
Parallel EM Learning for Symbolic-
Statistical Models
Yusuke Izumi Department of Computer Science, Graduate School of Information Science and En-

gineering, Tokyo Institute of Technology, Japan
yuizumi@mi.cs.titech.ac.jp

Yoshitaka Kameya (affiliation as previous author)
kameya@mi.cs.titech.ac.jp

Taisuke Sato (affiliation as previous author)
sato@mi.cs.titech.ac.jp

keywords: parallel EM algorithm, symbolic-statistical models, PRISM, distributed parallel computing

Summary

EM learning, i.e. parameter learning for probabilistic models using the EM algorithm, requires a
larger amount of time and memory space as data size increases. One way to cope with this problem is to
take advantage of the power of parallel computing. In this paper, we introduce a data-parallel algorithm
for EM learning applicable to the probabilistic models represented by PRISM, a programming language
for symbolic-statistical modeling. We also present the results of two learning experiments, one for HMMs
with randomly-generated data and the other for PCFGs with Penn Treebank III. The results show good
performance of the proposed algorithm in terms of the speed-up of our algorithm up to 33 processors for
HMMs, as well as in terms of memory space utilization up to nearly 30 gigabytes in total for PCFGs with
21 computational nodes.

1. Introduction

Probabilistic modeling provides a powerful way to
deal with uncertain information. One of the basic
tasks in probabilistic modeling is parameter learn-
ing, and the EM (expectation-maximization) algo-
rithm [Dempster 77] has been widely used for that
purpose. While various methods of EM learning have
been proposed for specific models, PRISM (program-
ming in statistical modeling) [Sato 01] has been devel-
oped to provide a unified way of probabilistic mod-
eling and EM learning. PRISM is based on distri-
bution semantics, which is a probabilistic extension
of the least model semantics in logic programming
[Lloyd 84]. Each PRISM program defines a probabil-
ity distribution for symbolic-statistical models, which
refer to models represented by symbolic objects such
as HMMs (hidden Markov models), PCFGs (proba-
bilistic context-free grammars), and discrete Bayesian
networks. In addition, the PRISM system provides
general-purpose parameter learning routines based on
the gEM (graphical EM) algorithm [Kameya 00].

In general, larger data sets lead to more statically

reliable results. Fortunately, thanks to progress in
information technology including the Internet, it be-
comes more and more feasible to use a large amount
of data. To take advantage of this opportunity for
EM learning, we need a powerful computing system.

The objective of this paper is to utilize the power of
parallel computing for EM learning. There are par-
allel EM algorithms for several problems [López-de-
Teruel 99, Zhang 00, Kruengkrai 02], but they are
problem-specific, not applicable to wide range of
symbolic-statistical models. Furthermore, they im-
plicitly assume parameter sets to be known in ad-
vance, but PRISM allows parameter sets to be deter-
mined during computation dependently on the given
data. In this paper, we propose a data-parallel ver-
sion of the gEM algorithm called the pgEM (parallel
gEM) algorithm, which is applicable to any proba-
bilistic models on which the gEM algorithm works.

In what follows, we explain PRISM and the gEM
algorithm in Chapter 2, describe the pgEM algorithm
in Chapter 3, show experimental results in Chapter 4,
and give conclusion in Chapter 5.

s0 s1

a, b

a, b

a, b a, b

target(hmm/1). % we observe hmm(_).

values(init ,[s0,s1]). % initial state

values(out(_),[a,b]). % output

values(tr(_) ,[s0,s1]). % transition

hmm(Xs) :- % generation:

msw(init,Q), % choose initial state

hmm(1,Q,Xs). % go into loop

hmm(T,_,[]) :- T>3,!. % stop the loop

hmm(T,Q,[X|Xs]) :- % loop: (until T > 3)

msw(out(Q),X), % output symbol

msw(tr(Q),Q1), % transit to next state

T1 is T+1, % turn to next step

hmm(T1,Q1,Xs). % repeat(by recursion)

Fig. 1 HMM (above) and PRISM program (below).

