
ICLP09

 PRISM: an overview
 LP connections
◦ Semantics
◦ Tabling
◦ Program synthesis

 ML example

ICLP09

PRISM

Proba-
bility

Logic

Learning

 Major framework in machine learning
◦ clustering, classification, prediction, smoothing,…

in bioinformatics, speech/pattern recognition, text
processing, robotics, Web analysis, marketing,…

 Define p(x,y|θ), p(x|y,θ) (x:hidden cause, y:observed effect,
θ:parameters)
◦ by graphs (Bayesian networks, Markov random fields,

conditional random fields,…)
◦ by rules (hidden Markov models, probabilistic context free

grammars,…)
 Basic tasks:
◦ probability computation (NP-hard)
◦ learning parameter/structure

ICLP09

 Graphical models for probabilistic modeling
◦ Intuitive and popular but only numbers, no structured data,

no variable, no relation  complex modeling difficult
 More expressive formalisms (90’s~)
◦ PLL (probabilistic logic learning)
 {ILP, MRDM}+probability, probabilistic abduction

◦ SRL (statistical relational learning)
 {BNs, MRFs} + relations

 Many proposals (alphabet soup)
◦ Generative: p(x,y|θ), hidden x generates observation y
◦ Discriminative : p(x|y,θ)

ICLP09

 Defines a generation process of an output in a sample space
◦ Bayesian approach such as LDA
 prior distribution p(θ|α)  distribution p(D|θ)  data D
 Given D, predict x by

◦ Probabilistic grammars such as PCFGs
 Rules are chosen probabilistically in the derivation
 Prob. of sentence s :

 Defining distributions by (logic) programs (in PLL)
◦ PHA[Poole’93], PRISM[Sato et al.’95,97], SLPs[Muggleton’96,

Cussens’01], P-log[Baral et al.’04], LPAD[Vennekens et al.’04],
ProbLog[De Raedt et al.’07]…

ICLP09

p(τ)

 Prolog's probabilistic extension
◦ Turing machine with statistically learnable state transitions

 Syntax: Prolog + msw/2 (random choice)
◦ Variables, terms, predicates, etc available for p.-modeling

 Semantics: distribution semantics
◦ Program DB defines a probability measure PDB() on least

Herbrand models
 Pragmatics:(very) high level modeling language
◦ Just describe probabilistic models declaratively

 Implementation:
◦ B-Prolog (tabled search) + parameter learning (EM,VB-EM)
◦ Single data structure : expl. graphs, dynamic programming

ICLP09

ICLP09

Formal
semantics

Distribution
semantics

1995

EM learning

PRISM

1997

Linear tabling

Tabled
search

2003

P
rism

1.6

Negative goals

Negation

2004

P
rism

1.8

Belief
propagation

2006

BN subsumed

P
rism

1.9

Variational
Bayes

2007

P
rism

1.11

Bayesian approach

Gaussian
Log-linear

BDD
…

Modeling
environment

2009

P
rism

1.12

Ease of modeling

ICLP09

PRISM

PCFGs BNs

IO (inside-outside)
prob. computation

FB (forward-
backward)
algorithm

BP (belief propagation)

HMMs

 PRISM subsumes three representative generative models,
PCFGs, HMMs and BNs (and their Bayesian version). They
are uniformly computed/learned by a generic algorithm

ICLP09

B

father mother

child

aa
AB A

b

o

o

b

ICLP09

Pmsw(msw(abo,a)=1) = θ(abo,a) = 0.3,…
 PDB(msw(abo,a)=x1,msw(abo,b)=x2,msw(abo,o)=x3,

btype(a)=y1,btype(b)=y2,btype(ab)=y3,btype(o)=y4)
 PDB(btype(a)=1) = 0.4 (parameter learning is inverse direction)

(parameter)

btype(X):- gtype(Gf,Gm), pg_table(X,[Gf,Gm]).
pg_table(X,Gtype):-

((X=a;X=b),(GT=[X,o];GT=[o,X];GT=[X,X])
; X=o,GT=[o,o]
; X=ab,(GT=[a,b];GT=[b,a])).

gtype(Gf,Gm):- msw(abo,Gf),msw(abo,Gm).
(probabilistic switch)

 Distribution semantics
 Tabling
 Program synthesis

ICLP09

ICLP09

 Possible world semantics:
For a closed α, p(α) is the
sum of probabilities of
possible worlds M that
makes α true
◦ pM(α(M)) = 1 if M |= α

