Viterbi training in PRISM

Taisuke Sato
Keiichi Kubota

sato@mi.cs.titech.ac.jp
kubota@mi.cs.titech.ac.jp

Tokyo Institute of Technology, Oookayama 2-12-1, Meguro, Tokyo, Japan

Abstract

VT (Viterbi training), or hard EM, is an ef-
ficient way of parameter learning for proba-
bilistic models with hidden variables. Given
an observation y, it searches for a state of
hidden variables = that maximizes p(x,y | 6)
by coordinate ascent on parameters 6. In
this paper we introduce VT to PRISM, a
logic-based probabilistic modeling system for
generative models. VT improves PRISM’s
probabilistic modeling in two ways. First al-
though generative models are said to be in-
appropriate for discrimination tasks in gen-
eral, when parameters are learned by VT,
models often show good discrimination per-
formance. We conducted two parsing ex-
periments with probabilistic grammars while
learning parameters by a variety of inference
methods, i.e. VI,EM,MAP and VB. The re-
sult is that VT achieves the best parsing
accuracy among them in both experiments.
Second since VT always deals with a single
probability of a single explanation, Viterbi
explanation, the exclusiveness condition im-
posed on PRISM programs is no more re-
quired when we learn parameters by VT.
PRISM with VT thus allows us to write in-
clusive clause bodies, learn parameters and
compute Viterbi explanations.

1. Introduction

VT (Viterbi training) has been used for long time as
an efficient parameter learning method in various re-
search problems such as machine translation based on
word alignment (Brown et al., 1993), speech recogni-
tion to estimate parameters of Hidden Markov Mod-
els (Juang & Rabiner, 1990; Strom et al., 1999), im-

Appearing in Proceedings of the 29" International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

age analysis for supervised and unsupervised learn-
ing of multi-dimensional HMMs (hidden Markov Mod-
els) (Joshi et al., 2006), parsing by unsupervised learn-
ing of dependency models (Spitkovsky et al., 2010),
and gene finding by unsupervised learning of HMMs
(Lomsadze et al., 2005). Although VT is NP-hard
even for PCFGs (probabilistic context free grammars),
which is proved by encoding the 3-SAT problem into
PCFGs (Cohen & Smith, 2010), and is not a consis-
tent estimation method unlike MLE (maximum likeli-
hood estimation)(Lember & Koloydenko, 2007), it of-
ten outperforms and runs faster than the conventional
EM algorithm.

We introduce this VT to PRISM which is a probabilis-
tic extension of Prolog (Sato & Kameya, 2001; 2008).
There are already multiple parameter learning meth-
ods available in PRISM. One is the EM algorithm, or
more generally MAP (maximum a posteriori) estima-
tion (Sato & Kameya, 2001). Another is VB (varia-
tional Bayes) (Sato et al., 2009) which approximately
realizes Bayesian inference and learns pseudo counts
assuming Dirichlet priors over parameters. They are
implemented on PRISM’s data structure called expla-
nation graphs representing AND/OR boolean formulas
made up of probabilistic ground atoms. Probabilities
used in EM, MAP and VB are all computed by run-
ning the generalized 10 algorithm or its variant on
explanation graphs.

VT in PRISM runs on explanation graphs just like
EM, MAP and VB but always computes a single prob-
ability of a single explanation called Viterbi explana-
tion or most probable explanation. Not only this re-
sults in faster computation but thanks to the nature
of VT’s objective function which differs from the like-
lihood of data, VT tends to learn parameters yielding
better prediction performance in tasks such as parsing
as we see later.

In addition VT brings about a favorable side effect on
PRISM. It makes unnecessary the exclusiveness condi-
tion imposed on PRISM programs to ensure efficient
probability computation. This is because it always

Viterbi training in PRISM

deals with a single probability of Viterbi explanation
and hence there is no need for summing up proba-
bilities of non-exclusive explanations. Consequently
PRISM can learn parameters by VT from programs
that do not satisfy the exclusiveness condition and
compute Viterbi explanations using the learned pa-
rameters.

2. Viterbi training and PRISM

2.1. Viterbi training

Let 2 be hidden variables, y observed ones and p(x,y |
0) their joint distribution with parameters §*. MLE
estimates parameters 6 from y as the maximizer of the
(log) likelihood function Lg(y | 6):

Leyu(y|0) ef logz (z,y]6).