2. Preliminary

2・1 PRISM

Informally PRISM is a Prolog extended with special
predicates for probabilistic modeling. Here, we briefly
explain the PRISM language with an example pro-
gram shown in Figure 1.∗1 This program represents
an HMM that has two states {s0,s1} and outputs a
symbol either a or b at each state. target(hmm/1)∗2

declares that we observe events represented by atoms
of the form hmm(·). msw/2 is a special predicate that
denotes a probabilistic choice. Specifically, a ground
atom msw(i,v) indicates that a discrete random vari-
able i takes a value v from the set Vi of possible
values, where Vi is specified by a special predicate
values/2 (e.g. Vtr(·) = {s0,s1}). Hereafter, we refer
to a random variable i as a switch, and a ground atom
msw(i,v) as a switch instance, following the terms
in the current PRISM implementation. Each switch
i is regarded as an independent and identically dis-
tributed random variable.

A probability distribution defined by a PRISM pro-
gram is specified by parameters of switch instances,
each of which gives the probability θi,v of a switch i

taking a value v in msw/2 (
∑

v∈Vi
θi,v = 1). Parame-

ters may be set by users, or by estimation from data
(or observed goals) as we discuss next.

∗1 The reader is referred to [Sato 01] for a detailed descrip-
tion.

∗2 p/n denotes a predicate p of arity n.

hmm([a,b,a])↔
hmm(1,s0,[a,b,a])∧ msw(init,s0)

∨ hmm(1,s1,[a,b,a])∧ msw(init,s1)

hmm(1,s0,[a,b,a]) ↔
hmm(2,s0,[b,a])†∧ msw(out(s0),a)∧ msw(tr(s0),s0)

∨ hmm(2,s1,[b,a]) ∧ msw(out(s0),a)∧ msw(tr(s0),s1)

hmm(1,s1,[a,b,a]) ↔
hmm(2,s0,[b,a])†∧ msw(out(s1),a)∧ msw(tr(s1),s0)

∨ hmm(2,s1,[b,a]) ∧ msw(out(s1),a)∧ msw(tr(s1),s1)

hmm(2,s0,[b,a])‡ ↔
hmm(3,s0,[a])∧ msw(out(s0),b)∧ msw(tr(s0),s0)

∨ hmm(3,s1,[a])∧ msw(out(s0),b)∧ msw(tr(s0),s1)

hmm(2,s1,[b,a])↔
hmm(3,s0,[a])∧ msw(out(s1),b)∧ msw(tr(s1),s0)

∨ hmm(3,s1,[a])∧ msw(out(s1),b)∧ msw(tr(s1),s1)

hmm(3,s0,[a])↔
msw(out(s0),a)∧ msw(tr(s0),s0)

∨ msw(out(s0),a)∧ msw(tr(s0),s1)

hmm(3,s1,[a])↔
msw(out(s1),a)∧ msw(tr(s1),s0)

∨ msw(out(s1),a)∧ msw(tr(s1),s1)

Fig. 2 An explanation graph for hmm([a,b,a]).

2・2 EM Learning for PRISM Programs

The EM algorithm is a well-known class of iter-
ative algorithms for ML (maximum likelihood) esti-
mation of statistical parameters from data with hid-
den information. For example, in the HMM program
above, the state at each step is hidden from observed
goals hmm(·). Specifically for HMMs, parameter es-
timation can be done by an efficient EM algorithm
known as the Baum-Welch or the forward-backward
algorithm [Rabiner 89]. On the other hand, PRISM
is not limited to HMMs, so we need a more general
EM algorithm. At the same time, though, the al-
gorithm should be comparable in terms of efficiency
with specialized algorithms such as the Baum-Welch
algorithm.

Previous works (e.g. [Sato 01]) present a two-stage
method that fulfills such requirements: tabled search
and the gEM algorithm. Tabled search finds logical
explanations for given goals with tabling (i.e. mem-
oizing) intermediate subgoals and reusing them for
later calls.∗3 The reuse makes the derivation paths
for different calls of the same subgoal shared. After
the search, the derivation paths are translated into
And-Or graphs called explanation graphs. The gEM
algorithm then runs on these explanation graphs to
estimate parameters θi,v. Figure 2 shows an explana-
tion graph for a goal hmm([a,b,a]). Note that two
distinct calls marked with † in the figure refer to the

∗3 The current implementation is based on linear tabling
[Zhou 03].

same subgoal marked with ‡, which indicates struc-
ture sharing occurs here.

