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Preface
The past several years have witnessed a tremendous interest in logic-based probabilistic learning as testi-
fied by the number of formalisms and systems and their applications. Logic-based probabilistic learning
is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reason-
ing mechanisms, and machine learning and data mining principles. Logic-based probabilistic learning
has found its way into many application areas including bioinformatics, diagnosis and troubleshooting,
stochastic language processing, information retrieval, linkage analysis and discovery, robot control, and
probabilistic constraint solving.

PRISM (PRogramming In Statistical Modeling) is a logic-based language that integrates logic pro-
gramming and probabilistic reasoning including parameter learning. It allows for the description of
independent probabilistic choices and their consequences in general logic programs. PRISM supports
parameter learning, i.e. for a given set of possibly incomplete observed data, PRISM can estimate the
probability distributions to best explain the data. This power is suitable for applications such as learning
parameters of stochastic grammars, training stochastic models for gene sequence analysis, game record
analysis, user modeling, and obtaining probabilistic information for tuning systems performance. PRISM
offers incomparable flexibility compared with specific statistical tools such as hidden Markov models
(HMMs) [4, 31], probabilistic context free grammars (PCFGs) [4] and discrete Bayesian networks.

PRISM employs a proof-theoretic approach to learning. It conducts learning in two phases: the first
phase searches for all the explanations for the observed data, and the second phase estimates the prob-
ability distributions by using the EM algorithm. Learning from flat explanations can be exponential in
both space and time. To speed up learning, the authors proposed learning from explanation graphs and
using tabling to reduce redundancy in the construction of explanation graphs. The PRISM programming
system is implemented on top of B-Prolog (http://www.probp.com/), a constraint logic program-
ming system that provides an efficient tabling system called linear tabling [50]. Tabling shares the same
idea as dynamic programming in that both approaches make full use of intermediate results of compu-
tations. Using tabling in constructing explanation graphs resembles using dynamic programming in the
Baum-Welch algorithm for HMMs and the Inside-Outside algorithm for PCFGs. Thanks to the good
efficiency of the tabling system and the EM learner adopted in PRISM, PRISM is comparable in perfor-
mance to specific statistical tools on relatively large amounts of data. The theoretical side of PRISM is
comprehensively described in [40]. For an implementational view, please refer to [51]. Since version
2.0, the PRISM programming system turns to be an open-source software, and hence the users can freely
extend the programming system or see how the programming system works.

The user is assumed to be familiar with logic programming, the basics of probability theory, and
some of popular probabilistic models mentioned above. The programming system is an extension of the
B-Prolog system, and only PRISM-specific built-ins are elaborated in this document. Please refer to the
B-Prolog user’s manual for details about Prolog built-ins.

Contact information
The latest information and resources on PRISM are available at the website below.

http://sato-www.cs.titech.ac.jp/prism/

For any questions, requests and bug-reports, please send an E-mail to:

prism-query[AT]mi.cs.titech.ac.jp

where [AT] is replaced with @ .
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Organization of this manual
This document is organized as follows:

• Chapter 1 gives an overview of the PRISM language and the PRISM programming system.

• Chapter 2 describes the detail of the language.

• Chapter 3 explains how to use the programming system.

• Chapter 4 gives the detailed descriptions of the basic built-in predicates provided by the program-
ming system.

• Chapter 5 explains how to use the utility for variational Bayesian learning with some introductory
description.

• Chapter 6 explains how to use the utility for parallel EM learning using MPI (Message-Passing
Interface).

• Chapter 7 shows several program examples with detailed explanations.

To learn PRISM, it is better to see typical usages of PRISM illustrated in Chapter 1 and 7 first, and then
to run the example programs in the released package. The chapters/sections whose titles are marked with
* are considered as advanced, so you can skip these sections for the first time. Chapter 2 may also be
skipped until the examples have been explored, but the content of this chapter (especially §2.2, §2.3 and
§2.4) is indispensable to understanding the essence of examples. Chapter 3 and 4 are expected to work as
a (rough) reference manual. Chapters 5 and 6 have the facilities newly introduced since version 1.11, and
the authors expect these chapters to be referred to (only) by the users who are interested in these extended
facilities. Note that ‘2.0’ is also referred to as a generic number of the versions numbered as 2.0.x, so if
there is no proviso, all descriptions about version 2.0 apply to versions 2.0.x.
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Major changes from version 2.0
• §4.1.4 and §4.1.6 were modified to add a description on the case of specifying ‘noisy_u’.

• §4.1.11 was added to describe the built-in predicates soft_msw/2 and b_msw/2 for backtrack-
able sampling execution of random switches.

• The description on the force_gc flag was added into §4.13.2.

Major changes from version 1.12.1
• The description on handling hyperparameters (pseudo counts) is largely modified according to the

change made in version 2.0:

– §1.5 was largely modified.

– §2.6.2 were modified to describe that the modifiers such as set_d@ and set_a@ were
introduced in the third argument of values/3.

– §4.1.2 was separated to give a detailed description on the parameters and the hyperparameters
(the pseudo counts) of random switches.

– §4.1.6, §4.1.7, §4.1.8, §4.1.9 and §4.1.10 were entirely rewritten to describe the new built-in
predicates ∗_sw_d, ∗_sw_pd, ∗_sw_a, ∗_sw_pa and their variants. These sections also
describe that ∗_sw_h and ∗_sw_b are available as the aliases of ∗_sw_d and ∗_sw_pd,
respectively (except that get_sw_h/5 and get_sw_b/6 turned to be unavailable).

– §4.7.2 was modified to describe that it is recommended to use the built-ins ∗_sw_d or
∗_sw_pd to configure pseudo counts δi,v.

– In §4.13.2, the description on the default_sw_h flag was replaced with the descriptions
on the default_sw_a flag and the default_sw_d flag.

– §5.1.1 was modified to describe that pseudo counts αi,v are configured by the built-ins such
as set_sw_a/2.

• In §2.4.1, §2.4.2 and §4.1.1, get_values1/2 (a new built-in introduced in version 2.0) is used
in the simplified definitions of msw/2.

• §2.4.6 was modified to describe that all modeling assumptions do not always have to be satisfied
jointly (e.g. Viterbi computation does not require the exclusiveness condition).

• §2.6.2 was largely rewritten due to the change that values/2-3 are now only used for declara-
tions and cannot be called directly. It is also described that values_x/2-3 are now obsolete and
recommended to be replaced with values/2-3, and that we can put more than one directive into
the third argument of values/3.

• It is clearly described in §2.6.2 and §4.1.3 that the third argument of values/3 (note that values
_x/3 is now obsolete in version 2.0; see above) is only valid when the corresponding switch name
is specified by a ground Prolog term.

• The description on get_version/1 and print_version/0 was added into §3.2.

• The description on show_values/0 in §3.6.1 was modified.

• The description on is_prob_pred/1-2 and is_tabled_pred/1-2 was added to §3.6.1.
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• §3.6.3 was modified to describe the current limitation that the trace mode does not work in expla-
nation search.

• §3.8 was entirely rewritten that, in version 2.0, the programming system introduced a mechanism
for handling exceptions, in a similar way to that in B-Prolog.

• It is clearly described now in the sections of Chapter 4 that the built-ins for probabilistic inferences,
such as prob/1-2, probf/1-2, viterbif/3 and hindsight/1, only accept a tabled prob-
abilistic goal for the input.

• The descriptions on show_reg_sw/0, get_reg_sw/1 and get_reg_sw_list/1 were
added into §4.1.3.

• §4.1.4 was added to describe the built-ins expand_values/2, expand_probs/2-3 and
expand_pseudo_counts/2-3, most of which have been introduced in version 2.0.

• §4.1.5 was added to describe the new built-in predicates get_values/2, get_values0/2
and get_values1/2, which are used to access the outcome spaces of random switches, instead
of using values/2 directly.

• §4.1.7 was modified to describe a change in version 2.0 that fix_sw/2, fix_sw_d/2 and
fix_sw_a/2 first unfix the parameters or the pseudo counts of a specified random switch, and
then fix them. Also it is additionally described that fix_sw/1, fix_sw_d/1 and fix_sw_a/1
also accept a list of switch names.

• In §4.2, a wrong description on the behavior of get_samples_c/3-4 was corrected.

• A footnote was added into §4.4.1 and §4.5.1 to describe that the format of an explanation graph
output by probf/2 and viterbif/3 has been changed in version 2.0. Also, a description on the
explicit_empty_expls flag was added into §4.13.2 (by turning off the explicit_empty
_expls flag, we can force probf/2 to build the output in the old format).

• §4.4.4 was entirely rewritten due to the change that, in version 2.0, the probabilities of explanation
paths are included into the output of the built-in predicates such as probfi/1-2.

• §4.6.3 was separated as a subsection that describes the built-in predicates for conditional hindsight
probabilities.

• §4.11 was entirely rewritten due to the change that the log_scale flag is now the only way
for enabling/disable log-scaled probability computation. The log_scale flag is a replacement
of the scaling and log_viterbi flags in the previous versions. Accordingly, a descrip-
tion on the log_scale flag was added into §4.13.2, and the descriptions on the execution flags
log_viterbi, scaling and scaling_factor were removed.

• §4.13.2 was modified to describe that random was added as a possible value of the default_sw
flag.

• The description on the dynamic_default_sw flag and the dynamic_default_sw_h flag
was removed from §4.13.2. Accordingly, the descriptions related to these flags were removed.

• A description on the learn_message flag was added into §4.13.2. Accordingly, the possi-
ble value of the em_progress flag and the search_progress flag was changed from non-
negative integer to positive integer.
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• The description on the params_after_vbem flag was removed from §4.13.2. Accordingly,
the descriptions related to the params_after_vbem flag were removed from the sections in
Chapter 5.

• The description on the reduce_copy flag was removed from §4.13.2. Accordingly, the descrip-
tions related to the reduce_copy flag were removed.

• The description on the smooth flag was removed from §4.13.2.

• §4.16 was modified to include a description that it is recommended to use the extended syntactic
constructs for ‘foreach’ and list comprehensions are newly introduced in B-Prolog 7.4.

• §4.19 was addded to describe that, since version 2.0, popular unary built-in predicates for proba-
bilistic inference are available as prefix operators.

• §5.2.3 was added to describe the way of initializing hyperparameters in VB-EM learning.

• §6.2 was modified to include a description that, for parallel EM learning, the PATH environment
variable should contain the directory where the commands mpicc and mpirun is located.

• The usage of the MACHINES environment variable in parallel EM learning was added into §6.3.1.

• §6.4 was modified to include a description about a problem caused by the processes that are not
assigned any goal.
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Chapter 1

Overview of PRISM

PRISM is a probabilistic extension of Prolog. Syntactically, PRISM is just Prolog augmented with a
probabilistic built-in predicate and declarations. There is no restriction on the use of function symbols,
predicate symbols or recursion, and PRISM programs are executed in a top-down left-to-right manner
just like Prolog. In this chapter, we pick up three illustrative examples to overview the major features of
PRISM. These examples will also be used in the following chapters, but for brevity of descriptions, only
a part is shown here. For full descriptions of these examples, please refer to Chapter 7 or the comments
in the example programs included in the released package.

1.1 Building a probabilistic model with random switches
The most characteristic feature of PRISM is that it provides random switches to make probabilistic
choices. A random switch has a name, a space of possible outcomes, and a probability distribution.
The first example is a simple program that uses just one random switch:

values(coin,[head,tail]).

direction(D):-
msw(coin,Face),
( Face == head -> D=left ; D=right).

The predicate direction(D) indicates that a person decides the direction to go as D. The decision is
made by tossing a coin: D is bound to left if the head is shown, and to right if the tail is shown.
In this sense, we can say the predicate direction/1 is probabilistic. It is allowed to use disjunctions
(;), the cut symbols (!) and if-then (->) statements as far as they work as expected according to the
execution mechanism of the programming system.1 By combining probabilistic predicates, the user can
build a probabilistic model for the task at hand.

Besides the definitions of probabilistic predicates, we need to make some declarations. The clause
values(coin,[head,tail]) declares the outcome space of a switch named coin, and each call
of msw(coin,Face) makes a probabilistic choice (Face will be bound to the result), just like a coin-
tossing. This means that we can observe the direction he/she goes.

Now let us use this program. After installation, we can invoke the programming system just running
the command ‘prism’:

% prism

1 For detailed descriptions on the execution mechanism of the programming system, please visit §2.4.1 and §2.4.2.
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PRISM 2.0.1, (C) Sato Lab, Tokyo Institute of Technology, August, 2010
B-Prolog Version 7.4, All rights reserved, (C) Afany Software 1994-2010.

Type ’prism_help’ for usage.
| ?-

where ‘%’ is the prompt symbol of some shell (on Linux or Mac OS X) or the command prompt (on
Windows). In the following, removing the vertical bar, we use ‘?-’ as the prompt symbol for PRISM.

Let us assume that the program above is contained in the file named ‘direction.psm’. Then, we
can load the program using a built-in prism/1 as follows:

?- prism(direction).

After loading the program, we can run the program using built-in predicates. For example, we can make
a sampling by the built-in sample/1:

?- sample(direction(D)).
D = left ?

The probability distributions of switches are maintained by the programming system, so they are not
buried directly in the definitions of probabilistic predicates. Since version 1.9, the switches have uniform
distributions by default. So the results obtained by the multiple runs of the query above should not be
biased.

On the other hand, the built-in predicate set_sw/2 and its variations are available for setting prob-
ability distributions manually. For example, to make the coin biased, we may call

?- set_sw(coin,[0.7,0.3]).

which sets the probability of the head being shown to be 0.7. The status of random switches can be
confirmed by show_sw/0:

?- show_sw.
Switch coin: unfixed: head (0.7) tail (0.3)

At this point, the run with sample/1 will show a different probabilistic behavior from that was made
before:

?- sample(direction(D)).

1.2 Basic probabilistic inference and parameter learning
Let us pick up another example that models the inheritance mechanism of human’s ABO blood type. As
is well-known, a human’s blood type (phenotype) is determined by his/her genotype, which is a pair of
two genes (A, B or O) inherited from his/her father and mother.2 For example, when one’s genotype
is AA or AO (OA), his/her phenotype will be type A. In a probabilistic context, on the other hand, we
consider a pool of genes, and let pa, pb and po denote the frequencies of gene A, B and O in the pool,
respectively (pa+ pb+ po = 1). When random mating is assumed, the frequencies of phenotypes, namely,
PA, PB, PO and PAB, are computed by Hardy-Weinberg’s law [11]: PA = p2

a + 2pa po, PB = p2
b + 2pb po,

PO = p2
o and PAB = 2pa pb. To represent the distribution over phenotypes instead of these numerical

equations, we may write the following PRISM program:

2 In this example, we take a view of classical population genetics, where a gene is considered as an abstract genetic factor
proposed by Mendel.
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values(gene,[a,b,o]).

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

In this program, we let a switch msw(gene,X) instantiated with X = a, X = b and X = o denote a
random pick-up of gene X from the pool, and become true with probability pa, pb and po, respectively.
Then, from the definition of bloodtype/1, we can say that one of bloodtype(P) with P = a,
P = b, P = o and P = ab becomes exclusively true with probability PA, PB, PO and PAB, respectively
(see §2.2 for details). This implies the logical variable P in bloodtype(P) behaves as a random
variable that follows the distribution over phenotypes.3

Here, just like the distribution {PA, PB, PO, PAB} is computed from the basic one {pa, pb, po}, the
probability distributions of switches form a basic distribution from which we can construct the probability
distribution represented by the PRISM program. Then we consider each θi,v, the probability of a switch
instance msw(i,v) being true (i and v are ground terms), as a parameter of the program’s distribution. If
we give appropriate parameters, a variety of probabilistic inferences are available. For example, sampling
is done with the built-in predicate sample/1:

?- sample(bloodtype(X)).

In the above query, the answer X = b will be returned with probability PB, the frequency of blood type
B. Also it is possible to compute the probability of a probabilistic goal (or simply, a goal):

?- prob(bloodtype(a)).
Probability of bloodtype(a) is: 0.360507016168634

Instead of being set manually, the parameters can be estimated from the observed data. We call
this task parameter learning or more specifically, maximum likelihood estimation (ML estimation or
MLE) — given some observed data,, a bag of observed goals, we find the parameters that maximize
the probability of the observed data being occurred. In the current case, the observed data should be a
bag of instances of bloodtype(X), which correspond to phenotypes of (randomly sampled) humans.
Also note here that we are now in a partially observing situation, that is, we cannot know which switch
instances are true (i.e. which genes are inherited) for some given instances of bloodtype(X) (i.e.
some phenotypes). For example, if we observed a person of blood type A, we do not know whether
he has inherited two genes A from both parents, or he inherits gene A from one parent and gene O
from the other. For MLE in such a situation, one solution is to use the EM (expectation-maximization)
algorithm [14],4 and the programming system provides a built-in routine of the EM algorithm.

3 From a similar discussion, in the previous example, we can see D in direction(D) as a random variable in a probabilistic
context. In many cases, it is useful to define a program so that some logical variables behave as random variables, but also note that
there is no need to make all logical variables in the program behave as random variables.

4 A more detailed description for this example (the problem of gene frequency estimation for blood types) can be found in
Section 2.4 of [28].
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On the other hand, for the ‘direction’ program in the last section, we are in a fully observing situation,
i.e. we can know all behaviors of the random switches from the observation. Then, the EM algorithm is
simply reduced to a counting procedure of the true switch instances. In PRISM, either partially observing
or fully observing, by adding a couple of declarations and preparing some data, we can estimate the
parameters from the data.

For example, let us consider that we have observed 40 persons of blood type A, 20 persons of B, 30
persons of O, and 10 persons of AB. To estimate the parameters from these observed data, we then invoke
the learning command as follows:5

?- learn([count(bloodtype(a),40),count(bloodtype(b),20),
count(bloodtype(o),30),count(bloodtype(ab),10)]).

After parameter learning, we may confirm the estimated parameters:

?- show_sw.
Switch gene: unfixed: a (0.292329558535712) b (0.163020241540856)
o (0.544650199923432)

It can be seen from above and the original meaning given to the program that the frequencies of genes
are estimated as: pa = 0.292, pb = 0.163, po = 0.545. Thus in the context of population genetics, we can
say that, inversely with Hardy-Weinberg’s law, the hidden frequencies of genes can be estimated from
the observed frequencies of phenotypes.

The inheritance model described in this section is considerably simple since we have assumed random
mates. However with the expressive power of PRISM, the cases of non-random mates can also be written
(for example, as done in [36]).

1.3 Utility programs and advanced probabilistic inferences
Furthermore, let us consider a PRISM version of a hidden Markov model (HMM) [4, 31]. HMMs not only
dominate in speech recognition but are also well-known as suited for many tasks such as part-of-speech
tagging in natural language processing or biological sequence analysis. An HMM is a probabilistic finite
automaton where state transitions and symbol emissions are all probabilistic.

Let us consider a two-state HMM in Figure 1.1. The HMM has the states s0 and s1, and it emits
a symbol a or b at each state. Each of state transitions and symbol emissions is probabilistic, and
conditioned only on the current state. It is assumed in HMMs that we can only observe a string (i.e. a
sequence of emitted symbols), not the sequence of state transitions. The program is described as follows:

values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

5 Actually in PRISM, at the query prompt, we cannot make a new line until reaching the end of the query. For readability, in
this manual’s illustrations, the text typed by the user or displayed by the system is sometimes beautified by the authors.
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s0 s1

Figure 1.1: State transition diagram of a 2-state hidden Markov model.

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Please note the comments in the program, each states a procedural reading of the corresponding predicate
call. Then we may find that a top-down execution from hmm(L), which represents the distribution for a
string L, simulates a generation process that yields L, or in other words, that we observe L after a chain of
probabilistic choices by switches. In this sense, it is possible to say that the program forms a generative
model. Besides, it may be noticed that we are also in a partially observing situation for HMMs, since the
information about states is hidden from the string L in hmm(L).

In this manual, the code shown above is called the modeling part of the program, and on the other
hand, we can also write non-probabilistic clauses (i.e. usual Prolog clauses) as the utility part. For
example, we define the two predicates hmm_learn/1 and set_params/0, where the former is a
batch predicate for learning, and the latter is the former’s subroutine that sets some particular values of
parameters at once.

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with these samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

get_samples/3,6 learn/1 and set_sw/2 are the built-ins provided by the system, which run
the predicates in the modeling part (at meta-level), or change the status of the system including parameter
values. The built-ins except msw/2 are non-probabilistic, and hence all predicates in the utility part
above are also non-probabilistic. Programming with built-ins in the utility part allows users to take a
variety of ways of experiments according to the application. For example, in the HMM program, we may
add clauses to carry out tasks such as aligning and scoring sequences.

6 get_samples(N,G,Goals) generates N samples as Goals by invoking sample(G) for N times.
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In the literature of applications with HMMs, several efficient algorithms are well-known. One of these
algorithms is the Viterbi algorithm [31], which computes the most probable sequence of (hidden) state
transitions given a string. This is done by dynamic programming, and the computation time is known to
be linear in the length of the given string. The programming system provides a built-in for the Viterbi
algorithm, which is a generalization of the one for HMMs. For example, viterbif/1 writes the most
probable sequence to the output:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])
<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])
<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(2,10,s1,[a,a,a,a,b,b,b,b,b])
<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s1),a) & msw(tr(s1),s0)

...omitted...

hmm(10,10,s1,[b])
<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000117528

We then read from here that the most probable sequence is: s0 → s1 → · · · → s1 → s0 (though the
last transition may be redundant).

It is shown that the algorithm implemented as the system’s built-in works as efficiently as the one spe-
cialized for HMMs [39]. So we can handle considerably large datasets with PRISM. The efficiency comes
from linear tabling [50], a tabling mechanism provided by B-Prolog, and an EM algorithm called the
graphical EM algorithm.7 A similar mechanism is adopted for learning and probability computation men-
tioned above, which is also a generalization of the Baum-Welch algorithm (also known as the forward-
backward algorithm) and the backward probability computation for HMMs respectively [21, 39, 40].

1.4 Modeling assumptions and handling failures in the generation
process

To realize efficient computation described in the previous section, we need to write PRISM programs
which obey some restrictions. The first major one is the exclusiveness condition, in which all disjunctive
paths in a proof tree are required to be probabilistically exclusive. The second one is the uniqueness
condition, in which all observable goal patterns are probabilistically exclusive to each other and the sum
of their probabilities needs to be unity. For parameter learning, this condition can be relaxed by assuming
the missing-at-random (MAR) condition [40], and with the MAR condition, there is a case that we can
handle the PRISM programs in which the sum of probabilities of observable patterns can exceed unity.
On the other hand, the lack of probability mass with failure in the generation process (in which the sum
of probabilities becomes less than one) is more serious. The uniqueness condition implies that for every
observable pattern, its generation process never fails, and could be a strong restriction in our modeling.
Recently, for a remedy of this, the programming system introduced a new graphical EM algorithm that
takes such failures into account [41, 42, 45]. This algorithm is based both on Cussens’s FAM (failure-
adjusted maximization) algorithm [12] and FOC (First Order Compiler) [34]. With this new learning
framework, we are able to introduce some constraints (which causes some failures) to generative models.

7 Recently the authors often use the term generalized inside-outside algorithm instead.

6



1.5 Bayesian approaches in PRISM
When the observed data is not so large compared to the complexity of the model (i.e. the number of
parameters), there should be a risk to rely on the parameters estimated from such data. For example, let
us consider that we just have a data set on blood types of 10 persons, in which only the persons of blood
type B and O are recorded. Even in such a situation, it seems inappropriate to conclude that gene A does
not exist at all. Instead, we may take a Bayesian approach to combine our prior knowledge (bias) with
the statistics from the data in a principled way.

In Bayesian approaches, we first consider a prior distribution P(θ) over parameters θ. In PRISM, as
the built-in prior distribution, we use a Dirichlet distribution P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v , where each parameter

αi,v (> 0) of the Dirichlet distribution corresponds to a switch instance msw(i,v) and is often called
a hyperparameter of the program’s distribution (Z is a normalizing constant). Then, the programming
system provides two types of Bayesian learning. One is for MAP (maximum a posteriori) estimation, and
the other for variational Bayesian (VB) learning.

The hyperparameters basically work as pseudo counts, i.e. the statistics on what we assume, not
actually observed. Since version 2.0, the programming system provides a clearer way of handling pseudo
counts. That is, in the context of MAP estimation, we consider δi,v = (αi,v − 1) as pseudo counts and it
is recommended to configure the hyperparameters through δi,v. On the other hand, in VB learning, αi,v

themselves are considered as pseudo counts, and it is recommended to configure αi,v directly. In practice,
it is important that we are only allowed to have δi,v ≥ 0 (i.e. αi,v ≥ 1) in the MAP case while we can have
αi,v > 0 in the VB case.

In MAP estimation, to estimate a parameter θi,v, the probability of a switch instance msw(i,v) being
true, we perform θ̂i,v = (Ci,v + δi,v)/(

∑
v′∈Vi

(Ci,v′ + δi,v′ )), where Ci,v is the (expected) occurrences of the
switch instance msw(i,v) in the data, and Vi is the set of possible outcomes of the switch named i. When
the pseudo count δi,v = 0, this procedure is nothing but ML estimation (i.e. θ̂i,v = Ci,v/

∑
v′∈Vi

Ci,v′ ). When
configuring δi,v to be positive, on the other hand, we can avoid the estimated parameter θ̂i,v being zero, and
hence can relieve the problem of data sparseness to some extent. In the above example, we can assign a
positive probability to the chance that gene A exists. Generally speaking, MAP estimation is a procedure
to obtain the parameters that maximizes a posteriori probability P(θ | D,M) ∝ P(D | M, θ)P(θ), where D
is the observed data, i.e. a multiset of observed goals G1, G2, . . . , GT , and M is the model written as a
PRISM program.

It is often said, on the other hand, that variational Bayesian (VB) learning has high robustness against
data sparseness in model selection and prediction (Viterbi computation). This is because VB learning
gives us an a posteriori distribution P∗(θ | D,M) and we can make inferences based on some averaged
quantities with respect to P∗(θ | D,M), instead of particular point-estimated parameters.

Now let us run the blood type program with the facilities above. To set pseudo counts (hyperparame-
ters) in the context of MAP estimation, we may add the query below to the program:

:- set_prism_flag(default_sw_d,1.0).