In the case of MAP (maximum a posteriori) esti-
mation, we add a prior distribution p(f) and use
Lyrap(y | 0) as an objective function:

def
= logz (z,y | 0)p(0).

What VT does is similar to MLE and MAP but it uses
a different objective function Lyr(y | 0) defined as

Lyap(y|0)

def

Lyr(y|0) =

VT estimates parameters as the maximizer of Ly (y |

6) by coordinate ascent that alternates the maximiza-

tion of log p(z,y | #) w.r.t. and the maximization of
logp(z,y | 0) w.rt. 6:

log max, p(z,y | 0)p(0).

™ = argmax, log p(z,y|0™) (1)
9t = argmax, log p(z™,y6) (2)
Starting with appropriate initial parameters (%), VT
iterates the above two steps and terminates when
(1) = 2() holds (recall we assume random vari-
ables are discrete). Proving the convergence property
of VT is straightforward.

Lyr(y | 00tD) log p(z™ 1)y | 9T p(en L))

(

log p(z™,y | 6T D)p(p"+ D)
(
(

(A\VARAYS

log p(«™,y [0))p(6™)

y ™)

So Lyr(y | ™) < Lyr(y | 6TY) < 0 for every
n=0,1,... Since {Lyr(y | #U)}, is a monotonically
increasing sequence with an upper bound, it converges
as n goes to infinity.

Lyt

! In this paper, we assume distributions are discrete.

2.2. VT for PRISM

Here we reformulate VT in the context of PRISM.
We skip an introductory explanation of PRISM. The
reader is referred to (Sato & Kameya, 2001; 2008) for
its semantics, tabled search, explanation graph and
probability computation.

Let DB be a PRISM program with parameters 6 and
Ppg(- | 8) a probability measure defined by DB. Also
let G = G4, ...,Gr be a list of observed iid goals, and
expl(Gt) (1 <t < T) the set of explanations €; (con-
junctions of msw atoms) such that ¢;, DB F G¢. G cor-
responds to observed variables y and {e;}7_; to hidden
variables z in p(x, y | 8) in the previous subsection. We
use 0; , for parameters (probabilities) of multi-valued
switch msw(i,v) (v € V;) where ¢ is a switch iden-
tifier (ground term) and V; is a finite set of possible
outcomes (ground terms) declared by values/3 dec-
laration in DB. So Zvew 0;» = 1 holds. We put
0; = {0;v}vev, and 0 = |J, 6; where i ranges over
possible switch identifiers.

We introduce a prior distribution p(6;)
[Toev, 921’;’1’_1, Dirichlet distribution with hyper
parameters {@; ,fvev;, over 8;. In the following, to
avoid the difficulty of zero-probability encountered

in parameter learning, we assume pseudo count

def

0iw = 4 — 1> 0 and use 9;, instead of a; ,.

Finally we define Viterbi explanation €; for a goal G,
as a most probable explanation for G; given by

* p—
€ =

argmax,, cexpi(c,) on (€ | 0)p(0). (3)

The objective function Ly (G | €) for VT in PRISM
is now computed as follows.

Lyr(G|0)
T
log max, cexpl(G,),1<t<T H Ppp (e, Gt | 0)p(8)

t=1

T
= lOg H maxeteexpl(Gt)PDB(et | a)p(e)
t=1

T
Oi,v 6: 6'i,v
= log I |07;,Z,Ut:1 ' ()+
1,0

T
*
= E E Ji,v(Et) + 61"1, log 91-,1,
7,V t=1

where “4,v” ranges over those satisfying msw(i,v) in €;
and o; , (€}) is the number of occurrences of msw (i, v)

. *
in €.

By substituting various definitions and formulas into
equations (1) and and (2), we obtain the VT algorithm

Viterbi training in PRISM

for PRISM which alternately executes (4) and (5)

where 8™ stands for the set of parameters {952})}1-71,
at step n.

ef(n) = argmax,, cepi(g,) 108 Ppp (€t | H(n))(‘l)
T

QEZH) % ZUz‘,u(Er(n))*"S%v (5)
t=1

Here (4) corresponds to (1) and (5) to (2) respectively.

Given observed goals G = Gy,...,Gr, we first per-
form tabled search for all explanations to build expla-
nations graphs representing expl(G;) for each t(1 <
t < T). Then starting from the initial parameters
092 we repeat (4) and (5) alternately while efficiently
computing the Viterbi explanations (4) based on the
explanation graphs until e; (n+1) € ™ Yolds for all ¢
(1<t<T). {91(,7:;+1)}i7v are then learned parameters.

