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Abstract

PRISM was born in 1997 as a symbolic statistical
modeling language to facilitate modeling complex
systems governed by rules and probabilities[Sato
and Kameya, 1997]. It was the first programming
language with EM learning ability and has been
shown to be able to cover popular symbolic sta-
tistical models such as Bayesian networks, HMMs
(hidden Markov models) and PCFGs (probabilistic
context free grammars)[Sato and Kameya, 2001].
Last year, we entirely reimplemented PRISM based
on a new tabling mechanism of B-Prolog[Zhou
and Sato, 2002]. As a result, we can now deal
with much larger data sets and more complex mod-
els. In this paper, we focus on this recent develop-
ment and report two modeling examples in statisti-
cal natural language processing. One is a declar-
ative PDCG (probabilistic definite clause gram-
mar) program which simulates top-down parsing.
The other is a left-corner parsing program which
describes a bottom-up parsing that manipulates a
stack. The fact that these rather different types of
modeling and their EM learning are uniformly pos-
sible through PRISM programming shows the ver-
satility of PRISM.1

1 Introduction

PRISM2 was born in 1997 as a symbolic statistical model-
ing language to facilitate modeling complex systems gov-
erned by rules and probabilities[Sato and Kameya, 1997;
2001]. The basic idea is to incorporate a statistical learning
mechanism into logic programs for embedded parameters.
The result is a unique programming language for symbolic
statistical modeling. Actually it was the first programming
language with EM learning ability and has been shown to be
able to cover popular symbolic statistical models. Theoreti-
cally it is an embodiment of Turing machines with learning
ability, but the real consequence is that it enables us to build

1This paper is partly based on[Sato and Motomura, 2002].
2 URL= http://sato-www.cs.titech.ac.jp
/prism/index.html

arbitrarily complex symbolic statistical models that may go
beyond existing statistical models.

PRISM’s power comes from three independent yet interre-
lated ingredients.

• firm mathematical semantics (distribution semantics)
[Sato, 1995]

• all solution search using memoizing (OLDT[Tamaki
and Sato, 1986] and linear tabling [Zhou and Sato,
2002])

• EM learning of parameters embedded in a program by
the graphical EM algorithm [Kameya and Sato, 2000]

We will not go into the detail of each ingredient, but PRISM
has proved to cover most popular statistical models such as
HMMs (hidden Markov models)[Rabiner, 1989; Rabiner and
Juang, 1993], PCFGs (probabilistic context free grammars)
[Wetherell, 1980; Manning and Sch¨utze, 1999] and Bayesian
networks[Pearl, 1988; Castilloet al., 1997] with the same
time complexity[Sato and Kameya, 2001]. Moreover, we
have experimentally confirmed that the learning speed of the
graphical EM algorithm[Kameya and Sato, 2000], an EM al-
gorithm for ML (maximum likelihood) estimation employed
in PRISM for parameter learning outperforms that of the stan-
dard Inside-Outside algorithm for PCFGs by two or three or-
ders of magnitude[Satoet al., 2001].

From the view point of statistical modeling, one of the sig-
nificant achievements of PRISM is the elimination of the need
for deriving new EM algorithms for new applications. When
a user constructs a statistical model with hidden variables, all
he or she needs is to write a PRISM program using probabilis-
tic built-ins such asmsw/2 predicate representing a parame-
terized random switch. The remaining work, namely param-
eter estimation (learning), is taken care of by the graphical
EM algorithm quite efficiently thanks to dynamic program-
ming. Furthermore, as long as certain modeling principles
are observed, it is mathematically assured that the program
correctly performs EM learning (this isnot self-evident when
the model gets complicated). One may say that PRISM is a
generic tool for ubiquitous EM learning.

The development of PRISM was gradual because we at-
tempted to fulfill two rather conflicting requirements; exploit-
ing the generality of the semantics and achieving reasonable
efficiency for real applications. After all we decided to com-
promise the generality of semantics and to assume some in-



dependence conditions on programs because while these con-
ditions somewhat restrict the class of acceptable programs,
they greatly simplify probability computations thereby mak-
ing fast EM learning possible.