The programming system provides dozens of execution flags to allow the users to change the behaviors
of the built-in predicates. The query above will set a value 1.0 to the flag named ‘default_sw_d’.
Under this setting, when the system tries to register a new switch gene to the internal database, its
pseudo counts δgene,v (v = a,b,o) will be all set to 1.0 (and accordingly αgene,v will be set to 2.0). The
suffix ‘_d’ of the flag name means “for pseudo counts δi,v”. Then, let us learn the parameters from the
data in which 4 persons of blood type B and 6 persons of blood type O are recorded:

?- prism(bloodABO).
:

?- learn([count(bloodtype(b),4),count(bloodtype(o),6)]).
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#goals: 0(2)
Exporting switch information to the EM routine ... done
#em-iters: 0(4) (Converged: -12.545609035)
Statistics on learning:

Graph size: 12
Number of switches: 1
Number of switch instances: 3
Number of iterations: 4
Final log of a posteriori prob: -12.545609035
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 2092 bytes

Type show_sw to show the probability distributions.

yes

After learning, we can confirm that a positive probability is assigned to the parameter of msw(gene,a),
and that the common pseudo count 1.0 are surely set to each switch:

?- show_sw_pd.

Switch gene: unfixed_p,unfixed_h: a (p: 0.043478261, d: 1.000000000)
b (p: 0.242686723, d: 1.000000000) o (p: 0.713835016, d: 1.000000000)

yes

The suffix ‘_pd’ of the built-in predicate show_sw_pd/0 means “for both parameters and pseudo
counts δi,v”. On the other hand, we can assign the pseudo counts manually:

?- set_sw_d(gene,[0.5,1.0,1.0]).
:

?- show_sw_pd.

Switch gene: unfixed_p,unfixed_h: a (p: 0.043478261, d: 0.500000000)
b (p: 0.242686723, d: 1.000000000) o (p: 0.713835016, d: 1.000000000)

yes

In the context of VB learning, it is recommended to configure αi,v directly. To conduct VB learning
in this example, we use default_sw_a flag instead of the default_sw_d flag:

:- set_prism_flag(default_sw_a,0.5).

By this query, the pseudo counts αgene,v (v = a,b,o) of the switch gene will be all set to 0.5. The suffix
‘_a’ of the flag name means “for pseudo counts αi,v”. Then, VB learning is easily conducted by setting
‘hparams’ to the execution flag named ‘learn_mode’ and then invoking the usual learning command
(note that there is no need to modify the modeling part):

?- prism(bloodABO).
:

?- set_prism_flag(learn_mode,hparams).
:

?- learn([count(bloodtype(b),4),count(bloodtype(o),6)]).

#goals: 0(2)
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Exporting switch information to the EM routine ... done
#vbem-iters: 0(4) (Converged: -10.083233825)
Statistics on learning:

Graph size: 12
Number of switches: 1
Number of switch instances: 3
Number of iterations: 4
Final variational free energy: -10.083233825
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 2092 bytes

Type show_sw_a/show_sw_d to show the probability distributions.

yes

We can see that the pseudo counts have been adjusted based on the given data, while the parameters are
kept as their default values. This implies that now we have the a posteriori distribution P∗(θ | D).

?- show_sw_pa.

Switch gene: unfixed_p,unfixed_h: a (p: 0.333333333, a: 0.509135683)
b (p: 0.333333333, a: 5.027009446) o (p: 0.333333333, a: 16.015080650)

yes

Similarly to parameter learning, Viterbi computation based on the a posteriori distribution P∗(θ |
D,M) can be invoked with a setting for the execution flag ‘viterbi_mode’. For the HMM program,
we may run the following after VB learning:

?- set_prism_flag(viterbi_mode,hparams).
:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

1.6 Parallel EM learning*
In the programming system, a command named upprism is provided for batch execution (or non-
interactive execution) of a program. For a batch execution, we first write what we would like to ex-
ecute in the clause body of prism_main/0-1. In the HMM program, for example, we may run
hmm_learn(100), which means to conduct EM learning with 100 observed goals (§1.3), in a batch
execution:

prism_main:- hmm_learn(100).

Then, the batch execution can be started by running upprism (recall that the file name of the HMM
program is ‘hmm.psm’):

% upprism hmm
:

loading::hmm.psm.out
#goals: 0.........(94)
Exporting switch information to the EM routine ... done
#em-iters: 0.........100.........200.........300.........400.........500.
........600.........700.........800.........900(910) (Converged: -684.452
761975)

9



Statistics on learning:
Graph size: 5680
Number of switches: 5
Number of switch instances: 10
Number of iterations: 910
Final log likelihood: -684.452761975
Total learning time: 0.128 seconds
Explanation search time: 0.008 seconds
Total table space used: 349032 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes

Furthermore, since version 1.11, a utility for parallel EM learning is available. Namely, a command
named mpprism (multi-process PRISM) is used instead of upprism (uni-process PRISM). Under
some additional settings for a parallel computing environment (§6.2), we can run mpprism similarly to
upprism. For example, we learn the HMM program from 100 observed goals in a data-parallel fashion:

% env NPROCS=4 MACHINES=machines mpprism hmm
:

loading::hmm.psm.out
#goals: 0.........(91)
Gathering and exporting switch information ...
#em-iters: 0.........100.........200.........300.........400.........500.
........600.........700.........800.(811) (Converged: -680.209735465)
Statistics on learning:

Graph size: 6268
Number of switches: 5
Number of switch instances: 10
Number of iterations: 811
Final log likelihood: -680.209735465
Total learning time: 0.902 seconds
Explanation search time: 0.070 seconds

Type show_sw or show_sw_b to show the probability distributions.

yes

In the above execution, we specified the number of processors and the machine file (the file that contains
the name of machines where the distributed processes work) by the environment variables NPROCS
and MACHINES, respectively. Although the mechanism inside is rather complicated, we need no extra
PRISM programming for parallel execution.

10



Chapter 2

PRISM Programs

Generally speaking, a probabilistic model represents some probability distribution which probabilistic
phenomena in the application domain are assumed to follow, and PRISM is a logic-based representation
language for such probabilistic models. In this chapter, we describe the detail of the PRISM language,
and the basic mechanism of the related algorithms provided as built-in predicates.

2.1 Overall organization
Let us first define that a probabilistic predicate is a predicate which eventually calls (at non-meta level)
the built-in probabilistic predicate msw/2, i.e. random switches. Then we roughly classify the clauses in
a PRISM program into the following three parts:

• Modeling part: the definitions of all probabilistic predicates, and of some non-probabilistic predi-
cates which are called from probabilistic predicates. This part corresponds to the definition of the
model.

• Utility part: the remaining definitions of non-probabilistic predicates. This part is a usual Prolog
program that utilizes the model, and often that can be seen as a meta program of the modeling part.

• Declarations: the clauses of some particular built-in predicates which contain additional informa-
tion on the model (of course, they are non-probabilistic).

In the rest of this chapter, we first describe the basic semantics of PRISM programs and the currently
available probabilistic inferences. Then we proceed to describe the details of each part.

2.2 Basic semantics
PRISM is designed based on the distribution semantics [35, 40, 43], a probabilistic extension of the least
model semantics. In the distribution semantics, all ground atoms are considered as random variables
taking on 1 (true) or 0 (false). With this semantics and the predefined probabilistic property of random
switches, we can give a declarative semantics to programs. However, in the recent versions, to make
an efficient implementation of tabling, we use a different specification from the original one [38, 40] of
random switches, in which some procedural notion is required. Here we describe msw/2 as follows:

1. For each ground term i in msw(i,v) which is possible to appear in the program, a set of ground
terms Vi should be given by the user with multi-valued switch declaration, and also v ∈ Vi should
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hold. Such an msw(i,v) is hereafter called a switch instance, where i is the switch name, v the
outcome or the value, and Vi the outcome space of i. A collection of msw(i,·) forms switch i.

2. For a switch i, whose outcome space is Vi = {v1, . . . , vk} (k ≥ 1), one of the ground atoms
msw(i,v1), . . . , msw(i,vk) is exclusively true at the same position of a proof tree, and

∑
v∈Vi

θi,v =

1 holds, where θi,v is the probability of msw(i,v) being true and is called a parameter of the pro-
gram. Intuitively, a logical variable V in a predicate call of msw(i,V) behaves as a random variable
which takes a value v from Vi with the probability θi,v.

3. The truth-values of switch instances at the different positions of a proof tree are independently
assigned. This means that the predicate calls of msw/2 behave independently of each other.

Hereafter, for understanding the third condition, it would be a help to introduce IDs which identify
positions in the proof tree,1 and then to associate each occurrence of switch instance with the ID of the
corresponding position. Then the switches at different positions will be syntactically different. The third
condition is referred to as the independence condition.

The probabilistic meaning of the modeling part can be understood in a bottom-up manner.2 Now, for
illustration, let us pick up again the blood type program:

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

First, one of msw(gene,X) instantiated with X = a, X = b or X = o (i.e. a random pick-up of a gene
X from the pool) becomes exclusively true, according to the probabilistic property of switches described
above. Then we associate the parameters of switches with gene frequencies, i.e. θgene,a = pa, θgene,b =
pb and θgene,o = po. Also in view of the independence of switches at different occurrences, the definition
of genotype/2 satisfies the random-mate assumption on genotypes, hence the probability of each is a
product of two gene frequencies. In the body of bloodtype/1’s definition, one of genotype(X,Y)
with X = a,b and o, and Y = a,b and o becomes exclusive, and hence the different instances of the
clause body become exclusively true. We can also see the second conjunct makes a correct many-to-one
mapping from genotypes to phenotypes. Therefore we can say that one of bloodtype(P) with P = a,
P = b, P = o and P = ab becomes exclusively true with probability PA, PB, PO, and PAB, respectively. In
addition, from the exclusiveness discussed above, each of logical variables X and Y in genotype(X,Y)
behaves just like a random variable that takes a gene as its value, whereas P in bloodtype(P) behaves
like a random variable that takes a phenotype.

In PRISM, it would be easier, and so is recommended, to write a program in a top-down (conse-
quently, a generative) manner. On the other hand, sometimes it is also crucial to inspect the program’s
probabilistic meaning in a bottom-up manner, as shown above.

1 In old SICStus Prolog versions, PRISM uses msw(i,n,v) where the users need to explicitly specify n, the ID of an indepen-
dent choice by the switch. This definition is important to give a declarative semantics to programs, and hence the theoretical papers
on PRISM still use msw/3.

2 The discussion in this section should be considerably rough. For the readers interested in the distribution semantics, the formal
semantics of PRISM, please consult [35, 40, 43].
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2.3 Probabilistic inferences
Before proceeding to the further details of the PRISM language, it would be worth listing what we can
do with this language. First let Pθ(·) be the probability distribution specified by the program, under the
parameters θ of switches buried in the program. Then, in the PRISM programming system, the following
five types of probabilistic inferences are available:

Sampling (§4.2):
Given a goal G of a probabilistic predicate, return the answer substitution σ with the probability

Pθ(Gσ), or fail with the probability that ∃G is false.

Probability calculation (§4.3):
Given a goal G of a probabilistic predicate, compute Pθ(G).

Viterbi computation (§4.5):
Given a goal G of a probabilistic predicate, find E∗ = argmaxE∈{E1,...,EK }Pθ(E), where E1, . . . , EK

are the explanations for G such that G ⇔ E1 ∨ · · · ∨ EK and each Ek is a conjunction of switch
instances.

Hindsight computation (§4.6):
Given a goal G of a probabilistic predicate, compute Pθ(G′) or Pθ(G′ | G) for each subgoal G′ of

G.

Parameter learning (§4.7):
Given a bag of observed goals {G1,G2, . . . ,GT } of probabilistic predicates (i.e. training data), get

the parameters θ of switches which maximizes the likelihood
∏

t Pθ(Gt).

The first inference task works with an execution style called the sampling execution (§2.4.1), and the rest
utilize the explanation search (§2.4.2). For HMMs, the former execution style simulates the behavior of
an HMM as a string generator (i.e. data sampler), and the latter simulates the behavior as an acceptor or
a recognizer. For more details including their variations, please visit the corresponding sections.

2.4 Modeling part
We have seen a couple of examples of the modeling part (sections in Chapter 1 and §2.2). One interesting
feature of PRISM is that we can (or we should) write models as executable. For various probabilistic
inferences, there are two underlying execution styles called sampling execution and explanation search.
So it is expected for users to write the modeling part so that it can work in these two execution styles. As
far as we understand these two execution styles, it is allowed to write disjunctions (‘;’), the cut symbols
(‘!’), or the if-then (‘->’) statements in a clause body.

In addition, for efficient execution of models, the system assumes that the model follows several
conditions.3 However, it is often difficult for the system to check these conditions, and hence it is required
to write carefully programs to satisfy the conditions (otherwise some unexpected behavior arises).

In the rest of this section, we first explore two underlying execution styles for probabilistic inferences,
and then make some advanced discussions concerning to parameter learning. Finally we summarize the
conditions on the modeling part to be satisfied.

3 For the theoretical details, please see [40].
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2.4.1 Sampling execution
Sampling execution is the underlying execution style for a sampling task (§2.3, §4.2). In the literature
of Bayesian networks, this style is sometimes called forward sampling. In the recent versions, sampling
execution becomes easier to understand. That is, the system only makes a top-down execution like
Prolog, and determines the value v of msw(i,v) on the fly according to the parameters {θi,v}. A sampling
execution of probabilistic goal4 G is invoked by:5

?- sample(G).

Internally, msw/2 for sampling execution is essentially defined as follows:6

msw(I,V):-
get_values1(I,Values),
$get_probs(I,Probs),
$choose(Values,Probs,V).

In the definition above, get_values1(I,Values) is declared as a multi-valued switch declaration by
the user, and I should be a ground term. Then Values, a list of ground terms, will be returned based on
the declaration. On the other hand, $get_probs(I,Probs) returns Probs which is a list of switch I’s
parameters, and $choose(Values,Probs,V) returns V randomly from Values according to the proba-
bilities Probs. Also note that none of get_values1/2, $get_probs/2 and $choose/3 is back-
trackable.7

One typical trap in sampling execution is the independence among switches. In the previous papers,
the authors often use a blood type program similar to the one below, instead of the one illustrated in this
manual:

bloodtype(a) :- (genotype(a,a) ; genotype(a,o) ; genotype(o,a)).
bloodtype(b) :- (genotype(b,b) ; genotype(b,o) ; genotype(o,b)).
bloodtype(o) :- genotype(o,o).
bloodtype(ab):- (genotype(a,b) ; genotype(b,a)).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

With this program, the following query for sampling execution sometimes fails:

?- sample(bloodtype(X)).

This is because there is a case that all predicate calls genotype(a,a), genotype(a,o), . . . , and
genotype(b,a) in the bloodtype/1’s definition independently fail, without sharing the results of
sampling msw/2. The difference between the program above and the blood type programs in the previous
papers is the use of msw/3, which can share the sampling results by referring to their second arguments.
For sampling execution with msw/2, we need to write a program in a purely generative manner: once
we get a result of a switch sampling, the result should be passed through the predicate arguments to the
predicate call which requires it as input.

4 A probabilistic goal is a goal whose predicate is probabilistic.
5 For ease of programming, it is also allowed to run G directly just like Prolog:

?- G.

6 Note that the predicates in the clause body are introduced for illustration — in the actual implementation, they are more
complicatedly defined with different predicate names.

7 In version 2.0.1, new built-in predicates soft_msw/2 and b_msw/2 for backtrackable sampling execution of random
switches are introduced (see §4.1.11 for details).
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2.4.2 Explanation search
Explanation search works as an underlying subroutine of built-in predicates for probabilistic inference
such as probability calculation (§4.3), Viterbi computation (§4.5), hindsight computation (§4.6) and pa-
rameter learning (§4.7).8 To simulate only explanation search, we can use the built-ins probf/1-2
(§4.4). In this section, we describe the explanation search by defining several terminologies.

First, in PRISM, an explanation for a probabilistic goal G is a conjunction E of the ground switch
instances, which occurs in a derivation path of a sampling execution for G. In the blood type program,
for example, one possible explanation of goal bloodtype(a) is:

msw(gene,a) ∧ msw(gene,a).

(if we know a person’s blood type is A, one possibility is that he inherits two A genes from both par-
ents.) This corresponds to a phenomenon that we will get bloodtype(a) as a solution of a sampling
execution of bloodtype(X) by having msw(gene,a) twice. Each of two msw(gene,a)s above
indicates an individual gene inheritance from one of the parents, so they should not be suppressed (in
other words, they appear at different positions in a proof tree; see the discussion in §2.2).

Basically we can write the modeling part, keeping in mind that an explanation search finds all pos-
sible explanations for a given goal by a failure-driven loop [47]. For bloodtype(a), we have three
explanations:

msw(gene,a) ∧ msw(gene,a),
msw(gene,a) ∧ msw(gene,o),
msw(gene,o) ∧ msw(gene,a).

Also please note here that the last two explanations correspond to different derivation paths, and so
should not be suppressed. To be more specific, as mentioned in §2.2, this would be understood that,
by associating switches with IDs of the positions in the proof tree, they are probabilistically exclusive.
In PRISM, for the explanations E1, E2, . . . , Ek for a goal G, we assume that k is finite (the finiteness
condition), and G ⇔ E1 ∨ E2 ∨ . . . ∨ Ek.

In a probabilistic context, an explanation E is a conjunction of independent switch instances, and
hence the probability of E is the product of the probabilities of switch instances in E. Also, if we assume
that possible explanations for any goal are all exclusive (i.e. the program satisfies the exclusiveness con-
dition), the probability of a probabilistic goal G is the sum of probabilities of the explanations for G. For
some probabilistic inference or learning given a goal G, the system makes an explanation search for G in
advance of numerical computations.

Unfortunately, it is easily seen that, in general, the number of explanations for a goal can be exponen-
tial depending on the complexity of the model or the given goal (input). To compress these explanations
and make them manageable, the system adopts tabling, or more specifically linear tabling [50], for ex-
planation search. In tabling, every solution of a predicate call is stored into the solution table, and once
we have all solutions for the predicate call, the stored solutions are used for the later calls. After the
explanation search by tabling, the stored solutions are converted to a data structure called explanation
graphs, and then the system performs probabilistic computation on these graphs. Furthermore, expla-
nation graphs can be seen as AND/OR graphs consisting of propositional (i.e. ground or existentially
quantified) formulas, and tabling itself can be understood as a kind of propositionalization procedure in
that it receives first-order expressions (i.e. a PRISM program) and observed goals as input, and generates
as output propositional AND/OR graphs that explain observed goals.

For example, let us consider the HMM program in §1.3, with the string length being changed to 3. In
this program, we have the following 16 explanations9 for G = hmm([a,b,b]):

8 The summary of these inferences is given in §2.3
9 Our HMM program can be said as redundant since we distinguish the explanations by the last state transition which do not

contribute to the final output. A more optimized one should have only 8 (= 23) explanations.
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E1 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s0),

E2 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s1),

...

E16 = msw(init,s1) ∧ msw(out(s1),a) ∧ msw(tr(s1),s1) ∧
msw(out(s1),b) ∧ msw(tr(s1),s1) ∧ msw(out(s1),b) ∧ msw(tr(s1),s1).

Then we have G ⇔ E1 ∨ E2 ∨ · · · ∨ E16, and this iff-formula can be converted to a conjunction of iff-
formulas below, which can be derived from Clark’s completion [7] constructed from the definitions of
probabilistic predicates.

hmm([a,b,b]) ⇔ (msw(init,s0) ∧ hmm(1,3,s0,[a,b,b]))

∨ (msw(init,s1) ∧ hmm(1,3,s1,[a,b,b]))

hmm(1,3,s0,[a,b,b]) ⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[b,b]))

hmm(1,3,s1,[a,b,b]) ⇔ (msw(out(s1),a) ∧ msw(tr(s1),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(out(s1),a) ∧ msw(tr(s1),s1) ∧ hmm(2,3,s1,[b,b]))

hmm(2,3,s0,[b,b]) ⇔ (msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ hmm(3,3,s0,[b]))

∨ (msw(out(s0),b) ∧ msw(tr(s0),s1) ∧ hmm(3,3,s1,[b]))
...

hmm(3,3,s1,[b]) ⇔ (msw(out(s1),b) ∧ msw(tr(s1),s0))

∨ (msw(out(s1),b) ∧ msw(tr(s1),s1))

In this converted iff-formula, the ground atoms appearing on the left hand side are called subgoals.
Each conjunction on the right hand side of each iff-formula whose left hand side is G′ is called a sub-
explanation for G′. It is easy to see that a sub-explanation includes subgoals as well as switch instances,
and that G′ depends on the subgoals appearing in the sub-explanations for G′. It should be noticed that, to
make an exact probability computation by dynamic programming possible, the system assumes that these
dependencies cannot form a cycle. This condition is hereafter called the acyclicity condition. Assuming
this condition, we treat the converted iff-formulas as ordered.

As mentioned above, in explanation search, the system tries to find all possible explanations. With
tabling, each subgoal solved in the search process is stored into a table, together with its sub-explanation,
and after the search terminates, the explanation graphs are constructed from the stored information. Fi-
nally the routines for probabilistic inference including learning works on the explanation graphs. The
structure of explanation graphs are isomorphic to the ordered iff-formula described above. Some may
notice that a subgoal hmm(2,3,s0,[b,b]) is found in both sub-explanations for hmm(1,3,s0,
[a,b,b]) and hmm(1,3,s1,[a,b,b]). In this data structure, a substructure can be shared by the
upper substructures to avoid redundant computations. In other words, we can enjoy the efficiency which
comes from dynamic programming. The programming system provides the built-in probf/2 (§4.4) to
get an explanation graph as a Prolog term.
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Besides, at a more detailed level, we have a different definition of msw/2 for explanation search:10

msw(I,V):- get_values1(I,Values),member(V,Values).

Again, it is assumed that, in a predicate call of get_values1(I,Values), I is a ground term. One
may find that there are no probabilistic predicates in the body that work at random. This is because the
explanation search only aims to enumerate all possibilities that a given goal holds, and it requires no
probabilistic consideration.

2.4.3 Additional notes on writing the modeling part
� Two styles in writing the modeling part

It is crucial to notice that the blood type program shown in §2.4.1 can work for explanation search, while
it does not for sampling execution. On the other hand, the one shown in §1.2 works in both ways. It
would be fine for the modeling part to work for both sampling execution and explanation search, but if
it is difficult or inefficient, we need to write the modeling part in two styles — one is specialized for
sampling execution, and the other for explanation search.

� Representing dependent choices by independent random switches

In §2.2, it is mentioned that the random switches appearing at different positions in a proof tree behave
independently of each other. On the other hand, some may wonder how we can make the next choice
conditioned on the previous choice(s). To consider about this question, let us consider again the HMM
program picked up in §1.3:

values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Then, we get a trace of sampling execution (§2.4.1) of hmm(L) as shown in Figure 2.1 (see §3.6 for the
usage of the trace mode). From this trace and the definition of hmm/4, it can be seen that, in the first
recursive call of hmm/4, we use random switches out(S) and tr(S) where the current state S is the
outcome of the switch init. Also in the T -th recursive call (T > 2), random switches out(S) and
tr(S) are used, where S is chosen by the switch tr(S ′) used in the (T − 1)-th recursive call. For
instance, in the first recursive call of hmm/4 (beginning from Line 14 in Figure 2.1), we obtain s0 as
a sampled value of the switch tr(s1) (Lines 19–20). Then, in the second recursive call, letting the
current state S = s0, we use switches out(s0) and tr(s0), and get the value b and s0, respectively
(Lines 26–27 and Lines 28–29).

10 Note that the predicate name of msw/2 is different from the one in the actual implementation.
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1 ?- prism([consult],hmm).
2 :
3 ?- trace.
4 :
5 {Trace mode}
6 ?- sample(hmm(L)).
7
8 Call: (0) sample(hmm(_c60)) ?
9 Call: (2) hmm(_c60) ?

10 Call: (3) str_length(_d20) ?
11 Exit: (3) str_length(10) ?
12 Call: (4) msw(init,_d3c):_e34 ?
13 Exit: (4) msw(init,s1):0.5 ? · · · switch init takes a value s1
14 Call: (7) hmm(1,10,s1,_c60) ? · · · first recursive call of hmm/4
15 Call: (8) 1>10 ?
16 Fail: (8) 1>10 ?
17 Call: (9) msw(out(s1),_f24):_1060 ?
18 Exit: (9) msw(out(s1),a):0.5 ? · · · switch out(s1) takes a value a
19 Call: (12) msw(tr(s1),_f6c):_11bc ?
20 Exit: (12) msw(tr(s1),s0):0.5 ? · · · switch tr(s1) takes a value s0
21 Call: (15) _f88 is 1+1 ?
22 Exit: (15) 2 is 1+1 ?
23 Call: (16) hmm(2,10,s0,_f28) ? · · · second recursive call of hmm/4
24 Call: (17) 2>10 ?
25 Fail: (17) 2>10 ?
26 Call: (18) msw(out(s0),_12cc):_1408 ?
27 Exit: (18) msw(out(s0),b):0.5 ? · · · switch out(s0) takes a value b
28 Call: (21) msw(tr(s0),_1314):_1574 ?
29 Exit: (21) msw(tr(s0),s0):0.5 ? · · · switch tr(s0) takes a value s0
30 Call: (24) _1330 is 2+1 ?
31 Exit: (24) 3 is 2+1 ?
32 Call: (25) hmm(3,10,s0,_12d0) ? · · · third recursive call of hmm/4
33 Call: (26) 3>10 ?
34 Fail: (26) 3>10 ?
35 Call: (27) msw(out(s0),_1684):_17c0 ?
36 Exit: (27) msw(out(s0),a):0.5 ? · · · switch out(s0) takes a value b
37 Call: (30) msw(tr(s0),_16cc):_191c ?
38 Exit: (30) msw(tr(s0),s1):0.5 ? · · · switch tr(s0) takes a value s0
39 Call: (33) _16e8 is 3+1 ?
40 Exit: (33) 4 is 3+1 ?
41 Call: (34) hmm(4,10,s1,_1688) ? · · · fourth recursive call of hmm/4
42 Call: (35) 4>10 ?
43 :

Figure 2.1: Trace of a sampling execution of hmm(L).

