as indicated by the values x declaration. The second clause is

8 msw stands for “multi-ary random switch.”
9 Some familiarity with Prolog is assumed here.

6 Taisuke Sato

a rule specifying the relationship between genotypes (pair of genes) and phe-
notypes (ABO blood type, a, b, o, ab). For example if a genotype is (a, b), the
blood type is ab. The last clause simulates the inheritance of two genes, one from
each parent. Sampling msw(gene,X) returns X = a with probability 0.5 etc. In
PRISM, textually different occurrences of msw atoms in a program are treated
as independent. So msw(gene,X) and msw(gene,Y) are independent. This pro-
gram as a whole describes how bloodtype(P), our observation, is generated by
a sequential choices made by msw(gene,·) atoms.

Once loaded into computer memory by the PRISM system, DB1 can answer
various questions such as the probability of bloodtype(a). PRISM computes
it by way of search and the resulting propositional AND/OR formula called
an explanation graph. To be precise it first performs an exhaustive SLD search
for ?- bloodtype(a) and collects all conjunctions E1, E2 and E3 such that
Ei,DB1 � bloodtype(a) (i = 1, 2, 3) where E1 = msw(gene, a) ∧ msw(gene, a),
E2 = msw(gene, a) ∧ msw(gene, o) and E3 = msw(gene, o) ∧ msw(gene, a). We
call each Ei an explanation for bloodtype(a). Since the search is exhaustive,
bloodtype(a) ⇔ E1 ∨ E2 ∨ E3 holds with probability one in terms of PRISM’s
semantics. In addition since E1, E2 and E3 are obtained by mutually exclusive
proof paths, they are mutually exclusive as well. Also recall that msw atoms are
independent. Putting these together PDB1(bloodtype(a)) is calculated as

PDB1(bloodtype(a) | θa, θb, θo) = PDB1(E1 ∨ E2 ∨ E3)
= PDB1(E1) + PDB1(E2) + PDB1(E3)
= θ2

a + θaθo + θoθa

= 0.45

where θa = Pmsw(msw(gene, a)) = 0.5, θb = Pmsw(msw(gene, b)) = 0.2 and θo =
Pmsw(msw(gene, o)) = 0.310 as specified by values x(gene,[a,b,o],[0.5,0.2,0.3]).

4 Statistical abduction

Although PRISM is an extension of Prolog, their inferences are of different type.
Prolog is a logical language for (controlled) deduction whereas PRISM is a logical
language for (controlled) abduction. In general abduction refers to “inference
to the best explanation.” Given a knowledge base K, a set of formulas, and
an observation O, we seek for the best explanation E in abduction such that
K ∧ E � O and K ∧ E is consistent. The exhaustive search for explanations for
the given goal in PRISM is exactly an abductive inference. One of the problems
in abduction is that there can be many explanations just like a student has many
excuses for not doing homework. In the blood type example, PRISM abduces
three explanations E1, E2, and E3 for the observation bloodtype(a) but in

10 PDB1(·) is an extension of Pmsw(·), so PDB1(E1) = Pmsw(msw(gene, a)∧msw(gene, a)) =
Pmsw(msw(gene, a))2 = θa

2.

Logic-based Probabilistic Modeling 7

the case of parsing where observations are sentences, the knowledge base is a
grammar and an explanations is a parse tree, we often have tens of thousands
of parse trees for one sentence. In the face of multiple explanations, we need to
choose somehow one of them as the best one.

Statistical abduction[9] resolves the problem of multiple explanations that
arises in abduction by introducing a probabilistic model P (·) connecting expla-
nations E, a knowledge base K and an observation O. Using P (·) we choose the
most probable E giving the highest P (E | O,K) such that K ∧ E � O. In this
sense PRISM is not just a language for abduction but a language for statistical
abduction, and indeed the first one with an ability to perform statistical infer-
ence to our knowledge. In PRISM the knowledge base is a program DB for which
the distribution semantics guarantees PDB (iff(DB)) = 111 [5]. Accordingly

E∗ = argmaxEPDB (E | O, iff(DB))
= argmaxEPDB (E ∧ O ∧ iff(DB))
= argmaxEPDB (E ∧ iff(DB))
= argmaxEPDB (E)

holds. Thus seeking for the best explanation in statistical abduction is equiva-
lent to Viterbi inference implemented in PRISM, giving E∗ = E1 as the best
explanation for bloodtype(a).