One of the problems of VT is the sensitivity to the
initial condition. So we need to carefully choose 0.
Uniform distributions for) (Spitkovsky et al., 2010)
and 6:(0)(1 <t <T) (Cohen & Smith, 2010) are possi-
ble choices. In practice, we further add random restart
to alleviate the sensitivity problem.

3. Learning experiments with
probabilistic grammars

In this section® we apply VT to parsing tasks in natu-
ral language processing where observable variables are
sentences and hidden variables are parse trees. We
predict true parse trees for given sentences using prob-
abilistic grammars (PCFG and PLCG) whose param-
eters are learned by VT and compare the parsing per-
formance with EM, MAP and VT.

3.1. VT for PCFGs

Prior to describing the parameter learning experiment
with a PCFG by VT, we briefly review how to write
PCFGs in PRISM. In PCFGs, sentence derivation is
carried out probabilistically. When there are k¥ PCFG
rules 61 : A — B1,...,0; : A — [for a nonterminal
A with probabilities 61,...,0; (61 + -+ 60 =1), A
is expanded by A — (; into §; with probability ;.
The probability of a parse tree 7 is the product of
probabilities associated with occurrences of CFG rules
in 7 and the probability of a sentence is the sum of

2 We may start from some e:(o) as well.

3 Experiments are done using PRISM augmented with
preliminarily implemented VT.

values(’S’,[[’S’,’S’],[a]l,[b]],[0.4,0.3,0.3]).
pcfg(L) :- pcfg([’S’]1,L,[1).

pcfg(lAIR],LO,L2):-

(get_values(A,) ->
msw(A,RHS),
pcfg(RHS,LO,L1)

; Lo=[A|L1]),

pcfg(R,L1,L2).

pctg([l,L,L).

% msw(A,_) exists, so
% A is a nonterminal

Figure 1. A PCFG program

probabilities of parse tress for the sentence.

Writing PCFG programs is easy in PRISM. Figure 1
is a PRISM program for a PCFG { 0.4:5—8 S,
0.3:8—a, 0.3:S—b }. In general, PCFG rules such
as { 01 : A — B1,...,0k : A — B } are encoded by
values/3 declaration as

values(CA’, [, ...

7ﬁk}]’[917~--;9k}])

where [3; is a Prolog list of terminals and nonterminals.

We wrote a PCFG program like Figure 1 for ATR cor-
pus (Uratani et al., 1994) using an associated CFG*.
The corpus contains labeled parse trees for 10,995
Japanese sentences whose average length is about 10.
The associated hand-crafted CFG comprises 860 CFG
rules (172 non-terminals and 441 terminals) and yields
958 parses/sentence on average.

We applied four learning algorithms, i.e. VT, EM,
MAP and VB (Sato et al., 2009) available in PRISM
to the PCFG program for ATR corpus® and compared
their parsing performance. We conducted eight-fold
cross validation for each algorithm to evaluate the
quality of learned parameters in terms of three perfor-

4 In the experiment, to speed up parsing, we par-
tially evaluated the PCFG program with individual CFG
rules and obtained a specialized set of clauses representing
PCFG rules. We ran them as a PRISM program.

5 In PRISM, EM is a special case of MAP inference. We
used random but almost uniform initialization of parame-
ters and set uniformly pseudo counts d;,., to 1.07° for EM
and 1.0 for MAP and VT, respectively. Similarly we uni-
formly set hyper parameters a;,, to 1.0 for VB. The num-
ber of candidates for re-ranking in VB (Sato et al., 2009)
was set to 5. In all cases, we set the number of random
restarts to 50 and used the best parameter set that gave the
largest value of objective functions, i.e. Lgm for EM, Lyap
for MAP and Ly for VT. For the case of VB that learns
pseudo counts, we chose the best set of pseudo counts giv-
ing the highest free energy (Sato et al., 2009).

Viterbi training in PRISM

mance measures, i.e. LT(labeled tree), BT (bracketed
tree) and 0-CB(zero crossing brackets)®. The entire
corpus is partitioned into eight sections. In each fold,
one section is used as a test corpus and sentences in
the remaining sections are used as training data. For
each of EM, MAP, VT and VB, parameters (or pseudo
counts) are learned by unsupervised learning from the
training data. A parse tree is predicted, i.e. Viterbi
explanation is computed for each sentence in the test
corpus using learned parameters or using the approxi-
mate a posterior distribution learned by VB. The pre-
dicted trees are compared to answers, i.e. the labeled
trees in the test corpus to compute LT, BT and 0-CB
respectively. The performance figures are calculated as
averages over eight folds. The results are summarized
in Table 1.