We can say from the above example that, to make a choice C depending on the results R1, R2, . . . , RK

of previous choices, it is sufficient to use a switch named c(r1,r2,...,rK), where c is a functor name
that corresponds to the choice C and rk is a ground term that corresponds to the results Rk (1 ≤ k ≤ K).
Of course, the switch name can be an arbitrary ground term, e.g. choose(c,[r1,r2,...,rK]), as
long as it uniquely refers to the choice C that depends on R1, R2, . . . , RK . To summarize, in PRISM, it
is only allowed to use independent random switches, but we can represent dependent choices by using
different random switches according to the context, i.e. the results of some of the previous choices.

Keeping this discussion in mind, we can write a Mealy-type HMM,11 in which each output probability
depends on the state transition (i.e. both the current state and the next state), by modifying only a few
lines:

values(init,[s0,s1]).
values(out(_,_),[a,b]). % modified
values(tr(_),[s0,s1]).

11 On the other hand, the original HMM program picked up in §1.3 defines a Moore-type HMM, in which each output probability
depends only on the current status.
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hmm(L):-
str_length(N),
msw(init,S),
hmm(1,N,S,L).

hmm(T,N,_,[]):- T>N,!.
hmm(T,N,S,[Ob|Y]) :-

msw(tr(S),Next), % modified
msw(out(S,Next),Ob), % modified
T1 is T+1,
hmm(T1,N,Next,Y).

str_length(10).

Note here that, in the recursive clause of hmm/4, the switch out(S,Next) should be called after Next
is determined as a ground term s0 or s1 by the switch tr(S). The Bayesian network programs shown
in §7.3 are another typical example.

� Subgoal patterns to be tabled

For an efficient execution of explanation search, the argument patterns of the subgoals to be tabled
should be kept minimal. For example, let us consider the following HMM program where the predi-
cates hmm/{2,5} have an auxiliary argument denoted by Seq to record a sequence of state transitions:

hmm(L,Seq):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,Seq,L). % Start stochastic transition (loop)

hmm(T,N,_,[],[]):- T>N,!. % Stop the loop
hmm(T,N,S,[S|Seq],[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Seq,Y). % Go next (recursion)

This program works fine in sampling execution, as shown below, but a performance problem will arise in
explanation search, especially for longer strings.

?- sample(hmm(L,Seq)).
L = [b,b,a,b,a,a,a,a,b,b]
Seq = [s1,s0,s0,s1,s1,s0,s1,s0,s1,s0] ?

The reason is that the added argument increases the number of different subgoal patterns of hmm/5 and
prevents effective substructure sharing in tabling (§2.4.2). For instance, even for a short string [a,b,b],
we have many unshared iff-formulas as follows:

...

hmm(1,3,s0,[s0,s0,s0],[a,b,b])

⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[s0,s0],[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[s0,s0],[b,b]))
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hmm(1,3,s0,[s0,s0,s1],[a,b,b])

⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[s0,s1],[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[s0,s1],[b,b]))

hmm(1,3,s0,[s0,s1,s0],[a,b,b])

⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[s1,s0],[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[s1,s0],[b,b]))
...

We see from above that the added 4th argument of hmm/5 undesirably segments the subgoal hmm(1,3,
s0,[a,b,b]) in the iff-formulas shown in page 16. Therefore we should keep the subgoal patterns
minimal, by avoiding the use of auxiliary arguments like the 4th argument of hmm/5.

Fortunately, even when removing such auxiliary arguments, the patterns of the subgoals or the random
switches in an explanation have sufficiently rich information in most cases. For example, in the HMM
program in §1.3, the following utility predicate viterbi_states/2 easily extracts a sequence of
state transitions from the most probable explanation obtained by a Viterbi inference:

viterbi_states(L,Seq):-
viterbif(hmm(L),_,E), % Get the most probable explanation E
viterbi_subgoals(E,Gs), % Extract the subgoals Gs from E
maplist(hmm(_,_,S,_),S,true,Gs,Seq).

% Extract the sequence Seq of the states appearing in Gs

where viterbif/3 (§4.5.1), viterbi_subgoals/2 (§4.5.2) and maplist/5 (§4.16) are the
built-in predicates of the programming system. We may run this utility predicate as follows:

?- viterbi_states([a,a,a,a,a,b,b,b,b,b],States).
States = [s0,s1,s0,s1,s0,s1,s0,s1,s0,s1,s0] ?

� Tabling strategy

As described before, the programming system runs linear tabling for explanation search, in which every
solution of a predicate call is stored into the solution table, and the stored solutions are consumed in later
calls. In linear tabling, two strategies have been proposed in the consumption of solutions. The lazy
strategy postpones the consumption of solutions until no solutions can be produced by the application of
the rules (the clauses with non-empty bodies), while the eager strategy puts priority on the consumption
of solutions over rule applications. Please consult [52] for a detailed description on these strategies. The
programming system adopts the lazy strategy since it is suitable for exhaustive search. On the other
hand, we need to note that, for example, the cut operator in “p(X),!,q(X)” does not work in the lazy
strategy in a usual sense, since the programming system will try to find all solutions for p(X) before
reaching the cut operator.

� Infinite terms

A known problem in the current programming system is that it immediately crashes when some tabled
goal contains an infinite Prolog term, such as the one created by X = [a|X]. To be more specific,
for such a case, a recursively defined hash function cannot terminate, and the depth of recursion easily
excesses the limit of the call stack. Like other Prolog systems, the programming system does not perform
occur check, so we should be sure that infinite terms do not appear in the program.
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2.4.4 Handling failures*
As previously mentioned, a PRISM program basically describes a probabilistic generation process of the
data at hand. On the other hand, there could be a case where failures may be caused in the process by
some constraints. In a probabilistic context, this implies that some probability mass is lost, and hence we
cannot directly apply a traditional learning algorithm which assumes the no-failure condition, i.e. there is
no failure in the generation process. However it is sometimes difficult to write a program without failures.
In such a case, the difficulty could be resolved by using a special learning routine.

In usual maximum likelihood (ML) estimation, we try to find the parameters θ that maximize the
likelihood

∏
t Pθ(Gt), the product of the probabilities of the observed data Gt being generated.12 Instead

of this, we exclude the probability mass which is lost by failures, and try to maximize
∏

t Pθ(Gt | succ),
the product of the conditional probabilities of the observed data being generated under the condition that
no failure arises (indicated by succ).

To be more specific, let us consider a program which considers the agreement in coin flipping.13 The
modeling part is written as follows:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

The predicate agree(A) means that two outcomes of flipping two coins meet as A, and that we fail to
observe any result when they differ. So this program violates the no-failure condition. On the other hand,
the predicate success/0 denotes the event succ above since it is equivalent to ∃X agree(X), i.e. we
have some observation. PRISM assumes that all possibilities in which a failure arises are denoted by a
predefined predicate failure/0. In this program, and probably in many cases, failure/0 can be
defined as a negation of success/0. However, in other cases, it is necessary to define failure/0
explicitly. Under this setting, the target of maximization for the system is rewritten as

∏
t Pθ(Gt | succ) =∏

t{Pθ(Gt)/Pθ(succ)} = ∏t{Pθ(Gt)/(1 − Pθ(fail))}, where fail is the event represented by failure/0,
i.e. indicates that some failure arises. Cussens’s failure-adjusted maximization (FAM) algorithm [12] is an
EM algorithm that solves this maximization, by considering the number of failures as hidden information.

It is important to notice that not/1 in the failure/0’s definition does not mean negation as fail-
ure (NAF).14 We cannot directly simulate this negation, and hence it is eliminated by First Order Com-
piler [34] when the program is loaded.15 The program above, excluding the declarations by values/2,
will be compiled as:

failure:- closure_success0(f0).
closure_success0(A):- closure_agree0(A).
closure_agree0(_):-
msw(coin(a),A),

12 We assume here that the propositional random variables corresponding to the data are independent and identically distributed
(i.i.d.).

13 This program comes from [45].
14 Please do not confuse it with not/1 provided by B-Prolog, which simulates negation as failure. From the theoretical view, it

is important to notice that PRISM allows general clauses, i.e. clauses that may contain negated atoms in the body.
15 More generally, First Order Compiler eliminates universally quantified implications, i.e. goals of the form ∀y(p(x, y) →

q(y, z)))
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msw(coin(b),B),
\+ A=B.

where \+/1 means negation as failure. To enable such a compilation, we use the predicate prismn/1,
not the usual one (i.e. prism/1). Then it is also required to invoke the learning command, adding a
special symbol failure to the list of observed goals. A detailed description for the usage is given in
§4.10, and a program example can be found in §7.6.

Table 2.1: The conditional probability table Pφ(G+|G) for the HMM program which satisfies the MAR
condition. The predicate name hmm is simply abbreviated to h. All logical variables are existentially
quantified.

G+ ∈ G+
G ∈ G h([X,Y]) h([X,X]) h([a,X]) h([b,X]) h([X,a]) h([X,b]) h([a,a]) h([a,b]) h([b,a]) h([b,b])

h([a,a]) p1 p2 p3 0 p5 0 p7 0 0 0
h([a,b]) p1 0 p3 0 0 p6 0 p8 0 0
h([b,a]) p1 0 0 p4 p5 0 0 0 p9 0
h([b,b]) p1 p2 0 p4 0 p6 0 0 0 p10

2.4.5 Learning from goals with logical variables*
In parameter learning, the system accepts observed goals with (existentially quantified) logical variables.
However, we need to be aware that it is justified under the condition called the missing-at-random (MAR)
condition, which is firstly addressed by Rubin [32]. The discussion made in this section can be gener-
alized to some cases where the sum of probabilities of observable goal patterns exceeds unity, but as a
typical case, we will concentrate on the case of observed goals with logical variables.

First, let G be a set of observable ground atoms, and G+ be a set of atoms in G or atoms with
existentially quantified logical variables, whose ground instances are in G (i.e. G ⊆ G+). Also let us
consider that the uniqueness condition holds with G (i.e.

∑
G∈G Pθ(G) = 1 for any θ). Furthermore, for

explanatory simplicity, we assume here that every atom in G has a positive probability. For example,
in the HMM program with the string length being 2, hmm([a,b]) is in G, and hmm([a,X]) in G+.
Here, it is easily seen that there is a many-to-many mapping on ground instantiation from G to G+, and
hence the sum of probabilities of goals in G+ can exceed unity.

For such a case, logical variables can be seen as a kind of missing values, and sometimes we assume
that there is a missing-data mechanism that lurks in our observation process where some part of data turns
to be missing. To be more specific, the missing-data mechanism is modeled as Pφ(G+|G), a conditional
distribution of final observations G+ ∈ G+ on events G ∈ G, which are fully informative but hidden from
us (φ are the distribution parameters). Trivially, Pφ(G+|G) = 0 holds where G is not the instance of G+.
Then we further assume the MAR condition and the parameter distinctness condition, respectively, as
follows:16

• For an actual observation G+ ∈ G+ and some φ, Pφ(G+|G1) = Pφ(G+|G2) holds for any ground
instances G1,G2 of G.

• φ is distinct from θ.17

16 The first sub-condition implies that Pφ(G+ |G) = Pφ(G+)/
∑

G′: G′ is an instance of G+ Pθ(G′) for any ground instance G of
G+ [19].

17 φ is said to be distinct from θ if the joint parameter space of θ and φ is the product of θ’s parameter space and φ’s parameter
space.

22



For the HMM program, the conditional probability table Pφ(G+|G) under the MAR condition is shown in
Table 2.1, where p1, p2, . . . , p10 (which form φ) need to be assigned so that

∑
G+ Pφ(G+|G) = 1 holds for

each G ∈ G. For example, we may have: p1 = 1/2, p2 = 0, p3 = p4 = · · · = p10 = 1/6.
As we have mentioned, in this situation, the logical variables can be seen as the missing part, and

one may find from Table 2.1 that the probability of G+ ∈ G+ only depends on the observed part, not on
the missing part18 in the case with G+. For example, we have a constant probability p3 for the different
instantiations of X in hmm([a,X]).

If the MAR condition holds, it is shown that the missing-data mechanism is ignorable in making
inferences for the model parameters θ (i.e. learning θ). The programming system blindly ignores the
missing-data mechanism, but under the MAR condition, learning θ based on the goals from G+ (goals
with logical variables) is justified. Otherwise, the missing-data mechanism is said to be non-ignorable,
and we may need to consider an explicit model of the observation process. One difficulty with the MAR
condition is its testability. For example, a recent work by Jaeger tackles with this problem [20].

2.4.6 Summary: modeling assumptions
For all efficient probability computations offered by the system to be realized, we have pointed out several
assumptions on the modeling part. In this section, let us summarize them as follows:

• Independence condition: the sampling results of the different switches are probabilistically inde-
pendent, and the sampling results of a switch with different trials (i.e. at different positions in a
proof tree) are also probabilistically independent.

• Finiteness condition: for any observable goal19 G, both the size of any explanation for G and the
number of explanations for G are finite.

• Exclusiveness condition: with any parameter settings, for any observable goal G, the explanations
for G are probabilistically exclusive to each other, and the sub-explanations for each subgoal of G
are also probabilistically exclusive to each other.

• Uniqueness condition: with any parameter settings, all observable goals are exclusive to each other,
and the sum of probabilities of all observable goals is equal to unity. For parameter learning, the
following two conditions form a relaxation of the uniqueness condition:

– Missing-at-random (MAR) condition: in the observation process for the data of interest, there
is a missing-data mechanism in which the probability of the data being generated does not
depend on its missing part.

– No-failure condition: for any observable goal G, the generation process for G (i.e. a sampling
execution of G) never fails.

• Acyclicity condition: for any observable goal G, there is no cyclic dependency with respect to the
calling relationship among the subgoals, which are found in a generation process for G.

It may look difficult to satisfy all the conditions above. But if we keep in mind to write terminating
programs in a generative fashion with care for the exclusiveness among disjunctive paths, these conditions

18 It should be noted that the original definition of the MAR condition [32] is made on a data matrix which has missing-data
cells. We can make a correspondence between our setting (the many-to-many mapping from G to G+) and such a data matrix, by
an encoding method briefly described in Section 4.1.1 of [14]. The MAR condition roughly defined in this section should rather be
called the coarsened-at-random (CAR) condition, a generalization of the MAR condition. There are several formal definitions on
the MAR/CAR condition, so it would be useful for the interested users to consult the papers in the literature ([19], for example).

19 Observable goals are the goals which can all potentially arise in the data. We can of course consider a countably infinite
number of observable goals.
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are likely to be satisfied. It can be seen in Chapter 7 that popular generative models including hidden
Markov models, probabilistic context-free grammars or Bayesian networks are written in this fashion.
If the program violates the no-failure condition, one possible solution is to utilize the system’s facility
described in §2.4.4. In addition, these conditions do not always have to be satisfied jointly. For example,
Viterbi computation (§2.3) does not require the exclusiveness condition.

Theoretically speaking, it is sometimes misunderstood and hence is desired to note that the distribu-
tion semantics [35, 40, 43] itself assumes none of the conditions above. We can say PRISM’s semantics
is just a restricted version of the distribution semantics, which is conscious of efficient probability com-
putation.

2.5 Utility part
As compared to the modeling part, the utility part is quite simple — it is just a usual Prolog program with
the system’s built-ins. It is also possible to write queries, each of which takes the form “:-Q.” These
queries are issued after the program is completely loaded.

2.6 Declarations
Declarations are made with several predefined predicates to give additional information to the system
— outcome spaces of switches (multi-valued switch declarations), the source of observed data (data file
declarations), tabled and non-tabled predicates (table declarations), and some other program files to be
included (inclusion declarations).

Since version 1.12, the target declaration (with target/1) is treated as obsolete, and hence has no
effect on the program. Also as will be mentioned in §2.6.1, the data file declaration is now preferred to
be replaced by an execution flag named data_source (see §4.7.3 or §4.13.2).

2.6.1 Data file declaration
A data file declaration takes the form:

data(Filename).

where Filename is the filename of observed data. As in Prolog, a filename must be an atomic symbol. On
the other hand, since version 1.12, the use of an execution flag (see §4.13 for handling execution flags)
named data_source (§4.13.2) is more preferred. By using this execution flag, we can switch the data
file on demand in the utility part, and can use the predicate data/1 for other purposes.

2.6.2 Multi-valued switch declarations
� Basic form

A multi-valued switch declaration basically takes the following form:

values(I,Values).

where I denotes a switch identifier and Values is the list of ground terms indicating the possible outcomes
(or the outcome space) of I. For example,

values(temperature,[high,medium,low]).
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declares that switch temperature has three possible outcomes: high, medium and low.
The first argument I in a switch declaration can be an arbitrary Prolog term. All switches that have

matching identifiers will have a declaration list of outcomes. If there are multiple declarations for a
switch, the first matching declaration is used. For instance, consider the declarations:

values(f(a,a),[1,2,3]).
values(f(X,X),[a,b]).
values(f(_,_),[x,y,z]).

Then, switch f(a,a) has the outcomes 1, 2 and 3, switch f(b,b) has the outcomes a and b, and
switch f(a,b) has the outcomes x, y and z.

Until version 1.12, values/2 has been treated just as a non-probabilistic clause which can be called
in the other part of the program (i.e. both the modeling part and the utility part). However, since version
2.0, each multi-valued switch declaration with values/2 is no more than a declaration and hence
cannot be called from any other part. Instead, a built-in predicate get_values/2 is available (see
§4.1.9 for details):

?- get_values(temperature,Values).

Values = [high,medium,low]

This change of specification was made to add flexibility to the multi-valued switch declarations for future
extensions. For backward compatibility, all appearances of values(I,Values) in the clause bodies in
the program are automatically replaced with get_values(I,Values) while the program loaded.

� On-demand specification of the outcome space

A multi-valued switch declaration can have a non-probabilistic body that dynamically generates a list of
outcomes (a list of ground terms) for the corresponding switch. For instance, in the following declaration,

values(s,Vals):-
findall([X,Y],(member(X,[1,2,3]),member(Y,[a,b])),Vals).

switch s has as outcomes the pairs of terms in which one from {1, 2, 3} and another from {a, b}. From
a viewpoint of efficiency, however, the above declaration would be time-consuming since the body of a
multi-valued switch declaration is evaluated at each time the corresponding msw/2 is called.20

There is a case where some switches have outcome spaces that dynamically change. Let us consider
a part of a program as follows:

:- dynamic s2_vals/1.

values(s2,Vs):- s2_vals(Vs). % Multi-valued switch declaration

s2_vals([a,b,c]).

change_values(Vs):- retract(s2_vals(_)), assert(s2_vals(Vs)).

In this program fragment, the outcome space of a switch s2 is specified by s2_vals/1, a user-defined
non-probabilistic predicate. Also it is easy to see that the outcome space of s2 are (indirectly) modified
by calling change_values(Vs), where Vs is a list of new outcomes. For such a case, the probability

20 Since version 2.0, it is not a good idea to specify values/2 as a tabled predicate.
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distributions (or parameters) of s2 maintained by the programming system can be inconsistent, and
should be problematic in many cases. By default, when some modification in the outcome space of a
switch is detected, the system automatically sets the default distribution to the switch (by set_sw/1;
§4.1.6), before invoking the routines that refer to the distributions of switches (e.g. sampling, probability
computations, get_sw/2 and so on).

On the other hand, the bodies of the multi-valued switch declarations should not include the predicate
calls that cause any side-effects, since the multi-valued switch declarations are frequently referred to
inside the programming system.

� Extended form

During versions 1.9 – 1.12, values_x/2-3 had been used as an extended form of values/2. In
version 2.0, on the other hand, multi-valued switch declarations were redesigned to import the flexibility
of values_x/2-3. For backward compatibility, values_x/2-3 are still accepted in version 2.0, but
are recommended to be renamed to values/2-3, respectively.

In values/2, we can write a multi-valued switch declaration which includes a range specification
‘Min-Max’, where Min and Max are integers and Min ≤ Max. For instance, the declaration

values(s,[1-10]).

is equivalent to

values(s,[1,2,3,4,5,6,7,8,9,10]).

Furthermore, we can specify two or more ranges in a list, and it is also possible to specify the skip number
N in the form @N suffixed to the range specification. For instance,

values(foo,[3,8,0-3@2,7-20@5]).

is the same as values(foo,[3,8,0,2,7,12,17]).21 Inside the system, while the program loaded,
values/2 including ground range specifications will be translated to values/2 with the correspond-
ing expanded values, like above, by the built-in expand_values/2 (§4.1.4). On the other hand,
the second argument of values/2 (i.e. the outcome list) are not ground, the clauses in the form
“values(Sw,Values):- Body” will be translated into:

values(Sw,Values1):- Body,expand_values(Values,Values1).

Note, on the other hand, that some exception will occur if the program includes the clauses “values(Sw,
Values)” where the second argument Values is not ground. Now we are in a position to have parameter-
ized multi-valued switch declarations:

num_class(20).
values(class,[1-X]):- num_class(X).

In addition, using values/3, we can set/fix parameters of switches with ground names after the
program loaded. Please note however that, for the declarations of switches with non-ground names, the
parameters can neither be set nor fixed. Similarly to values/2, the range specifications in values/3
will be also translated to values/3 with the corresponding expanded values. For the detailed descrip-
tions on setting and fixing switch parameters, please visit §4.1.6 and §4.1.7, respectively. Now let us
consider the examples:

21 Currently, the system neither considers sorting nor deletion of duplicate values on the expanded values.
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values(foo(0),[1,2,3],fix@[0.2,0.7,0.1]).
values(bar,[1,2,3],set@[0.2,0.7,0.1]).
values(baz(a,b),[1,2,3],[0.2,0.7,0.1]).
values(u_sw,[1,2,3],uniform).

In the first case, we declare a switch foo(0) whose values are 1, 2, and 3 and whose parameters
are fixed to 0.2, 0.7, and 0.1 respectively. In the second case, we declare a switch bar, only setting
parameters, not fixing parameters. In the third case in which set@ or fix@ prefixes are omitted, the
parameters will not be fixed (i.e. the default is set@). As in the last case, we can set/fix the parameters
in a distribution form.

Inside the system, to set/fix parameters, set_sw/2 (§4.1.6) or fix_sw/2 (§4.1.7) will be invoked
while the program loaded. In this sense, the third argument of values/3 can be seen as a built-in direc-
tive. Note here that this directive will not be executed if the first and the third arguments of values/3
include logical variables. Also note that, for each declaration with values/3, the directive is executed
only once while the program loaded — not every time the declared switch is used in the program, and
thus, for the switches whose outcome spaces are dynamically changed, values/3 may not work as
expected.

Furthermore, we can configure the pseudo counts of switches as well. For the switches specified with
set_d@ (resp. fix_d@), the programming system will call set_sw_d/2 (resp. fix_sw_d/2) while
the program loaded. Similarly, for the switches specified with set_a@ (resp. fix_a@), the program-
ming system will call set_sw_a/2 (resp. fix_sw_a/2). The modifier d@ (resp. a@) can be used as
an abbreviation of set_d@ (resp. set_a@). For example, we may declare:

values(foo(0),[1,2,3],fix_d@[1.0,2.0,0.5]).
values(bar,[1,2,3],set_d@[1.0,2.0,0.5]).
values(baz(a,b),[1,2,3],d@[1.0,2.0,0.5]).
values(u_sw,[1,2,3],d@0.5).

Furthermore, it is possible to execute two or more directives simultaneously by connecting with ’,’/2
(the latter directives can overwrite the formers):

values(u_sw,[1,2,3],(uniform,d@0.5)).

For backward compatibility, the modifiers h@, set_h@ and fix_h@ are available as the aliases of d@,
set_d@ and fix_d@, respectively.

2.6.3 Table declarations
In PRISM, all probabilistic predicates are tabled by default as long as a program is compiled (§3.3). On
the other hand, the user can declare which predicates are to be tabled. The statement

:- p_table p/n.

declares that the probabilistic predicate p/n is tabled, where p is the predicate name and n is the arity. In
this case, please note that all other probabilistic predicates that are not declared will not be tabled.

The user can also declare predicates that need not be tabled by using the statement:

:- p_not_table p/n.

The declarations p_table and p_not_table cannot co-exist in a program. Once a program contains
a p_not_table declaration, all the probabilistic predicates that do not occur in any p_not_table
declaration are assumed to be tabled. p_not_table seems useful in the following cases:
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• It is obviously inefficient (especially in space) to store the solutions for probabilistic but determin-
istic predicates (i.e. the predicates which only call probabilistic predicates deterministically). So
it is recommended to use the p_not_table declarations for such predicates, as long as they are
not referred to as subgoals.22

• The solutions for tabled predicates will appear as subgoals in the explanation graphs, and we
can handle such explanation graphs in various ways (by probf/2 or viterbif/3, for exam-
ple). If we wish to make such explanation graphs simple and readable, it might be useful to use
p_not_table for the predicates which are not important to understand the explanation graphs.
Of course there is a trade-off between the readability of such explanation graphs and the efficiency
in computation.

It should be noted that, when a program is loaded with the consult option (§3.3), none of probabilistic
predicates will be tabled regardless of the table declarations.23

For non-probabilistic predicates, B-Prolog’s table declaration is available (see B-Prolog’s manual for
details):

:- table p/n.

2.6.4 Inclusion declarations
If probabilistic predicates are stored in several files, then all these files must be included by using the
directive :- include(File) in the main file. If the filename of a PRISM program includes the dot
symbol, it should be enclosed by the single quotation mark like :- include(’foo.psm’).

2.6.5 Mode declarations
The mode declarations supported by B-Prolog also work for both probabilistic predicates and non-
probabilistic predicates in PRISM. For a detailed description, please consult the user’s manual of B-
Prolog.

2.6.6 Declaration related to debugging
With the following declaration, the programming system strips write_call/1-2, a debugging facility
for logging particular predicate calls, at the compile time (see §3.6.4 for details).

:- disable_write_call.

22 In hindsight computation (§4.6) or in extracting explanations graphs (§4.4), we often need to refer to some particular subgoals
explicitly. In such cases, we cannot apply p_not_table to the predicates of these subgoals.

23This restriction is mainly due to implementational reasons.
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Chapter 3

PRISM Programming System

3.1 Installing PRISM
PRISM is implemented on top of B-Prolog. The release package contains all standard functionalities of
B-Prolog, and therefore it is unnecessary to install B-Prolog separately.

