
EÆcient EM Learning with Tabulation for

Parameterized Logic Programs

Yoshitaka KAMEYA and Taisuke SATO

Dept. of Computer Science, Graduate School of Information Science and Engineering,

Tokyo Institute of Technology,

Ookayama 2-12-1, Meguro-ku, Tokyo, Japan, 152-8552.
kame@mi.cs.titech.ac.jp, sato@cs.titech.ac.jp

Abstract. We have been developing a general symbolic-statistical mod-
eling language [6, 19, 20] based on the logic programming framework

that semantically uni�es (and extends) major symbolic-statistical frame-

works such as hidden Markov models (HMMs) [18], probabilistic context-
free grammars (PCFGs) [23] and Bayesian networks [16]. The language,

PRISM, is intended to model complex symbolic phenomena governed by

rules and probabilities based on the distributional semantics[19]. Pro-
grams contain statistical parameters and they are automatically learned

from randomly sampled data by a specially derived EM algorithm, the

graphical EM algorithm. It works on support graphs representing the
shared structure of explanations for an observed goal. In this paper, we

propose the use of tabulation technique to build support graphs, and

show that as a result, the graphical EM algorithm attains the same time
complexity as specilized EM algorithms for HMMs (the Baum-Welch

algorithm [18]) and PCFGs (the Inside-Outside algorithm [1]).

1 Introduction

We have been developing a general symbolic-statistical modeling language [19,

20,6] based on the logic programming framework that semantically uni�es (and

extends) major symbolic-statistical frameworks such as hidden Markov models

(HMMs) [18], probabilistic context-free grammars (PCFGs) [23] and Bayesian

networks [16]. The language, PRISM (programming in statistical modeling), is

intended to model complex symbolic phenomena governed by rules and proba-

bilities using the distributional semantics[19]. Programs contain statistical pa-

rameters and they are automatically learned from randomly sampled data by a

specially derived EM algorithm, the graphical EM algorithm. It works on support

graphs representing the shared structure of explanations for an observed goal. In

this paper, we propose the use of tabulation technique to build support graphs,

and show that as a result, the graphical EM algorithm attains the same time

complexity as specilized EM algorithms for HMMs (the Baum-Welch algorithm

[18]) and PCFGs (the Inside-Outside algorithm[1]). Our subject in this paper

is inter-deciplinary, concerning logic programming, probability theory, statistics

and formal languages, and the reader is assumed to be familiar with basics of

these deciplines [5, 11, 18, 22, 23].

The rest of this paper is as follows. After having a look at background in the

next section, and preparing basic materials of PRISM in Sec 3, we present an

eÆcient learning algorithm for PRISM (Sec. 4). We evaluate the time complexity

of our algorithm in Sec. 5. Sec. 6 contains a conclusion. Throughout the paper,

we use Prolog conventions for logic programs.

2 Background

2.1 Constraint approach and distribution approach

Since our work is at the crossroads of logic programming and probability, it

might help to �rst review various attempts made to integrate probability with

logic, or logic programming (though we do not claim exhaustiveness of the list

at all). In reviewing, one can immediately notice there are two di�erent basic

attitudes towards the use of probability in logic or logic programming.One type,

constraint approach, emphasizes the role of probabilities as constraints and does

not necessarily seek for a unique probability distribution over logical formulas.

The other type, distribution approach, explicitly de�nes a unique distribution by

model theoretical means or proof theoretical means, to compute various proba-

bilities of propositions.

A typical constraint approach is seen in the early work of probabilistic logic

by Nilsson [15]. He considered probabilities assigned to formulas in a knowl-

edge base as constraints on the possible range of probability of a formula of

interest. He used linear programming techniques to solve constraints that nec-

essarily delimits the applicability of his approach to �nite domains. Turining

to logic programming, probabilistic logic programming formalized by Ng and

Subrahmanian used clauses of the form A : � F1 : �1; : : : ; Fn : �n annotated

by probability intervals �is [13]. Lakshmanan and Sadri also used annotated

clauses A
c

 B1; : : : ; Bn where c = hIb; Idi in the formalization of their prob-

abilistic logic programming. Here Ib represents an expert's belief interval, Id a

doubt interval respectively [10]. Both formalizations only allowed for a �nite

number of constant and predicate symbols, but no function symbols[10,13].

Some of the early works of the distribution approach to combining probabil-

ity with logic programs came out of the Bayesian network community1. Breese

made a �rst attempt to use logic programs to automatically build a Bayesian

network from a query [2]. After identifying atoms relevant to the query, a lo-

cal Baysian network for them is constructed to compute posterior probabil-

ities. Logical variables can appear in atoms but no function symbol was al-

lowed [2] (see also [14] for recent development of the use of logic programs to

build Bayesian networks). Poole proposed \probabilistic Horn abduction" [17].

His program consists of de�nite clauses and disjoint declarations of the form

disjoint([h1:p1,...,hn:pn]) which speci�es a probability distribution over

the hypotheses (abducibles) fh1; : : : ; hng. He assigned unique probabilities to all

1 A Bayesian network is a �nite directed acyclic graph representing probabilistic de-

pendences between (continuous or discrete) random variables [16]

ground atoms with the help of the theory of logic programming, and furthermore

proved that Bayesian networks are representable in his framework [17]. He how-

ever imposed various conditions (the covering property, the acyclicity property,

etc [17]) on the class of applicable programs.

In a more linguistic vein, Muggleton formulated SLP (Stochastic Logic Pro-

gramming) procedurally, as an extension of logic programming to PCFGs [12].