5 Probabilistic modeling

So far we have been looking at theoretical aspects of PRISM. Here we exam-
ine PRISM as a practical tool for probabilistic modeling. As a modeling tool,
the most salient feature of PRISM is model specification by (recursive) definite
clauses12, which results in

– universality (for generative models and their parameter learning)
– high level specification (small amount of coding) and
– interpretability (what the system does is readable to humans).

The first point is due to the fact that PRISM can simulate, as an extension
of Prolog, a non-deterministic Turing machine in which non-determinacy is re-
solved by a probabilistic choice, and in addition, PRISM has a generic routine
(the graphical EM algorithm [5]) for parameter learning. The universality covers
PCFGs (probabilistic context free grammars) [11] as well as BNs [3]. A PCFG
is a CFG with probabilities assigned to grammar rules. It generates a sentence
by repeatedly making a probabilistic choice of a grammar rule and expanding a
11 iff(DB) is the if-and-only-if completion of DB . Definite clauses with a common head

such as A ⇐ B and A ⇐ C in a program are lumped together to the if-and-only-if
form A ⇔ B ∨ C in iff(DB).

12 Actually general clauses (those that may contain negative goals in the clause body)
are allowed under a certain condition[10].

8 Taisuke Sato

nonterminal with it until no nonterminal remains. Since there is no upper limit
on the number of applications of grammar rules, if there is a recursive rule, we
use a countably many iid random variables. Hence finite probabilistic models
such as BNs or otherwise cannot express PCFGs though they are the most basic
class of probabilistic grammars [12].

The second point owes to the power of first-order expressions such as vari-
ables, terms, relations and recursion. For example HMMs (hidden Markov mod-
els) which are a class of stochastic automata very popular in machine learning
can be expressed in three lines (together with three line declarations) as shown
in Fig. 3.

end

a,b

a,b

a,b a,b

s1s0

Fig. 2. An HMM

values x(init,[s0,s1],[0.5,0.5]).

values x(out(),[a,b],[0.5,0.5]).

values x(trans(),[s0,s1,end],[0.7,0.2,0.1]).

hmm(L):- msw(init,S0),hmm(S0,L).

hmm(S,L):- msw(trans(S),NextS),

(NextS=end -> L=[] ; msw(out(S),C), L=[C|Cs], hmm(NextS,Cs)).

Fig. 3. DBhmm for the HMM in Fig.2

We hope the program DBhmm in Fig. 2 is self-explanatory but add comments13.
This program generates indefinitely long lists of a and b. There are two states s0
and s1 both of which can be an initial state. After choosing the initial state, it
goes into infinite recursion, while outputting a or b on transition, until a choice
of transition to end, the final state, is made probabilistically.

13 values x(out(),[a,b],[0.5,0.5]) is a template where the underscore can be
replaced with any term.

Logic-based Probabilistic Modeling 9

?- prob(hmm([a,a,b])).

Probability of hmm([a,a,b]) is: 0.012345679012346

?- viterbif(hmm([a,a,b])).

hmm([a,a,b]) <= hmm(s0,[a,a,b]) & msw(init,s0)

hmm(s0,[a,a,b]) <= hmm(s1,[a,b]) & msw(trans(s0),s1) & msw(out(s0),a)

hmm(s1,[a,b]) <= hmm(s1,[b]) & msw(trans(s1),s1) & msw(out(s1),a)

hmm(s1,[b]) <= hmm(s1,[]) & msw(trans(s1),s1) & msw(out(s1),b)

hmm(s1,[]) <= msw(trans(s1),end)

?- learn([hmm([a,a,b]),hmm([b,a]),hmm([b,b]),hmm([a,b,a])]).

...

#em-iterations: 0.(18) (Converged: -12.908717468)

Switch init: s0 (p: 0.000005604) s1 (p: 0.999994396)

Switch out(s0): a (p: 0.499954371) b (p: 0.500045629)

Switch out(s1): a (p: 0.500019760) b (p: 0.499980240)

Switch trans(s0): s0 (p: 0.430352826) s1 (p: 0.000001065) end (p: 0.569646108)

Switch trans(s1): s0 (p: 0.573218835) s1 (p: 0.426780543) end (p: 0.000000623)

Fig. 4. Running DBhmm

Fig. 4 is a sample session of DBhmm. After loading, we issue ?-prob(hmm([a,a,b]))
to compute the probability of hmm([a,a,b]). Next we ask what is the most prob-
able state transition sequence (Viterbi inference) for generating hmm([a,a,b]).
The answer is given as a calling sequence (in Prolog) of subgoals. Finally, we learn
parameters from a list of observations {hmm([a, a, b]), hmm([b, a]), hmm([b, b]), hmm([a, b, a])}
by invoking the graphical EM algorithm using learn/1. After 18 iterations
it converged with log-likelihood −12.908717468, giving parameters as listed.
“Switch init” signifies the parameters are for msw(init,·).