3.1.1 Windows
To install PRISM on Windows, you need to make the following steps:

1. Download the package prism201_win.zip.

2. Unzip the downloaded package under C:\ .

3. Append C:\prism\bin to the environment variable PATH so PRISM can be started at every
working folder.1

3.1.2 Linux
A single united package prism201_linux.tar.gz is provided for x86-based Linux systems. The
binaries are expected to work on the systems with glibc 2.3 or higher.2 Typical steps for installation are
as follows:

1. Download the package prism201_linux.tar.gz into your home directory.

2. Unpack the downloaded package using the tar command.

3. Append $HOME/prism/bin to the environment variable PATH so that PRISM can be started
under any working directory.3

Internally, the package contains both binaries for 32-bit and 64-bit systems. The start-up commands
(prism, upprism and mpprism) automatically choose a binary suitable for your environment.

1 If you have installed PRISM in a folder other than C:\, you need to change the path accordingly. In the case of Windows
98/Me, you also have to edit the batch file prism.bat in the bin folder.

2Note that the utility of parallel EM learning has more requirements on the environments; see §6.2 for details.
3If you have installed PRISM in a directory other than your home directory, you need to change the path accordingly.
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3.1.3 Mac OS X
The package prism201_macx.tar.gz is provided for Mac OS X and contains a universal binary for
PowerPC and Intel processors. To install the package, please follow the steps for Linux (§3.1.2). Please
note that we have not tested the Mac OS X package well, since our test environment for Mac OS X is
rather limited.

3.2 Entering and quitting PRISM
You need to open a command terminal first before entering PRISM. To do so on Windows, open the Start
menu, then select: All Programs → Accessories → Command Prompt. On Linux and Mac OS X, find
and start an application named Terminal.

To enter PRISM, type

prism

at the command prompt. Once the system is started, it responds with the prompt ‘| ?-’ (in this manual,
we simply write ‘?-’ instead) and is ready to accept Prolog queries.

To quit the system, use the query:

?- halt.

or simply enter ˆd (Control-d) when the cursor is located at an empty line. We can confirm the version
of the programming system by typing get_version(Version) or print_version [no args] .

3.3 Loading PRISM programs
The command prism(File) compiles the program in File and loads the binary code into the system.
For example, suppose ‘coin.psm’ stores a PRISM program, then the command

?- prism(coin).

compiles the program into a byte code program ‘coin.psm.out’ and loads ‘coin.psm.out’ into
the system.

A program may be stored in multiple files, but only the main file may be loaded. In the main file,
all the files in the program that contain probabilistic predicates must be included by using the directive
‘:- include(FileName)’ (§2.6.4). In this way, the system’s compiler will access all the probabilistic
predicates when the program is loaded. Standard Prolog program files that do not contain probabilistic
predicates can be compiled and loaded separately by using compile/1 and load/1 commands of
B-Prolog.

The command prism(Options,File) loads the PRISM program stored in File into the system under
the control of the options given in a list Options. If the file has the extension name ‘.psm’, then only the
main file name needs to be given. The following options are allowed:

• compile — Load the program after it is compiled (default).

• consult — Load the program without compilation. This option must be specified if the program
is to be debugged. Note that, when this option is specified, probabilistic predicates will not be
tabled at all (see also §2.6.3).
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• load — Load the (compiled) binary code program with the suffix .psm.out . This option
enables us to save the compilation time. To load a program containing probabilistic predicates, it
is highly recommended to use this option rather than direct use of load/1 (B-Prolog’s built-in)4

• v — Monitor the learning process.

• nv — Do not monitor the learning process (default).

For example, by ?- prism([consult],foo), we can load the program without compilation.
In addition, we can specify the values of execution flags (§4.13) as loading options, each takes the

form ‘Flagname=Value’. For example, if we want to set a value on to the log_scale flag, add log_
scale=on to Options. The options ‘v’ and ‘nv’ can also be specified by ‘verb=on’ and ‘verb=off’,
respectively. Even if we have a query like ‘:-set_prism_flag(Flagname,Value0)’ in the program,
this setting can be overwritten by the setting in Options. The command prism(File) described above
is the same as prism([],File), which means that the program is loaded with the default options and
no additional flag settings.

3.4 Configuring the sizes of memory areas*
B-Prolog, the base system of the PRISM programming system, has four memory areas: program area,
control stack + heap, trail stack and table area. These areas are automatically expanded on demand, so
there is no need to specify the sizes of memory areas manually.

If you already know the memory sizes used by your program, you can specify the sizes of initial
memory areas by modifying the corresponding values in the start-up commands prism (a shell script on
Linux) and prism.bat (a batch file on Windows), or by specifying command line options -s (control
stack + heap), -b (trail stack), -t (table area) and -p (program area). For example,

prism -s 8000000

starts the programming system with 8 megawords (32 megabytes on 32-bit environments, 64 megabytes
on 64-bit environments) allocated to the control stack + heap area. B-Prolog’s built-in statistics/0
will show the allocated sizes of these memory areas.

3.5 Running PRISM programs
The command prism_help/0 displays the usage of the basic built-ins in the programming system
(Figure 3.1). The details of these built-ins are described in Chapter 4.

As mentioned before, the modeling part of a PRISM program can be executed in two different styles,
namely sampling execution (§2.4.1) and explanation search (§2.4.2). The system is in sampling execution
if it is given a probabilistic goal or sample(Goal) (§4.2) as a top goal. In sampling execution, a goal
may give different results depending on the outcomes of the switches. On the other hand, an explanation
search will be invoked in advance of numerical computations in learning (with learn/0 or learn/1;
§4.7), probability calculation (with prob/2 and so on; §4.3), Viterbi computation (with viterbif/3
and so on; §4.5), and hindsight computation (with hindsight/3 and so on; §4.6). probf/2 or its
variation (§4.4) only makes an explanation search and outputs explanation graphs, the intermediate data
structure used in the numerical computations above.

In addition, there are miscellaneous built-in predicates which handle switch parameters (set_sw/2
and so on; §4.1) or the flags for various settings of the system (set_prism_flags/2 and get_
prism_flags/2; §4.13).

4 On the other hand, we can load the compiled binary code of a usual (i.e. non-probabilistic) Prolog program by load/1.
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prism(File) -- compile and load a program
prism(Opts,File) -- compile and load a program

msw(I,V) -- the switch I randomly outputs the value V

learn(Gs) -- learn the parameters
learn -- learn the parameters from data_source
sample(Goal) -- get a sampled instance of Goal
prob(Goal,P) -- compute a probability
probf(Goal,F) -- compute an explanation graph
viterbi(Goal,P) -- compute a Viterbi probability
viterbif(Goal,P,F) -- compute a Viterbi probability with its explanation
hindsight(Goal,Patt,Ps) -- compute hindsight probabilities

set_sw(Sw,Params) -- set parameters of a switch
get_sw(Sw,SwInfo) -- get information of a switch
set_prism_flag(Flg,Val) -- set a new value to a flag
get_prism_flag(Flg,Val) -- get the current value of a flag

Figure 3.1: The output of prism_help/0.

3.6 Debugging PRISM programs
The programming system provides a couple of ways to debug the program — viewing explanations,
tracing the program, and logging predicate calls. The user can choose one of these debugging meth-
ods according to the purpose. Also, in advance of debugging, it would be helpful to check the basic
information about the program.

3.6.1 Basic program information
After a program loaded, we can get the basic information about the program by the following built-ins:

• show_values/0 displays the outcomes of the switches registered (§4.1.3) at the moment.

• show_prob_preds/0 displays the list of probabilistic predicates.

• show_tabled_preds/0 displays the list of tabled predicates.

• is_prob_pred(F/N) or is_prob_pred(F,N) succeeds when the predicate F/N is a user-
defined probabilistic predicate.5

• is_tabled_pred(F/N) or is_tabled_pred(F,N) succeeds when the predicate F/N is a
tabled probabilistic predicate.

3.6.2 Viewing explanations
As described above, probabilistic inferences with some given goal G are made on the explanations for
G. So probf/1-2 (§4.4) should be the first choice as a static debugging tool at symbolic level since
they are designed to output all explanations for G. Furthermore, since version 1.12, we can check the

5 On the other hand, is_prob_pred/1-2 fail for msw/2, since it is a built-in probabilistic predicate.
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explanations numerically by using the built-in predicates that output the explanations with the inside,
outside and Viterbi probabilities (probfi/1-2, probfo/1-2 and probfv/1-2, respectively; see
§4.4.4 for details).

3.6.3 Tracing the program
Furthermore, programs can be executed in the trace mode. The command trace/0 switches the ex-
ecution mode to the trace mode, and the command notrace/0 switches the execution mode back to
the usual mode. In the trace mode, the execution steps of programs loaded with the option consult
(§3.3) can be traced. To trace part of the execution of a program, use spy/1 to set spy points, i.e. “?-
spy(Atom/Arity).” The spy points can be removed by “?- nospy.” To remove only one spy point,
use “?- nospy(Atom/Arity).”

In (forward) sampling, the trace of a program looks the same as that of a normal Prolog program
except that for the built-in msw(I,V) the probability of the outcome V is shown. For example, the
following trace steps show that the outcome of the trial of the switch is ‘head’, which has probability
0.5.

Call: (7) msw(coin,_580ebc):_580ff8 ?
Exit: (7) msw(coin,head):0.5 ?

On the other hand, the trace mode does not work in explanatin search, since in the current implementation,
the built-in predicates such as prob/1-2, probf/1-2, viterbif/{1,3} and so on require a tabled
probabilistic goal as input, while all user-defined probabilistic predicates will not be tabled with the
consult option. This limitation needs to be removed in the future release.

3.6.4 Logging predicate calls
In our experience, it is often difficult to identify subgoals that cause unexpected failures. Although the
trace mode (§3.6.3) may help us find the culprits, it is only usable when the target program is loaded with
the consult option. Also, the tracer displays all calls of any predicates (or the spied predicates in the
case of using spy/1), so it might be uneasy to see the behavior of particular calls. Moreover, it is not
feasible to follow the explanation search via linear tabling.

From this background, since version 1.12, the built-in predicates write_call/1-2 are provided
as a new debugging aid. These predicates take a subgoal (say, a watched subgoal) as their argument, and
call the subgoal with displaying the execution message of the subgoal at the events, namely, the entrance,
success, reentrance and failure. The execution message shows the type of event and the watched subgoal
to help us find the unexpected behavior.

� Basic usage

write_call(Goal) calls Goal with displaying the execution message at all events (i.e. the entrance,
success, reentrance and failure of the subgoal) in the default setting, or at the events specified in the
write_call_events flag (§4.13.2). write_call(Opts,Goal) calls Goal with displaying a ac-
cording to the specified options Opts, which is a list of zero or more of the following Prolog terms:

• call, exit, redo, fail, exit+fail, all, etc. — specify the events at which the message
is displayed. call, exit, redo and fail denote the entrance, success, reentrance and failure
of the subgoal respectively. It is also possible to specify multiple events by connecting them with
a plus sign (‘+’), such as exit+fail meaning that the message should be displayed at the return
(both successful and failed) from the subgoal. all is equivalent to call+exit+redo+fail
and thus denotes all of the four events. In the case of no events specified, the predicate follows the
write_call_events flag.
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• indent(N) — indent the message by N spaces (by default, N = 0).

• marker(Term) — display the message with Term as the marker.

Note here that Goal is not allowed to contain any control constructs other than conjunctions (‘,’), such
as cuts (‘!’), disjunctions (‘;’), negations (‘\+’) and conditionals (‘->’). A call of the write_call
predicate succeeds when (and only when) the watched subgoal succeeds. Here are a couple of examples:

?- write_call(member(X,[1,2])).

[Call] member(_830,[1,2])
[Exit] member(1,[1,2])
X = 1 ?;
[Redo] member(1,[1,2])
[Exit] member(2,[1,2])
X = 2 ?;
[Redo] member(2,[1,2])
[Fail] member(_830,[1,2])

no

?- write_call([exit+fail],member(X,[1,2])).

[Exit] member(1,[1,2])
X = 1 ?;
[Exit] member(2,[1,2])
X = 2 ?;
[Fail] member(_878,[1,2])

no

?- write_call([indent(4),marker(test)],(write(hello),nl)).

[Call:test] write(hello),nl
hello

[Exit:test] write(hello),nl

yes

� Short forms

As a syntactic sugar, the programming system also accepts the following short forms:

• (?? Goal) is equivalent to write_call(Goal).

• (??* Goal) is equivalent to write_call([all],Goal).

• (??> Goal) is equivalent to write_call([call],Goal).

• (??< Goal) is equivalent to write_call([exit+fail],Goal).

• (??+ Goal) is equivalent to write_call([exit],Goal).

• (??- Goal) is equivalent to write_call([fail],Goal).
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Usually, the surrounding parentheses are not required, and thus we can use these forms just by adding
‘??’ (or ‘??*’ etc.) at the left of the watched subgoals.6

� Use in programs

A typical usage of write_call/1-2 should be to embed them in the program. write_call(Goal)
appearing in the program is the same as Goal except that the execution messages are displayed as indi-
cated. For example, a recursive clause

hmm(T,N,S,[Ob|Y]) :-
msw(out(S),Ob), msw(tr(S),Next), T1 is T+1,
write_call([call],hmm(T1,N,Next,Y)).

or equivalently,

hmm(T,N,S,[Ob|Y]) :-
msw(out(S),Ob), msw(tr(S),Next), T1 is T+1,
??> hmm(T1,N,Next,Y).

has a watched subgoal hmm(T1,N,Next,Y), and then we can check the patterns of arguments of this
recursive call. On the other hand, note that we may have a flood of execution messages when performing
a huge explanation search.

� Disabling logging

The following declaration will completely strip the write_call predicates in a program, that is, every
occurrence of write_call(G) in the program will be replaced with G at compilation time:

:- disable_write_call.

For instance, the above recursive clause for hmm/4 will be compiled as if it were defined as:

hmm(T,N,S,[Ob|Y]) :-
msw(out(S),Ob), msw(tr(S),Next), T1 is T+1,
hmm(T1,N,Next,Y).

Similarly, at runtime, the following flag setting disables the write_call predicates:

?- set_prism_flag(write_call_events,off).

3.7 Batch execution*
The released package provides additional commands for batch execution. To enable batch execution, we
need the following two steps:

• Add a query we attempt to run as a batch execution to the program.

• Run the command upprism at the shell prompt (Linux) or the command prompt (Windows),
instead of prism.

6 These symbols are declared as fx-type operators with the preference of 950, which means to be lower than a conjunction (‘,’)
and higher than a negation (‘\+’).
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The query for batch execution is specified in the body of prism_main/0-1. For example, for
a simple learning session, we may add the following definition of prism_main/0 to the program
foo.psm:

prism_main:-
random_set_seed(5893421),
get_data_from_somewhere(Gs), % user-defined predicate
learn(Gs).

Then we run upprism specifying the program name:

upprism foo

at the shell prompt (Linux) or the command prompt (Windows). If we want to pass arguments to
upprism, it is needed to define prism_main/1 instead of prism_main/0. For example, let us
introduce two arguments, where the first is a seed for random numbers and the second is the data size.
The corresponding batch clause could be as follows:

prism_main([Arg1,Arg2]):-
parse_atom(Arg1,Seed), % parse_atom/2 is provided by B-Prolog
parse_atom(Arg2,N),
random_set_seed(Seed),
get_data_from_somewhere(N,Gs), % assume that we’ll get N data
learn(Gs). % as Gs here

The command arguments will be passed to prism_main/1 as a list of atoms. Hence it is important to
note that to pass integers, we need to parse the corresponding atoms in advance, that is, we need to get
an integer 5893421 from an atom ’5893421’. The parsing is done by parse_atom/2, a built-in
provided by B-Prolog. After this setting, we can conduct a batch execution as follows:

upprism foo 5893421 1000

If both prism_main/0 and prism_main/1 co-exist in one program, upprism will try to run only
prism_main/1. For such a program, if we invoke upprism with no command-line arguments,
prism_main([]) will be called, and so an unexpected behavior is likely to be caused. An additional
setting like below might be useful:

prism_main([]) :- prism_main.

Furthermore, upprism provides some variations in the file specification:7

• upprism prism:foo
This is the same as “upprism foo”, that is, the system will read a usual program file foo.psm

(which has no definition of the predicate failure/0).

• upprism prismn:foo
The system will read a failure program file foo.psm (which has a definition of failure/0; see
§4.10).8

• upprism load:foo
The system will read a (compiled) binary code file foo.psm.out . By this, we would save the

compilation time.

Moreover, mpprism is available as a batch command for parallel learning. Please consult Chapter 6 for
the detailed usage.

7 Some users may want to use ‘-g’ option introduced since B-Prolog 6.9. That is, we can run “prism foo.psm.out -g
’go’” to load the binary code ‘foo.psm.out’ and then to execute a query “go”.

8 This is a replacement for the command upprismn, which was introduced in version 1.9.
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3.8 Error handling
Since version 2.0, when the system encounters an error, it will raise an exception in the same way as
that of B-Prolog. Also to handle exceptions, we can use B-Prolog’s built-ins catch/3 or throw/1. If
you meet a message beginning with “PRISM INTERNAL ERROR” or an exception term that includes
prism_internal_error(Error), where Error is the error type, the problem should not have been
caused by the user program, but the system. In such a case, please make a contact to the development
team (see page i).
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Chapter 4

PRISM Built-in Utilities

4.1 Random switches

4.1.1 Making probabilistic choices
The built-in msw(I,V) succeeds if a trial of a random switch I gives an outcome V. To use a switch
I, there must be a multi-valued switch declaration (§2.6.2) for I in the program. Also note that, as
previously mentioned, switches have different behaviors for sampling execution (§2.4.1) and explanation
search (§2.4.2). To see the difference, let us pick up again the simplified definitions of msw/2 for two
execution styles:

For sampling execution:

msw(I,V):-
get_values1(I,Values),
$get_probs(I,Probs),
$choose(Values,Probs,V).

For explanation search:

msw(I,V):- get_values1(I,Values),member(V,Values).

where get_values1(I,Values) is a built-in predicate that deterministically returns the outcomes of
switch I to Values (introduced in version 2.0; see §4.1.5), $get_probs(I,Probs) returns Probs which
is a list of switch I’s parameters, and $choose(Values,Probs,V) returns V randomly from Values
according to the probabilities Probs. We can use random switches freely as long as they behave as
expected according to the definitions above and the execution style we take.

Additionally, in version 2.0.1, new built-in predicates soft_msw/2 and b_msw/2 for backtrack-
able sampling execution of random switches are introduced. See §4.1.11 for details.

4.1.2 Probabilistic behavior of random switches
It is also mentioned in §2.2 that the probabilistic behaviors of random switches are specified by their
own probability distributions. That is, a random switch i gives an outcome v with probability θi,v, and
we call θi,v as a parameter for the switch i. These parameters can be set by using set_sw/2 (§4.1.6) or
by parameter learning (§4.7). Without any particular settings, the parameters are set to the default ones
specified by the default_sw flag (see §4.1.3).
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Furthermore, in Bayesian approaches, we consider that the parameters θ follow the prior distribution
(a Dirichlet distribution) P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v which has hyperparameters αi,v (> 0), each corresponding

to a parameter θi,v (Z is a normalizing constant). These hyperparameters need to be given in advance to
the routines for maximum a posteriori (MAP) estimation (§4.7.2) or variational Bayesian (VB) learning
(§5.1). Since version 2.0, the programming system provides a clearer way of handling hyperparameters.
That is, in the context of MAP estimation, it is recommended to handle the hyperparameters through
δi,v = (αi,v − 1). δi,v are considered as pseudo counts, and can be set manually by set_sw_d/2 and its
variants (§4.1.6). On the other hand, in the context of VB learning, the hyperparameters αi,v themselves
are considered as pseudo counts and it is recommended to handle αi,v directly. αi,v can be set manually by
the built-ins such as set_sw_a/2 and its variants (§4.1.6), or adjusted by variational Bayesian learning,
as described in Chapter 5. The suffix ‘_d’ (resp. ‘_a’) in the predicate name indicates “for pseudo counts
δi,v” (resp. “for pseudo counts αi,v”). It is practically important to note that we are only allowed to have
δi,v ≥ 0 (accordingly, αi,v ≥ 1) in MAP estimation while we can have αi,v > 0 in VB learning. Without
any particular settings, the hyperparameters (the pseudo counts) are set to the default ones specified by
the default_sw_d flag or the default_sw_a flag (see §4.1.3).

4.1.3 Registration of switches
Let us consider a program which contains no query statements (that begin with ‘:-’). Just after the
program loaded, the programming system will not have recognized any random switches at all. This is
because the switch names in the program are not always given as ground, and the system does not know
at that moment what switches will be used later (please recall that each switch is identified by a ground
term). Random switches are registered to the programming system’s internal database in the following
cases:

• Their parameters or pseudo counts are set manually with the built-ins in §4.1.6 and §4.1.7.

• Their switch information is retrieved with the built-ins in §4.1.8 and §4.1.9. The parameters or
pseudo counts are automatically set to the default ones in advance.

• Their parameters or pseudo counts are referred to the built-in predicates for probabilistic inferences,
i.e. sampling (§4.2), probability calculation (§4.3), construction of the explanation graph (§4.4),
Viterbi computation (§4.5), and hindsight computation (§4.6). The parameters or pseudo counts
are automatically set to the default ones in advance.

• Their parameters are explicitly set by parameter learning (§4.7).

• Their hyperparameters (pseudo counts) are explicitly set by VB learning (Chapter 5).

Basically, by default, the parameters θi,v are given as uniform, and the hyperparameters αi,v are given as
one (equivalently, δi,v are given as zero). The default parameter is changed by the default_sw flag, and
the default hyperparameter is changed by the default_sw_d flag (in the context of MAP estimation)
or by the default_sw_a flag (in the context of VB learning), respectively (see §4.13.2 for details).

Specifically, as described in §2.6.2, if a switch is declared with the ground name in values/3,
the switch will have been registered after the program loaded. This is because the parameters or the
hyperparameters in the third argument of values/3 will be set by set_sw/2, set_sw_d/2 or
set_sw_a/2 while the program loaded.

To check which switches are currently registered, since version 2.0, the following built-in predicates
are introduced:

• show_reg_sw [no args] displays all names of the switches currently registered.
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• get_reg_sw(I) returns the name of a switch currently registered to I. On backtracking, I is
bound to the name of the next registered switch.

• get_reg_sw_list(Is) return the list of all names of the switches currently registered to Is.

One may see that show_reg_sw/0 and get_reg_sw/1 are just a simplified version of show_sw/0
(§4.1.8) and get_sw/1 (§4.1.9), respectively.

4.1.4 Outcome spaces, parameters and hyperparameters
In PRISM, the outcome space of a random switch is usually represented in an external form, that is,
by a Prolog list of possible outcomes, e.g. [high,medium,low] or [1,2,3,4,5]. Accordingly,
it is sometimes tedious to specify such outcome space when the size of the space is very large or the
space dynamically changes. By using expand_values/2, on the other hand, a list of range speci-
fications [1-4,7-10@2] is converted into [1,2,3,4,7,9], the list of the integers included in the
ranges. With a similar motivation, since version 2.0, the built-in predicates expand_probs/2-3 and
expand_pseudo_counts/2-3 are respectively introduced to specify parameters and hyperparame-
ters (pseudo counts) easily.

• expand_values(Values,ExpandedValues) converts a list Values that contains range specifi-
cations into the list ExpandedValues where each range specification in Values is expanded into
the integers included in the range. A range specification appearing in Values is a Prolog term
of the form Min-Max or Min-Max@Step, where Min, Max and Step are all integers such that
Min ≤ Max and Step > 0. A range specification Min-Max@Step is expanded into the integers
i = Min + k · Step such that i ≤ Max and k is a non-negative integer, and a range specifica-
tion Min-Max is interpreted as Min-Max@1. On the other hand, the elements in Values which
are not range specifications are added into ExpandedValues as they are. For example, for the
query ?- expand_values([a,1-4,b,7-10@2],Vals), we have the answer Vals =
[a,1,2,3,4,b,7,9].

• expand_probs(Dist,N,Probs) creates a list Probs of probabilities of N outcomes specified by
a specification Dist of a distribution (N > 0):

– If Dist is a list of probabilities (e.g. [0.1,0.5,0.4]) or probabilities separated by ‘+’
(e.g. 0.1+0.5+0.4), the system just returns a list of the same probabilities Probs (e.g.
[0.1,0.5,0.4], where the order is also preserved). Of course the probabilities should
sum up to unity. The predicate fails if Dist does not contain N probabilities, but we do
not have to mind it by using expand_probs(Dist,Probs) instead. For example, ?-
expand_probs(0.1+0.5+0.4,Ps) returns Ps = [0.1,0.5,0.4].

– If Dist is a ratio of non-negative numbers where the delimiter is ‘:’, the system returns a list of
probabilities each of which is proportional to the corresponding number in Dist. The predicate
fails if Dist does not contain N numbers, but we do not have to mind it by using expand_
probs(Dist,Probs) instead. For example, ?- expand_probs(1:5:2,Ps) returns
Ps = [0.125,0.625,0.25].

– If Dist is an atom uniform, the system returns a list of size N whose elements are all 1/N.
Note that N is mandatory here. For example, ?- expand_probs(uniform,5,Ps)
returns Ps = [0.2,0.2,0.2,0.2,0.2].

– If Dist takes the form f_geometric(Base,Type), the system returns a list of proba-
bilities, which is an external representation of a finite geometric distribution1 over N out-
comes, whose base is Base and whose type is Type. Note that N is mandatory, and if Type

1 The use of finite geometric distributions is inspired by [1].
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is asc (resp. desc), the probabilities are placed in ascending (resp. descending) order.
Base is a floating-point number greater than one. For example, ?- expand_probs(f_
geometric(3,asc),4,Ps) returns Ps = [0.025,0.075,0.225,0.675], where
0.025 = 30/(30 + 31 + 32 + 33), 0.075 = 31/(30 + 31 + 32 + 33), 0.225 = 32/(30 + 31 +

32 + 33) and 0.675 = 33/(30 + 31 + 32 + 33). The default values for Base and Type are 2
and desc, respectively. That is, if Dist is f_geometric(Base), it will be interpreted
as f_geometric(Base,desc), and if Dist is f_geometric, it will be interpreted as
f_geometric(2,desc).