So, a clause C, which must be range-restricted2 , is annotated with a probability

p like p : C. The probability of a goal G is the products of such ps appearing

in its derivation, but with a modi�cation such that if a subgoal g can invoke n

clauses, pi : Ci (1 � i � n) at some derivation step, the probability of choos-

ing k-th clause is normalized, that is pk=
P
n

i=1 pi. SLP was further extended

by Cussens by introducing the notion of loglinear models for SLD refutation

proofs and de�ning probabilities of ground atoms in terms of their SLD-trees

and \features"[3].

2.2 Limitations and problems

Approaches described so far have more or less similar limitations and problems.

Descriptive power con�ned to �nite domains is the most common limitation,

which is due to the use of linear programming techniques [15], or due to the syn-

tactic restrictions not allowing for in�nitely many constant, function or predicate

symbols [10,13]. Bayesian networks have the same limitation as well (only a �nite

number of random variables are representable). Also there are various seman-

tic/syntactic restrictions on logic programs. For instance the acyclicity condi-

tion [14,17] prevents the use of clauses with local variables unconditionally, and

the range-restrictedness [3,12] excludes programs such as the usual membership

Prolog program. These restrictions would cause problems when we model the

distribution of in�nitely many objects such as natural language sentences [11].

There is another type of problem, the inconsistent assignment of probabilities.

Think of extensions of PCFGs to logic programs [3,12]. Since they de�ne the

probability Pr(A) of an atom A in terms of syntactic features of the proof trees

for A, it is quite possible for Pr(A) and Pr(A ^A) to di�er as their proof trees

are di�erent, though logically, they are one and the same.

Last but not least, there is a big problem common to any approach using

probabilities: where do the numbers come from? Generally speaking, if we use n

binary random variables, we need to get 2n probabilities to completely specify

their joint distribution, and this kind of attempt quickly becomes impossible as

n grows. Also if there are \hidden variables" in the model such as true causes of

a disease, we need lots of work to get reliable probabilities of those variables. De-

spite these diÆculties, all approaches in subsection 2.1 assume their numbers are

given a priori, and none of them address the problem of how to �nd probabilities,

excepts attempts to use learning techniques for Bayesian networks [8].

2 A syntactic property that variables appearing in the head also appear in the body

of a clause. So, a unit clause must be ground.

2.3 The idea of PRISM

We have been developing a general symbolic-statistical modeling language called

PRISM since 1995 along the line of the distribution approach that is free of limi-

tations mentioned above [19, 20]. It is a probabilistic logic programming language

equipped with a new semantic framework termed the distributional semantics

[19], an extension of the least Herbrand model semantics to possible world se-

mantics with a distribution. Theoretically, a PRISM program DB = F [R is

comprised of a denumerable3 number of ground facts (hypotheses, abducibles) F

and a denumerable number of rules (de�nite clauses) R in a �rst-order language

with a denumerable number of constant symbols, function symbols and predicate

symbols. F is supposed to come with a basic distribution PF that is a completely

additive probability measure. So every ground atom in F is considered a random

variable taking on 1 (true) or 0 (false). A sampling of PF determines a set F 0

of true atoms, which in turn determines the set of true atoms as MDB(F
0
[R)

where MDB denotes the least Herbrand model of F 0
[R. Hence, every ground

atom inDB is a random variable. Their joint distribution PDB , a completely ad-

ditive probability measure as an extension of PF , is de�ned to be the denotation

(declarative semantics) of DB (the distributional semantics) [19].

Thanks to a general semantic framework, we need none of restrictions such

as no function symbols and a �nite number of constant and predicate symbols [2,

4, 8, 10, 13], the acyclicity [14,17] and the covering assumption [17], the range-

restrictedness of clauses [3,12], or the �niteness of domains [2, 4, 15]. A user

can write whatever program he/her likes at their own risk without a fear of

inconsistent probabilities. Also we succeeded in deriving a new EM learning

algorithm for learning statistical parameters in PRISM programs (BS programs)

[19], and hence every program can learn from positive examples. So far, we have

con�rmed the descriptive/learning power of PRISM by tackling various domains

including three major symbolic-statistical models, HMMs, PCFGs and Bayesian

networks [20].4

2.4 Problem of computational complexity

The major problem with the current implementation of PRISM is the slow speed

of learning. After determining the scope of symbolic-statistical phenomena we

model such as stochastic language generation, we write a parameterized model

DB (= F[R) that can explain conceivable observations (sentences for instance).

If independent observations G1; : : : ; GT are given, we let our EM algorithm to

learn statistical parameters in DB by (locally) maximizing
Q
t
PDB(Gt=1). The

learning process starts with collecting all such S � F that S [R j= G for each

observation Gt. This all solution search usually contains a lot of redundancy,

3 We hereafter use a term \denumerable" as a synonym of \countably in�nite." The
�nite case is similarly treated.

4 Koller has proposed a probabilistic functional language [9] which can represent

HMMs, PCFGs and Bayesian networks, but left the problem of declarative semantics

and learning untouched.

and in case of HMMs, we end up in the time complexity exponential in the

length of an input string. The reason is obvious: in the stochastic automata

such as HMMs, the number of transition paths is exponential, but the Baum-

Welch algorithm [18], the specialized EM algorithm for HMMs, achieves linear

time complexity by taking advantage of structure-sharing of transition paths

represented as a trellis diagram,which corresponds to the reuse of solved subgoals

in logic programming.We therefore introduced a reuse mechanism of solved goals

such as OLDT search [21] in PRISM, and thus rederived the whole EM algorithm

to combine with the OLDT search. Owing to this entire reconstruction, our EM

algorithm, though applicable to even type-0 stochastic grammars, has achieved

the same time complexity as specialized EM algorithms as far as HMMs and

PCFGs are concerned, as described in the sequel.