Let G = 〈G1, . . . ,GT 〉 be a series of observed goals.
Then an explanation graph for each Gt (1 ≤ t ≤ T)
is formulated by Tt = 〈τ (t)

0 , . . . , τ
(t)
Kt

〉, an ordered set

of distinct tabled subgoals, and ψ̃(τ (t)
k) (1 ≤ k ≤ Kt),

a disjunction of S̃
(t)
k,j (1 ≤ j ≤ mk) where each S̃

(t)
k,j is

a conjunction of subgoals and switch instances. It
must hold that τ0 = Gt and that τ

(t)
k does not appear

in ψ̃(τ (t)
k′) for any k ≤ k′. The latter condition implies

that subgoal calls should be acyclic. This acyclicity
allows dynamic programming in the gEM algorithm.

The gEM algorithm computes the inside probability
P[t, τ] of each subgoal τ ∈ Tt from the end to the be-
ginning of the sequence Tt, then the outside probabil-
ity Q[t, τ] as well as expected counts η[t, i, v] of switch
instances in the goal Gt from the beginning to the
end.∗4 The expected counts are summed up over goals
to obtain the total expected counts η[i,v] (E-step),
then the parameters θi,v are updated using these val-
ues of η[i,v] (M-step). These steps are iterated un-
til convergence of log likelihood λ =

∑T
t=1 logP[t,Gt].

The gEM algorithm runs in time and space linear to
ξ =

∑T
t=1

∑Kt

k=1

∑mk

j=1

∣∣S̃(t)
k,j

∣∣, the total size of explana-
tion graphs. It has been shown that the gEM algo-
rithm, despite its generality, has the same time com-
plexity as some widely-used EM algorithms designed
for specific models including the Baum-Welch algo-
rithm for HMMs [Sato 01]. However, the algorithm
still requires time and space proportional to T , the
number of observed goals, thus there may be cases in
which the gEM algorithm on a single computer does
not work. In the next chapter, we introduce a new
learning algorithm based the gEM algorithm for par-
allel computing.

3. Parallel EM Learning

3・1 Distributing Subtasks

The task for parameter estimation described in the
previous chapter can be naturally divided into sub-
tasks, each associated with a single observed goal.
Tabled search obviously can be performed indepen-
dently for each goal.∗5 The inside and outside prob-
abilities are also computed separately for each goal.

∗4 Roughly speaking, the inside probability of a subgoal τ is
the probability of τ being true, and the outside probability
of a subgoal τ is the probability that all subgoals preceding
and following τ are true.

∗5 PRISM programs are assumed to be shared among all
processors.

#1 (Slave) #2 (Slave) #3 (Slave)

#0 (Master)

work pool
(queue of subtasks)

subtask assigned next

Fig. 3 The work pool method.

The only values that need to be shared among pro-
cessors are the log likelihood λ and the total expected
counts η[i,v] of switch instances.∗6 While our strat-
egy for task division is simple, we need to be careful
about distributing subtasks and sharing the values λ

and η[i,v] for efficient computation. We discuss how
to distribute subtasks in this section and how to share
the values in the next section.

In distributing observed goals, we should respect
load balancing for parallel efficiency. It is not ap-
propriate, for example, to simply assign the same
number of observed goals to each processor, since
search spaces and sizes of explanation graphs may
vary among goals. On the other hand, there is no
generic way to predict search spaces or sizes of ex-
planation graphs without performing actual search.
Hence we apply a work pool method [Wilkinson 99],
which is a well-known method for dynamic assign-
ment. This method is based on a master-slave model,
where one processor works as a master process and
the others as slave processes. The master process first
assigns a single subtask to each slave process. Then
each slave process executes the assigned subtask. Af-
ter completion of the subtask, a slave process tells
the result to the master process and receives another
subtask. The entire task ends when all subtasks are
executed by slave processes. Figure 3 illustrates how
the work pool method works. This usually balances
the load among slave processes as long as the number
of subtasks is sufficiently large.