Table 1. Parsing performance by PCFG

’ PCFG \ Learning method ‘
Measure | VT(%) | EM(%) | MAP(%) | VB(%)
LT 74.69 70.02 70.31 72.13
BT 77.87 73.10 73.45 75.46
0-CB 83.78 84.44 84.89 87.08

The table shows that VT clearly outperforms the other
three in terms of LT and BT by a considerable margin
but it is the worst as far as 0-CB is concerned. This is
understandable if we recall that VT looks for the best
parameters for the best parse tree and hence widens
the gap between the probability of the best tree and
those not, which is thought to negatively affect less
stringent criteria such as 0-CB.

Another thing to note is that the objective functions
for EM, MAP and VB are similar in the sense that
they all sum out hidden variables whereas the objec-
tive function for VT retains them. This fact together
with Figure 1 seems to suggest that parsing perfor-
mance is more affected by the difference among ob-
jective functions than the difference among learning
methods.

6 A parse tree is represented as a set of terms of the form
(NP, 1, 3) which means a nonterminal NP spans from the 1st
word to the 3rd word in the given sentence. NP is called a
label. If two parse trees have the same representation, they
are identical. LT is the ratio of correctly predicted trees in
the test corpus, i.e. those that exactly match the labeled
trees in the test corpus. BT is the same as LT but only
cares about brackets and ignores labels. 0-CB is the ratio
of predicted trees with non-conflicting bracketing with the
test corpus.

values(1c(’S’,’S?), [rule(’S’,[’S’,’S’]1).
values(1c(’S’,a), [rule(’S’,[al)]).
values(1c(’S’,b), [rule(’S’, [b])]).
values(first(’S’), [a,b]).

values(att(’S’), [att,pro]l).

pleg(l):- g_call([’s’],L,[]).

g_call([],L,L).

g_call([GIR], [Wda|L],L2):-
(G=Wd->L1=1L % shift operation
; msw(first(G),Wd),lc_call(G,wWwd,L,L1)),
g_call(R,L1,L2).

lc_call(G,B,L,L2):- % B-tree is completed
msw(1c(G,B) ,rule(A, [BIRHS2])),
(G=A-> true ; values(1lc(G,A),)),
g_call(RHS2,L,L1), % complete A-tree
(G=A->att_or_pro(A,0p),
(Op = att -> L2 = L1 ; lc_call(G,A,L1,L2))
; lc_call(G,A,L1,L2)).

att_or_pro(A,Op) : -
(values(1lc(A,A),_) -> msw(att(A),0Op) ; Op=att).

Figure 2. A PLCG program

3.2. VT for PLCG

PCFGs assume top-down parsing. Contrastingly,
there is a class of probabilistic grammars based
on bottom-up parsing for CFGs called PLCGs
(probabilistic left-corner grammars)(Manning, 1997;
Roark & Johnson, 1999; Van Uytsel et al., 2001). Al-
though they use the same set of CFG rules as PCFGs
but attach probabilities not to expansion of nontermi-
nals but to three elementary operations in bottom-up
parsing, i.e. shift, attach and project. As a result they
define a different class of distributions from PCFGs.

Programs for PLCGs look very different from those
for PCFGs. Figure 2 is a PLCG program which is a
dual version of the PCFG program in Figure 1 with
the same underlying CFG {8—S S, S—a, S—b}. It
generates sentences using the first set of S’ and the
left-corner relation for this CFG”.

The program works as follows. Suppose nonterminals
G and B are in the left-corner relation and G is wait-
ing for a B-tree, i.e. a subtree with the root node la-
beled B, to be completed. When a B-tree is completed,
the program probabilistically chooses a CFG rule of
the form A — Bf to further grow the B-tree using this
rule. Upon the completion of the A-tree and if G=A, the
attach operation or the projection is probabilistically

" We assume the reader is familiar with parsing theory.

Viterbi training in PRISM

chosen. By replacing values/3 declarations appropri-
ately, this program is applicable to any PLCG.