3 PRISM programs

In this section, we de�ne PRISM programs and the related concepts. See also

the basic idea of the distributional semantics in Sec. 2.3.

De�nition 1. A PRISM program is a de�nite clause program DB = F [R

which satis�es the following conditions on facts F , their distribution PF and

rules R.

1. F is a set of ground atoms of the form msw(i,n,v). The arguments i and n

are called group-id (or switch name) and trial-id, respectively. We assume

that a �nite set Vi of ground terms is associated with each i, and v 2 Vi
holds.

5 Vi corresponds to a set of possible values of switch i.

2. Let Vi be fv1; v2; : : : ; vjVijg. Then, one of the ground atoms msw(i,n,v1),

msw(i,n,v2), . . . , msw(i,n,vjVij) becomes exclusively true (takes the value

1) on each trial. For each i, �i;v 2 [0; 1] is a parameter of the (marginal)

probability of msw(i,�,v) being true (v 2 Vi), and
P
v2Vi

�i;v = 1 holds.

3. For each ground terms i, i0, n, n0, v 2 Vi and v0 2 Vi0 , random variable

msw(i,n,v) is independent of msw(i0,n0,v0) if n 6= n0 or i 6= i0.

4. De�ne head(R) as a set of atoms appearing in the head of R. Then, F \

head (R) = ;.

In the �rst condition, we introduce a predicate msw=3 to represent a basic

probabilistic choice such as coin-tossing (msw stands for multi-valued switch). A

ground atom msw(i,n,v) represents an event \a switch named i takes on v as a

sample value on the trial n." We combine these switches to build a probability

distribution of complex phenomena. The second and the third condition say

that a logical variable V in msw(i,n,V) behaves like a random variable which is

realized to vk with probability �i;vk (k = 1 : : : jVij).
6 Moreover, from the third

condition, the logical variables V1 and V2 in msw(i,n1,V1) and msw(i,n2,V2) can

5 As described before, we consider DB as a denumerable set of ground clauses, i and

n are arbitrary ground terms in the Herbrand universe.
6 These probabilities are either learned or given by the user.

be seen as independent and identically distributed (i.i.d.) random variables if n1
and n2 are di�erent ground terms. The fourth condition says that no msw(�,�,�)

appears in the head of R.

3.1 A program example

We here pick up a PRISM program which represents an HMM, also known as a
probabilistic regular grammar. HMMs de�ne a probability distribution over the
strings of given alphabets, and can be considered as probabilistic string gener-
ators [18], in which an output string is a sample from the de�ned distribution.
The HMM represented below7 has two states fs0; s1g and outputs a symbol a
or b in each state. For simplicity, the length of output strings is �xed to three.

(1) target(hmm/1). (4) values(init,[s0,s1]).

(2) data('hmm.dat'). (5) values(out(_),[a,b]).

(3) table([hmm/1,hmm/3]). (6) values(tr(_),[s0,s1]).

(7) hmm(Cs):- % To generate a string (chars) Cs...

msw(init,null,Si), % Set initial state to Si, and then

hmm(1,Si,Cs). % Enter the loop with clock = 1.

(8) hmm(T,S,[C|Cs]):- T=<3, % Loop:

msw(out(S),T,C), % Output C in state S.

msw(tr(S),T,NextS), % Transit from S to NextS.

T1 is T+1, % Put the clock ahead.

hmm(T1,NextS,Cs). % Continue the loop (recursion).

(9) hmm(T,_,[]):- T>3. % Finish the loop if clock > 3.

Procedurally, the above HMM program simulates the generation process of

strings (see the comments in the program). Clauses (7)�(9) represent the prob-

abilistic behavior of the HMM. In clause (8), to output a symbol C, we use di�er-

ent switches out(S) conditional on the state S.8 Note that T in msw(out(S),T,C)

is used to guarantee the independency among the choices at each time step. Re-

cursive clauses like (8) are allowed in the distributional semantics, and so are

in PRISM. Clauses (1)�(6) contain additional information about the program.

Clause (1) declares only the ground atoms containing hmm=1 are observable.

hmm([a,b,a]) being true means this HMM generates the string aba. Clause (2)

speci�es a �le storing learning data. Clause (3) speci�es the table predicates

(described later) are hmm=1 and hmm=3. We can read that Vinit = fs0; s1g,

Vout(�) = fa; bg, Vtr(�) = fs0; s1g from clauses (4)�(6).

3.2 Further de�nitions and assumptions

For the learning algorithm for PRISM, we need some de�nitions and assump-

tions. For the moment, we assume the set I of group-ids coincides with the

7 The clause numbers are not written in the actual program.
8 Generally speaking, a conditional probability table (CPT) of a random variable
X can be represented by the switch msw(f(c1,c2,...,cn),�,x), where n is the

number of conditional variables, f is the id of X, ci (i = 1 : : : n) is the value of each

conditional variable Ci, and x is one of X's possible values x1; x2; : : : ; xk. Of course,

Vf(c1,c2,...,cn) = fx1; x2; : : : ; xkg should be declared in advance.

Herbrand universe of DB . Based on I, a(-n in�nite-dimension) parameter space

� is de�ned as follows:

�
def
=
Q
i2I
fh�i;v1 ; : : : ; �i;vjViji j Vi = fv1; : : : ; vjVijg;

P
v2Vi

�i;v = 1g: (1)

We next de�ne the probabilistic inconsistency (consistency), probabilistic

exclusiveness, and independency w.r.t. facts and goals.