Strictly speaking, we should consider the load bal-
ancing for both tabled search and the gEM algorithm.
In this respect, it is not practical to alter assignments
of observed goals for tabled search and for the gEM
algorithm because it requires exchange of large data
structure for explanation graphs. Fortunately, how-
ever, it is expected that the size of an extracted expla-

∗6 The parameters θi,v can be obtained from η[i, v].

nation graph is roughly proportional to time required
for search, and it has been proved that time complex-
ity of the gEM algorithm is proportional to the size
of explanation graph. So we can assign goals sim-
ply depending on time consumed for tabled search,
expecting the load to be balanced in practice.

3・2 Sharing the Values

As stated above, the log likelihood λ and the to-
tal expected counts η[i,v] of switch instances need
to be shared. Since the log likelihood λ is given by
the sum of the log inside probabilities of all observed
goals, the value can be easily shared as follows. Each
processor p computes the local log likelihood λp, the
sum of the log inside probabilities of observed goals
assigned to the processor p. All processors then ex-
change the values of λp each other and compute the
log likelihood λ =

∑
p λp. The total expected counts

η[i,v] also can be shared in a similar way, but there
is a difficulty: the set of used switch instances may
differ among processors. PRISM programs may have
switches with variables like tr(_) in the HMM pro-
gram in Figure 1, which introduce (potentially) an
infinite number of switch instances. Tabled search re-
duces infinite switch instances to finite ones by seek-
ing ones that actually occur in the logical explanation
for the observed goals, as seen from Figure 2. The sets
of occurring switch instances can vary among the ob-
served goals, thus processors may have different sets
of switch instances. The exchange method for the
total expected counts η[i,v] need to adapt this situa-
tion. One way may be to exchange a pair of the name
and the expected count for every switch instance, but
it can be too inefficient because names of switch in-
stances become sometimes fairly long.

Our proposal is to exchange the expected counts
using linear arrays of the same layout. After tabled
search, each slave process p sorts switches whose in-
stances occur on the processor p, in order of their
names, then sends the resultant sequence Ip to the
master process. After receiving the sequences from
all slave processes, the master process merges them
to obtain the entire sequence I of switches. Then the
master process enumerates every switch instance, i.e.
every pair of i ∈ I and v ∈ Vi, in order of the sequence
I to determine the starting index of each switch in
the array for exchange. Finally, the master process
sends the starting indices of switches in Ip as well
as the size of the entire array. With the starting in-
dices and the entire size, and the ordering of values

v ∈ Vi given by values/2 predicates, an array of the
same layout is built on each processor. Figure 4 il-
lustrates this procedure. Each array element contain
ηp[i,v] =

∑Tp

t=1 η[t, i, v], the local expected count of a
switch instance msw(i,v) on the processor p. Labels
‘?’ on array elements indicate absence of the cor-
responding switch instances, and so these elements
should contain zero. Each symbol ‘+’ in the figure
denotes some non-negative value.

3・3 The pgEM Algorithm

The parallel version of the gEM algorithm is shown
in Figure 5. This is the same as the original algorithm
except for sharing of the log likelihood λ and the to-
tal expected counts η[i,v]. With P processors, this
algorithm is expected to run roughly (P − 1) times
faster than the original algorithm, as long as the load
is balanced, since observed goals are distributed over
(P − 1) slave processes.

4. Experiments

We conducted two learning experiments to evalu-
ate the performance of the pgEM algorithm: HMMs
with randomly-generated data and PCFGs with Penn
Treebank III,∗7 a real-world corpus. Our implemen-
tation is made using MPI (message passing interface)
[Gropp 99] as a library for parallelization, and based
on beta versions of PRISM 1.10. Both experiments
were carried out with up to 21 nodes each of which
has dual Athlon MP 1900+ and 2GB RAM. These
nodes are connected via Gbps ethernet.

4・1 HMMs

The first experiment was conducted using the HMM
program shown in Figure 1 but the string length was
set to 20.∗8 We generated from 2,500 to 20,000 sam-
ples as a data set using parameters shown in Table 1.
We prepared five sets for each size.