Our EM learning consists of two phases. In the first pre-
processing phase, all solutions are searched for a given goal
with respect to a program, yielding a hierarchical graph called
anexplanation graph (support graph). In the second learning
phase, we run the graphical EM algorithm on the explanation
graph to train parameters in the program. The graphical EM
algorithm is efficient in the sense that it runs in time linear in
the size of the explanation graph in each iteration[Sato and
Kameya, 2001]. In this learning scheme, compared to the ef-
ficiency of the graphical EM algorithm in the learning phase,
all solution search in the preprocessing phase could be a bot-
tleneck. A naive search by backtracking would take exponen-
tial search time. The key technology to efficiency is memoiz-
ing, i.e. to table calls and returns of predicates for later reuse
which often reduces exponential time complexity to polyno-
mial time complexity. However, the early versions of PRISM
were built on top of SICStus Prolog and it was practically
impossible to directly incorporate a full tabling mechanism.

Last year, we replaced the underlying Prolog with B-
Prolog and reimplemented PRISM with a full linear tabling
mechanism[Zhou and Sato, 2002]. As a result, we can now
deal with much larger data sets and more complex models.
In this paper, we focus on this recent development and report
two modeling examples in statistical natural language pro-
cessing. One is a declarative PDCG (probabilistic definite
clause grammar) program which simulates top-down pars-
ing. The other is a left-corner parsing program which pro-
cedurally describes a bottom-up parsing that manipulates a
stack. The fact that these rather different types of modeling
and their EM learning are uniformly possible through PRISM
programming shows the versatility of PRISM.

2 Preliminaries
2.1 A quick review of PRISM
PRISM is a probabilistic extension of Prolog[Sterling and
Shapiro, 1986]. A Prolog program is a set of logical formulas
calleddefinite clauses which take the formH:-B1, . . . , Bk

(k ≥ 0). H is an atom called thehead, andB1 , . . . , Bk is a
conjunction of atoms called thebody. The clause says ifB1

and· · · andBk hold, thenH holds (declarative reading). In
the context of top-down computation however, it should be
read that to achieve goalH, achieve subgoalsB1 and. . . and
Bk (procedural reading). This twofold reading i.e. bottom-up
declarative reading, vs. top-down procedural reading, makes
it possible to write declarative but executable programs that
encodes both declarative and procedural knowledge in a uni-
fied way. Whenk = 0, the clause is called a unit clause.
It represents a fact that holds unconditionally. Hence, a col-
lection of ground unit clauses is considered as a relational
database.

The surface syntax of PRISM is just Prolog augmented
with built-in probabilistic predicates, but the semantics is
substantially extended in order to comply with the need of
subsuming statistical information in programs. Our seman-

tics guarantees the existence of a unique probability measure,
treating every ground atom as a binary random variable.

A PRISM programDB is a set of definite clauses. We write
it asDB = F ∪R whereF is a set of facts (unit clauses) and
R is a set of rules (non-unit clauses) to emphasize the differ-
ence of role between facts and rules. One of the unique fea-
tures of PRISM is thatF has abasic joint probability distri-
bution PF .3 Put it differently, the truth of ground unit clauses
A1, A2, . . . in F is probabilistic and their statistical behavior
is specified byPF . Here we consider ground unit clauses as
random variables taking on 1 (true) or 0 (false).

What distinguishes our approach from existing approaches
to probabilistic semantics is that our semantics admits infinite
domains and allows us to use infinitely many random vari-
ables (probabilistic ground atoms). Consequently we need
not make a distinction between Bayesian networks where a
finite number of random variables appear and PCFGs where
a countably infinite number of random variables are required.
They are just two classes of PRISM programs. Another con-
sequence is that we can implement a variety of EM algorithms
as PRISM programs as long as they express, roughly speak-
ing, Turing machines with probabilistic choices.

2.2 Grass wet example
To put the idea of PRISM across, we show a propositional
PRISM programDBp = Rp ∪ Fp in Figure 1.4 It dose not
include any first-order features of PRISM such as logical vari-
ables and function symbols.

Rp =

{
g wet :- s on.
g wet :- s off, w rain.
g dry :- s off, w clear.

Fp =
{

s on. s off.
w rain. w clear.

Figure 1: Wet grass programDBp

Rp expresses our causal knowledge on the events repre-
sented by six propostions:g wet (“grass is wet”),g dry
(“grass is dry”),s on (“sprinkler is on”),s off (“sprinkler
is off”), w rain (“it is rainy”) andw clear (“it is clear”).
The first clause says the grass is wet if the sprinkler is on. The
second clause says the grass is wet also if the sprinkler is off
but the weather is rain. The last clause says the grass is dry if
the sprinkler is off and the weather is clear. We assume these
rules hold without uncertainty.