– If Dist is an atom random, the system returns a list of N probabilities that are randomly
assigned. Note that N is mandatory. For example, ?- expand_probs(random,3,Ps)
may return Ps = [0.372662008331793,0.49796901988938,0.12936897177
8827].

– If Dist is an atom noisy_u, the system returns a list of N probabilities that are drawn from
a Gaussian distribution whose mean is 1/N and whose variance is 1

Nσ, where σ is the value
specified by the std_ratio flag. The drawn values are normalized, and if there are some
negative drawn values, they are forcedly set to very small positive number before the normal-
ization (such a situation seems to hardly occur with the default setting of the std_ratio
flag). Also note that N is mandatory. For example, ?- expand_probs(noisy_u,3,
Ps) may return Ps = [0.30982725282602,0.291335632422077,0.3988371
14751903].

– If Dist is an atom default, the steam returns a list of N probabilities which is an ex-
ternal representation of the distribution specified by the default_sw flag (§4.13). N is
mandatory here. For example, when the default_sw flag is set to uniform, a query ?-
expand_probs(default,4,Ps) returns Ps = [0.25,0.25,0.25,0.25].

• expand_pseudo_counts(Spec,N,Counts) creates a list Counts of pseudo counts of size N
specified by Spec (N > 0).

– If Spec is a list of non-negative numbers (e.g. [1.0,0.5,2.0]), the system just returns
Spec to Counts. The predicate fails if Spec does not contain N numbers, but we do not have
to mind it by using expand_pseudo_counts(Spec,Counts) instead.

– If Spec is a non-negative number, the system returns a list of size N whose elements are all
Spec. Note that N is mandatory here. For example, ?- expand_pseudo_counts(0.5,
3,Cs) returns Cs = [0.5,0.5,0.5].

– If Spec takes the form uniform(δ), where δ is a non-negative number, the system returns
a list of size N whose elements are all δ/N. Note that N is mandatory here. If Spec is an
atom uniform, it will be interpreted as uniform(1.0). For example, ?- expand_
pseudo_counts(uniform(5),4,Cs) returns Cs = [1.25,1.25,1.25,1.25]
and ?- expand_pseudo_counts(uniform,4,Cs) returns Cs = [0.25,0.25,
0.25,0.25].

– If Spec takes the form f_geometric(δ,Base,Type), the system returns a list of size N
whose i-th element is δβi−1, where we let β = Base. Here N is mandatory, δ is a non-
negative floating-point number and Base is a floating-point number greater than one. For
example, ?- expand_pseudo_counts(f_geometric(2,3,asc),3,Cs) returns
Cs = [2.0,6.0,18.0]. Some simpler forms f_geometric, f_geometric(Base)
and f_geometric(δ,Base) are interpreted as f_geometric(1.0,2.0,desc), f_
geometric(1.0,Base,desc) and f_geometric(δ,Base,desc), respectively.

– If Spec is an atom default, the system returns a list of N pseudo counts specified by the
default_sw_d flag or the the default_sw_a flag (§4.13.2). N is mandatory here. For
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example, when the default_sw_d flag or the default_sw_a flag is set to uniform,
?- expand_pseudo_counts(default,4,Ps) returns Ps = [0.25,0.25,0.25,
0.25].

Inside the programming system, expand_values/2 is used to interpret the multi-valued switch dec-
larations (§2.6.2), and expand_probs/3 and expand_pseudo_counts/3 are invoked by the
set_sw predicates and the set_sw_d/set_sw_a predicates (§4.1.6), respectively.

4.1.5 Getting the outcome spaces
Since version 2.0, the following built-ins are used to access the outcome spaces of random switches
instead of calling values/2 directly:

• get_values(I,Values) binds Values to a list of outcomes of switch I. This predicate raises an
exception in the cases that there is no multi-valued switch declaration with values/2-3 (§2.6.2)
anywhere in the program. If there are two or more matching multi-valued switch declarations,
Values is bound to the next one on backtracking.

• get_values0(I,Values) binds Values to a list of outcomes of switch I. If there is no multi-
valued switch declaration anywhere in the program, this predicate fails. If there are two or more
matching multi-valued switch declarations, Values is bound to the next one on backtracking.

• get_values1(I,Values) deterministically binds Values to a list of outcomes of switch I. This
predicate raises an exception in the cases that the switch name I is not ground, and that there is no
multi-valued switch declaration matching with the switch name I. If there are two or more matching
multi-valued switch declarations, the first matching one will be chosen.

get_values/2 is the closest to a direct call of values/2 in previous versions, so for backward com-
patibility, all appearances of values/2 in the clause bodies in the program are automatically replaced
by get_values/2 while the program loaded. get_values0/2 and get_values1/2 would be
useful variations, and the latter is often used inside the system (§4.1.1 for example).

4.1.6 Setting the parameters/hyperparameters of switches
� Setting the parameters of switches

The built-in set_sw(I,Params) sets the parameters of outcomes of a switch I to Params where Params
is a list [p1,p2,...,pK] (recommended) or a term of the form p1+p2+· · ·+pK where the numbers p1,
p2, . . . , pK sum up to unity (i.e.

∑
k pk = 1). Please note that the switch name I must be ground. For

example, to simulate a biased coin, we may run:

?- set_sw(coin,[0.8,0.2]).

That is, this will set 0.8 to the parameter of the first value of switch coin, and set 0.2 to the parameter
of the second value, where the order of values follows the corresponding multi-valued switch declaration
(§2.6.2).

It is also allowed to set parameters in a distribution form:

• set_sw(I) is the same as set_sw(I,default).

• set_sw(I,default) sets a distribution specified by the default_sw flag.

• set_sw(I,uniform) sets a uniform distribution.
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• set_sw(I,f_geometric) is the same as set_sw(I,f_geometric(2,desc)).

• set_sw(I,f_geometric(Base)) is the same as set_sw(I,f_geometric(Base,desc)).

• set_sw(I,f_geometric(Base,Type)) sets a finite geometric distribution, where Base is its
base (a floating-point number greater than one) and Type is asc or desc. For finite geometric
distributions, see the description on expand_probs/3 (§4.1.4).

• set_sw(I,random) sets the parameters, which sum up to one, randomly.

• set_sw(I,noisy_u) sets the parameters drawn from a Gaussian distribution. For details, see
the description on expand_probs/3 (§4.1.4).

We can also specify the default parameters in a distribution form. For example,

?- set_prism_flag(default_sw,uniform).

makes the default parameters to be uniform (see §4.13 for handling execution flags). Then, if we attempt
a sampling, or a probability computation, the parameters of switches that has not been registered yet will
be set to be uniform on the fly (§4.1.3).

Since the default value of the default_sw flag is ‘uniform’, we can use switches which follow
a uniform distribution just after invoking the system. The other available values for the flag are ‘none’,
‘f_geometric(Base)’ (Base is the base, an integer greater than one), and so on. The first one means
that we have no default parameters, and hence that we cannot use a random switch until its parameters
are given by parameter learning (§4.7) or explicitly by manual (e.g. set_sw/1-2). The second one
stands for a finite geometric distribution.

Also, the following predicates set the parameters to one or more switches that have been registered to
the internal database at that time (see §4.1.3):

• set_sw_all(Patt) sets a default distribution to all switches matching with Patt (i.e. all switches
whose names unify with Patt).

• set_sw_all(Patt,Dist) sets a distribution Dist to all switches matching with Patt.

• set_sw_all [no args] is the same as set_sw_all(_).

� Setting the hyperparameters of switches for MAP estimation

In the context of MAP estimation (§4.7.2), pseudo counts δi,v (= αi,v − 1) of random switches msw(i,v)
(§4.1.2) can be set by set_sw_d/1-2 and set_sw_all_d/0-2:

• set_sw_d(I) is the same as set_sw_d(I,default).

• set_sw_d(I,[ζ1,ζ2,...,ζK]) sets the pseudo counts δI,v = ζk where K is the number of
possible outcomes of switch I, v is the k-th outcome of switch I. ζk should be a non-negative
floating-point number (1 ≤ k ≤ K).

• set_sw_d(I,ζ) is the same as set_sw_d(I,[ζ,ζ,...,ζ]), where ζ is a non-negative
floating-point number.

• set_sw_d(I,uniform(ζ)) is the same as set_sw_d(I,[ζ/K,ζ/K,...,ζ/K]), where ζ
is a non-negative floating-point number, K is the number of possible outcomes of switch I.

• set_sw_d(I,uniform) is the same as set_sw_d(I,uniform(1.0)).2

2 This setting is the same as that in AutoClass, a well-known probabilistic clustering tool [5].
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• set_sw_d(I,default) sets the default pseudo counts specified by the default_sw_d flag.
If the default_sw_d flag is disabled at the time, this is equivalent to set_sw_a(I,default).

• set_sw_all_d(Patt,PseudoCs) or set_sw_d_all(Patt,PseudoCs) sets the pseudo counts
PseudoCs to all switches matching with Patt, where PseudoCs is a Prolog term allowed to be the
second argument of set_sw_d/2.

• set_sw_all_d(Patt) and set_sw_d_all(Patt) are the same as set_sw_all_d(Patt,
default).

• set_sw_all_d and set_sw_d_all [no args] are the same as set_sw_all_d(_).

In addition, for backward compatibility, set_sw_h/1-2 and set_sw_all_h/0-2 are available as
the aliases of set_sw_d/1-2 and set_sw_all_d/0-2, respectively.

� Setting the hyperparameters of switches for variational Bayesian learning

In the context of variational Bayesian learning (Chapter 5), pseudo counts (hyperparameters) αi,v of
random switches msw(i,v) (§4.1.2) can be set by set_sw_a/1-2 and set_sw_all_a/0-2:

• set_sw_a(I) is the same as set_sw_a(I,default).

• set_sw_a(I,[ζ1,ζ2,...,ζK]) sets the pseudo counts αI,v = ζk where K is the number of
possible outcomes of switch I, v is the k-th outcome of switch I, and ζk should be a positive
floating-point number (1 ≤ k ≤ K).

• set_sw_a(I,ζ) is the same as set_sw_a(I,[ζ,ζ,...,ζ]), where ζ is a positive floating-
point number.

• set_sw_a(I,uniform(ζ)) is the same as set_sw_a(I,[ζ/K,ζ/K,...,ζ/K]), where ζ
is a positive floating-point number, K is the number of possible outcomes of switch I.

• set_sw_a(I,uniform) is the same as set_sw_a(I,uniform(1.0)).

• set_sw_a(I,default) sets the default pseudo counts specified by the default_sw_a flag.
If the default_sw_a flag is disabled at the time, this is equivalent to set_sw_d(I,default).

• set_sw_all_a(Patt,PseudoCs) or set_sw_a_all(Patt,PseudoCs) sets the pseudo counts
PseudoCs to all switches matching with Patt, where PseudoCs is a Prolog term allowed to be the
second argument of set_sw_a/2.

• set_sw_all_a(Patt) and set_sw_a_all(Patt) are the same as set_sw_all_a(Patt,
default).

• set_sw_all_a and set_sw_a_all [no args] are the same as set_sw_all_a(_).

� Default setting of pseudo counts

Since version 2.0, two execution flags default_sw_d and default_sw_a have been introduced to
make the default setting of pseudo counts. As described above, the former is mainly used in the context of
MAP estimation while the latter is used together with variational Bayesian learning. To avoid the incon-
sistency between these two flags, they are designed to be exclusive — when one of these two flags is set
some value, it will be enabled and the other flag will be disabled. Then, both set_sw_d(I,default)
and set_sw_a(I,default) will follow the setting by the enabled flag.
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For example, if the user set 0.5 to the default_sw_d flag, then the default_sw_a flag will
be disabled. After that, the following queries are all equivalent and they will configure δfoo,v = 0.5 (and
accordingly αfoo,v = 1.5):

?- set_sw_a(foo,default).
?- set_sw_d(foo,default).
?- set_sw_a(foo).
?- set_sw_d(foo).

On the other hand, if the user set 0.5 to the default_sw_a flag, then the default_sw_d flag will
be disabled, and the above queries will configure αfoo,v = 0.5 (and accordingly δfoo,v = −0.5).

This mechanism may look complicated, but if the user use the ∗_sw_d predicates and the default_
sw_d flag (resp. the ∗_sw_a predicates and the default_sw_a flag) consistently in the context of
MAP estimation (resp. variational Bayesian learning), it should not cause confusion.

4.1.7 Fixing the parameters/hyperparameters of switches
Sometimes we need constant parameters which are not updated during learning. For example, letting g
be a gene of interest, we may want the probability of g being selected from one parent to be constant at
1/2. To handle with such situations, the programming system provides a couple of built-in predicates that
fix the parameters of some particular switches:

• fix_sw(I) fixes the parameters of all switches matching with I (i.e. all switches whose names
unify with I). Then, the parameters of these switches cannot be updated and will be kept unchanged
during learning. These switches are said to be fixed. In addition, if I is given as a list of switch
names, the programming system calls fix_sw/2 for each of them.

• fix_sw(I,Params) sets the parameters Params to a switch I, as done in set_sw/2, and then
fixes the parameters. Please note that I in fix_sw(I,Params) should be ground, while I in
fix_sw(I) does not need to be ground. Since version 2.0, in each call of fix_sw(I,Params),
the programming system unfixes the parameters of switch I first, and then fixes them at Params.

• unfix_sw(I) makes changeable the parameters of all switches matching with I.

Furthermore, we can also fix the hyperparameters (pseudo counts) of switches. In the context of MAP
estimation, it is recommended to the following built-ins (here ‘pseudo counts’ indicate δi,v; see §4.1.2):

• fix_sw_d(I) fixes the pseudo counts of all switches matching with I. Then, the pseudo counts
of these switches cannot be updated and will be kept unchanged during VB learning (§5.2.1). In
addition, if I is a list of switch names, the programming system calls fix_sw_d/2 for each of
them.

• fix_sw_d(I,PseudoCs) sets the pseudo counts PseudoCs to a switch I, as done in set_sw_d/2,
and then fixes the pseudo counts. Similarly to fix_sw/2, I should be ground here, and the system
unfixes the pseudo counts of switch I first, and then fixes them at PseudoCs.

• unfix_sw_d(I) makes changeable the pseudo counts of all switches matching with I.

On the other hand, in the context of variational Bayesian (VB) learning, it is recommended to the follow-
ing built-ins (here ‘pseudo counts’ indicate αi,v; see §4.1.2):

• fix_sw_a(I) fixes the pseudo counts of all switches matching with I. Then, the pseudo counts
of these switches cannot be updated and will be kept unchanged during VB learning (§5.2.1). In
addition, if I is a list of switch names, the programming system calls fix_sw_a/2 for each of
them.
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• fix_sw_a(I,PseudoCs) sets the pseudo counts PseudoCs to a switch I, as done in set_sw_a/2,
and then fixes the pseudo counts. Similarly to fix_sw/2, I should be ground here, and the system
unfixes the pseudo counts of switch I first, and then fixes them at PseudoCs.

• unfix_sw_a(I) makes changeable the pseudo counts of all switches matching with I.

Inside the system, two built-ins fix_sw_d/1 and fix_sw_a/1 behave in the same way, and this also
applies to unfix_sw_d/1 and unfix_sw_a/1. Also, for backward compatibility, fix_sw_h/1-2
and unfix_sw_h/1 are available as the the aliases of fix_sw_d/1-2 and unfix_sw_d/1, respec-
tively.

4.1.8 Displaying the switch information
The programming system provides the built-in predicates for displaying the current status of switches.
This information is hereafter called switch information, and is displayed for the switches that have been
registered into the internal database at that time (see §4.1.3).

• show_sw [no args] displays information about the parameters of all switches. For example, in the
‘direction’ program (§1.1), we may run:

?- show_sw.
Switch coin: head (0.8) tail (0.2)

• show_sw(I) displays information about the parameters of the switches whose names match with
I. For example:

?- show_sw(coin).
Switch coin: head (0.8) tail (0.2)

Also we can display the pseudo counts of the switches. In the context of MAP estimation, it is recom-
mended to use the built-in predicates that that display pseudo counts δi,v of msw(i,v) (§4.1.2):

• show_sw_d [no args] displays information about the pseudo counts of all switches.

• show_sw_d(I) displays information about the pseudo counts of the switches whose names match
with I.

• show_sw_pd [no args] displays information about both the parameters and the pseudo counts of
all switches.

• show_sw_pd(I) displays information about both the parameters and the pseudo counts of the
switches whose names match with I.

The suffix ‘_pd’ indicates “for both parameters and pseudo counts δi,v”. On the other hand, in the
context of variational Bayesian learning, it is recommended to use the built-in predicates that display
pseudo counts (hyperparameters) αi,v of msw(i,v) (§4.1.2):

• show_sw_a [no args] displays information about the pseudo counts of all switches.

• show_sw_a(I) displays information about the pseudo counts of the switches whose names match
with I.
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• show_sw_pa [no args] displays information about both the parameters and the pseudo counts of
all switches.

• show_sw_pa(I) displays information about both the parameters and the pseudo counts of the
switches whose names match with I.

The suffix ‘_pa’ indicates “for both parameters and pseudo counts αi,v”. For backward compatibil-
ity, show_sw_h/0-1 and show_sw_b/0-1 are available as the aliases of show_sw_d/0-1 and
show_sw_pd/0-1, respectively.

4.1.9 Getting the switch information
The switch information can be obtained as Prolog terms by the following built-ins:

• get_sw(I,Info) binds Info to a Prolog term in the form [Status,Vals,Params] that contains
information about switch I:

– Status is either fixed or unfixed. The former (resp. the latter) indicates that the parame-
ters of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

For example, we may run:

?- get_sw(coin,Info)
Info = [unfixed,[head,tail],[0.8,0.2]]

• get_sw(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,Params) where
I is the identifier, Status is either fixed or unfixed, Vals is a list of possible outcomes, and
Params is a list of the parameters. On backtracking, Info is bound to the one about the next switch.

• get_sw(I,Status,Vals,Params) is the same as get_sw(I,[Status,Vals,Params]).

• get_sw(I,Status,Vals,Params,Ĉs) additionally returns the expected occurrences Ĉs of switch
I, which are computed in EM learning for maximum likelihood estimation or MAP estimation
(§4.7).3 This predicate works after EM learning for maximum likelihood estimation or MAP esti-
mation, but fails after VB-EM learning.

We can also obtain the pseudo counts of the switches as Prolog terms. In the context of MAP estimation,
it is recommended to use the built-in predicates that that return pseudo counts δi,v of msw(i,v) (§4.1.2):

• get_sw_d(I,Info) binds Info to a Prolog term in the form [Status,Vals,PseudoCs] that con-
tains information about switch I:

– Status is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the
pseudo counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– PseudoCs is a list of the pseudo counts δI,v of switch I.

3 These expected occurrences are used in computing Cheeseman-Stutz score (§4.9), and might be used to judge whether we
need to apply so-called backoff smoothing. If the observed data is complete (§4.7.1), Ĉs is just a list of numbers of occurrences of
msw(I,·) in the data.

47



• get_sw_d(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,PseudoCs)
where I is the identifier, Status is either fixed_h or unfixed_h, Vals is a list of possible out-
comes, and PseudoCs is a list of the pseudo counts. On backtracking, Info is bound to the one
about the next switch.

• get_sw_d(I,Status,Vals,PseudoCs) is the same as get_sw_d(I,[Status,Vals,PseudoCs]).

• get_sw_d(I,Status,Vals,PseudoCs,Ĉs) additionally returns the expected occurrences Ĉs of
switch I, which are computed in EM learning for maximum likelihood estimation or MAP estima-
tion (§4.7). This predicate works after EM learning for maximum likelihood estimation or MAP
estimation, but fails after VB-EM learning.

• get_sw_pd(I,Info) binds Info to a Prolog term in the form [[StatusP,StatusH],Vals,Params,
PseudoCs] that contains information about switch I, that is:

– StatusP is either fixed or unfixed. The former (resp. the latter) indicates that the param-
eters of switch I is fixed (resp. unfixed).

– StatusH is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the
pseudo counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

– PseudoCs is a list of the pseudo counts δI,v of switch I.

• get_sw_pd(Info) binds Info to a Prolog term in the form switch(I,[StatusP,StatusH],Vals,
Params,PseudoCs) where I is the identifier, StatusP is either fixed or unfixed, StatusH is
either fixed_h or unfixed_h, Vals is a list of possible outcomes, Params is a list of the param-
eters, and PseudoCs is a list of the pseudo counts δI,v. On backtracking, Info is bound to the one
about the next switch.

• get_sw_pd(I,[StatP,StatH],Vals,Ps,PseudoCs) is the same as get_sw_pd(I,[[StatP,
StatH],Vals,Ps,PseudoCs]).

• get_sw_pd(I,[StatP,StatH],Vals,Ps,PseudoCs,Ĉs) additionally returns the expected oc-
currences Ĉs of switch I, which are computed in EM learning for maximum likelihood estimation
or MAP estimation (§4.7). This predicate works after EM learning for maximum likelihood esti-
mation or MAP estimation, but fails after VB-EM learning.

On the other hand, in the context of variational Bayesian learning, it is recommended to use the built-in
predicates that that return pseudo counts (hyperparameters) αi,v of msw(i,v) (§4.1.2):

• get_sw_a(I,Info) binds Info to a Prolog term in the form [Status,Vals,PseudoCs] that con-
tains information about switch I:

– Status is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the
pseudo counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– PseudoCs is a list of the pseudo counts αI,v of switch I.

• get_sw_a(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,PseudoCs)
where I is the identifier, Status is either fixed_h or unfixed_h, Vals is a list of possible out-
comes, and PseudoCs is a list of the pseudo counts αI,v. On backtracking, Info is bound to the one
about the next switch.
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• get_sw_a(I,Status,Vals,PseudoCs) is the same as get_sw_a(I,[Status,Vals,PseudoCs]).

• get_sw_a(I,Status,Vals,PseudoCs,C̃s) additionally returns the expected occurrences C̃s of
switch I, which are computed in VB-EM learning (§5.1.1). This predicate works after VB-EM
learning, but fails after EM learning for maximum likelihood estimation or MAP estimation.

• get_sw_pa(I,Info) binds Info to a Prolog term in the form [[StatusP,StatusH],Vals,Params,
PseudoCs] that contains information about switch I, that is:

– StatusP is either fixed or unfixed. The former (resp. the latter) indicates that the param-
eters of switch I is fixed (resp. unfixed).

– StatusH is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the
pseudo counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

– PseudoCs is a list of the pseudo counts αI,v of switch I.

• get_sw_pa(Info) binds Info to a Prolog term in the form switch(I,[StatusP,StatusH],Vals,
Params,PseudoCs) where I is the identifier, StatusP is either fixed or unfixed, StatusH is
either fixed_h or unfixed_h, Vals is a list of possible outcomes, Params is a list of the param-
eters, and PseudoCs is a list of the pseudo counts αI,v. On backtracking, Info is bound to the one
about the next switch.

• get_sw_pa(I,[StatP,StatH],Vals,Ps,PseudoCs) is the same as get_sw_pa(I,[[StatP,
StatH],Vals,Ps,PseudoCs]).

• get_sw_pa(I,[StatP,StatH],Vals,Ps,PseudoCs,C̃s) additionally returns the expected oc-
currences C̃s of switch I, which are computed in VB-EM learning (§5.1.1). This predicate works
after VB-EM learning, but fails after EM learning for maximum likelihood estimation or MAP
estimation.

For backward compatibility, get_sw_h/{1,2,4} and get_sw_b/{1,2,5} are available as the
aliases of get_sw_d/{1,2,4} and get_sw_pd/{1,2,5}, respectively. On the other hand, due to
the difficulty in keeping the backward compatibility, get_sw_h/5 and get_sw_b/6 are not available
since version 2.0.

4.1.10 Saving the switch information
By using the following built-ins, all switch information can be saved into, or restored from, a file:

• save_sw(File) saves all switch information about the parameters into the file File.

• save_sw [no args] is the same as save_sw(’Saved_SW’).

• restore_sw(File) restores all switch information about the parameters from the file File.

• restore_sw [no args] is the same as restore_sw(’Saved_SW’).

We can also save the pseudo counts of the switches into a file. In the context of MAP estimation, it is
recommended to use the built-in predicates that save/restore pseudo counts δi,v of msw(i,v) (§4.1.2):

• save_sw_d(File) saves all switch information about the pseudo counts δi,v into the file File.
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• save_sw_d [no args] is the same as save_sw_d(’Saved_SW_D’).

• save_sw_pd(File1,File2) is the same as (save_sw(File1),save_sw_d(File2)).

• save_sw_pd [no args] is the same as (save_sw,save_sw_d).

• restore_sw_d(File) restores all switch information about the pseudo counts δi,v from the file
File.

• restore_sw_d [no args] is the same as restore_sw_d(’Saved_SW_D’).

• restore_sw_pd(File1,File2) is the same as (restore_sw(File1),restore_sw_d(File2)).

• restore_sw_pd [no args] is the same as (restore_sw,restore_sw_d).

On the other hand, in the context of variational Bayesian learning, it is recommended to use the built-in
predicates that save/restore pseudo counts (hyperparameters) αi,v of msw(i,v) (§4.1.2):

• save_sw_a(File) saves all switch information about the pseudo counts αi,v into the file File.

• save_sw_a [no args] is the same as save_sw_a(’Saved_SW_A’).

• save_sw_pa(File1,File2) is the same as (save_sw(File1),save_sw_a(File2)).

• save_sw_pa [no args] is the same as (save_sw,save_sw_a).

• restore_sw_a(File) restores all switch information about the pseudo counts αi,v from the file
File.

• restore_sw_a [no args] is the same as restore_sw_a(’Saved_SW_A’).

• restore_sw_pa(File1,File2) is the same as (restore_sw(File1),restore_sw_a(File2)).

• restore_sw_pa [no args] is the same as (restore_sw,restore_sw_a).

The built-ins save_sw_h/0-1, save_sw_b/{0,2}, restore_sw_h/0-1 and restore_sw
_b/{0,2} are still available as the aliases of save_sw_d/0-1, save_sw_pd/{0,2}, restore_
sw_d/0-1 and restore_sw_pd/{0,2}, respectively. However, it should be noted that the default
filename for saving/restoring pseudo counts has been changed in version 2.0.