Figure 6 shows the speed-up ratio to the original
system (running with a single processor) in terms of
average learning time when one of dual processors is
used on each node. A dashed line indicates (P − 1)

switch s0 s1

init 0.9 0.1

tr(s0) 0.2 0.8
tr(s1) 0.8 0.2

switch a b

out(s0) 0.5 0.5
out(s1) 0.6 0.4

Table 1 Sampling parameters.

∗7 http://www.ldc.upenn.edu/.
∗8 The program in Figure 1 is for the length of three.

a

0

b

2

c

5

d

7

switch

index
0 0 0 0 0 0 0 0 0

〈a, 0〉 〈a, 1〉 〈b, x〉 〈b, y〉 〈b, z〉 〈c, 0〉 〈c, 1〉 〈d, 0〉 〈d, 1〉

a

0

c

5

d

7

switch

index
+ + 0 0 0 + + + +

〈a, 0〉 〈a, 1〉 ? ? ? 〈c, 0〉 〈c, 1〉 〈d, 0〉 〈d, 1〉

b

2

c

5

d

7

switch

index
0 0 + + + + + + +

? ? 〈b, x〉 〈b, y〉 〈b, z〉 〈c, 0〉 〈c, 1〉 〈d, 0〉 〈d, 1〉

a

0

b

2

switch

index
+ + + + + 0 0 0 0

〈a, 0〉 〈a, 1〉 〈b, x〉 〈b, y〉 〈b, z〉 ? ? ? ?

0 1 2 3 4 5 6 7 8

#0 (Master)

#1 (Slave)

#2 (Slave)

#3 (Slave)

η0

η1

η2

η3

Fig. 4 Exchanging expected counts. Va = Vc = Vd = {0,1}, Vb = {x,y,z}.

where P is the number of processors. Figure 6 shows
that the greater speed-up ratio is realized as the num-
ber of samples increases. This is probably because the
samples (i.e. observed goals) are distributed in a more
balancing way when more samples are given. In ad-
dition, super-linear speed-up is observed in the cases
of 10,000 and 20,000 samples. For example, when the
number of samples is 20,000, average learning time
of 1,852 seconds with a single processor was reduced
to 54 seconds with 21 processors, that is, the paral-
lel version runs 34 times faster. Our understanding
is that this super linearity is caused by heavy use of
memory space as shown in Figure 7 affecting efficiency
on memory access, e.g. CPU cache.∗9

We also tried using both of dual processors. The
results are shown in Figure 8. Since some resources
including memory are shared by each pair of proces-
sors, the speed-up ratio is not so high as that shown
in Figure 6. However, Figure 8 shows the parallel
scalability of our algorithm up to 33 processors in the
case of 20,000 samples.

4・2 PCFGs

PCFGs are a probabilistic extension of context-free
grammars widely used in statistical natural language
processing. Each production rule A→α∗10 in a PCFG
has a probability θA→α such that

∑
α θA→α = 1 holds

for every non-terminal A. Figure 9 shows a PRISM
program for PCFGs. A predicate pcfg(A,L0,L1)

where L0 = [wi,...,wN] and L1 = [wj+1,...,wN]

(wk denotes a terminal, namely a word) means that
the substring L0 −L1 = [wi,...,wj] is governed by
a non-terminal A. A probabilistic event that a rule
A → α is chosen for a non-terminal A is represented
by msw(A,n), where n is the identification number of
the rule and α is fetched by rhs(n,α). An auxiliary

∗9 Each processor has 128KB of L1 cache (64KB each for
data and instructions) and 256KB of L2 cache.

∗10 Symbols α,β, . . . denote sequences of terminals and non-
terminals.

predicate preq/2 is introduced for pruning on tabled
search by calling first(A,w), which means there
is a series of projections of production rules from a
non-terminal A to generate a string beginning with a
terminal w. Actual ground terms of first/2 are pre-
computed and given as part of the program. Lastly,
proj/3 attempts projection.