In addition to the causal knowledge described above, we
know that the states of weather and the sprinkler are proba-
bilistic and are statistically independent. We put this knowl-
edge into the program by setting a probability distribu-

3PF actually is a probability measure over the Herbrand inter-
pretations ofF , but for presentation purpose we prefer to use the
term “distribution.”

4This is for the explanatory purpose and not a complete PRISM
program. We furthermore need various declarations to run the pro-
gram.



tion PFp over random variabless on, s off, w rain and
w clear. When doing so we notice that eithers on or
s off is always true but not both, and this is true ofw rain
andw clear as well. We therefore introduceparameters
θs = prob(s on = 1) andθw = prob(w rain = 1) and de-
finePFp as

PFp(s on = x1, s off = x2, w rain = x3, w clear = x4)

=

{
θx1
s (1 − θs)x2θx3

w (1 − θw)x4

if x1 + x2 = 1, x3 + x4 = 1
0 o.w.

Herexi ∈ {0 (false), 1 (true)} (1 ≤ i ≤ 4).

OncePFp is given, the programDBp defines a joint distri-
butionPDBp

for the six events as follows. Imagine a sample
from PFp and let it be

〈s on = 1, s off = 0, w rain = 0, w clear = 1〉.
Since the set of true factsF ′

p is {s on, w clear}, it fol-
lows that F ′

p ∪ Rp � g wet and F ′
p ∪ Rp 
� g dry.

In other words, we have〈g wet = 1, g dry = 0〉. Now we
generalize. Let〈x1, x2, x3, x4〉 be a truth value vector for
〈s on, s off, w rain, w clear〉 sampled fromPFp . Like-
wise let〈y1, y2〉 be a truth value vector for〈g wet, g dry〉.
As we saw above,〈x1, x2, x3, x4〉 determines 〈y1, y2〉
uniquely, i.e.〈y1, y2〉 is a function of〈x1, x2, x3, x4〉. We
denote this function asϕDBp(〈x1, x2, x3, x4〉) = 〈y1 , y2〉.
Define a joint distributionPDBp

by

PDBp(g wet = y1, g dry = y2, s on = x1, s off = x2,
w rain = x3, w clear = x4)

def=




PFp(x1, x2, x3, x4)
if ϕDBp

(〈x1, x2, x3, x4〉) = 〈y1, y2〉
0 otherwise

With PDBp
defined now,DBp becomes a statistical model

incorporating logical knowledge. We can calculate what-
ever probability we need usingPDBp . The parametersθs

andθw are estimated by ML (maximum likelihood) estima-
tion from random observations ofs on, s off, w rain and
w clear.

In general, PRISM programs include function symbols,
variables and recursion. As a result, the Herbrand domain
is infinite and definingPDB is more involved.PDB should be
understood as a probability measure over the set of Herbrand
interpretations ofDB, whose cardinality by the way is that
of real numbers. Also since parameter learning is ML esti-
mation from incomplete data, we rely on the EM algorithm
[Dempsteret al., 1977; McLachlan and Krishnan, 1997] for
parameter estimation (learning). Mathematical details are ex-
plained in[Sato and Kameya, 2001].

3 PDCG
One of the most notable phenomena in natural language pro-
cessing over the past decade is the adaptation of statistical
techniques applied to various corpora[Manning and Sch¨utze,
1999]. In particular probabilistic parsing methods have been
developed to tackle the otherwise intractable problem of iden-
tifying most plausible parses for a given sentence. Although

there are many statistical language models usable for prob-
abilistic parsing, PCFGs have been appreciated as the most
basic one due to their simplicity. So we first explain briefly
PCFGs[Wetherell, 1980; Manning and Sch¨utze, 1999].

A PCFG (probabilistic context free grammar) is a proba-
bilistic extension of CFG where a CFG rule has a probability.
If there areN rulesA → α1, . . . , A → αN for a non-terminal
A, a probabilityθA

i is associated with each ruleA → α1

(1 ≤ i ≤ N ) such that
∑N

i=1 θA
i = 1. These probabilities

are calledparameters in this paper. Then the probabilityp(t)
of a parse treet is equal to the product of parameters of rules
which are used in the (leftmost) derivation oft. Let T be the
set of parse trees for a sentences. We define the probabil-
ity p(s) of the sentences asp(s) =

∑
t∈T p(t). When we

emphasizep(s) is dependent on the parameters of rules, we
write p(s | θ) whereθ denotes the set of all parameters.