De�nition 2. Consider a PRISM program DB = F [R and a set S of facts in

F (S � F). S is said to be p-inconsistent if PF (S=1j�) = 0 for any parameters

� 2 �.9 Otherwise, S is said to be p-consistent. Consider two sets S1 and S2
of facts in F , which are p-consistent. Then S1 is said to be p-exclusive to S2 if

S1 [S2 is p-inconsistent. Furthermore, let B1 and B2 be arbitrary two atoms

in head (R). Then, B1 is said to be p-exclusive to B2 if and only if PDB(B1 =

1; B2=1j�) = 0 for any � 2 �.

De�nition 3. For each B in head (R), let S(1); : : : ; S(m)
be minimal subsets of

F such that

comp(R) j= B $ S(1) _ � � � _ S(m) ; (2)

where 0 � m and comp(R) is the completion [5] of R.10 Then, each of S(1),. . . ,

S(m)
is referred to as a minimal support set or an explanation for B. We put

 DB(B) = fS
(1); : : : ; S(m)

g.

Together with a PRISM program DB = F [R, we always consider a (denu-

merable) subset obs(DB) of head (R), which is referred to as a set of observable

atoms. Each G 2 obs(DB) is called a goal. Note that the following assumptions

are made only for practical reasons (e.g. program termination and eÆciency),

and that the distributional semantics itself does not require these assumptions.

Assumption 1. Consider a PRISM program DB. In Eq. 2, m is �nite (m <

1), and each of S(1), . . . , S(m)
is a �nite set (�nite support condition). For

any G 2 obs(DB), explanations in DB(G) are p-consistent and p-exclusive

(exclusiveness condition). Goals in obs(DB) are p-exclusive to each another,

and
P
G2obs(DB) PDB(G=1j�) = 1 holds for some parameter � 2 � (uniqueness

condition).

From the uniqueness condition, we know that just one atom in obs(DB)

becomes true at each observation. Suppose we make T (< 1) independent ob-

servations, and Gt is the atom obtained at the t-th observation (Gt 2 obs(DB),

t = 1 : : :T). Observed data G is a �nite sequence hG1; G2; : : : ; GT i. Then, I

is rede�ned here as a set of the group-ids of relevant switches to G, i.e. I
def
=S

T

t=1

S
S2 DB (Gt)

fi j 9n; v(msw(i,n,v) 2 S)g. Also, we rede�ne � as the (�nite-

dimension) parameter space by Eq. 1.

9
S is a random vector whose elements are in S. 1 (resp. 0) is a vector consisting of

all 1s (resp. 0s). S=1 means all atoms in S are true.
10 We sometimes consider a conjunction of atoms A1;A2; : : : as a set fA1;A2; : : :g.

4 Learning PRISM programs

Learning a PRISM programmeans maximum likelihood estimation (MLE) of the

parameters in the program. That is, given observations G = hG1; : : : ; GT i, we

�nd the parameter � 2 � which (locally) maximizes the likelihood �(Gj�)
def
=Q

T

t=1PDB(Gt = 1j�).11 Although the PRISM program is a�ected by the be-

havior, hence by the parameters � of switches msw(�,�,�) it contains, we cannot

directly observe their behavior (i.e. these switches are \hidden"). Hence we apply

the EM algorithm [22]. The learning procedure comprises two phases:

{ Find all explanations DB (Gt) for each goal Gt (t = 1 : : :T).

{ Run the EM algorithm based on the statistics from DB (Gt) (t = 1 : : :T).

In the rest of this section, we �rst quickly derive a naive version of the EM

algorithm,12 assuming DB . We then introduce support graphs, a compact data-

structure for DB . After the introduction of support graphs, the graphical EM

algorithm, an eÆcient EM algorithm working on support graphs, is described.

4.1 Naive approach

To derive an EM algorithm for PRISM, we must de�ne a Q function. First, from

the exclusiveness and the uniqueness condition, it is easily shown that expla-

nations in �DB

def
=
S
G2obs(DB) DB(G) are all p-exclusive each other. Besides,

also from the uniqueness condition,

P
G2obs(DB) PDB(G=1j�) =

P
G2obs(DB)

P
S2 DB (G)

PDB(S=1j�)

=
P
S2�DB

PDB(S=1j�) = 1

holds for any � 2 �. Hence, exactly one of the explanations in �DB is true.

Since �DB is denumerable, we can consider an isomorphic map f : �DB !N
+,

where N+ is a set of positive integers, and temporarily introduce a new random

variable E on
F such that E = f(S) if S 2 �DB is exclusively true (S = 1),

or E = 0 otherwise. Now we are in a position to de�ne the Q function:

Q(�0; �)
def
=
P
T

t=1

P
e2N

PDB (E=ejGt=1; �) logPDB(E=e;Gt=1j�0); (3)

whereN is a set of non-negative integers. It is easy to show Q(�0; �) � Q(�; �))

PDB(Gt= 1j�0) � PDB(Gt = 1j�). Therefore, for MLE, starting with some pa-

rameters �(0), we iteratively update parameters by �(m+1) := argmax
�
Q(�; �(m))

11 Under the exclusiveness condition, each marginal probability of Gt being true is

calculated as below. �i;v(S) is de�ned as �i;v(S)
def
=
���n �� msw(i,n,v) 2 S	��.