The learning experiment was carried out as follows.
We first randomly picked up from 100 to 1,000 sen-
tences of length ≤ 40 from articles of Wall Street Jour-
nal (43,804 sentences) with the corresponding parse
trees. Words in the sentences were replaced with their
POS (part-of-speech) tags. We prepared three sets
of sentences for each data size. Then we extracted
CFG rules from those parse trees in a straightforward
way.∗11 Characteristics of the extracted rules are
shown in Table 2. Under these settings, we conducted
estimation of parameters θA→α from the picked-up
sentences (with smoothing for faster convergence) us-
ing one processor on each node. This is a challenging
task because the number of possible parse trees for a
single sentence can be 2.9× 1048 at the maximum.

Table 3 and Table 4 show the range of learning time
and average memory space consumed on each slave
process respectively. Bars indicate that the program
doesn’t work due to the memory limit under the cor-
responding conditions.∗12 A larger number of nodes
provide a larger memory space and hence enable use
of more sentences on learning, though memory usage
is not in linear to the number of sentences owing to
increase in the number of extracted rules. The results
also show that our implementation makes it possible
to use nearly 30 gigabytes in total of memory space.

∗11 To produce more likely suitable rule sets, we added an
auxiliary attribute gap as in [Collins 97]. This attribute
indicate that a syntactic element has a gap caused by wh-
movement, e.g. ◦ in a noun phrase “a person who ◦ saw
you yesterday”.

∗12 B-Prolog, the base system of PRISM, has limit of roughly
one gigabyte for its working areas in 32-bit environments,
though PRISM may allocate extra memory area beyond
this limit.

procedure Get-Inside-Probs(ψ̃, T)
begin

for t := 1 to T do begin

Put Gt = τ
(t)
0 ;

for k := Kt downto 0 do begin

P[t, τ
(t)
k] := 0;

foreach S̃ ∈ ψ̃(τ
(t)
k) do begin

Let S̃ = {A1,A2, . . . ,A|S̃|};

R[t, τ
(t)
k , S̃] := 1;

for l := 1 to |S̃| do
if Al = msw(i,v) then

R[t, τ
(t)
k , S̃] = R[t, τ

(t)
k , S̃] · θi,v

else

R[t, τ
(t)
k , S̃] = R[t, τ

(t)
k , S̃] · P[t,Al]

end (* foreach S̃ *)

end (* for k *)

end (* for t *)
end

procedure Get-Expectation(ψ̃, T)
begin

for t := 1 to T do begin

Let Gt = τ
(t)
0 ;

Q[t, τ
(t)
0] := 1;

for k := 1 to Kt do Q[t, τ
(t)
k] := 0;

foreach i ∈ I, v ∈ Vi do η[t, i, v] := 0;
for k := 0 to Kt do

foreach S̃ ∈ ψ̃(τ
(t)
k) do begin

Let S̃ = {A1,A2, . . . ,A|S̃|};

for l := 1 to |S̃| do
if Al = msw(i,v) then

η[t, i, v] := η[t, i, v] +

Q[t, τ
(t)
k] · R[t, τ

(t)
k , S̃]/P[t,Gt]

else
Q[t,Al] := Q[t,Al] +

Q[t, τ
(t)
k] · R[t, τ

(t)
k , S̃]/P[t,Al]

end (* foreach S̃ *)

end (* for t *)
end

procedure Parallel-Learn-gEM (ψ̃, T)
begin

Initialize and broadcast θ at the master process;

Get-Inside-Probs(ψ̃,T);

λp :=
PTp

t=1 lnP[t,Gt];

Share λ :=
P

p λp;

repeat
λold := λ;

Get-Expectations(ψ̃, T);
foreach i ∈ I, v ∈ Vi do

ηp[i,v] :=
PTp

t=1 lnη[t, i, v];

Share η[i,v] :=
P

p ηp[i,v] for all 〈i,v〉;
(* see Section 3・2 *)

foreach i ∈ I, v ∈ Vi do
θi,v := η[i, v]/

P

v′∈Vi
η[i,v′];

Get-Inside-Probs(ψ̃, T);

λp :=
PTp

t=1 lnP[t,Gt];

Share λ :=
P

p λp

until λ− λold < ε (* loop until convergence *)

end

Fig. 5 The pgEM algorithm.