Below is a simple probabilistic top-down parser writ-
ten in PRISM a la DCG which is intended to illus-
trate how easily we can build PCFG like language mod-
els (and perform EM learning). The program defines
a distribution of provable ground atoms over the form
pdcg([s],[w1,...,wn],[]) which corresponds to
a sentence[w1,...,wn]. target(pdcg,3) declares
what we observe is a predicatepdcg/3.
values/2 declares possible choices for each non-

terminal on sentence derivation5. For example,val-
ues(s,[[ap,vp],[pp,v]]) tells us that the top cate-
gorys, sentence, has two choices (rules) i.e.s → apvp and
s → pp v such thats → ap vp is assigned probabilityθ 1

ands → pp v probability θ2 (θ1 + θ2 = 1) respectively.
v,n,c,p are terminals andterminal(Wd) saysWd is a
terminal whereasfirst(A,Wd) saysWd is in the first set
of the categoryA. A probabilistic choice is simulated by a
built-in predicatemsw/2 according to the assigned parame-
ters. For example, whenmsw(s,RHS) is called in execution
mode,s → ap vp will be chosen with probabilityθ1. Note
that this program is left recursive and would go into an infi-
nite recursion if run by Prolog, but the tabling mechanism of
PRISM prevents infinite recursion and realizes CFG parsing
with O(n3) time complexity wheren is the sentence length
[Sato and Kameya, 2001].

Since the precision of probabilistic parsing by a PCFG is
largely determined by the quality of parameters associated
with rules in the backbone CFG, their estimation is quite
important. Usually it is done by ML estimation from a la-
beled corpus, i.e. a collection of parse trees). If the corpus
is just a collection of sentences (or POS(part of speech) tag
sequences), sentences become incomplete data, and it is cus-
tomarily to appeal to the Inside-Outside algorithm[Baker,
1979; Pereira and Schabes, 1992; Schabeset al., 1993]. In
PRISM, the parameters in the above program are estimated
by learn/1 built-in predicate. It automatically estimates
parameters associated withmsw atoms from raw data given

5values(s, [v1, . . . , vk]) declares that a probabilistic switch
nameds hask choices[v 1, . . . , vk] wheres andvi (1 ≤ i ≤ k)
are terms. We use this switchs like msw(s,X) in a program when
we make a probabilistic choice from[v1, . . . , vk].



target(pdcg,3).
values(s,[[ap,vp],[pp,v]]).
values(vp,[[ap,v],[pp,v]]).
values(np,[[ap,np],[n],

[np,c,np],[v,n],[vp,n]]).
values(pp,[[n,p],[np,p]]).
values(ap,[[adv],[adv,adv],[adv,np]]).

pdcg([Wd|R],[Wd|L0],L2):-
terminal(Wd),
pdcg(R,L0,L2).

pdcg([A|R],[Wd|L0],L2):-
first(A,Wd),
( values(A,[ RHS ])
; values(A,[_,_|_]), msw(A,RHS) ),
pdcg(RHS,[Wd|L0],L1),
pdcg(R,L1,L2).

pdcg([],L1,L1).

Figure 2: A PDCG parser

a list of goals of the formpdcg([s],[w1,...,wn],[])
by first constructing explanation graphs using tabled search
and second running the graphical EM algorithm on them.