= 0 o.w.
 When α has a free

variable x, pM(α(M)) is the
ratio of individuals in M
satisfying α

 DB = F U R
◦ F : set of ground msw/2 atoms

= { msw(abo,a),msw(abo,o),… }
◦ R : set of definite clauses, msw/2 allowed only in the body

= {btype(X):- gtype(Gf,Gm), pg_table(X,[Gf,Gm]) … }
◦ PF() : infinite product of some finite distributions on msws

 We extend PF() to PDB(), probability measure over H-
interpretations for DB using the least model semantics
and Kolmogorov’s extension theorem
◦ F’ ~ PF : ground msw atoms sampled from PF()
◦ M(R UF’) : the least H-model for R U F’ always exists

 (infinite) random vector taking H-interpretations
◦ PDB() : prob. measure over such H-interpretations induced

by M(R U F’)
ICLP09

 DB = { a :- b, a :- c, b, c }

ICLP09

Sample (b,c) ~PF(.,.)
b c

Sampled
DB’

Herbrand
model

a PDB(a,b,c)

0 (false) 0 a:-b, a:-c {} 0 = PF(0,0)

0 1 (true) a:-b, a:-c
c

{c,a} 1 = PF(0,1)

1 0 a:-b, a:-c
b

{b,a} 1 = PF(1,0)

1 1 a:-b, a:-c
b, c

{b,c,a} 1 = PF(1,1)

anything else = 0

R F
PF(b,c) given

 Unconditionally definable
◦ Arbitrary definite program allowed (even a:- a)
◦ No syntactic restriction (such as acyclic, range-restricted)

 Infinite domain
◦ Countably many constant/function/predicate symbols
◦ Infinite Herbrand universe allowed

 Infinite joint distribution (prob. measure)
◦ Not a distribution on infinite ground atoms
◦ Countably many i.i.d. ground atoms available
 recursion, PCFG possible

 Parameterized with LP semantics
◦ Currently the least model semantics used
◦ The greatest model semantics, three valued semantics,…

ICLP09

 Distribution semantics
 Tabling
 Program synthesis

ICLP09

 PDB(iff(DB))=1 holds in our
semantics

 We rewrite goal G by SLD
to an equivalent random
boolean formula G ⇔
E1v…vEN, Ei = msw1&…&
mswk

 Assume the exclusiveness
of Eis, then PDB(G) =
PDB(E1)+…+PDB(EN) and
PDB(Ei) = PDB(m1) … PDB(mk)

ICLP09

 Simple but exponential in
#explanations  tabling

ICLP09

1

2

3

4

1

2

3

4

0

10

5 6

7 8

9

Explanation graph

PDB(btype(a))
All solution search for ?- btype(a)
with tabling btype/1, gtype/2 yields
AND/OR boolean formulas

2

3

4

87

65

9 10

2

3

4

1

 PRISM uses linear tabling (Zhou et al.’08)
◦ single thread (not suspend/resume scheme)
◦ iteratively computes all answers by backtracking for

each top-most-looping subgoal
 Looping subgoals
◦ … :-A,B …:-A’,C and A, A’ are

variants, they are looping subgoals
◦ If A has no ancestor in any loop

containing A, it is the top-most goal

ICLP09

:-p

:-q

:-r

:-q

:-p
SLD tree

 Thanks to tabling, PRISM's prob. computation is as
efficient as the existing model-specific algorithms

Model family EM algorithm Time complexity

Hidden Markov models Baum-Welch
algorithm

O(N2L)
N: number of states
L: max. length of sequences

Probabilistic context-free
grammars

Inside-outside
algorithm

O(N3L3)
N: number of non-terms
L: max. length of sentences

Singly-connected
Bayesian networks

EM based on
π-λ computation

O(N)
N: number of nodes

ICLP09

BP (belief propagation) is an instance of PRISM’s general probability
computation scheme(Sato’07)

ICLP09

s(X,[]) :- np(X,Y), vp(Y,[]).
np(X,Z) :- msw(np,RHS),

(RHS=[np,pp], np(X,Y), pp(Y,Z)
; RHS=[ears], X=[ears|Z] ; …).

pp(X,Z]) :- p(X,Y), np(Y,Z).
vp(X,Z) :- msw(np,RHS),

(RHS=[vp,pp], vp(X,Y), pp(Y,Z)
; RHS=[v,np], v(X,Y), np(Y,Z))

v(X,Y) :- msw(v,RHS), (RHS=[see], X=[see|Y] ;
RHS=[saw], X=[saw|Y]).

p(X,Y) :- msw(p,RHS),
(RHS=[in], X=[in|Y] ; RHS=[at], X=[at|Y]
; RHS=[with] & X=[with|Y]).

values_x(np, [[np,pp],[ears],…], [0.1,0.2,…]).
values_x(v, [[see],[saw]], [0.5,0.5]).
values_x(p,[[in],[at],[with]], [0.3,0.4,0.3]).