We have developed a PLCG program similarly to the
PCFG program for ATR corpus and applied VT, EM,
MAP and VB to measure their parsing performance in
terms of LT, BT and 0-CB by eight-fold cross valida-
tion. We obtained Table 2. As expected VT outper-
formed EM, MAP and VB in terms of LT and BT but
it was the second best in terms of 0-CB. Also we see
that the PCLG achieved better parsing performance
than the PCFG with VT, EM and MAP but no so with
VB.

Table 2. Parsing performance by PLCG

’ PLCG \ Learning method ‘
Measure | VT(%) | EM(%) | MAP(%) | VB(%)
LT 76.26 71.81 71.17 71.15
BT 78.86 75.17 74.28 74.28
0-CB 87.45 95.92 86.03 86.04

4. Removing the exclusiveness
condition

PRISM assumes the exclusiveness condition on pro-
grams to simplify probability computation. It says
that the clause bodies must be exclusive when suc-
cessfully proved (Sato & Kameya, 2001). Although
most of generative probabilistic models such as BNs
(Bayesian networks), HMMs and PCFGs are naturally
described as PRISM programs satisfying the condition,
removing it certainly gives us more freedom of proba-
bilistic modeling. Theoretically it is possible to remove
it by introducing BDDs (binary decision diagrams) as
ProbLog (De Raedt et al., 2007; Kimmig et al., 2008)
and PITA (Riguzzi & Terrance Swift, 2011) do. If,
however, we are only interested in obtaining Viterbi
explanations determined by parameters learned from
data as we are in many cases, we may forget about
BDDs and the exclusiveness condition because VT is
applicable to any programs regardless of the exclu-
siveness condition and learning parameters by VT and
computing Viterbi explanations using the learned pa-
rameters is enough. Moreover, as we have seen in the
previous section, VT can learn parameters that exhibit
excellent performance in prediction tasks.

However, there is one caveat: While VT allows us to
use probabilistic inclusive-or in the clause bodies, pa-
rameters learned by VT might cause a heavily biased
selection of disjuncts. For example look at Figure 3.

This program represents a probabilistic version of
inclusive-or “b V ¢” as a goal “a”. Note that each

values(cl(b), [yes,nol).
values(cl(c), [yes,nol).
a:- (b ; ©.

b:- msw(cl(b),yes).

c:- msw(cl(c),yes).

Figure 3. Probabilistic inclusive or

of msw(cl(b),yes) and msw(cl(c),yes) occurs only
once and hence their parameters are independently ad-
justable. Consequently learning parameters by VT
from goals like [a,a,...] would inevitably result in
Ppp(msw(cl(b),yes)) = 1 or Ppg(msw(cl(b),yes)) =
1 and never give, say, Ppp(msw(cl(b),yes)) =
Ppp(msw(cl(b),yes)) = 0.5.

In general VT chooses best parameters for the Viterbi
explanations. It therefore prefers to assign probability
1 to msws that occur only once in a program and hence
often gives extreme probabilities to disjuncts. If one
considers such a behavior of VT undesirable, one way
to remedy it is to set large values to pseudo counts J; ,,
in (5).

5. Discussion

In this paper we discussed VT for PRISM that runs on
explanation graphs, a single data structure in PRISM.
VT thus implemented requires time for all solution
search (by tabling) and also space to store discovered
explanation graphs. It is possible, however, to imple-
ment VT without explanation graphs, and to realize
much more memory efficient VT by repeating search
for a Viterbi explanation in each cycle of VT. We
note this approach particularly fits well with mode-
directed tabling (Zhou et al., 2010). In mode-directed
tabling, we can search for partial Viterbi explanations
for subgoals efficiently without constructing explana-
tion graphs and put them together to form a larger
Viterbi explanation for the goal. Currently however
mode-directed tabling is not available in PRISM. We
are planing to incorporate it in PRISM in the near
future.

6. Conclusion

We enhanced PRISM’s probabilistic modeling by in-
troducing VT (Viterbi training) to PRISM. Although
it has already been used in various models under
various names (Brown et al., 1993; Juang & Rabiner,
1990; Strom et al., 1999; Joshi et al., 2006;
Spitkovsky et al., 2010; Lomsadze et al., 2005),

Viterbi training in PRISM

we made the following contributions to VT. One is
a generalization by deriving a generic VT algorithm
for PRISM, thereby making it applicable to a very
wide class of discrete models described by PRISM
programs that range from BNs to probabilistic gram-
mars. The other is an empirical evaluation of VT that
complements the scarcity of literature on applications
of VT to pure PCFGs and PLCGs. We conducted
two learning experiments with them using VT prelim-
inarily implemented in PRISM and confirmed VT’s
excellent parsing performance compared to EM, MAP
and VB.