The graphical EM algorithm is a generic EM algorithm for
PRISM programs and calculates probabilities from explana-
tion graphs, obeying the principle of dynamic programming.
It is quite fast. When implemented in C and applied to ex-
planation graphs generated from PCFGs, it runs by far faster
than the Inside-Outside algorithm which has been the de
facto standard EM algorithm for PCFGs and also runs faster
than the Stolcke’s EM learning algorithm[Stolcke, 1995], a
much more refined EM algorithm based on the Earley parsing
model. Experimentally, we observed that when all programs
are written in C, the speed ratio6 of the graphical EM algo-
rithm to the Inside-Outside algorithm is about 1,000:1 and
that to the Stolcke’s EM learning algorithm is 10:1, depend-
ing on grammars[Satoet al., 2001].7 Unfortunately these
speed ratios do not carry over to the graphical EM algorithm
implemented in PRISM. This is because the data structure
used in PRISM is Prolog terms and hence, we should not ex-
pect EM learning by PRISM can match a specialized EM al-
gorithm implemented in C. Nonetheless, just for the record,
we report that PRISM installed on a PC (Pentium IV 2.4GHz,
1GB memory, Windows XP) can learn parameters for the
ATR grammars (861 CFG rules, 168 nonterminals, 446 ter-
minals) from explanation graphs (95MB in memory) gener-
ated from 2,000 sentences of the ATR corpus[Urataniet al.,
1994] at a speed of 21 seconds/iteration and the whole learn-
ing takes 6,470 seconds (600 seconds for search) in total. We

6The speed ratio is measured in terms of time required for one
iteration.

7Theoretically the speed gap is anticipated to widen as the gram-
mars becomes less ambiguous.

must add however that in this EM learning experiment, we
did not use the program in Figure 2 but compiled it to take
advantage of Prolog’s indexing mechanism for clause invoca-
tion. By compilation, the specialized clause for the grammar
rules → ppv looks like

pdcg(s,[A|B],C) :-
first(s,A), msw(s,[pp,v]),
pdcg(pp,[A|B],D),D=[v|C].

We feel that PRISM is becoming competitive with the Inside-
Outside algorithm written in C now as far as learning speed
is concerned. This is a bit surprising if one considers the fact
that PRISM is a much higher level programming language
than C. As our implementation still has room for improve-
ment (see our companion paper[Zhou and Sato, 2003] for
implementation details), we are expecting to be able to en-
hance the competitiveness considerably in the near future.

4 Declarative distributions vs. procedural
distributions

The language model described by a PCFG is declarative in
the sense that the probability of a sentence is directly re-
lated to CFG rules, and procedural aspects such as how a
parse tree is constructed play no role in calculating the prob-
ability of the sentence. This declarative property makes it
relatively easy to derive an EM algorithm for PCFGs (and
their various extensions like lexicalized PCFGs) and apply
it to existing CFG parsers[Stolcke, 1995; Charniak, 1997;
Carroll and Rooth, 1998].

When it comes to procedurally defined stochastic CFG
parsers, or procedurally defined distributions in general, lit-
tle work has been done on their EM learning. For exam-
ple, the GLR (generalized LR(k)) parser[Tomita, 1986] is
undoubtedly one of the most sophisticated parsers for natu-
ral language processing which performs a sequence of com-
plex stack manipulations while looking up a LR(k) table. Al-
though its probabilistic extension, the PGLR (probabilistic
GLR) parser has been proposed in the past[Briscoe and Car-
roll, 1994; Inuiet al., 1997], no EM algorithm is known so
far.

This notable contrast can be presumably attributed to the
difficultly of formalizing a distribution in terms of opera-
tions and their data types employed in the parsing proce-
dure such as stacks, tables, list etc. In the following we
present a PRISM program for probabilistic LC (left cor-
ner) parsing[Manning, 1997; Roark and Johnson, 1999;
Van Uytsel et al., 2001] as an example of the affinity of
PRISM programming for procedurally defined distributions.
Since PRISM is equipped with a formal semantics and the se-
mantics of a PRISM program is mathematically well-defined,
we can be sure of the correctness of EM learning performed
by the program no matter how syntactically complicated it is.

5 Probabilistic LC parser
5.1 LC parsing
LC (left corner) parsing is sequential bottom-up parsing for
CFG grammars which, like LR(k) parsing, manipulates a



stack to reduce subtrees to a larger tree. A program in Fig-
ure 3 is a skeletal Prolog LC parser8. The top goal islc(Ws)
and parsing starts with the subgoallc(Ws,[goal(s)]) in
the first clause such thatWs is a list of words ands the start-
ing symbol (sentence). The actual parsing is carried out by
process(Stack0,Stack,L0,L) in the body of second
clause which is tail-recursive.