S  NP VP (1.0)
NP  NP PP (0.2) |

cars (0.1) |
stars (0.2) |
telescopes (0.3) |
astronomers (0.2)

PP  P NP (1.0)
V  see (0.5) |

saw (0.5)
P  in (0.3) |

at (0.4) |
with (0.3)

• compact
• readable

ICLP09

Parsing by 20,000 CFG rules extracted from 49,000 (POS) sentences from WSJ
portion of Penn tree bank with uniform prob.
Randomly selected 20 sentences are used for the average probability
computation (on the left) and Viterbi parsing (on the right)

 Distribution semantics
 Tabling
 Program synthesis

ICLP09

ICLP09

 Agreement of number (A=singular, plural)

 Observable distribution is a conditional one

 Parameters are learnable by FAM(Cussens ’01) but it
requires a failure program

agree(A):-
msw(subj,A),
msw(verb,B),
A=B.

A, B randomly chosen
agree(A) succeeds only
when A=B, o.w. fails

P(agree(A) | ∃X agree(X))
= P(msw(subj,A))P(msw(verb,A)) / P(∃X agree(X))

P(∃X agree(X)) = ΣA=sg,pl P(msw(subj,A))P(msw(verb,A))

 A failure program for agree/1: “failure  not(∃X agree(X))”
expresses how ?- agree(X) probabilistically fails

 PRISM uses FOC(first-order compiler) to automatically
synthesize failure programs (negation elimination)

ICLP09

failure:-
msw(subj,A),
msw(verb,B),
¥+A=B.

agree(A):-
msw(subj,A),
msw(verb,B),
A=B.

ICLP09

 FOC automatically eliminates negation from the
source program using continuation (Sato ’89)

 Compiled program DBc positively computes the
finite failure set of DB

M(DB) M(DBc)

HB

If DBc is terminating,
failure = negation and
M(DBc)= HB-M(DB)

ICLP09

even(0).
even(s(A)):- evenc(A,f0).
evenc(s(A),_):- even(A).

Source program DBeven

Compiled program DBc
even

even(0).
even(s(X)) :- not(even(X)).

 Automated construction/evaluation of probabilistic
classifiers
◦ Modeling is part of machine learning, post- processing is

as troublesome as modeling
◦ PRISM 1.12 provides facilities to ease model-evaluation that

make your code much shorter
 votes’ dataset from UCI ML repository
 Classifier: Naive Bayes

– Many missing values in the dataset  We use (VB)EM
– From known vote records, we classify unknown votes as

republican or democrat using 16 yes/no features
– We perform 5-fold cross-validation

ICLP09

 Basic:
Sampling

For a given goal G, return answer substitution s with the probability Pq (Gs)
Probability computation

For a given goal G, compute Pq (G)
Viterbi computation

For a given goal G, find the most probable explanation E* = argmaxEÎ y (G)Pq (E)
where y (G) are possible explanations for G

Hindsight computation
For a given goal G, compute Pq (G') or Pq (G' | G) where G' is a subgoal of G

EM learning
Given a bag {G1, G2, ..., GT} of goals, estimate the parameters q
that maximizes the likelihood P t Pq (Gt)

 Advanced:
◦ Handling failures in the generation process (version 1.8)
◦ Model selection (version 1.10)
◦ Variational Bayesian learning (version 1.11)
◦ Top-N Viterbi computation (version 1.11)
◦ Data-parallel EM learning (version 1.11)
◦ Deterministic annealing EM algorithm (version 1.11)

ICLP09

republican, n,y,n,y,y,y,n,n,n,y,?,y,y,y,n,y
republican, n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,?
democrat, ?,y,y,?,y,y,n,n,n,n,y,n,y,y,n,n
democrat, n,y,y,n,?,y,n,n,n,n,y,n,y,n,n,y
democrat y,y,y,n,y,y,n,n,n,n,y,?,y,y,y,y
democrat, n,y,y,n,y,y,n,n,n,n,n,n,y,y,y,y
democrat, n,y,n,y,y,y,n,n,n,n,n,n,?,y,y,y
republican, n,y,n,y,y,y,n,n,n,n,n,n,y,y,?,y