PDB (Gt=1j�) =
P

S2 DB (Gt)
PF (S=1j�) =

P
S2 DB (Gt)

Q
i2I;v2Vi

�
�i;v(S)

i;v
;

12 In [6], PRISM* programs are introduced to remove computationally intractable

terms. We here present an alternative way to remove them.

until the log-likelihood log�(Gj�) converges. Transforming Eq. 3, the following

formula is obtained:

Q(�0; �) =
P
i2I;v2Vi

�(i; v; �) log �0
i;v
�
P
i;v

�
�(i; v; �) log

�(i;v;�)P
v02Vi

�(i;v0;�)

�
;

where �(i; v; �)
def
=
P
T

t=1
1

PDB (Gt=1j�)

P
S2 DB (Gt)

PF (S=1j�)�i;v(S). Hence, we

reach the procedure learn-naive in Fig. 1 that �nds the MLE of the parame-

ters. The array variable �[i; v] contains �(i; v; �) under the current �. In this

procedure, the calculations for PDB (Gt= 1j�) and �[i; v] (Line 2, 5 and 9) are

computationally intractable when j DB(Gt)j is exponential (though �nite) in

the complexity of the model.13

4.2 Tabulation approach

For eÆcient computation of PDB(Gt= 1j�) and �[i; v], we introduce structure-

sharing of explanations by tabulation, which requires more assumptions on DB .

We assume that a set of table predicates table(DB) is declared in advance (like

the HMM program in Sec. 3.1). Let ��
DB

be a set of ground atoms containing

the table predicate in table(DB). We use comp(R), the completion of rules R,

again in the following assumption.

Assumption 2. Let DB be a PRISM program which satis�es the �nite support

condition, the exclusiveness condition, and the uniqueness condition. Assume

that, for each t = 1 : : :T , the following condition holds for some �nite ordered

subset � t
DB

= f� t1; : : : ; �
t

Kt
g of ��

DB
:
14

comp(R) j=
�
Gt $ ~St0;1 _ � � � _

~St0;m0

�
(4)

^

�
� t1 $

~St1;1 _ � � � _
~St1;m1

�
^ � � � ^

�
� t
Kt
$ ~St

Kt;1
_ � � � _ ~St

Kt;mKt

�
;

where

{ Letting Gt be �
t

0, each of ~St
k;1; : : : ;

~St
k;mk

is a subset of F [f� t
k+1; : : : ; �

t

Kt
g,

and is also called a t-explanation15 for � t
k
(for k = 0 : : :Kt). We here put

~ DB (�
t

k
)
def
= f ~Sk;1; : : : ; ~Skmk

g (for k = 0 : : :Kt).

{ Each of ~St
k;1; : : : ;

~St
k;mk

(k = 0 : : :Kt) is a set of independent atoms.
16

Each � t
k
(k = 1 : : :Kt) is referred to as a table atom. We call the former condition

acyclic support condition, and the latter independent support condition.

13 For example, the complexity of the HMM depends on the number of states, the

length of input/output string or the number of output alphabets.
14 From the �nite support condition, for k = 0 : : :Kt, mk is �nite and each of ~Stk;1, : : :,

~Stk;mk
is �nite. Also, from the exclusive condition, ~Stk;1; : : : ; ~S

t

k;mk
are p-consistent

and p-exclusive (k = 0 : : :Kt). Besides, from the uniqueness condition, Gt0 62 � tDB
holds for any t; t0 = 1 : : : T .

15 Pre�x \t-" is an abbreviation of \tabled-".
16 For B1;B2 2 head(R), B1 is independent of B2 if PDB (B1 = y1;B2 = y2j�) =

PDB (B1=y1j�) � PDB(B2=y2j�) for any y1; y2 2 f0; 1g and any � 2 �.

1: procedure learn-naive (DB ;G) begin

2: Select some � from �; �(0) :=
P

T

t=1
log PDB (Gt=1j�);

3: repeat

4: foreach i 2 I; v 2 Vi do

5: �[i; v] :=
P

T

t=1

1
PDB (Gt=1j�)

P
S2 DB (Gt)

PF (S=1j�)�i;v(S);

6: foreach i 2 I; v 2 Vi do

7: �i;v := �[i; v]=
P

v02Vi
�[i; v0];

8: m :=m + 1;

9: �(m) :=
P

T

t=1
log PDB(Gt=1j�)

10: until �(m)
� �(m�1) < "

11: end.

Fig. 1. A procedure for naive approach.

The task here is to construct such ~ DB and � t
DB

from the source PRISM pro-

gram. One way is to use OLDT (OLD with tabulation) [21], a complete search

technique for logic programs. In OLDT, a (sub-)goal g containing a table predi-

cate is registered into a solution table, whereas the instance of g is registered in

a lookup table. The latter reuses solutions in the solution table. In what follows,

we illustrate our tabulation approach by using the HMM program in Sec. 3.1.

First, we translate the PRISM program to another logic program. Similarly

to the translation of de�nite clause grammars (DCGs) in Prolog, we add two

arguments (which forms D-list) to each predicate for collecting t-explanations.

In the case of the HMM program, the translation results in:

(T1) top_hmm(Cs,X):- tab_hmm(Cs,X,[]).

(T3) tab_hmm(Cs,[hmm(Cs)|X],X):- hmm(Cs,_,[]).

(T3') tab_hmm(T,S,Cs,[hmm(T,S,Cs)|X],X):- hmm(T,S,Cs,_,[]).

(T4) e_msw(init,T,s0,[msw(init,T,s0)|X],X).

(T4') e_msw(init,T,s1,[msw(init,T,s1)|X],X).

:

(T7) hmm(Cs,X0,X1):- e_msw(init,null,Si,X0,X2), tab_hmm(1,Si,Cs,X2,X1).

(T8) hmm(T,S,[C|Cs],X0,X1):-

T=<3, e_msw(out(S),T,C,X0,X2), e_msw(tr(S),T,NextS,X2,X3),

T1 is T+1, tab_hmm(T1,NextS,Cs,X3,X1).