4.1.11 Backtrackable sampling execution of random switches
As described in §4.1.1, for sampling execution, msw/2 is defined as a deterministic predicate. That is,
once an outcome has been sampled by msw/2, we can get no alternative outcomes by backtracking.
On the other hand, since version 2.0.1, a built-in predicate soft_msw/2 for backtrackable sampling
execution is available.4

A simplified definition of soft_msw/2 is given as follows:

soft_msw(I,V):-
get_values1(I,Values),
$get_probs(I,Probs),
$b_choose(Values,Probs,V).

4 Jon Sneyers provided a public-domain code for soft_msw/2. The authors are grateful for this offering.
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Here $b_choose/3 is a backtrackable version of $choose/3 (§4.1.1). In addition, b_msw/2 is
available as an alias of soft_msw/2.

To illustrate the behavior of soft_msw/2, let us consider a random switch named sw1, which has
three possible outcomes. The switch sw1 outputs the outcome a with probability 0.5, b with probability
0.2 and c with probability 0.3:

values(sw1,[a,b,c],[0.5,0.2,0.3]).

When we sample an outcome of sw1 with msw/2, the programming system deterministically returns the
sampled outcome:

?- sample(msw(sw1,X)).
X = a
yes

The sampling of the switch sw1 with soft_msw/2 will also return an outcome in a similar way. For
example, the switch returns an outcome a with probability 0.5:

?- sample(soft_msw(sw1,X)).
X = a ?

On the other hand, differently from the above case, we can sample an alternative outcome by backtrack-
ing:

?- sample(soft_msw(sw1,X)).
X = a ?;
X = c ?

On this backtracking, we obtain X = c with the probability 0.3/(0.2 + 0.3) = 0.6. Generally speaking,
the sampling for the alternatives which have not been sampled yet is made according to the probabilities
normalized among these alternatives. Eventually, repeating backtracking, we obtain all outcomes:

?- sample(soft_msw(sw1,X)).
X = a ?;
X = c ?;
X = b ?;
no

soft_msw/2 and b_msw/2 can be used in the program. In sampling execution, the random
switches specified by soft_msw/2 and b_msw/2 behave as above, and in explanation search, they
behave as if they are specified by msw/2.

4.2 Sampling
An execution with sample(Goal) (or a direct execution of Goal) simulates a sampling execution. A
more detailed description of sampling execution is found in §2.4.1. For example, for the program in §1.1,
we may have a result of sampling execution such as:

?- sample(direction(D)).
D = left ?

Of course, the result changes at random, and follows the distribution specified by the program.
Besides, there are some built-ins for getting two or more samples. get_samples(N,G,Gs) re-

turns a list Gs which contains the results of sampling G for N times. For example:
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?- get_samples(10,direction(D),Gs).
Gs = [direction(right),direction(left),direction(right),

direction(left),direction(right),direction(right),
direction(right),direction(right),direction(left),
direction(right)] ?

Inside the system, on each trial of sampling, a copy G′ of the target goal G is created and called by
sample(G′). Please note that if one of N trials ends in failure, this predicate totally fails.

On the other hand, get_samples_c(N,G,C,Gs) tries to make sampling G under the constraint
C for N times, and returns a list Gs which only contains the successful results of sampling. Note here
that this predicate never fails by sampling, and if some trial ends in failure, nothing is added to Gs (thus
the size of Gs can be less than N). Internally, this predicate first creates a copy [G′,C′] of [G,C], and
then executes sample(G′) and call(C′) in this order. In addition, get_samples_c/4 writes the
numbers of successful and failed trials to the current output stream. For example,

?- get_samples_c(10,pcfg(Ws),(length(Ws,L),L<5),Gs).

will return to Gs a list of sampled pcfg(Ws) where the length of Ws is less than 5. get_samples_
c(N,G,Gs) is the same as get_samples_c(N,G,true,Gs). For example, let us consider the
following queries:

?- get_samples(100,hmm([a|_]),Gs).
?- get_samples_c(100,hmm([a|_]),Gs).
?- get_samples_c(100,hmm([a|_]),true,Gs).
?- get_samples_c(100,hmm(Xs),Xs=[a|_],Gs).

The second and the third queries show the same behavior. On the other hand, the first query may fail due
to the failure at some trial of sampling. Furthermore, the last query could yield a different result from the
one for the second query (even with the same random seed), since they build different proof trees.5

The built-in get_samples_c(N,G,C,Gs,[SN,FN]) behaves similarly to get_samples_
c(N,G,C,Gs), except returning the numbers of successful and failed trials to SN and FN, respectively.
Furthermore, the programming system provides a couple of variations for get_samples_c/3-5. If
we specify the first argument in the form [N,M], the predicates will try to make sampling for N times
at maximum to get M samples. If we specify [inf,M], then the system tries to get M samples with no
limit on the number of trials. For example, we can always get 100 samples with the following query:

?- get_samples_c([inf,100],pcfg(Ws),(length(Ws,L),L<5),Gs).

However it should be noticed here that there is a risk of entering an almost infinite loop in the use of
‘inf’ if the goal G (or G under the constraint C) is unlikely to succeed.

As discussed in §2.4.1 and §2.4.2, sometimes we need to write models in two different styles for
sampling and explanation search with different sets of predicates. For example, we may use a predicate
foo_s/1 for sampling, and use foo/1 for explanation search. To get training data for foo/1 by
sampling foo_s/1 in an artificial experiment, we may replace the predicate name of sampled goals by
modifying the second argument as follows:

?- get_samples_c(100,[foo_s(Ws),foo(Ws)],true,Gs).

5 In the previous versions of this user’s manual, it was wrongly described that the last three queries show the same behavior.
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4.3 Probability calculation
For a tabled probabilistic goal Goal, the built-in prob(Goal,Prob) calculates the probability Prob with
which Goal becomes true. For a switch instance msw(I,V), the probability is 1.0 if V is a variable, and
the probability assigned to the outcome V if V is one of the outcomes of switch I. For example, for the
program in §1.1, we have:

?- prob(direction(left),P).
P = 0.5

The built-in prob(Goal) is the same as prob(Goal,Prob) except that the computed probability Prob
is sent to the current output stream. Note here that, when enabling the methods for avoiding underflow
(§4.11), prob/1-2 returns the logarithm of probabilities. log_prob(Goal) and log_prob(Goal,P)
are the same as prob(Goal) and prob(Goal,P), respectively, except that they always return the log-
scaled probability of the goal G. If there is no explanation for Goal, the call of these predicates will
fail.

4.4 Explanation graphs

4.4.1 Basic usage
For a tabled probabilistic goal G, the built-in probf(G,EGraph) returns the explanation graph EGraph
for G as a Prolog term. An explanation graph is represented as a list of nodes, each corresponds to one
of the ordered iff-formulas in §2.4.2. Each node takes the form node(G′,Paths) where G′ is a subgoal
of G and Paths is a list of explanation paths that explain G′. With the terminology in §2.4.2, one of these
paths corresponds to a sub-explanation E′ for G′. Each path takes the form path(Subgoals,Switches)
where Subgoals is a list of subgoals found in E′, and Switches is a list of switch instances also found
in E′. If there is no explanation for G, the call of probf(G,EGraph) will fail. Also, if we have
subgoals which include logical variables, all of these variables will be treated as the distinct ones, for
implementational reasons.

For example, in the HMM program with string length being 2, the explanation graph for hmm([a,b])
is obtained as follows:

?- probf(hmm([a,b]),EGraph).

EGraph =
[node(hmm([a,b]),

[path([hmm(1,2,s0,[a,b])],[msw(init,s0)]),
path([hmm(1,2,s1,[a,b])],[msw(init,s1)])]),

node(hmm(1,2,s0,[a,b]),
[path([hmm(2,2,s0,[b])],[msw(out(s0),a),msw(tr(s0),s0)]),
path([hmm(2,2,s1,[b])],[msw(out(s0),a),msw(tr(s0),s1)])]),

node(hmm(1,2,s1,[a,b]),
[path([hmm(2,2,s0,[b])],[msw(out(s1),a),msw(tr(s1),s0)]),
path([hmm(2,2,s1,[b])],[msw(out(s1),a),msw(tr(s1),s1)])]),

node(hmm(2,2,s0,[b]),
[path([hmm(3,2,s0,[])],[msw(out(s0),b),msw(tr(s0),s0)]),
path([hmm(3,2,s1,[])],[msw(out(s0),b),msw(tr(s0),s1)])]),

node(hmm(2,2,s1,[b]),
[path([hmm(3,2,s0,[])],[msw(out(s1),b),msw(tr(s1),s0)]),
path([hmm(3,2,s1,[])],[msw(out(s1),b),msw(tr(s1),s1)])]),

node(hmm(3,2,s0,[]),[path([],[])]),
node(hmm(3,2,s1,[]),[path([],[])])]
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Be warned that the result was manually beautified by the authors for making the data structure clear. Also
the last two node terms indicate that hmm(3,2,s0,[]) and hmm(3,2,s1,[]) are always true.6

Usually, the results by probf/2 are appropriate to be handled by the program, but too complicated
for humans to understand. For post-processing such Prolog-term representation of an explanation graph,
we may use strip_switches(EGraph,EGraph′), which drops all switch instances from EGraph
and then returns the resultant graph as EGraph′. Furthermore, the built-in probf(Goal) finds and
displays the explanation graph for Goal in a human-readable form. For the same goal as above, we have:

?- probf(hmm([a,b])).

hmm([a,b])
<=> hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)
hmm(1,2,s0,[a,b])

<=> hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])
<=> hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)
hmm(2,2,s0,[b])

<=> hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])
<=> hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)
hmm(3,2,s0,[])
hmm(3,2,s1,[])

We may notice that this output corresponds to the ordered iff-formula described in §2.4.2. The last two
formulas say that subgoals hmm(3,2,s0,[]) and hmm(3,2,s1,[]) are always true.

4.4.2 Encoded explanation graphs
The built-in predicate probef(Goal) is the same as probf(Goal) except that all subgoals and switches
in explanations are encoded. Also probef(Goal,EGraph) is the same as probf(Goal,EGraph) ex-
cept that all the subgoals and switches in the graph are encoded. In these predicates, each subgoal has
a unique number and so does each switch instance (i.e. they are encoded) . The subgoal table stores
the correspondence between subgoals and their numbers, and the switch table stores the correspondence
between switch instances and their numbers. The following built-ins are provided to get the tables:

• get_subgoal_hashtable(Table) gets the subgoal hashtable which can be used to decode
encoded subgoals in explanation graphs.

• get_switch_hashtable(Table) gets the switch hashtable which can be used to decode
encoded switches in explanation graphs.

4.4.3 Printing explanation graphs
Some pretty-printing routines used internally in probf/1 are also available as built-ins. print_
graph(Graph) prints an explanation graph Graph (as a Prolog term with functors node and path,

6 In the previous versions, these two last node terms are output as node(hmm(3,2,s0,[]),[]) and node(hmm(3,
2,s1,[]),[]). For backward compatibility, probf/2 can also output the explanation graphs in this form by turning off the
explicit_empty_expls flag (§4.13.2).
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as illustrated above) to the current output stream. print_graph(Graph,Options) is the same as
print_graph(Graph) except it replaces connectives with the ones specified in Options. Options can
contain and(C1), or(C2) and lr(C3), which indicates the AND connectives will be replaced with
C1, the OR connectives with C2, and the primary connectives with C3, respectively. For example, we can
have:

?- probf(hmm([a,b]),EGraph),print_graph(EGraph,[lr(’iff’)]).

hmm([a,b])
iff hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)
hmm(1,2,s0,[a,b])

iff hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])
iff hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)
hmm(2,2,s0,[b])

iff hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])
iff hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)
hmm(3,2,s0,[])
hmm(3,2,s1,[])

print_graph(Stream,Graph,Options) is the same as print_graph(Graph,Options) except the
output is set to Stream.

4.4.4 Explanation graphs with probabilities
Several built-in predicates are also available to obtain explanation graphs together with probabilities. By
these built-ins, we can inspect the explanations for a particular probabilistic goal at a numerical level.
Especially, a violation of some of the modeling assumptions in PRISM (§2.4.6) can be checked using
these built-ins. Another usage is to see how dynamic programming based probability computations work.
For example, we can understand the behavior of the forward or the backward algorithm for HMMs. These
built-ins were introduced in version 1.12, and the output format was extended in version 2.0.

For a tabled probabilistic goal G, probfi(G,EGraph) returns the explanation graph for G as a
Prolog term to EGraph along with the inside probabilities of all subgoals. The returned graph is repre-
sented as a list of nodes, each of which takes the form node(G′,Paths,Prob′) where G′ is a subgoal of
G, Paths is a list of explanation paths (sub-explanations) for G′, and Prob′ is the inside probability of G′.
Each explanation path takes the form path(GNodes,SNodes,PathProb). GNodes is a list of subgoal
nodes, each of which takes the form gnode(G′′,Prob′′) where G′′ and Prob′′ are a subgoal occurring
in the path and its inside probability, respectively. SNodes is a list of switch nodes, each of which takes
the form snode(Sw,Param) where Sw and Param are a switch instance occurring in the explanation
path and its parameter, respectively. PathProb is the inside probability of the explanation path, i.e. the
product of the inside probabilities or the parameters appearing GNodes and SNodes. For example, in the
HMM program, we may run:

?- probfi(hmm([a,b],EGraph).

EGraph =
[node(hmm([a,b]),
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[path([gnode(hmm(1,2,s0,[a,b]),0.255905908488921)],
[snode(msw(init,s0),0.207377412241521)],
0.053069105079748),

path([gnode(hmm(1,2,s1,[a,b]),0.185292158172328)],
[snode(msw(init,s1),0.792622587758479)],
0.146866749901904)],

0.199935854981652),
node(hmm(1,2,s0,[a,b]),

[path([gnode(hmm(2,2,s0,[b]),0.231748454480656)],
[snode(msw(out(s0),a),0.768251545519344),
snode(msw(tr(s0),s0),0.720379033510596)],

0.128257081541387),
path([gnode(hmm(2,2,s1,[b]),0.594215057955413)],

[snode(msw(out(s0),a),0.768251545519344),
snode(msw(tr(s0),s1),0.279620966489404)],

0.127648826947534)],
0.255905908488921),

node(hmm(1,2,s1,[a,b]),
[path([gnode(hmm(2,2,s0,[b]),0.231748454480656)],

[snode(msw(out(s1),a),0.405784942044587),
snode(msw(tr(s1),s0),0.379589611329194)],

0.03569661964052),
path([gnode(hmm(2,2,s1,[b]),0.594215057955413)],

[snode(msw(out(s1),a),0.405784942044587),
snode(msw(tr(s1),s1),0.620410388670806)],

0.149595538531808)],
0.185292158172328),

node(hmm(2,2,s0,[b]),
[path([gnode(hmm(3,2,s0,[]),1.0)],

[snode(msw(out(s0),b),0.231748454480656),
snode(msw(tr(s0),s0),0.720379033510596)],

0.166946727656349),
path([gnode(hmm(3,2,s1,[]),1.0)],

[snode(msw(out(s0),b),0.231748454480656),
snode(msw(tr(s0),s1),0.279620966489404)],

0.064801726824307)],
0.231748454480656),

node(hmm(2,2,s1,[b]),
[path([gnode(hmm(3,2,s0,[]),1.0)],

[snode(msw(out(s1),b),0.594215057955413),
snode(msw(tr(s1),s0),0.379589611329194)],

0.22555786289525),
path([gnode(hmm(3,2,s1,[]),1.0)],

[snode(msw(out(s1),b),0.594215057955413),
snode(msw(tr(s1),s1),0.620410388670806)],

0.368657195060163)],
0.594215057955413),

node(hmm(3,2,s0,[]),
[path([],[],1.0)],
1.0),

node(hmm(3,2,s1,[]),
[path([],[],1.0)],
1.0)

] ?
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The above result was manually beautified by the authors. Note that, from the probabilistic meaning of
the HMM program, the inside probabilities (resp. 0.255905908488921, 0.185292158172328,
. . . ) of tabled subgoals (resp. hmm(1,2,s0,[a,b]), hmm(1,2,s1,[a,b]), . . . ) correspond to
the backward probabilities used in the Baum-Welch algorithm. In addition, the resulting Prolog term
EGraph can be passed into print_graph/1-3 (§4.4.3) for a human-readable form.

probfi(G,EGraph) has the following three variants:

• probfo(G,EGraph) returns the outside probabilities instead of the inside probabilities for sub-
goals/paths, and the expected occurrences instead of parameters for switch instances.

• probfv(G,EGraph) returns the Viterbi probabilities (§4.5.1) for subgoals/paths, and the param-
eters for switch instances.

• probfio(G,EGraph) returns pairs of the inside and the outside probabilities for subgoals/paths,
and pairs of expected occurrences and parameters for switch instances. Each pair is represented by
a two-element list [InProb,OutProb].

The programming system also provides the following built-in predicates:

• probfi(G) finds and displays the explanation graph for G with the inside probabilities of sub-
goals. probfo/1, probfv/1 and probfio/1 are also available.

• probefi(G) and probefi(G,EGraph) do the same things as probfi/1-2, but they dis-
play or return an encoded explanation graph (§4.4.2). probefo/1-2, probefv/1-2 and
probefio/1-2 are also available.

Similarly to probf/1-2, the call of the predicates above will fail if there is no explanation for the given
goal G.

4.5 Viterbi computation

4.5.1 Basic usage
By the Viterbi computation, we mean to get the most probable explanation E∗ for a given goal G, that
is, E∗ = arg maxE∈ψ(G) P(E), where ψ(G) is a set of explanations for G. Also the probability of E∗ can
be obtained. Here we call them respectively the Viterbi explanation and the Viterbi probability of G.
Currently the following built-in predicates are available for a tabled probabilistic goal G:

• viterbi(G) displays the Viterbi probability of G.

• viterbi(G,P) returns the Viterbi probability of G to P.

• viterbif(G) displays the Viterbi probability and the Viterbi explanation for G.

• viterbif(G,P,Expl) returns the Viterbi probability of G to P, and a Prolog-term representa-
tion of the Viterbi explanation E∗ for G to Expl.

• viterbig(G) is the same as viterbi(G) except that G is unified with its instantiation found
in the most probable explanation path (sub-explanation) when G is non-ground.

• viterbig(G,P) is the same as viterbi(G,P) except that G is unified with its instantiation
found in the most probable explanation path (sub-explanation) when G is non-ground.

• viterbig(G,P,Expl) is the same as viterbif(G,P,Expl) except that G is unified with its
instantiation found in the most probable explanation path (sub-explanation) when G is non-ground.
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If there is no explanation for G, the call of the predicates above will fail. A Prolog-term representation
of a Viterbi explanation takes the same form as a usual explanation graph except that a node has exactly
one explanation path (sub-explanation). That is, it takes the form:

[node(G′1,[path(GL1,SL1)]),..., node(G′n,[path(GLn,SLn)])],

where G′i is a subgoal in the explanation path for G, and G′i is directly explained by subgoals GLi and
switches SLi. This Prolog term can be printed in a human-readable form by using print_graph/1-2
(see §4.4). If G′i is known to be true, both GLi and SLi are bound to [].7

In practical situations, we often suffer from the problem of underflow for a very long Viterbi ex-
planation. Setting ‘on’ to the log_scale flag enables log-scaled Viterbi computation in which all
probabilities are contained in logarithmic scale (see §4.13 for details), and then the problem of underflow
will be cleared.

4.5.2 Post-processing
Since version 1.11, two post-processing built-ins for Viterbi computation are available:

• viterbi_subgoals(Expl,Goals) extracts the subgoals G′1,. . . ,G′n in the explanation Expl,
and returns them as a list Goals.

• viterbi_switches(Expl,Sws) extracts the switch instances in the explanation Expl, and re-
turns them as a list Sws (i.e. returns the concatenation of SL1,. . . ,SLn).

4.5.3 Top-N Viterbi computation
Furthermore, built-in predicates for computing top-N Viterbi explanations or top-N Viterbi probabilities
are available. That is, we can obtain N explanations with the highest probabilities, where the number N
can be specified in the query. This procedure is sometimes called top-N Viterbi computation or N-Viterbi
computation in short. The following is a list of built-ins for top-N Viterbi computation:

• n_viterbi(N,G) displays the top-N Viterbi probabilities of the goal G.

• n_viterbi(N,G,Ps) returns the top-N Viterbi probabilities of the goal G as a list Ps.

• n_viterbif(N,G) displays the top-N Viterbi explanations for the goal G.

• n_viterbif(N,G,VPathL) returns Prolog-term representations of the top-N Viterbi explana-
tions for the goal G as a list VPathL. Each element in VPathL takes the form v_expl(K,P,Expl),
where Expl is the K-th ranked explanation and P is its generative probability.

• n_viterbig(N,G,P,Expl) unifies G with its instantiation found in the most probable expla-
nation path (sub-explanation) when G is non-ground. This built-in also returns the corresponding
Viterbi probability and the corresponding Viterbi explanation to P and Expl, respectively. On back-
tracking, this built-in returns the answers w.r.t. the second most probable explanation path, the third
most probable path, and so on, in turn.

• n_viterbig(N,G) is the same as n_viterbig(N,G,_,_) when G is non-ground, and is
the same as n_viterbi(N,G) when G is ground, except that the Viterbi probability will be
displayed.

7 Similarly to the case of probf/2 (§4.4.1), we can have node(G′i,[]) instead by turning off the explicit_empty_
expls flag.
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• n_viterbig(N,G,P) is the same as n_viterbig(N,G,P,_) when the goal G is non-
ground, or returns top-N Viterbi probabilities of G to P one by one on backtracking when G is
ground.

Note that G should be a tabled probabilistic goal. Since the implementation of these N-Viterbi routines
is different from (and is more complicated than) that of the basic Viterbi routines such as viterbif/1
(§4.5.1), the efficiency (both time and space) of the N-Viterbi routines seems inferior to that of the basic
ones. So it is recommended to use the basic ones if you only need to the most probable explanation (i.e.
N = 1). Besides, for the same reason, the results from n_viterbif(1,G) and viterbif(G) can
be different if there are more than one Viterbi explanation of G with the same generative probability.

4.5.4 Viterbi trees
Each of Viterbi explanations can also be represented in the form of a tree. Namely, each node of a tree
corresponds to either a subgoal or a switch instance and the parent node corresponds to the caller. We
refer to such trees by Viterbi trees.

viterbi_tree(Expl,Tree) returns a Prolog-term representation Tree of the Viterbi tree based
on the Viterbi explanation Expl. Each subgoal G′i is represented by a list [G′i,Ci,1,...,Ci,ni] if the
subgoal has other subgoals and/or switch instances in its explanation path (sub-explanation), or just G′i
itself otherwise. Each switch instance is represented by a term msw(I,V). Here, Ci, j denotes the term
that represents the node corresponding to a subgoal or a switch instance in the G′i’s explanation path (GLi

and SLi). The following example shows one of possible Viterbi trees for hmm([a,b]) in the HMM
program with the string length of two:

?- viterbif(hmm([a,b]),_,_EG),viterbi_tree(_EG,Tree).

Tree = [hmm([a,b]),[hmm(1,2,s0,[a,b]),[hmm(2,2,s1,[b]),hmm(3,2,s0,
[]),msw(out(s1),b),msw(tr(s1),s0)],msw(out(s0),a),msw(tr(s0),s1)],
msw(init,s0)] ?

While this term is suitable to be processed by programs, it is not easily understood by humans. So the
programming system also provides a pretty-printing routine. print_tree(Tree) prints the Viterbi tree
represented by a Prolog term Tree to the current output stream. print_tree(Tree,Opts) is the same
as print_tree(Tree) except it accepts a list Opts of options. print_tree(Stream,Tree,Opts) is
the same as print_tree(Tree,Opts) except the output is produced to Stream rather than the current
output stream. Currently the only available option is indent(N), which changes the indent level to N
(3 in default). For example, the Viterbi tree presented above is printed as shown below:

?- viterbif(hmm([a,b]),_,_EG),viterbi_tree(_EG,_Tree),print_tree(_Tree).

hmm([a,b])
| hmm(1,2,s1,[a,b])
| | hmm(2,2,s1,[b])
| | | hmm(3,2,s1,[])
| | | msw(out(s1),b)
| | | msw(tr(s1),s1)
| | msw(out(s1),a)
| | msw(tr(s1),s1)
| msw(init,s1)

The following built-in predicates are also available to perform the Viterbi computation and obtain the tree
at the same time:

• viterbit(G) displays the Viterbi probability and tree for the goal G.

59



• viterbit(G,P,Tree) returns the Viterbi probability and a Prolog-term representation of the
Viterbi tree for the goal G to P and Tree respectively.

• n_viterbit(N,G) displays the top-N Viterbi probabilities and trees for the goal G.

• n_viterbit(N,G,VTreeL) returns Prolog-term representations of the top-N Viterbi trees for
the goal G as a list VTreeL. Each element in VTreeL takes the form v_tree(K,P,Tree) where
Tree is the tree based on the K-th ranked explanation and P is its generative probability.

4.6 Hindsight computation*

4.6.1 Basic usage
A hindsight probability is Pθ(G′), the probability of a subgoal G′ for a given top-goal G.8 Inside the
system, the hindsight probability of a subgoal G′ is computed as a product of the inside probability
and the outside probability of G′. For illustration, let us consider the HMM program (§1.3) with string
length being 4. In an HMM given some sequence, we may want to compute the probability distribution on
states for every time step. The programming system computes such a probability distribution as hindsight
probabilities. That is, we get the distribution at time step 2 as follows:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_)).
hindsight probabilities:

hmm(2,4,s0,[b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564

We read from above that, given a string [a,b,a,b], the probability of the hidden state being s0 at time
step 2 is about 0.0139, whereas the probability of the hidden state being s1 is about 0.0545. Generally
speaking, for a tabled probabilistic goal G, hindsight(G,GPatt) writes the hindsight probabilities of
G’s subgoals that match with GPatt to the current output. In a similar way, hindsight(G,GPatt,Ps)
returns the list of pairs of subgoal and its hindsight probability to Ps:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_),Ps).

Ps = [[hmm(2,4,s0,[b,a,b]),0.013880247702822],
[hmm(2,4,s1,[b,a,b]),0.054497179729564]] ?

When omitting the matching pattern GPatt, hindsight(G) writes the hindsight probabilities for all
subgoals of G to the current output.