 0

 5

 10

 15

 20

 25

 30

 35

 21 17 13 9 5 1

S
pe

ed
-u

p

Number of Processors

#samples = 2500
#samples = 5000
#samples = 10000
#samples = 20000

Fig. 6 Speed-up for HMMs.

 0

 50

 100

 150

 200

 250

 21 17 13 9 5 1

M
em

or
y

U
sa

ge
 in

 M
eg

ab
yt

es

Number of Processors

#samples = 2500
#samples = 5000
#samples = 10000
#samples = 20000

Fig. 7 Memory usage for HMMs on each slave processor.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 41 33 25 21 17 13 9 5 1

S
pe

ed
-u

p

Number of Processors

#samples = 2500
#samples = 5000
#samples = 10000
#samples = 20000

Fig. 8 Speed-up for HMMs with use of dual processors.

Size #rules #T #NT
#parse trees

(median)
#parse trees

(max.)

100 1333 – 1751 35–40 23–28 6.6e08–1.9e10 2.3e18–3.7e20
200 2005 – 3055 40–41 28–32 7.8e09–1.5e12 1.5e21–8.0e30
300 3924 – 4440 40–43 27–33 1.3e11–5.3e16 1.2e29–7.4e36
450 5930 – 7297 42–44 32–33 7.2e16–5.7e18 5.6e35–7.6e39
600 5442 – 6972 42–45 34–34 4.3e15–5.7e19 4.0e37–6.0e43
800 6753 – 7391 44–44 34–34 1.3e17–1.2e19 2.9e39–1.1e43
1000 11294–12351 43–45 35–35 1.4e20–4.4e22 1.1e45–2.9e48

Table 2 Rule characteristics. T and NT denote terminals and
non-terminals respectively. 6.6e08 denotes 6.6×108.

target(sent/1).

sent(L) :- start(S),!,pcfg(S,L,[]).

pcfg(LHS,L0,L1) :-

(terminal(LHS) -> L0 = [LHS|L1]

; msw(LHS,N), rhs(N,RHS), preq(RHS,L0),

proj(RHS,L0,L1)

).

preq([],_).

preq([X|_],[Y|_]) :- first(X,Y),!.

preq([X|_],[Y|_]) :- X == Y,!.

proj([],L,L).

proj([X|Xs],L0,L1) :-

pcfg(X,L0,L2), preq(Xs,L2), proj(Xs,L2,L1).

Fig. 9 A PCFG program.

Size 1 node 3 nodes 5 nodes 11 nodes 21 nodes

100 22 – 44 11 – 24 6 – 12 3 – 5 2 – 3
200 147 – 220 76 – 143 36 – 58 15 – 27 8 – 25
300 — 363 – 596 134 – 237 74 – 115 42 – 56
450 — — 389 – 939 163 – 392 80 – 198
600 — — — 240 – 650 148 – 390
800 — — — 579 –1313 359 – 801
1000 — — — — 696 –1547

Table 3 Learning time for PCFGs (in seconds).

Size 1 node 3 nodes 5 nodes 11 nodes 21 nodes

100 151 – 260 54 – 93 34 – 58 18 – 29 12 – 17
200 645 – 776 221 – 265 136 – 163 66 – 78 36 – 44
300 — 574 – 868 348 – 541 167 – 248 90 – 133
450 — — 951 –1217 450 – 619 238 – 329
600 — — — 656 –1072 350 – 594
800 — — — 1052–1265 582 – 713
1000 — — — — 1032–1417

Table 4 Memory usage for PCFGs (in megabytes).

It is advantage of parallel computing that such a huge
memory space is available.

5. Related Work and Conclusion

In this paper, we have presented the pgEM algo-
rithm, a data-parallel algorithm for EM learning of
symbolic-statistical models. We have also empirically
demonstrated the scalability of the pgEM algorithm
for HMMs and PCFGs. Use of multiple computers
reduces computation time as well as extends memory
space available for learning, and hence makes learning
from data sets of much greater size feasible.