(T9) hmm(T,S,[],X,X):- T>3.

Clauses (Tj) and (Tj') correspond to the original clause (j), respectively. In

the translated program, p=(n+ 2) is a table predicate if p=n is a table predicate

in the original program. We use the predicate tab_p=(n + 2) to keep the t-

explanations (in Eq. 4). Note that tab_p=(n + 2) is called instead of the table

predicate p=(n+ 2). We then apply OLDT search while noting (i) added D-list

does not in
uence the original OLDT procedure, and (ii) we associate a list of

t-explanations with each solution. For example, running OLDT for the above

translated program gives the solution table in Fig. 2. Finally, we extract ~ DB ,

the set of all t-explanations, from this table. The remaining task is to get totally

ordered table atoms, i.e. the ordered set � t
DB

, respecting the acyclicity in Eq. 4.

Obviously, it can be done by topological sorting.

hmm([a,b,a]): [hmm([a,b,a]):[[m(init,null,s0),hmm(1,s0,[a,b,a])],

[m(init,null,s1),hmm(1,s1,[a,b,a])]]]

hmm(1,s0,[a,b,a]):

[hmm(1,s0,[a,b,a]):[[m(out(s0),1,a),m(tr(s0),1,s0),hmm(2,s0,[b,a])],

[m(out(s0),1,a),m(tr(s0),1,s1),hmm(2,s1,[b,a])]]]

hmm(1,s1,[a,b,a]):

[hmm(1,s1,[a,b,a]):[[m(out(s1),1,a),m(tr(s1),1,s0),hmm(2,s0,[b,a])],

: [m(out(s1),1,a),m(tr(s1),1,s1),hmm(2,s1,[b,a])]]]

Fig. 2. Solution table (m is an abbreviation of msw).

To help visualizing our learning algorithm, we introduce a data-structure

called support graphs, though the algorithm itself is de�ned using only ~ DB
and the ordered set � t

DB
. As illustrated in Fig 3 (a), the support graph for

Gt (t = 1 : : :T), a graphical representation of Eq. 4, consists of disconnected

subgraphs, each of which is labeled with the corresponding table atom � t
k
in � t

DB

(k = 1 : : :Kt). Each subgraph labeled � t
k
comprises two special nodes, the start

node and the end node, and explanation graphs, each of which corresponds to

a t-explanation ~St
k;j

in ~ DB(�
t

k
) (j = 1 : : :mk). An explanation graph of ~St

k;j

is cascaded nodes, where each node is labeled with a table atom � or a switch

msw(�,�,�) in ~St
k;j

. It is called a table node or a switch node. Support graphs

have a similar structure to recursive transition networks (RTNs). Fig 3 (b) is

the support graph for hmm([a,b,a]) obtained from the solution table in Fig 2.

Each table node labeled � refers to the subgraph labeled � , so data-sharing is

achieved by the distinct table nodes referring to the same subgraph.

4.3 Graphical EM algorithm

We describe here a new learning algorithm, the graphical EM algorithm, that

works on support graphs (more speci�cally, on ~ DB and � t
DB

). We prepare four

arrays for each support graph for Gt (t = 1 : : :T): P[t; �] for inside probabilities

of � , Q[t; �] for outside probabilities of � , R[t; �; ~S] for explanation probabilities

of ~S in ~ DB(�), and �[t; i; v] for expected counts of msw(i,�,v). The algorithm is

msw

msw msw

msw msw

msw msw

τG t :

:

:

τ:

 explanation graph

(a) (b)

start

start end

end

hmm([a,b,a]):

endstart

m(init,null,s0)

m(init,null,s1)

hmm(1,s0,[a,b,a])

hmm(1,s1,[a,b,a])

start

m(o(s0),1,a)

m(o(s0),1,a)

m(tr(s0),1,s0)

m(tr(s0),1,s1) hmm(2,s1,[b,a])

hmm(2,s0,[b,a])

end

:

hmm(1,s0,[a,b,a]):

τ

Fig. 3. A support graph (a) in general form, (b) for the HMM program with Gt =

hmm([a,b,a]). A double-circled node refers to a table node.

1: procedure learn-gEM (DB; G)

2: begin

3: Select some � from �;

4: get-inside-probs(DB ;G);

5: �(0) :=
P

T

t=1
logP[t;Gt];

6: repeat

7: get-expectations(DB ;G);

8: foreach i 2 I; v 2 Vi do

9: �[i; v] :=

10:
P

T

t=1
�[t; i; v]=P[t;Gt];

11: foreach i 2 I; v 2 Vi do

12: �i;v := �[i; v]=
P

v02Vi
�[i; v0];

13: get-inside-probs(DB;G);

14: �(m) :=
P

T

t=1
logP[t;Gt]

15: until �(m)
� �(m�1) < "

16: end.

1: procedure get-inside-probs (DB ;G)

2: begin

3: for t := 1 to T do begin

4: Put Gt = � t0 ;

5: for k := Kt downto 0 do begin

6: P[t; � tk] := 0;

7: foreach ~S 2
~ DB (�

t

k) do begin

8: Put ~S = fA1;A2; : : : ;Aj ~Sjg;

9: R[t; � tk; ~S] := 1;

10: for ` := 1 to j
~Sj do

11: if A` = msw(i,�,v) then

12: R[t; � tk; ~S] �= �i;v

13: else R[t; � t
k
; ~S] �= P[t;A`];

14: P[t; � tk] += R[t; � tk; ~S]

15: end /* foreach ~S */

16: end /* for k */

17: end /* for t */

18: end.