?- hindsight(hmm([a,b,a,b])).
hindsight probabilities:

hmm(1,4,s0,[a,b,a,b]): 0.058058181772934
hmm(1,4,s1,[a,b,a,b]): 0.010319245659452
hmm(2,4,s0,[b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564
hmm(3,4,s0,[a,b]): 0.062748214275926
hmm(3,4,s1,[a,b]): 0.005629213156460
hmm(4,4,s0,[b]): 0.015964697775827
hmm(4,4,s1,[b]): 0.052412729656559
hmm(5,4,s0,[]): 0.047234593867704

8 The term ‘hindsight’ comes from an inference task with temporal models such as dynamic Bayesian networks [33].
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hmm(5,4,s1,[]): 0.021142833564682

It should be noted that, if you want the list of all pairs of subgoal and its hindsight probability, we need to
run hindsight(G,_,Ps) (not hindsight(G,Ps), in which Ps will be interpreted as the matching
pattern).

4.6.2 Summing up hindsight probabilities
Furthermore, sometimes it is required to compute the sum of hindsight probabilities of several particular
subgoals. Although this procedure may be implemented by the user with hindsight/1-3 and addi-
tional Prolog routines, for ease of programming, the system provides a built-in utility of such summation
(marginalization).

To illustrate this utility, let us consider another example that describes an extended hidden Markov
model, in which there are two state variables, only one depends on another:

values(init,[s0,s1,s2]).
values(out(_),[a,b]).
values(tr(_),[s0,s1,s2]).
values(tr(_,_),[s0,s1,s2]).

hmm(L):-
str_length(N),
msw(init,S1),
msw(init,S2),
hmm(1,N,S1,S2,L).

hmm(T,N,S1,S2,[]) :-T>N,!.
hmm(T,N,S1,S2,[Ob|Y]) :-

msw(out(S2),Ob),
msw(tr(S1),Next1), % Transition in S1 depends on S1 itself
msw(tr(S1,S2),Next2), % Transition in S2 depends both on S1 and S2
T1 is T+1,
hmm(T1,N,Next1,Next2,Y).

str_length(4).

Each state variable takes on three values (s0, s1 and s2), and the state of the HMM itself is determined
as a combination of the values of the two variables (hence we can say that the number of possible states
is (3 × 3 =) 9). Under some parameter configuration (e.g. after learning), we can compute the hindsight
probabilities for all subgoals.

?- hindsight(hmm([a,b,a,b])).
hindsight probabilities:

hmm(1,4,s0,s0,[a,b,a,b]): 0.129277300817752
hmm(1,4,s0,s1,[a,b,a,b]): 0.000547187686019
hmm(1,4,s0,s2,[a,b,a,b]): 0.001995647575806

:
hmm(5,4,s2,s0,[]): 0.038066015885796
hmm(5,4,s2,s1,[]): 0.030640117459401
hmm(5,4,s2,s2,[]): 0.013513864959245
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Now let us suppose that we want to marginalize out the second state variable (i.e. the fourth argument).
It is achieved by running hindsight_agg/2 as follows:

?- hindsight_agg(hmm([a,b,a,b]),hmm(integer,_,query,_,_)).
hindsight probabilities:

hmm(1,*,s0,*,*): 0.131820136079577
hmm(1,*,s1,*,*): 0.012972174566148
hmm(1,*,s2,*,*): 0.050479679093070
hmm(2,*,s0,*,*): 0.031258649883958
hmm(2,*,s1,*,*): 0.116570845419607
hmm(2,*,s2,*,*): 0.047442494435231

:
hmm(5,*,s0,*,*): 0.041483563280137
hmm(5,*,s1,*,*): 0.071568428154217
hmm(5,*,s2,*,*): 0.082219998304441

In the above, hmm(integer,_,query,_,_) is a control statement that means “group subgoals ac-
cording to the first (integer) argument, and then, within each group, sum up the hindsight probabilities
among the subgoals that has the same pattern in the argument specified by query (i.e. the third ar-
gument). In general, query is a reserved Prolog atom that specifies an argument of interest, and the
arguments specified by unbound variables are ineffective in grouping and then bundled up in summation.

For the control of grouping, six reserved Prolog atoms are defined: integer, atom, compound,
length, d_length, depth. A null list [] matches with compound and length. The first three
symbols just mean grouping by exact matching9 for the integer argument, the argument with an atoms,
and the argument with a compound term, respectively. On the other hand, length will make groups
according to the length of a list in the corresponding argument. Similarly, d_length considers the
length of a difference list (which is assumed to take the form D0-D1), and depth considers the term
depth. The last three symbols would be useful if we have no appropriate argument for exact matching.
For example, we can make grouping by the list length in the fifth argument, instead of the first argument
(L-n means that the length is n):

?- hindsight_agg(hmm([a,b,a,b]),hmm(_,_,query,_,length)).
hindsight probabilities:

hmm(*,*,s0,*,L-0): 0.041483563280137
hmm(*,*,s1,*,L-0): 0.071568428154217
hmm(*,*,s2,*,L-0): 0.082219998304441

:
hmm(*,*,s0,*,L-4): 0.131820136079577
hmm(*,*,s1,*,L-4): 0.012972174566148
hmm(*,*,s2,*,L-4): 0.050479679093070

The arguments in the control statement, which are neither variable nor reserved Prolog atoms, will
be used for filtering, that is, they are considered as matching patterns, just as in hindsight/1-3. For
example, to get the distribution at time step 3, we run:

?- hindsight_agg(hmm([a,b,a,b]),hmm(2,_,query,_,_)).
hindsight probabilities:

hmm(2,*,s0,*,*): 0.031258649883958
hmm(2,*,s1,*,*): 0.116570845419607
hmm(2,*,s2,*,*): 0.047442494435231

9 The matching is done by ==/2, where the variables in the distinct subgoals are considered as different and thus do not match
with each other.
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Besides, hindsight_agg(G,GPatt,Ps) will return to Ps a Prolog term representing the above com-
puted results, where ‘*’ can be handled just as a Prolog atom.

By default, each group in the computed result is sorted in the Prolog’s standard order with respect to
the subgoals. When setting ‘by_prob’ to the sort_hindsight flag (§4.13), the group will be sorted
by the magnitude of the hindsight probabilities.

4.6.3 Conditional hindsight probabilities
Furthermore, chindsight/1-3 and chindsight_agg/2-3 compute the conditional hindsight
probabilities Pθ(G′|G) = Pθ(G′)/Pθ(G) instead of Pθ(G′), where G is a given top-goal and G′ is its sub-
goal.10 The usages for them are respectively the same as those for the hindsight or the hindsight_
agg predicates with the same arity. Conditional hindsight probabilities can be seen as a restricted version
of conditional probabilities. For instance, in the example program which represents a Bayesian network
(§7.3), we compute conditional probabilities on the network by using conditional hindsight probabilities.

4.6.4 Computing goal probabilities all at once
One interesting use of the hindsight predicates is to compute the probabilities of several goals
all at once. For example, in the HMM program, let us compute the conditional distribution on the
strings that have a prefix ‘ab’. To do this, we compute the hindsight probabilities of subgoals of
hmm([a,b,_,_]), which take the form hmm(_):

?- chindsight(hmm([a,b,_,_]),hmm(_)).
conditional hindsight probabilities:

hmm([a,b,a,a]): 0.150882383997529
hmm([a,b,a,b]): 0.375321053537642
hmm([a,b,b,a]): 0.162375115518536
hmm([a,b,b,b]): 0.311421446946293

On the other hand, in the blood type program, we may compute the distribution over blood types:

?- hindsight(bloodtype(_),bloodtype(_)).
hindsight probabilities:

bloodtype(a): 0.403912166491685
bloodtype(ab): 0.095321638418523
bloodtype(b): 0.204152312431112
bloodtype(o): 0.296613882658681

Furthermore, by giving ‘by_prob’ to the sort_hindsight flag (§4.13), we can list goals in de-
scending order of their probabilities:

?- set_prism_flag(sort_hindsight,by_prob).
:

?- hindsight(bloodtype(_),bloodtype(_)).
hindsight probabilities:

bloodtype(a): 0.403912166491685
bloodtype(o): 0.296613882658681

10 Generally speaking, we need to say that what is computed by the chindsight predicates is not a probability but Eθ[G′ |G],
the expected occurrences of G′ given G, which can exceed unity. This is because, in a general case, some subgoal G′ can appear
more than once in G’s proof tree. On the other hand, in typical programs of HMMs, PCFGs (with neither ε-rule nor chain of unit
productions) or Bayesian networks, each of subgoals should appear just once, hence Eθ[G′ |G] can be considered as a conditional
probability, say Pθ(G′ |G). The discussion in this footnote also holds for the hindsight predicates.
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bloodtype(b): 0.204152312431112
bloodtype(ab): 0.095321638418523

It is obvious that, since we use a top goal which contains logical variables, the computational cost (espe-
cially the size of memory consumption) can be very large for some programs.

4.7 Parameter learning

4.7.1 Maximum likelihood estimation and EM learning
The programming system supports parameter learning called maximum likelihood estimation (ML es-
timation). That is, we can learn the parameters θ of switches buried in a program from data. More
concretely, in ML estimation, the system tries to find the parameters θ that maximize the likelihood∏

t Pθ(Gt), the product of probabilities of given observed goals {G1,G2, . . . ,GT } (i.e. training data).11

If we know that there is just one way to yield each observation Gt, ML estimation of the parameters
θ is quite easy. In such a case, Gt has only one explanation Et (a conjunction of switch instances which
used to generate Gt; see §2.4.2 for illustrated details of explanations), and hence it is only required
to count up Ci,v, the number of occurrences of msw(i,v) among all Et, and then to get the estimate
θ̂i,v = Ci,v/

∑
v′ Ci,v′ of the parameters of the switch.

The situation above is frequently seen in supervised learning where we say each observation Gt is a
complete data. In partially observing situation such as unsupervised or semi-supervised learning, on the
other hand, we can consider two or more ways to yield Gt (i.e. Gt has two or more explanations). To deal
with such partially observed goals (incomplete data) as observations, the programming system provides
the utility of EM learning .

In the system, EM learning is conducted in two phases: the first phase searches for all explanations
for observed data Gt (i.e. make an explanation search for Gt; see §2.4.2), and the second phase finds an
ML estimate of θ by using the EM algorithm. The EM algorithm is an iterative algorithm:

Initialization step:
Initialize the parameters as θ(0), and then iterate the next two steps until the likelihood converges.

Expectation step:
For each msw(i,v), compute Ĉi,v, the expected occurrences of msw(i,v) under the parameters
θ(m).

Maximization step:
Using the expected occurrences, update each parameter by θ̂(m+1)

i,v = Ĉi,v/
∑

v′ Ĉi,v′ and then incre-
ment m by one.

When the likelihood converges, the system stores the estimated parameters to its internal database, and
then we can make further probabilistic inferences based on these estimated parameters. The threshold
ε is used for judging convergence, that is, if the difference between the likelihood under the updated
parameters and one under the original parameters is less than ε (i.e. sufficiently small), we can think that
the likelihood converges. The value of ε can be configured by the epsilon flag (see §4.13; the default
is 10−4).

11 It should be noted here that each goal Gt is assumed to be observed independently.
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4.7.2 Maximum a posteriori estimation
As mentioned in §1.5, the programming system also supports maximum a posteriori estimation (MAP
estimation) for parameter learning, which tries to find parameters θ that maximize, P(θ | G1, . . . ,GT ) ∝
P(θ)
∏

t Pθ(Gt), the a posteriori probability of the parameters given training data from a Bayesian point of
view.12 In MAP estimation, the system assumes the prior distribution P(θ) follows a Dirichlet distribution
P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v , where Z is a normalizing constant and each αi,v is a hyperparameter of the Dirichlet

distribution, which corresponds to msw(i,v). Then in estimating parameters, it introduces δi,v = (αi,v −
1), as a pseudo count for each msw(i,v).

The term ‘pseudo count’ comes from the fact that, in the complete-data case, each parameter is
estimated by θ̂i,v = (Ci,v + δi,v)/(

∑
v′ (Ci,v′ + δi,v′ )). Similarly, in the incomplete-data case, each parameter

is updated by the EM algorithm with θ̂i,v = (Ĉi,v + δi,v)/(
∑

v′(Ĉi,v′ + δi,v′ )), until the a posteriori probability
converges. Practically speaking, even for small training data (compared to the number of parameters
to be estimated), with all pseudo counts being positive, all estimated parameters are guaranteed to be
positive, and hence we can escape from the problem of so-called data sparseness or zero frequency. If all
pseudo count are zero, the MAP estimation is just an ML estimation, and it is sometimes called Laplace
smoothing when all pseudo counts are set to be unity. To configure these pseudo counts individually, it is
recommended to use the built-in predicates named ∗_sw_d or ∗_sw_pd described in §4.1.

4.7.3 Running learning commands
The built-in learn(Goals) takes Goals, a list of observed goals, and estimates the parameters of the
switches to maximize the likelihood of the goals. For example, in the direction program (§1.1), we make
the program learn with three observed goals:

?- learn([direction(left),direction(right),direction(left)]).

Then we may receive messages like:

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -1.909542505)
Statistics on learning:

Graph size: 2
Number of switches: 1
Number of switch instances: 2
Number of iterations: 2
Final log likelihood: -1.909542505
Total learning time: 0.004 seconds
Explanation search time: 0.004 seconds
Total table space used: 1088 bytes

Type show_sw or show_sw_b to show the probability distributions.

The line beginning with #goals shows the number of distinct goals whose explanation searches have
been done. The lines beginning with #iterations show the number of EM iterations. Since each
of direction(left) and direction(right) has just one explanation msw(coin,head) and
msw(coin,tail) respectively (i.e. they are complete data), EM learning finishes with only two iter-
ations. After learning, the statistics on learning are displayed. These statistics can also be obtained as
Prolog terms (see §4.8). We may confirm the estimated parameters by show_sw/0 (§4.1.8):

?- show_sw.
Switch coin: unfixed: head (0.666666666666667) tail (0.333333333333333)

12 In this view, the parameterized probability distribution Pθ(G) which we used so far should be considered as P(G|θ), a condi-
tional probability given the parameters.
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This result indicates that the estimated parameters are θ̂coin,head = 2/3 and θ̂coin,tail = 1/3. This is
obviously because, for the whole training data, we have the explanation msw(coin,head) for two
goals, and msw(coin,tail) for one goal.

The built-in learn/0 can be used only when the program gives the data_source flag (§4.13.2)
which specifies the location of the observed goals. The built-in predicate learn [no args] is the same as
learn(Goals) except that the observed goals are read from the file specified by the data_source
flag. For example, assume the file ‘direction.dat’ contains the following two unit clauses:

direction(left).
direction(right).

and the program contains a query statement for the data_source flag:

:- set_prism_flag(data_source,file(’direction.dat’)).

Then running the command learn/0 is equivalent to:

?- learn([direction(left),direction(right)]).

Furthermore, we can specify the data by goal-count pairs by using count/2. That is, the data

count(direction(left),3).
count(direction(right),2).

are equally treated as below:

direction(left).
direction(left).
direction(left).
direction(right).
direction(right).

Such goal-count pairs can also be given to learn/1:

?- learn([count(direction(left),3),count(direction(right),4)]).

Furthermore, an infix version of count/2, times/2 is also available (as the operator, the priority is
set to 1160):

?- learn([(3 times direction(left)),(4 times direction(right))]).

In the programming system, the default learning method is ML estimation (§4.7.1). On the other
hand, as mentioned above, we can enable MAP estimation (§4.7.2) by setting the pseudo count δI,V ,
which is greater than zero, for each switch instance msw(I,V). For example, let us set all pseudo counts
as 0.5. There are two typical cases:

• No random switches have been registered into the internal database yet (§4.1.3). In such a case, we
set the default pseudo counts as follows:

?- set_prism_flag(default_sw_d,0.5).

With this setting, the pseudo counts of the switches found (and registered) in the next learning will
be all set to 0.5.

• The switches whose parameters are the target of learning have already been registered. In such a
case, we use set_sw_all_d/2 to change the pseudo counts of these switches as follows:
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?- set_sw_all_d(Patt,0.5).

In the query above, Patt is the matching pattern of the target switches. See §4.1.6 for the detailed
usage of set_sw_all_d/2 and other built-ins for setting the pseudo counts of switches.

Note that the settings above can co-exist. Finally, the learning command is invoked in the same way as
that of ML estimation:

?- learn([direction(left),direction(right),direction(left)]).

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -2.646252953)
Statistics on learning:

Graph size: 2
Number of switches: 1
Number of switch instances: 2
Number of iterations: 2
Final log of a posteriori prob: -2.646252953
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 1088 bytes

Type show_sw or show_sw_b to show the probability distributions.

It may be confusing that ‘log of a posteriori prob’ in the messages above is indeed the log of
unnormalized a posteriori probability of the observed goals (i.e. the sum of the log-likelihood and the log-
scaled prior probability13), which is the substantial target of maximization. Finally we find the estimated
parameters are θ̂coin,head = (2+0.5)/(3+2∗0.5) = 0.625 and θ̂coin,tail = (1+0.5)/(3+2∗0.5) = 0.375.

?- show_sw.
Switch coin: unfixed_p: head (p: 0.625000000) tail (p: 0.375000000)

Let us recall that the above example is a program with complete data. When EM learning is conducted
with incomplete data, the procedure is the same as above, but the larger number of iterations may be
required for complex models or large data. If some parameters are fixed (§4.1.7), they will not be updated
in the process of learning. Please note however that it is not allowed to fix any parameters at zero in MAP
estimation (if we have some parameter being zero, then the prior probability becomes zero, and in turn,
its logarithm becomes −∞).

4.7.4 Random restarts
It is only guaranteed by the EM algorithm that each iteration monotonically increases the likelihood (or
the a posteriori probability), and hence we often face the problem of being trapped in undesirable local
maxima. In the current version, the system provides two solutions. The first one is quite simple. That
is, we try multiple runs of the EM algorithm by restarting with different initial parameters. The final
estimates are the ones with the highest likelihood (or the a posteriori probability) among all trials. The
number of such trials can be specified by the restart flag (see §4.13). For example, if you wish to
make restarts for 10 times, just type:

13 To be precise, suppose we have some predefined probabilistic model and let D be the data at hand. Then, from a Bayesian
point of view, a posteriori probability of parameter θ given D is computed by P(θ | D) = P(θ)P(D | θ)/P(D), where P(θ) is a prior
probability of θ, and P(D | θ) is the likelihood of D under θ. As stated in §4.7.2, P(θ) is assumed to follow a Dirichlet distribution,
and the ‘unnormalized’ a posteriori probability is just P(θ | D) ignoring the constant factors with respect to θ (i.e. the constant
factors in the Dirichlet distribution and P(D)). Of course, such an unnormalized version can be used only for relative comparison
such as a judgment of the EM algorithm’s convergence, or selecting the ‘best’ parameters in multiple runs of the EM algorithm
(§4.7.4).

67



parameter space

β : small

: largeβ
(close to 1)

L
β

Figure 4.1: Image of the deterministic annealing EM algorithm.

?- set_prism_flag(restart,10).

4.7.5 Deterministic annealing EM algorithm
Another solution for avoiding undesirable local maxima is to use the deterministic annealing EM (DAEM)
algorithm [48]. It is easy to see that, in the usual EM algorithm, the final estimate of the parameters de-

pends on the choice of initial parameters. On the other hand, the DAEM algorithm is designed to reduce
an undesirable influence from the initial parameters in the early stage of EM iterations. In the rest of this
section, we briefly describe the DAEM algorithm.

Let us consider first that we have the observed data (a multiset of observed goals) D = {G1,G2, . . . ,GT },
and ψ(Gt) is the set of explanations for the t-th observed goal. Then, from analogy to statistical mechan-
ics, the free energy is introduced as:

Fβ = −
1
β

T∑
t=1

log
∑

E∈ψ(Gt)

Pθ(E)β, (4.1)

where β is the inverse temperature which controls the influence from the initial parameters. The DAEM
algorithm is derived so that it tries to minimize the free energy Fβ at each temperature 1/β. Fig. 4.1
shows an expected behavior of the DAEM algorithm, where Lβ is introduced as −Fβ (then we will try
to maximize Lβ). In the DAEM algorithm, we start from the small β, under which Lβ is expected to
have a smooth shape, and hopefully has only one local maximum (i.e. the global maximum). So under
the smaller β, we may be able to find the global maximum or good local maxima. When β increases,
on the other hand, the shape of Lβ changes (becomes sharper), and hence we should continue to update
the parameters by EM iterations. Please note that the starting point of these EM iterations is expected
to be more promising than the initial parameters. Finally we perform EM iterations at β = 1, which is
equivalent to the usual EM iterations.

For an effective use of the DAEM algorithm, the annealing schedule is important. In PRISM, follow-
ing [48], we start from β0 = βinit and then update β by the update rule βt+1 ← βt ·βrate, where βinit and βrate
are given by the user (the default values are 0.1 and 1.5, respectively). In our experience, the appropriate
annealing schedule seems to vary depending on the model and the observed data.
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The DAEM algorithm will be enabled when the daem flag is set as ‘on’, and controlled by the
itemp_init and the itemp_rate flags which correspond to βinit (the initial value) and βrate (the
increasing rate), respectively. For example, the followings will enable the DAEM algorithm with βinit =

0.3 and βrate = 1.2.

?- set_prism_flag(daem,on).
?- set_prism_flag(itemp_init,0.3).
?- set_prism_flag(itemp_rate,1.2).

While the DAEM algorithm running, the programming system displays an asterisk (‘*’) in the line
beginning with ‘#em-iters’ at the moment the inverse temperature is updated. For example, in the
HMM program, we will see the messages as follows:

?- prism(hmm).
:

?- set_prism_flag(daem,on).
:

?- set_prism_flag(itemp_init,0.3).
:

?- set_prism_flag(itemp_rate,1.2).
:

?- hmm_learn(100).

#goals: 0.........(92)
Exporting switch information to the EM routine ... done
#em-iters: *0*****.**(13) (Converged: -687.729389314)
Statistics on learning:

Graph size: 5420
Number of switches: 5
Number of switch instances: 10
Number of iterations: 13
Final log likelihood: -687.729389314
Total learning time: 0.032 seconds
Explanation search time: 0.008 seconds
Total table space used: 369180 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes

On the other hand, when the show_itemp flag (§4.13.2) turned ‘on’, the system will display ‘<βt>’
(t = 0, 1, . . .) instead of asterisks.

4.8 Getting statistics on probabilistic inferences
The built-ins graph_statistics/0, learn_statistics/0 and infer_statistics/0 dis-
play the statistics on the explanation graphs, on learning, and on the probabilistic inferences other
than learning. prism_statistics/0 displays all statistics displayed by the above three built-ins.
To get an individual statistic, we can respectively use graph_statistics(Name,Stat), learn_
statistics(Name,Stat), infer_statistics(Name,Stat) and prism_statistics(Name,
Stat), where Name is the name of a statistic and Stat is the value of the statistic. For example, to get the
time consumed by learning, we may run:

?- prism_statistics(learn_time,T).

69



Table 4.1: Available statistics on the explanation graphs, on learning, and on the probabilistic inference
other than learning

graph_statistics(Name,Stat)
Name Stat

num_subgraphs Number of subgraphs in the explanation graphs
num_nodes Total number of nodes in the explanation graphs

(the sum of num_goal_nodes and num_switch_nodes)
num_goal_nodes Number of subgoal nodes
num_switch_nodes Number of switch nodes
avg_shared Average number of nodes which share a particular node (note: this average value

can be misleading if there is a node which is shared by extremely many nodes)
learn_statistics(Name,Stat)

Name Stat
log_likelihood Log likelihood (only available in ML/MAP)
log_post Log of unnormalized a posteriori probability (in MAP)
log_prior Log of a priori probability (in MAP)
lambda Same as log_likelihood (in ML) or log_post (in MAP)
num_switches Number of occurred switches in the last learning
num_switch_values Number of occurred switch values in the last learning
num_parameters Number of free parameters in the last learning
num_iterations Number of EM iterations in the last learning
goals List of goals used in the last learning
goal_counts List of goal-count pairs used in the last learning
bic Bayesian Information Criterion (in ML/MAP, see §4.9)
cs Cheeseman-Stutz score (in MAP, see §4.9)
free_energy Variational free energy (in VB, see §5.1)
learn_time Total time consumed by the built-in (in seconds, including miscellaneous jobs)
learn_search_time Time consumed by the explanation search (in seconds)
em_time Time consumed by the EM algorithm (in seconds)

infer_statistics(Name,Stat)
Name Stat

infer_time Total time consumed by the built-in (in seconds, including miscellaneous jobs)
infer_search_time Time consumed by the explanation search (in seconds)
infer_calc_time Time consumed by the numerical calculation (in seconds)

When calling prism_statistics(Name,Stat) with Name being unbound, we can get all avail-
able statistics one after another by backtracking (this behavior also applies to graph_statistics/2,
learn_statistics/2 and infer_statistics/2). The available statistics are shown in Ta-
ble 4.1.14 Combining these statistics with the facilities for saving/restoring switch information (§4.1.10),
it is possible to a customized routine for multiple runs of the EM algorithm (§4.7.4).

In addition, the observed goals (with their counts and frequencies) used in the last learning is dis-
played by show_goals, and can be obtained as Prolog terms by get_goals/1 and get_goal_
counts/1:

?- show_goals.
Goal direction(right) (count=1, freq=33.333%)

14 The number of occurred switch instances is just the sum of the numbers of possible outcomes of switches occurred in all
explanations for all observed goals. This means that the switch instances not occurring in any of these explanations are also taken
into account there. The number of free parameters is just computed as the number of occurred switch instances subtracted by the
number of occurred switches.
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Goal direction(left) (count=2, freq=66.667%)
Total_count=3

?- get_goals(Gs).
Gs = [direction(left),direction(right)] ?

?- get_goal_counts(GCs).
GCs = [[direction(left),2,66.666666666666657],

[direction(right),1,33.333333333333329]] ?

4.9 Model scoring*
In practical applications, we often face a problem of model selection — that is, we need to select the
model that fits best the data at hand, from possible candidates. In PRISM, the programming system
provides three Bayesian scores called Bayesian Information Criterion (BIC) [46], the Cheeseman-Stutz
(CS) score [5] and variational (negative) free energy. The first two are used after ML (§4.7.1) or MAP
(§4.7.2) estimation, whereas the last one is used after variational Bayesian learning (Chapter 5). Gen-
erally speaking, these Bayesian scores are known to be ‘deterministic’ approximations of log P(D | M),
log of the marginal likelihood of the observed data D under the model M, and so in model selection with
some Bayesian score (BIC, for example), we compare the model candidates according to the score (i.e.
the model with the larger score is considered to be better).