There are problem-specific parallel EM algorithms
for computer vision [López-de-Teruel 99], general clus-
tering [Zhang 00], and document classification [Kru-
engkrai 02]. They are all data-parallel algorithms as
our algorithm is, but the former two algorithms are
specialized for finite mixture models and the latter

one for naive Bayes models. [López-de-Teruel 99] and
[Kruengkrai 02] do not mention how to assign sub-
tasks to processors unlike us in Section 3・1, and seem
to assign in a static way (maybe by the number of
samples or by hand). [Zhang 00] allows dynamic load
balancing by reassignment of subtasks. Reassignment
is basically a good idea, but only applicable to al-
gorithms for specific probabilistic models. A more
notable difference between these algorithms and ours
is the handling of parameter sets. The existing al-
gorithms are applicable only for probabilistic models
in which parameter sets can be determined before-
hand. On the other hand, our algorithm allows pa-
rameter sets to be dynamically determined from data
(observed goals) during computation by the mecha-
nism stated in Section 3・2. This gives us greater flex-
ibility in probabilistic modeling. For example, in lexi-
calized PCFGs [Collins 97], a linguistically motivated
extension of PCFGs, each non-terminal is associated
with a word or a POS tag. Therefore parameter sets
for a lexicalized PCFG are not determined until sen-
tences are given. Currently, we are planning to con-
duct learning experiments with lexicalized PCFGs.

Acknowledgments

This research is supported by the 21st Century COE
Program “Framework for Systematization and Appli-
cation of Large-scale Knowledge Resources”. We are
also grateful to the administrators and users of the
21COE-LKR grid computer for their cooperation on
our experiments. Thanks to Neng-Fa Zhou for his
help with our implementation and Kenichi Kurihara
for comments on our experiments.

♦ References ♦

[Collins 97] Collins, M.: Three Generative, Lexicalised Mod-
els for Statistical Parsing, in Proceedings of the 35th annual
meeting on Association for Computational Linguistics, pp.
16–23 (1997)

[Dempster 77] Dempster, A. P., Laird, N. M., and Ru-
bin, D. B.: Maximum Likelihood from Incomplete Data via
the EM Algorithm, Royal Statistical Society, Vol. 39, No. 1,
pp. 1–38 (1977)

[Gropp 99] Gropp, W., Lusk, E., and Skjellum, A.: Using
MPI: Portable Parallel Programming with the Message-
Passing Interface, MIT Press, 2nd edition (1999)

[Kameya 00] Kameya, Y. and Sato, T.: Efficient EM learn-
ing with tabulation for parameterized logic programs, in
Proceedings of the 1st International Conference on Com-
putational Logic, Vol. 1861 of LNAI, pp. 269–294 (2000)

[Kruengkrai 02] Kruengkrai, C. and Jarukulchai, C.: A Par-
allel Learning Algorithm for Text Classification, in Pro-
ceedings of the eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp. 201–206
(2002)

[Lloyd 84] Lloyd, J. W.: Foundations of Logic Programming,
Springer-Verlag (1984)

[López-de-Teruel 99] López-de-Teruel, P. E., Garćıa, J. M.,
and Acacio, M.: The Parallel EM Algorithm and its Ap-
plications in Computer Vision, in Parallel and Distributed
Processing Techniques and Applications, pp. 571–578 (1999)

[Rabiner 89] Rabiner, L. R.: A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition, in
Proceedings of the IEEE, Vol. 77, pp. 257–286 (1989)

[Sato 01] Sato, T. and Kameya, Y.: Parameter Learning
of Logic Programs for Symbolic-statistical Modeling, Jour-
nal of Artificial Intelligence Research, Vol. 15, pp. 391–454
(2001)

[Wilkinson 99] Wilkinson, B. and Allen, M.: Parallel Pro-
gramming: Techniques and Applications Using Networked
Workstations and Parallel Computers, Prentice Hall (1999)

[Zhang 00] Zhang, B., Hsu, M., and Forman, G.: Accurate
Recasting of Parameter Estimation Algorithms using Suffi-
cient Statistics for Efficient Parallel Speed-up, in Proceed-
ings of the 4th European Conference on Principles and
Practice of Knowledge Discovery in Databases, pp. 243–254
(2000)

[Zhou 03] Zhou, N.-F. and Sato, T.: Efficient Fixpoint
Computation in Linear Tabling, in Proceedings of the 5th
ACM-SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pp. 275–283
(2003)