… …
republican, n,y,n,y,y,y,n,n,n,y,n,y,y,y,?,n

ICLP09

435 data

predict 16 features (vote record)

C

V1 V16

Naïve Bayes

P(C,V1,…,V16) =
P(C)P(V1|C)..P(V16|C)

C = republican, democrat
Vi = y, n

Learn P(V1|C),..,P(V16|C) from data

Predict C for unknown V1,…,V16 by
C = argmax_c P(C|V1,…,V16)

Estimate precision by
cross-validation

values(class,[democrat,republican]). % class labels
values(attr(_,_),[y,n]). % all attributes have two values: y or n

nbayes(C,Vals):- msw(class,C),nbayes(1,C,Vals).
nbayes(_,_,[]):- !.
nbayes(J,C,[V|Vals]):-

choose(J,C,V),
J1 is J+1,!, % cut is ok
nbayes(J1,C,Vals).

choose(J,C,V):-
(nonvar(V) -> msw(attr(J,C),V)
; msw(attr(J,C),_)).

%%%% Utilities
vote_learn:- load_data_file(Gs), learn(Gs).

%% Batch routine for N-fold cross validation
vote_cv(N):-

random_set_seed(81729),
load_data_file(Gs0), % Load the entire data
random_shuffle(Gs0,Gs), % Randomly reorder the data
numlist(1,N,Js), % Get Js = [1,...,N] (B-Prolog built-in)
maplist(J,Rate,vote_cv(Gs,J,N,Rate),Js,Rates),
avglist(Rates,AvgRate), % Get the avg. of the precisions
maplist(J,Rate,format("Test #~d: ~2f%~n",[J,Rate*100]),

Js,Rates),
format("Average: ~2f%~n",[AvgRate*100]).

%% Subroutine for learning and testing for J-th split data (J = 1...N)
vote_cv(Gs,J,N,Rate):-

format("<<<< Test #~d >>>>~n",[J]),
separate_data(Gs,J,N,Gs0,Gs1),
learn(Gs0),
maplist(nbayes(C,Vs),R,(viterbig(nbayes(C0,Vs)),(C0==C->R=1;R=0)),Gs1,Rs),

avglist(Rs,Rate),
format("Done (~2f%).~n~n",[Rate*100]).

separate_data(Data,J,N,Learn,Test):-
length(Data,L),
L0 is L*(J-1)//N, % L0: offset of the test data (// - integer division)
L1 is L*(J-0)//N-L0, % L1: size of the test data
splitlist(Learn0,Rest,Data,L0), % Length of Learn0 = L0
splitlist(Test,Learn1,Rest,L1), % Length of Test = L1
append(Learn0,Learn1,Learn).

load_data_file(Gs):-
load_csv('UCI/house-votes-84.data',Gs0,[missing('?')]),

% '?' in the data will be converted into an anonymous variable (_)
maplist(csvrow([C|Vs]),nbayes(C,Vs),true,Gs0,Gs).

ICLP09

modeling part

utility part

Let PRISM automatically estimate
the precision of the model by cross-
validation and paste it in the
submitted paper!

 Logic and probability have been cross-fertilizing each
other, in particular in PLL/SRL

 Their integration can make a powerful probabilistic
modeling language with rigorous semantics

 In PRISM
◦ the user encodes a probabilistic model as a program

DB at predicate level using variables and relations
◦ DB uniquely defines a prob. measure
◦ The remaining tasks (prob. computation, parameter

learning etc) are automatically carried out by the
PRISM system

ICLP09

	Generative Modeling�by�PRISM��Taisuke Sato�joint work with�Yoshitaka Kameya, Neng-Fa Zhou
	Outline
	Probabilistic modeling
	PLL/SRL approaches
	Generative modeling
	PRISM for generative modeling
	History of development
	Unified treatment
	ABO blood type inheritance
	Program DB
	Three topics
	Representation theorem� [Fenstat’67]
	Distribution semantics�[Sato’95]
	Propositional example
	Unique features
	Three topics
	From semantics to probability computation
	Tabled search
	Linear tabling
	Computational complexity
	PCFG program
	Parsing performance� -- PRISM1.10 vs. Dyna0.3.9
	Three topics
	Constraint probabilistic modeling
	Failure program synthesis
	FOC(first-order compiler)
	Compilation example
	ML example by PRISM
	Probabilistic inferences in PRISM
	Vote data-learning
	Vote program
	Conclusion