References

Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., and Mer-
cer, R.L. The mathematics of statistical machine
translation: Parameter estimation. Computational
Linguistics, 19:263-311, 1993.

Cohen, S.B. and Smith, N.A. Viterbi Training for
PCFGs: Hardness Results and Competitiveness of
Uniform Initialization. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’10), pp. 1502-1511, 2010.

De Raedt, L., Kimmig, A., and Toivonen, H. ProbLog:
A probabilistic Prolog and its application in link
discovery. In Proceedings of the 20th Interna-

tional Joint Conference on Artificial Intelligence
(IJCATI’07), pp. 2468-2473, 2007.

Joshi, D., Li, J., and Wang, J.Z. A computationally ef-
ficient approach to the estimation of two- and three-
dimensional hidden markov models. IEEFE Transac-
tions on Image Processing, 15(7):1871-1886, 2006.

Juang, B.H. and Rabiner, L.R. The segmental K-
means algorithm for estimating parameters of hid-
den Markov models. IEEE Transactions on Signal
Processing, 38:1639 — 1641, 1990.

Kimmig, A., Costa, V., Rocha, R., Demoen, B, and
De Raedt, L. On the efficient execution of problog
programs. In Proceedings of the 24th International
Conference on Logic Programming (ICLP’08), pp.
175-189, 2008.

Lember, J. and Koloydenko, A. Adjusted viterbi train-
ing. Probability in the Engineering and Informa-
tional Sciences, 21(3):451-475, 2007.

Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O.,
and Borodovsky, M. Gene identification in novel eu-
karyotic genomes by self-training algorithm. Nucleic
Acids Research, 33:6494-6506, 2005.

Manning, C.D. Probabilistic parsing using left corner
language models. In Proceedings of the 5th Interna-
tional Conference on Parsing Technologies (IWPT-
97), pp. 147-158. MIT Press, 1997.

Riguzzi, F. and Terrance Swift, T. The PITA system:
Tabling and answer subsumption for reasoning un-
der uncertainty. Theory and Practice of Logic Pro-
gramming (TPLP), 11(4-5):433-449, 2011.

Roark, B. and Johnson, M. Efficient probabilistic top-
down and left-corner parsing. In Proceedings of the
87th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 421-428, 1999.

Sato, T. and Kameya, Y. Parameter learning of logic
programs for symbolic-statistical modeling. Journal
of Artificial Intelligence Research, 15:391-454, 2001.

Sato, T. and Kameya, Y. New Advances in Logid-
Based Probabilistic Modeling by PRISM. In De
Raedt, L., Frasconi, P., Kersting, K., and Muggle-
ton, S. (eds.), Probabilistic Inductive Logic Program-
ming, pp. 118-155. LNAT 4911, Springer, 2008.

Sato, T., Kameya, Y., and Kurihara, K. Variational
Bayes via Propositionalized Probability Computa-
tion in PRISM. Annals of Mathematics and Artifi-
cial Intelligence, 54:135-158, 2009.

Spitkovsky, V.I., Alshawi, H., Jurafsky, D., and Man-
ning, C.D. Viterbi training improves unsupervised
dependency parsing. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pp. 9-17, July 2010.

Strom, N., Hetherington, L., Hazen, T.J., Sandness,
E., and Glass, J. Acoustic modeling improvements

in a segment-based speech recognizer. In Proceedings
of IEEE ASRU Workshop, 1999.

Uratani, N., Takezawa, T., Matsuo, H., and Morita,
C. ATR integrated speech and language database.
Technical Report TR-IT-0056, ATR Interpreting
Telecommunications Research Laboratories, 1994.
In Japanese.

Van Uytsel, D.H., Van Compernolle, D., and
Wambacq, P. Maximum-likelihood training of the
PLCG-based language model. In Proceedings of
the IEEE Automatic Speech Recognition and Under-
standing Workshop 2001 (ASRU’01), 2001.

Zhou, N.-F., Kameya, Y., and Sato, T. Mode-directed
tabling for dynamic programming, machine learn-
ing, and constraint solving. In Proceedings of the
22th International Conference on Tools with Artifi-
cial Intelligence (ICTAI-2010), 2010.