We remark that it is straightforward to extend and modify, say merge with
a PCFG, the above skeletal program to one’s purpose. When the user modifies
his probabilistic model, it often happens that he has to start from designing a
new data structure all over again. Since PRISM adopts a single data structure
(explanation graphs), there is no need for a new data structure. All you need to
change when you change your model is the specification part alone, which is a
labor saving aspect of PRISM.

The third point, interpretability, is of particular importance in practice. Even-
tually the outcome of our analysis by probabilistic modeling must be transferred
to non-experts. However think of non-generative probabilistic models specified
by “weights” wi like P (y | x) ∝ exp(

∑
i wifi(x, y)). It would be very hard to

explain the meaning of those weights to non-experts, and especially so when
there are a huge number of weights like in statistical natural language process-
ing. On the contrary, logic-based probabilistic modeling uses logical formulas to

10 Taisuke Sato

specify models, which seem more readable and more meaningful to non-experts
than weights, though we admit logical formulas themselves might be an obstacle.

Last but not least, we comment on complexity. PRISM is a high-level mod-
eling language and models can be described succinctly as a PRISM program.
However one might ask if the ease of modeling sacrifices efficiency. The answer is
possibly so but marginally. Due to the complexity analysis of representative mod-
els [5], HMMs, PCFGs and BNs can be computed in the same time complexity
as specialized algorithms (the Baum-Welch algorithm for HMMs, the Inside-
Outside algorithm for PCFGs, BP for BNs [13]). The reason is that explanation
graphs, PRISM’s data structure, realize structure-sharing and probabilities and
expectations (needed for parameter learning) are computed by dynamic pro-
gramming exploiting such structure-sharing. The real issue here is the trade off
between general data structure for every model and specialized data structure
for a specific model. PRISM lies on the general end of this scale. It constructs
explanation graphs using pointers as their size depends on a model and data
and is unknown beforehand in general. This causes a disadvantage in computa-
tional efficiency. We believe however the flexibility can compensate for such a
disadvantage and implementation efforts can make it minimal.

6 Concluding remarks

We reviewed the historical background of PLL/SRL and examined PRISM as
an instance of PLL/SRL research. It is a logic-based modeling language we have
been developing in the past decade and provides a general tool for generative
modeling in machine learning. As an extension of Prolog, it subsumes Prolog and
furthermore has the ability to learn parameters from data based on an abductive
framework called “statistical abduction.” We omitted most of computational
details but they can be reached by [4, 5, 14, 6]. Also omitted is variational Bayes
which is the latest feature of PRISM for Bayesian inference [15].

References

1. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Inductive
Logic Programming - Theory and Applications. Lecture Notes in Computer Sci-
ence. Springer (2008) 1–27

2. Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. MIT
Press, Cambridge, MA (2007)

3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)

4. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP’95). (1995) 715–729

5. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

Logic-based Probabilistic Modeling 11

6. Sato, T., Kameya, Y.: New Advances in Logid-Based Probabilistic Modeling by
PRISM. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Proba-
bilistic Inductive Logic Programming. LNAI 4911, Springer (2008) 118–155

7. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1984)
8. Fenstad, J.E.: Representation of probabilities defined on first order languages.

In Crossley, J.N., ed.: Sets, Models and Recursion Theory. North-Holland (1967)
156–172

9. Sato, T., Kameya, Y.: Statistical abduction with tabulation. In Kakas, A., Sadri,
F., eds.: Computational Logic: Logic Programming and Beyond. LNAI 2408,
Springer (2002) 567–587

10. Sato, T., Kameya, Y., Zhou, N.F.: Generative modeling with failure in PRISM.
In: Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI’05). (2005) 847–852

11. Wetherell, C.S.: Probabilistic languages: a review and some open questions. Com-
puting Surveys 12(4) (1980) 361–379

12. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press (1999)

13. Sato, T.: Inside-Outside probability computation for belief propagation. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJ-
CAI’07). (2007) 2605–2610

14. Zhou, N.F., Sato, T., Shen, Y.D.: Linear tabling strategies and optimization.
Theory and Practice of Logic Programming 8(1) (2008) 81–109

15. Sato, T., Kameya, Y., Kurihara, K.: Variational bayes via propositionalized prob-
ability computation in prism. Annals of Mathematics and Artificial Intelligence,
to appear.