1: procedure get-expectations (DB;G) begin

2: for t := 1 to T do begin

3: Put Gt = � t0; Q[t; � t0] := 1; for k := 1 to Kt do Q[t; �
t

k] := 0;

4: for k := 0 to Kt do

5: foreach ~S 2 ~ DB (�
t

k) do begin

6: Put ~S = fA1;A2; : : : ;Aj ~Sjg;

7: for ` := 1 to j ~Sj do

8: if A` = msw(i,�,v) then �[t; i; v] += Q[t; � tk] � R[t; � tk; ~S]

9: else Q[t;A`] += Q[t; � tk] � R[t; � tk; ~S]=P[t;A`]

10: end /* foreach ~S */

11: end /* for t */

12: end.

Fig. 4. Graphical EM algorithm.

shown in Fig. 4. Due to the space limitation, details are omitted. It can be shown

however that learn-gEM is equivalent to the procedure learn-naive (Sec. 4.1).17

As shown in Sec. 4.1, learn-naive is the MLE procedure, hence the following

theorem holds.

Theorem 1. Let DB be a PRISM program, and G be the observed data. Then

learn-gEM �nds �
�
2 � which (locally) maximizes the likelihood �(Gj�).

17 To be more speci�c, under the same parameters �, the value of �[i; v] in learn-naive

(Line 5) is equal to that in learn-gEM (Line 10). Hence, the parameters are up-

dated to the same value. Furthermore, starting with the same initial parameters,

the converged parameters are also the same.

?-q(1,d,d+1),
 q(1,d+1,L)

?-q(1,d+1,L)

?-q(1,d,d+1),
 q(1,d+1,L)

?-q(j,d,d+1),
 q(1,d+1,L)

?-q(j,d,d+1),
 q(k,d+1,L)

?-q(j,d,e),
 q(1,e,L)

?-q(j,d,e),
 q(k,e,L)

?-q(1,d,L)

q(i,d’,d’’) already appears
 d+1=<d’<d’’=< L, 1=<i=<N

?-q(1,d+1,L)?-q(1,d+1,L) ?-q(1,d+1,L)

?-q(j’,e’,e),
 q(1,e,L)

?-q(1,e,L)

?-q(k,e,L)?-q(i’,d,e’),
 q(j’,e’,e),
 q(1,e,L)

2 =< k =< N2 =< k =< N

 2=<j=<N

 1 =< j =< N
 d+2 =< e =< L-1

2 =< k =< N

1 =< i’ =< N,
1 =< j’ =< N,

Td+1

 T d

 Td
’

[Note]

1 =< i =< N

p(i) p(1) p(2) p(N)

...

q q

d+2 =< e’ < e

Fig. 5. an OLDT tree Td for the query ?-q(1,d,L).

5 Complexity

In this section, we estimate the time complexity of our learning method in case of

PRISM programs for PCFGs, and compare with the Inside-Outside algorithm.

Since our method comprises two phases (OLDT and the graphical EM), we

estimate the computation time in each phase.

In the Inside-Outside algorithm, time complexity is measured by N , the

number of non-terminals, and L, the number of terminals in the input/output

sentence. Assuming that the target grammar is in Chomsky normal form, the

worst-case time complexity is the computation time for the largest grammar, i.e.

a set of all combinations of terminals and non-terminals. Hence, we may start

with a logic program (not a PRISMprogram) representing the largest grammar:

�
q(i,d,d0):- q(j,d,d00),q(k,d00,d0)

�� i; j; k = 1 : : :N; 0 � d < d00 < d0 � L
	

[
�
q(i,d,d0)

�� i = 1 : : :N; 0 � d � L � 1; d0 = d+ 1
	
: (5)

q(i,d,d0) says that the i-th non-terminal spans from (d + 1)-th word to d0-th

word. The textual order over the clauses \q(i,d,d0):- q(j,d,d00),q(k,d00,d0)"

is the lexicographic order over the tuples (i; j; k; d; d0; d00). We then make an

exhaustive search for the query by OLDT. Assuming that the solution table

is accessible in O(1) time, the time complexity of OLDT is measured by the

number of nodes in OLDT tree (the search tree for OLDT). We �x the search

strategy to multi-stage depth-�rst strategy [21]. Let Td be an OLDT tree for the

query ?-q(1,d,L). Fig. 5 illustrates the case of 0 � d � L � 3. As can be

seen, even for this simple grammar, the tree has many similar subtrees, so we

put them together (see [Note] in Fig. 5). Then, due to the depth-�rst strategy,

Td has a recursive structure, i.e. Td+1 is a part of Td. We enumerate hd, the

number of the nodes in Td but not in Td+1. The node with an underlined leftmost

atom is a lookup node, which only consumes the solution obtained in other

place. From Fig. 5, hd = O(N3(L � d)2).18 Total time for OLDT search is the

number of nodes in the OLDT tree for ?-q(1,0,L) (the whole sentence), that is,P
L�3
d=0 hd = O(N3L3).19 In the case of a DCG program below, it can be proved

similarly that the time complexity is O(N3L3).

�
q(i,L0,L1):- q(j,L0,L2),q(k,L2,L1)

�� i; j; k = 1 : : :N
	

[
�
q(i,L0,L1):- L0=[w|L1]

�� i = 1 : : :N; w is a terminal symbol
	

Since our method respects the original OLDT procedure, the search time for the

corresponding PRISM program given T observed goals is O(N3L3T).