The parser performs three operations. The shift opera-
tion reads a word from the input sentence and pushes it onto
a stack which holds nonterminals whose subtrees are com-
pleted and subgoals waiting for their corresponding subtrees
to complete. The attach operation attaches a completed sub-
tree to the waiting subgoal indicated bygoal/1. So if a
subtree forB is completed and if it is waited by a subgoal
goal(B) at the stack top,B is attached togoal(B) and
thegoal(B) is removed from the stack. The projection op-
eration treats the completedB differently. WhenB is com-
pleted, it looks for a CFG rule that hasB as the left corner
category likeA → B C D (seerule(LHS,[B|Rest]) in
the thirdprocess/3 clause) and pushesA, goal(D) and
goal(C) onto the stack in this order usingpredict/3.
Usually top-down pruning is combined with projection and
the operation is performed only whenA is waited for by some
subgoal in the stack (this part is not included in the program
for simplicity).

lc(Ws) :- lc(Ws,[goal(s)]).
lc(L0,Stack0) :-

process(Stack0,Stack,L0,L),
lc(L,Stack).

% shift operation
process([goal(C)|Rest],

[Wd,goal(C)|Rest], [Wd|L], L).

% attach operation
process([B,goal(B)|Stack], Stack, L, L).

% project operation
process([B|Goals], Stack, L, L) :-

rule(LHS,[B|Rest],
predict(Rest,[LHS|Goals],Stack).

predict([],L,L).
predict([A|Ls],L2,[goal(A)|NewLs]):-

predict(Ls,L2,NewLs).

Figure 3: A non-probabilistic LC parser

5.2 Probabilistic LC parsing
Probabilistic LC parsing is just a probabilistic version of LC
parsing but the point is that it parameterizes CFG rules differ-
ently from PCFGs. It assigns probabilities to three operations

8This program is taken from[Manning, 1997] with a slight mod-
ification.

(shift operation, attach operation and projection operation) in
LC parsing. Hence the resulting language distributions form a
different class of distributions from those allowed by PCFGs
and are expected to be more context sensitive.

Since PRISM programs can be arbitrary Prolog programs,
writing a probabilistic LC parser as a PRISM program
presents no difficulty to us. Furthermore once we finish writ-
ing, it means we have obtained an EM algorithm for LC pars-
ing, provided “due care” is taken to ensure mathematical cor-
rectness. That is, the program is written so that it expresses a
sequential probabilistic sentence generation process in which
every choice is exclusive, independent and made bymsw/2
built-in and once a choice is made, it never leads to failure
[Sato and Kameya, 2001].

% shift operation
process([goal(A)|Rest],Stack,[Wd|L],L):-
( terminal(A),

A=Wd,Stack=Rest
; \+ terminal(A),

( values(first(A),[Wd])
; values(first(A),[_,_|_]),

msw(first(A),Wd) ),
Stack=[Wd,goal(A)|Rest] ).

% attach or project operation
process([A|Rest],Stack,L,L):-
\+ A=goal(_),
Rest=[goal(C)|Stack0],
( A==C,

% goal(A) waits for an A-tree
( values(lc(A,A),_),

% attach and project are possible
msw(attach(A),Op),
( Op==attach,Stack=Stack0
; Op==project,

next_Stack(A,Rest,Stack) )
; \+ values(lc(A,A),_),

% A is forcibly attached
Stack = Stack0 )

; A\==C,
next_Stack(A,Rest,Stack) ).

% project operation
next_Stack(A,[goal(C)|Rest2],Stack) :-

% subtree A is waited for by g(C)
( values(lc(C,A),[_,_|_]),

msw(lc(C,A),rule(LHS,[A|RHS2]))
; values(lc(C,A),[rule(LHS,[A|RHS2])]) ),
predict(RHS2,[LHS,goal(C)|Rest2],Stack).

Figure 4: A probabilistic LC parser



With this in mind, we replace clauses in Figure 3 for three
operations with corresponding ones as in Figure 4 (PRISM
declarations fortarget/1 and values/2 are omitted).
Since we have to avoid failure in the generation process, pro-
gram codes are more complicated than the non-probabilistic
LC parser.

In a generation process, the shift operation for which the
first clause is responsible has two cases depending on whether
A in goal(A) on the stack top is terminal or not. IfA is
a nonterminal and if it has a non-singleton first set, we use
msw(first(A),Wd) to probabilistically select a wordWd
to shift9.

The second clause handles the case where a subtree for
nonterminalA is completed. There are two cases. The first
case is where a subgoalgoal(A) is waiting on the stack.
The other case is where the subtree forA has no such waiting
subgoal on the stack. The first case is further subdivided into
two subcases. In the first subcase, projection is possible10

as well as attachment. We check this possibility byval-
ues(lc(A,A),_) and when possible, make a probabilistic
choice of the operation. The second subcase is where no such
projection is possible and only attach operation is possible.

The project operation is executed in the third clause. When
C in goal(C) on the stack has left-corner relationship with
the completedA subtree, and if there is more than one rule of
the formA → B · · ·, we probabilistically choose one of such
rules bymsw(lc(C,A),rule(LHS,[A|RHS2])).

The probabilistic LC parser in Figure 4 has no side effects
and never fails when used as a sentence generator. It logi-
cally describes a sequential decision process where decisions
are made bymsw/2 built-in. Consequently, we are sure that
the EM learning performed by the program is mathematically
correct11.

We have successfully tested EM learning by the probabilis-
tic LC parser with a small number of data randomly generated
from the program itself, but a large scale learning experiment
seems difficult because of huge memory requirement. We are
developing yet another way to reduce memory requirement
using a different formulation of probabilistic LC parsing.

We remark that although there is a formulation of prob-
abilistic LC parsing[Manning, 1997; Roark and Johnson,
1999], the parameter learning there assumes a fully annotated
corpus. The only literature we found on the EM learning of
LC parsing is[Van Uytselet al., 2001] in which a specialized
EM algorithm for (extended) LC parsing is sketched.

9

+X is Prolog’s negation which succeeds if and only if the goalX
fails. A==B succeeds ifA andB are identical Prolog terms whereas
A=B denotes the unification ofA andB.

10In this subcaseA must have left-corner relationship with it-
self. In generalA is said to have left-corner relationship withA’
if there is a sequence of CFG rules such thatA → B 1β1, B1 →
B2β2, . . . , Bn → A′βn.

11To be precise, we need to add a condition “if there is no loss of
probability mass to infinite generation process,” which is difficult to
verify except simple models like PCFGs.

6 Conclusion
Relational learning for uncertainty modeling at first order
level is a natural extension of many, if not all, proba-
bilistic approaches and has been developed over the past
decade[Breese, 1992; Sato, 1995; Muggleton, 1996; Sato
and Kameya, 1997; Koller and Pfeffer, 1997; Cussens, 1999;
Friedmanet al., 1999; Jaeger, 2001; Sato and Kameya, 2001;
Kersting and De Raedt, 2002]. Yet, there seems little work
that exploits the full power of the generality of predicate logic
combined with statistical learning. Most of work descended
from Bayesian networks assumes domains are finite, and dy-
namic Bayesian networks remain a repetition of the same
template. When logic programs are used as an underlying ve-
hicle, range-restrictedness is often imposed which excludes
common logic programs such as one formember predicate.

PRISM [Sato and Kameya, 1997; 2001] is a general pro-
gramming language with EM learning ability for modeling
symbolic-statistical phenomena. Syntactically it is Prolog
augmented with parameterized probabilistic built-ins and ac-
ceptsany programs regardless of whether they are range-
restricted or not. Semantically it is the first programming
language that can formally define distributions (probability
measures) over infinite Herbrand domains. Practically, re-
cent reimplementation of PRISM[Zhou and Sato, 2002] has
brought about fast and robust EM learning based on tabled
search. The adaptation of B-Prolog’s linear tabling mecha-
nism considerably shortens search time and also allows us
to use recursive clauses which would otherwise cause infi-
nite recursion, thereby providing us with far more freedom of
modeling than previous implementations.

In this paper, we have reported two programming exam-
ples in the area of statistical natural language processing that
take advantage of this new perspective offered by the latest
PRISM. The first one in Figure 2 is a probabilistic DCG pro-
gram for top-down parsing. It uses difference lists as data
structures and accepts left recursive CFG rules. The second
one in Figure 4 defines a bottom-up shift-reduce parser, prob-
abilistic LC parser that manipulates a stack. Note that both
programs are not range-restricted as logic programs, thus can-
not be expressed by those approaches that inhibit non-range-
restricted programs. They are not expressible by a fixed size
network either because we need an indefinitely many number
of random variables that have no upper bound.

Last but not least while we observe that the learning speed
of PDCG in PRISM is catching up with the Inside-Outside
algorithm implemented in C, it is obvious that we have a lot
to do to put PRISM into real use.
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