On the other hand, the learning time of the graphical EM algorithm is propo-

tional to the size of the support graphs used, i.e. the number of nodes in the

graphs. It is easily shown, from the description of learn-gEM, that the size of

the graphs is O(�num�maxsizeT), where �num
def
= max1�t�T j ~�

t

DB
j, �maxsize

def
=

max1�t�T;~S2 ~�t
DB

j ~Sj, and ~�t

DB

def
=
S
�2�t

DB

~ DB (�). In the case of the PCFG pro-

gram, �num = O(N3L3) and �maxsize = O(1). Hence, the computation time per

update of the graphical EM algorithm is O(N3L3T). We therefore have:

Proposition 1. Let DB be a PRISM program representing a PCFG, and G =

hG1; G2; : : : ; GT i be the observed data. We assume each table operation in OLDT

search is done in time O(1). Then OLDT search for the goal Gt and each itera-

tion in learn-gEM is done in time O(N3L3T).

O(N3L3T) is also the time complexity of the Inside-Outside algorithm, hence

our algorithm is as eÆcient as the Inside-Outside algorithm.20 Similarly, we can

show that, for HMM programs like ones in Sec. 3.1, the search and the learning

time is O(N̂2LT), the same order as that of the Baum-Welch algorithm (N̂ is

the number of states).

6 Conclusion

We have proposed an eÆcient EM learning algorithm for the parameterized logic

programs which seamlessly uni�es logical semantics and probabilistic semantics.

It is shown our general algorithm works as eÆciently as the specialized EM al-

gorithms such as the Baum-Welch algorithm and the Inside-Outside algorithm.

18 We here focus on the subtree T 0
d. Each of j, i0, j0 ranges from 1 to N , and��f(e; e0) j d+ 2 � e0 < e � L� 1g
�� = O((L � d)2). Hence, the number of nodes in

T 0
d
is O(N3(L � d)2). The number of nodes in Td but neither in Td+1 nor in T 0

d
is

negligible, therefore hd = O(N3(L� d)2).
19 The number of nodes of TL�1 and TL�2 is negligible.
20 Ours can be better than the Inside-Outside algorithm as only relevant grammar rules

are involved in the EM learning phase as is observed experimentally.

Furthermore, due to the generality of the language and the learning algorithm,

our framework can be applied to the stochastic grammars with context depen-

dencies such as the bigram model of production rules [7], in which case the time

complexity of the EM learning is polynomial (details are omitted). The omitted

details in this paper will be included in the full paper we are preparing.

References

1. Baker, J. K., Trainable grammars for speech recognition, Proc. of Spring Conf. of

the Acoustical Society of America, pp.547{550, 1979.
2. Breese, J. S., Construction of belief and decision networks, Computational Intelli-

gence, Vol.8, No.4, pp.624{647, 1992.
3. Cussens, J., Loglinear models for �rst-order probabilistic reasoning, Proc. of

UAI'99, pp.126{133, 1999.
4. Dekhtyar, A. and Subrahmanian, V. S., Hybrid probabilistic programs, Proc. of

ICLP'97, pp.391{405, 1997.
5. Doets, K., From Logic to Logic Programming, The MIT Press, 1994.
6. Kameya, Y., Ueda, N. and Sato, T., A graphical method for parameter learning of

symbolic-statistical models, Proc. of DS'99, LNAI 1721, pp.264{276, 1999.
7. Kita, K., Morimoto, T., Ohkura, K., Sagayama, S. and Yano, Y., Spoken sentence

recognition based on HMM-LR with hybrid language modeling, IEICE Trans. on

Information & Systems, Vol.E77-D, No.2, 1994.
8. Koller, D. and Pfe�er, A., Learning probabilities for noisy �rst-order rules, Proc.

of IJCAI'97, pp.1316{1321, 1997.
9. Koller, D., McAllester, D. and Pfe�er, A., E�ective Bayesian Inference for Stochas-

tic Programs, Proc. of AAAI'97, pp.740{747, 1997.
10. Lakshmanan, L. V. S. and Sadri, F., Probabilistic deductive databases, Proc. of

ILPS'94, pp.254{268, 1994.
11. Manning, C. D. and Sch�utze, H., Foundations of Statistical Natural Language Pro-

cessing, The MIT Press, 1999.
12. Muggleton, S., Stochastic logic programs, In Advances in Inductive Logic Program-

ming (Raedt,L.De ed.), OSP Press, pp.254{264, 1996.
13. Ng, R. and Subrahmanian, V. S., Probabilistic logic programming, Information

and Computation, Vol.101, pp.150{201, 1992.
14. Ngo, L. and Haddawy, P., Answering queries from context-sensitive probabilistic

knowledge bases, Theoretical Computer Science, Vol.171, pp.147{177, 1997.
15. Nilsson, N. J., Probabilistic logic, Arti�cial Intelligence, Vol.28, pp.71{87, 1986.
16. Pearl, J., Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, 1988.
17. Poole, D., Probabilistic Horn abduction and Bayesian networks, Arti�cial Intelli-

gence, Vol.64, pp.81{129, 1993.
18. Rabiner, L. and Juang, B., Foundations of Speech Recognition, Prentice-Hall, 1993.
19. Sato, T., A statistical learning method for logic programs with distribution seman-

tics, Proc. of ICLP'95, pp.715-729, 1995.
20. Sato, T. and Kameya, Y., PRISM: a language for symbolic-statistical modeling,

Proc. of IJCAI'97, pp.1330{1335, 1997.
21. Tamaki, H. and Sato, T., OLD resolution with tabulation, Proc. of ICLP'86, LNCS

225, pp.84{98, 1986.
22. Tanner, M., Tools for Statistical Inference (2nd ed.), Springer-Verlag, 1986.
23. Wetherell, C.S., Probabilistic languages: a review and some open questions, Com-

puting Surveys, Vol.12, No.4, pp.361{379, 1980.