To be more concrete, let us consider first that the joint distribution p(D,M, θ) of the observed data D, a
probabilistic model M, and its parameters θ. In PRISM, D is a multiset of observed goals G1,G2, . . . ,GT ,
and M corresponds to the modeling part of a PRISM program. p(D,M, θ) is then factored as p(D |
M, θ)p(θ | M)p(M) by the chain rule, where p(M) is the prior distribution of the model M, p(θ | M) is
the a posteriori distribution of the parameters θ of the model M, and p(D | M, θ) is the likelihood of the
data D based on the model M with the parameters θ. Then, in model selection, our goal is to find the
most probable model M∗ based on the data D at hand, that is, we attempt to find M∗ such that:

M∗ = argmaxM p(M | D) = argmaxM
p(D | M)p(M)

p(D)
= argmaxM p(D | M),

where we assume p(M) to be uniform for simplicity. Now the goal is reduced to finding M (= M∗) that
maximizes p(D | M). p(D | M) is commonly called the marginal likelihood of D given M, and is used as
a Bayesian score for model selection. The marginal likelihood can be interpreted as the expectation (or
the average) of the likelihood p(D | M, θ) with respect to the prior distribution p(θ | M):

p(D | M) =
∫
Θ

p(D, θ | M)dθ =
∫
Θ

p(D | M, θ)p(θ | M)dθ = 〈p(D | M, θ)〉p(θ|M) .

If the observed data were complete data Dc, where each d ∈ Dc is a pair (Gt, Et) of the t-th goal Gt and
its unique explanation Et, then p(Dc | M) is obtained in closed form (see [9] for the case with a Bayesian
network). On the other hand, when the observed data is incomplete, as in the case with mixture models,
the integral in the above equation is difficult to compute. As mentioned above, BIC and the CS score are
the approximations of log of the marginal likelihood, which are defined as:

ScoreBIC(M) def
= p(D | M, θ̂MAP) − |θ|

2
log N

ScoreCS(M) def
= p(D̃c | M) − p(D̃c | M, θ̂MAP) + p(D | M, θ̂MAP),

where N is the total size of dataset, |θ| denotes the number of free parameters, θ̂MAP is the MAP estimate
of the parameters, and D̃c is the pseudo complete data whose sufficient statistics are the expected occur-
rences of random switches obtained by the EM algorithm. See [6] for more detailed descriptions about
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BIC and the CS score. The definition of the variational free energy will be shown in Chapter 5. In the pro-
gramming system, learn_statistics(bic,Score) or learn_statistics(cs,Score) (§4.8)
will provide us BIC and the CS score after ML or MAP learning (§4.7.3) with some observed goals D.

4.10 Handling failures*
The programming system provides a facility of dealing with failure in generative models. The background
and general descriptions are given in §1.4 and §2.4.4, and so in this section, we will concentrate on the
usage of this facility.

For example, let us consider again the program which takes into account the agreement in the results
of coin-tossings, and suppose that the program is contained in the file named ‘agree.psm’:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

See §2.4.4 for a detailed reading of this program. Like the program above, for the model that may cause
failures, we need to define the predicate failure/0 which describes all generation processes leading
to failure. In a probabilistic context, the sum of probabilities of successful generation processes and the
probability that failure/0 holds (called the failure probability) should always sum to unity. Of course
it is possible to define failure/0 in a usual manner of PRISM programming, but the definition should
be much simpler if we can appropriately use the negation not/1 as above.

When some negation not/1 occurs in a program, the system first attempts to eliminate it from the
program by applying a certain type of program transformation, called First Order Compiler (FOC) [34],
to produce an ordinary PRISM program. If this transformation is successful, PRISM then loads the
transformed program into memory. prismn(File) carries out this two-staged process automatically
(please note that ‘n’ is added to the last of the predicate name). File must include a definition of the
failure/0 predicate described above.

By default, the transformed program is stored into the file ‘temp’ under the current working directory.
If you prefer another file, say TempFile, prismn(File,TempFile) should be used instead. For example,
for the agreement program above, the query

?- prismn(agree).

loads ‘agree.psm’ into memory. The user can check the result of the transformation by FOC, looking
at the file ‘temp’. To estimate the parameters of switches for this program, include a special symbol
failure as data:

?- learn([failure,agree(heads),agree(heads),agree(tails)]).

For a batch execution (§3.7) of the program that deals with failures, we need to run a command ‘upprism
prismn:foo’ instead of ‘upprism foo’.

foc/2 is the built-in predicate internally invoked by prismn/1-2. That is, foc(File,TempFile)
eliminates negation (or more generally universally quantified implications) and generates executable code
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into TempFile. For example, we can find the program ‘max’ under the ‘exs_foc’ directory obtained
by extracting the package. With the following query, we transform ‘max’ into ‘temp’, and load the
translated program:

?- foc(max,temp),[temp].

Allowing negation in the clause body is equivalent to allowing arbitrary first-order formulas as goals
which are obviously impossible to solve in general. So foc/2may fail depending on the source program.
Users are advised to look into the examples of foc/2 usage under the ‘foc’ directory.

It is unfortunate that the deterministic annealing EM (DAEM) algorithm (§4.7.5) does not work with
the failure-adjusted maximization (FAM) algorithm. This is because, under β < 1 (β is the inverse
temperature used in the DAEM algorithm), the failure probability can exceed unity, whereas the FAM
algorithm is derived from the property of a negative binomial distribution under the condition that the
failure probability is less than unity [12].

4.11 Avoiding underflow*
For large data, such as very long sequential data, we often suffer from a problem that the probability of
some explanation goes into underflow. In version 2.0, the mechanism for avoiding underflow is simpli-
fied, i.e. we just switch between logarithmic scale and non-logarithmic scale for the probabilities being
kept in the programming system. The default scale is non-logarithmic.

For Viterbi computation (§2.3 or §4.5), the log-scaled probability of the Viterbi explanation is just
computed as the sum of the log-scaled probabilities of the switch instances in the explanation. For
the probabilistic inferences other than Viterbi computation, the log-scaled probability computation is
performed by calling the logarithmic function and the exponential function alternately. Although log-
scaled probability computation is safe in most cases, we should care about two points. First, log-scaled
probability computation requires some additional computation time for the logarithmic function and the
exponential function. The second point is that we often need to combine the log-scaled probability
computation with MAP estimation (§4.7.2) to avoid a numerical problem that the programming system
may take a logarithm of zero probabilities. With MAP estimation, on the other hand, we can avoid having
such zero probabilities.

To enable the log-scaled probability computation, please set ‘on’ to the log_scale flag (the de-
fault value is off). Then the returned probability is in logarithmic scale. This setting is equivalent to
simultaneously setting ‘on’ to the log_viterbi flag and ‘log_exp’ to the scaling flag in pre-
vious versions of the programming system. See §4.13 for a general description on handling execution
flags.

4.12 Keeping the solution table*
Since version 1.10, when the clean_table flag is set as ‘off’ (see §4.13 for a general description on
handling execution flags), the programming system will come not to clean up the solution table. On the
other hand, if this flag is set as ‘on’, which is the default, the programming system will automatically
clean up all past results of explanation search (say, solutions) in the solution table15 when invoking a
routine that performs explanation search, i.e. the routine for probability calculation (prob/2 and its
variants; §4.3), explanation graph construction (probf/2 and its variants; §4.4), Viterbi computation
(viterbif/2 and its variants; §4.5), hindsight computation (hindsight/1 and its variants; §4.6)
and learning (learn/0 and its variants; §4.7).

15 Internally, the system calls both initialize_table/0 (B-Prolog’s built-in) and the routine that erases the ID tables of
PRISM’s own. So it is not guaranteed for the system to work when you call only initialize_table/0 at an arbitrary timing.
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Keeping and reusing the past solutions can be significantly useful when we compute the probabilities
of some specific goal repeatedly with different parameter settings. Of course, the efficiency is gained at
the price of memory space, so we need to care about the size of the used memory (i.e. the table area).

4.13 Execution flags

4.13.1 Handling execution flags
The programming system provides dozens of execution flags for allowing us to change its behavior. The
below is the usage of these execution flags:

Setting flags:

The execution flags are set by the command set_prism_flag(FlagName,Value). There are
a couple of typical usages:

• At loading time:
The execution flags can be specified by the loading command prism/2 (§3.3):

?- prism([FlagName=Value],Filename).

The programming systems will then behave under the setting FlagName=Value.

• At the query prompt:
We can of course interactively set the execution flags at the query prompt:

?- set_prism_flag(FlagName,Value).

The programming systems will then behave under the setting FlagName=Value.

• In the query statements in the program:
When writing set_prism_flag/2 in some query statements in a program, these queries
will be evaluated while loading. They can be thought of as the default flag settings for the
program. Here is an example:

:
:- set_prism_flag(default_sw_d,1.0).
:- set_prism_flag(log_scale,on).

:

• In a batch routine:
It is often convenient to write set_prism_flag/2 in a batch predicate like go/1 shown
below:

go(R) :- % R is the number of random restarts
set_prism_flag(restart,R),
learn.

Then, we can run “?- go(R)” with various R.

Printing flags:

show_prism_flags/0 or more shortly show_flags/0 will print the current values of flags.

Getting flag values:

By get_prism_flag(FlagName,X), we can get the current value of FlagName as X. If we
call this with FlagName being unbound, all available flags and their values are retrieved one after
another by backtracking.
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4.13.2 Available execution flags
Here we list the available execution flags in the alphabetical order. Please note that this list also includes
ones for the functions described in later chapters.

• clean_table (possible values: on and off; default: on) — the flag for automatic cleaning
of the solution table (see §4.12 for details). If this flag is set as ‘on’, the programming system
will automatically clean up all past solutions in the solution table when invoking any routine that
executes the explanation search. On the other hand, with this flag turned ‘off’, we can keep the
past solutions.

• daem (possible values: on and off; default: off) — the flag for enabling the deterministic an-
nealing EM (DAEM) algorithm (see §4.7.5). If this flag is set as ‘on’, the programming system
will invoke the DAEM algorithm while EM learning. On the other hand, with this flag turned
‘off’, it will be disabled.

• data_source (possible values: data/1, file(Filename), none; default: data/1) — the
data file for learn/0 (§4.7.3). If this flag is set as data/1, the observed goals are read from
the file specified by the data file declaration (§2.6.1) as in the versions earlier than 1.12. If
file(Filename), the observed goals are read from Filename. If none, the programming system
assumes that there is no data file available for learn/0 and thus raises an error when learn/0
is called. By setting file(Filename) or none, you can use data/1 as a user predicate for the
purposes other than data file declaration.

• default_sw (possible values: none, uniform, f_geometric, f_geometric(Base), f_
geometric(Base,Type), random; default: uniform) — the default distribution for parame-
ters. If none is set, we have no default distribution for parameters, and hence as in the versions
earlier than 1.9, we cannot make sampling or probability computation without an explicit parameter
setting (via set_sw/2, and so on) or learning. uniform means that the default distribution for
each switch is a uniform distribution. f_geometric(Base,Type) means the default distribution
for each switch is a finite geometric distribution where Base is its base (a floating-point number
greater than one) and Type is asc (ascending order) or desc (descending order). For example,
when the flag is set as f_geometric(2,asc), the parameters of some three-valued switch are
set to 0.142· · · (= 20/(20+21+22)), 0.285· · · (= 21/(20+21+22)), and 0.574· · · (= 22/(20+21+22)),
according to the order of values specified in the corresponding multi-valued switch declaration
(values/2-3). f_geometric(Base) is the same as f_geometric(Base,desc), and
f_geometric is the same as f_geometric(2,desc). random means that the default dis-
tribution for each switch is set at random.

• default_sw_a (possible values: none, uniform, uniform(ζ), ζ (ζ is a positive float);
default: disabled — see below) — the default value for pseudo counts (hyperparameters) αi,v

used in variational Bayesian learning. If none is set, we have no default distribution for pseudo
counts, and hence we cannot perform probabilistic inferences unless giving the pseudo counts, by
set_sw_a/2 or variational Bayesian learning (§5.2.1). uniform (resp. uniform(ζ)) means
that each pseudo count will be set as 1/K (resp. ζ/K) by default, where K is the number of pos-
sible values of the corresponding switch. If a positive floating-point number ζ is set to this flag,
the system use ζ as the default value of each pseudo count. This flag will be disabled if the
default_sw_d flag is set to some value. This flag is disabled just after the programming system
invoked.

• default_sw_d (possible values: none, uniform, uniform(ζ), ζ (ζ is a non-negative float);
default: 0.0) — the default value for pseudo counts δi,v used in MAP estimation. If none is set,
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we have no default distribution for pseudo counts, and hence we cannot perform probabilistic
inferences unless giving the pseudo counts by set_sw_d/2 (or variational Bayesian learning).
uniform (resp. uniform(ζ)) means that each pseudo count will be set as 1/K (resp. ζ/K) by
default, where K is the number of possible values of the corresponding switch. If a non-negative
floating-point number ζ is set to this flag, the system use ζ as the default value of each pseudo
count. This flag will be disabled if the default_sw_a flag is set to some value. This flag is
enabled just after the programming system invoked.

• em_progress (possible value: positive integer; default: 10) — the frequency of printing the
progress message (i.e. the dot symbol) in the EM algorithm (§4.7.1).

• epsilon (possible value: non-negative float; default: 1.0e-4) — the threshold ε for judging
convergence in the EM algorithm (see §4.7.1).

• error_on_cycle (possible values: on and off; default: on) — the flag for checking cycles
in the calling relationship. By default or when this flag is set as ‘on’, the programming system
checks the existence of a cycle in the calling relationship, and if any cycle exists, the system will
stop immediately. When this flag is set as ‘off’, the system does not check such acyclicity and we
are able to obtain an explanation graph that violates the acyclicity condition. Of course this flag is
very experimental and seems not to be used in usual cases.

• explicit_empty_expls (possible values: on and off; default: on) — The built-in predicate
probf/2 (§4.4) outputs an explanation graph which is a list of Prolog terms taking the form
node(G,Es) where G is a subgoal and Es is a list of G’s explanations. If G is known to be
always true, Es is bound to [path([],[])] since version 2.0. On the other hand, when setting
off to this flag, Es will be bound to [] as done in the earlier versions.

• fix_init_order (possible values: on and off; default: on) — the flag for fixing the order
of parameter initialization among switches. For an implementational reason, in the EM algorithm
(§4.7.1), the order of parameter initialization among switches can vary according to the platform,
and hence we may have different learning results among the various platforms. Turning this flag
‘on’ fixes the initialization order in some manner, and will yield the same learning result.

• force_gc (possible values: on and off; default: on) — the flag for performing garbage col-
lection after the every call of the built-ins probf/1-2 (and their variants), viterbif/{1,3},
hindsight/2-3 and chindsight/2-3. This flag is just experimental. For the stability of
the programming system, this flag is activated by default, but if you have a sufficient space for
control stack and heap, garbage collection could be skipped.

• init (possible values: none, random and noisy_u; default: random) — the initialization
method in the EM algorithm (§4.7.1). none means no initialization, random means that the pa-
rameters are initialized almost at random, and noisy_u means that the parameters are initialized
to be uniform with (small) Gaussian noises. The variance of Gaussian noises can be changed by
the std_ratio flag.

• itemp_init (possible value: floating-point number b such that 0 < b ≤ 1; default: 0.1) —
the initial value βinit of the inverse temperature β used in the deterministic annealing EM (DAEM)
algorithm (§4.7.5).

• itemp_rate (possible value: floating-point number b such that b > 1; default: 1.5) — the
increasing rate βrate of the inverse temperature β used in the DAEM algorithm (§4.7.5).
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• learn_message (possible values: see below; default: all) — the flag for controlling the mes-
sages being displayed while EM learning is conducted (by learn/0-1; §4.7). Currently, there
are four types of messages:

1. The message on the progress of explanation search

2. The message on the progress of the EM algorithm

3. The message on the summary statistics

4. Some other miscellaneous messages

These messages are enabled by giving search, em, stats and misc, respectively, to this flag.
We can specify the combination of these flag values by concatenating with ‘+’. For example, if the
value search+em is given, learn/0-1will only show the messages on the progress of explana-
tion search and EM learning. In addition, all is an abbreviation of search+em+stats+misc,
and if none is given, learn/0-1 will show no message. By default, all types of messages will
be displayed similarly to the earlier versions.

• learn_mode (possible values: params, hparams and both; default: params) — the under-
lying statistical framework for parameter learning. If this flag is set as ‘params’, the system will
conduct the EM algorithm for ML/MAP estimation (§4.7), by which we can get point-estimated
parameters of random switches. If this flag is set as ‘hparams’, the system will conduct the EM
algorithm for VB learning (§5.2.1), by which we can get adjusted pseudo counts (or equivalently,
the hyperparameters) of switches. With ‘both’, we can get both point-estimated parameters and
adjusted hyperparameters.

• log_scale (possible values: on and off; default: off) — the flag for enabling/disabling the
log-scaled probability computation (§4.11). For large data, we often suffer from the problem that
the probability of some explanation goes into underflow. By turning this flag on (setting ‘on’ to
this flag), we can avoid this problem by using the log-scaled probabilities. This is equivalent to
simultaneously setting ‘on’ to the log_viterbi flag and ‘log_exp’ to the scaling flag in
the previous versions of the programming system.

• max_iterate (possible value: positive integer, default and inf; default: default) — the
maximum number of EM iterations to be performed. In the EM algorithm (§4.7.1), sometimes we
need a large number of iterations until convergence. For such a case, we can stop the EM algorithm
before convergence by this flag. ‘default’ means that the maximum number of iterations is the
system’s default value (10000, in the current version). With ‘inf’, the system do not put any limit
on the number of iterations.

• rerank (possible value: positive integer; default: 10) — the number of intermediate candidates
in reranking for the Viterbi computation based on the hyperparameters (§5.2.2).

• reset_hparams (possible values: on and off; default: on) — the flag on resetting of the
pseudo counts (hyperparameters) in the repeated runs of VB learning (§5.2.1). By default or if this
flag is set as ‘on’, the programming system will reset the pseudo counts with the default values
(internally, it calls set_sw_all_a/0; §4.1.6) in advance of VB learning. If this flag is set as
‘off’, on the other hand, it can be observed that the pseudo counts monotonically increases as we
repeatedly run VB learning (this behavior might be common in Bayesian learning).

• restart (possible value: positive integer; default: 1) — the number of restarts (§4.7.4). Gener-
ally speaking, the EM algorithm (§4.7.1) only finds a local ML/MAP estimate, so we often restart
the EM algorithm for several times with different initial parameters, and get the best parameters
(i.e. with the highest log-likelihood or log of a posteriori probability) among these restarts.
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• search_progress (possible value: positive integer; default: 10) — the frequency of printing
the progress message (i.e. the dot symbol) in explanation search and in constructing explanation
graphs.

• show_itemp (possible values: on and off; default: off) — the flag for showing the inverse
temperature in the DAEM algorithm (§4.7.5). If this flag is set as ‘on’, the programming system
displays the inverse temperature like ‘<0.100>’ each time it is updated. Otherwise, each update
is indicated by an asterisk (‘*’).

• sort_hindsight (possible values: by_goal and by_prob; default: by_goal) — the flag
for the mode on sorting the results of hindsight computation (§4.6). With by_goal, the result will
be sorted in the Prolog’s standard order with respect to the subgoals. With by_prob, the result
will be ordered by the magnitude of the hindsight probability.

• std_ratio (possible value: non-negative float; default: 0.2) — the control parameter for the
variance of Gaussian noises used in initialization of switch parameters in the EM algorithm (§4.7.1;
see also the description on the init flag). When we initialize parameters with a k-valued switch
according to a uniform distribution with Gaussian noises from N(1/k, (std_ratio/k)2). The
parameters will be normalized at the end of initialization. Note that this flag works differently in
VB-learning (see §5.2.3 for details).

• verb (possible values: none, graph, em and full; default: none) — the flag for extra mes-
sages in EM learning (§4.7.1). ‘none’ means that no extra message will be displayed. If this flag
is set as ‘graph’, the explanation graphs will be displayed after the explanation search. By ‘em’,
we can get the more detailed information about the EM algorithm. If ‘full’ is set, we will see
both the explanation graphs and the information about EM.

• viterbi_mode (possible values: params and hparams; default: params) — the underlying
statistical framework for Viterbi computation. If this flag is set as ‘params’, the system will
conduct the Viterbi computation based on the current parameter values (§4.5). If ‘hparams’ is
set, on the other hand, the system will conduct the Viterbi computation for VB learning based on
the current hyperparameters (§5.2.2).

• warn (possible values: on and off; default: off) — the flag for enabling/disabling warning
messages.

• write_call_events (possible values: Prolog atoms representing events (§3.6.4), none and
off; default: all) — the default events at which the execution messages are displayed by write_
call/1-2. If this flag is set as none, the message is not displayed unless some events are speci-
fied in the options of write_call/2. If this flag is set as off, the message will not be displayed
regardless of the options passed to write_call/2.

4.14 Random routines
The programming system contains an implementation of the Mersenne Twister (http://www.math.
sci.hiroshima-u.ac.jp/˜m-mat/MT/emt.html) for a random number generator. This gen-
erator is internally used in sampling (§4.2) and the initialization step of parameter learning (§4.7), and
can be accessed by the built-in predicates described in this section. These built-in predicates have the
names beginning with ‘random_’.
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4.14.1 Configuring the random number generator
In a pseudo random number generator, including Mersenne Twister, the sequence of generated random
numbers is solely determined by the random seed with which the generator is initialized. To enable us to
control the sequence, the programming system provides a couple of built-ins for getting and setting the
random seed:

• random_get_seed(Seed) returns the random seed set by the most recent call to random_
set_seed/0-1.

• random_set_seed [no args] initializes the generator with a seed determined according to the
current system time. This predicate is called by the programming system during its start-up.

• random_set_seed(Seed) initializes the generator with Seed.

There are also built-ins to save and restore the internal state of the generator, with which we can reproduce
the sequence from an arbitrary point:

• random_get_state(State) returns the present internal state of the generator as a ground term
State. This term can be stored into files and dynamic predicates.

• random_set_state(State) restores the internal state of the generator to State. The argument
should be a term obtained by random_get_state/1.

4.14.2 Random numbers
Here is the list of built-ins for generating random numbers:

• random_int(Max,N) returns a random integer N such that 0 ≤ N < Max.

• random_int(Min,Max,N) returns a random integer N such that Min ≤ N < Max.

• random_int_incl(Min,Max,N) returns a random integer N such that Min ≤ N ≤ Max.

• random_int_excl(Min,Max,N) returns a random integer N such that Min < N < Max.

• random_uniform(X) returns a random floating-point number X in [0, 1) under the uniform
distribution.

• random_uniform(Max,X) returns a random floating-point number X in [0,Max) under the
uniform distribution.

• random_uniform(Min,Max,X) returns a random floating-point number X in [Min,Max) un-
der the uniform distribution.

• random_gaussian(X) returns a random floating-point number X under a normal distribution
with the mean 0 and the standard deviation 1.

• random_gaussian(Mu,Sigma,X) returns a random floating-point number X under a normal
distribution with the mean Mu and the standard deviation Sigma.
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4.14.3 Model-independent random choices
It is possible to make random choices by sampling on random switches (msw/2). However, this way is
sometimes inconvenient, in particular when the choices are not a part of the model. That is, we should
give the outcome spaces and the distributions to random switches (by set_sw/2) in advance. To provide
a quick way for random choices, the programming system provides the following built-in predicates:

• random_select(Values,V) chooses V randomly from Values according to the uniform distri-
bution.

• random_select(Values,Dist,V) chooses V randomly from Values according to the distribu-
tion Dist.

Values and Dist should be specified in the same manner as values/2-3 (§2.6.2) and set_sw/2
(§4.1.6) respectively, optionally with extended forms (e.g. ‘[1-20,25-50@5]’; see §4.1.4) and/or
distribution forms (e.g. ‘uniform’, ‘f_geometric’, and so on; also see §4.1.4). Note that random_
select/2 always follows the uniform distribution, not the distribution indicated by the flag default_
sw (§4.13.2).

For example, using random_select/3 as shown below, we may sample the phenotypes of blood
types according to the distribution PA = 0.4, PB = 0.2, PO = 0.3 and PAB = 0.1:

?- random_select([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = a ?

?- random_select([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = o ?

?- random_select([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = b ?

4.14.4 Advanced random routines
In addition to those mentioned in the previous subsections, the following built-in predicates are provided
as more advanced random routines:

• random_multiselect(List,N,Output) simultaneously chooses N elements from List uni-
formly at random.

• random_group(List,N,Output) randomly divides all elements in List into N groups. Output
is a (nested) list of N groups, where each group is represented by a list of elements belonging to
that group.

• random_shuffle(List,Output) randomly reorders the elements in List.

Here are a couple of usage examples:

?- random_multiselect([1,2,3,4,5,6,7,8,9,10],3,Out).
Out = [1,5,6] ?

?- random_group([1,2,3,4,5,6,7,8,9,10],3,Out).
Out = [[4,5],[1,2,6,8],[3,7,9,10]] ?

?- random_shuffle([1,2,3,4,5,6,7,8,9,10],Out).
Out = [3,7,8,9,5,1,2,4,10,6] ?
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Table 4.2: Available built-ins for statistical measures (see §4.15 for notations)

Predicate Op Description Formula
sumlist(List,Y) sum sum [B-Prolog’s built-in]

∑
i xi

avglist(List,Y) avg average (arithmetic mean) x̄ ≡ ∑i xi
/

n
meanlist(List,Y) mean average (arithmetic mean) x̄ ≡ ∑i xi

/
n

gmeanlist(List,Y) gmean geometric mean (
∏

i xi)1/n

hmeanlist(List,Y) hmean harmonic mean (
∑

i 1/xi)−1 · n
varlistp(List,Y) varp variance m2 ≡

∑
i(xi − x̄)2 / n

varlist(List,Y) var variance (estimator) k2 ≡
∑

i(xi − x̄)2 / (n − 1)
stdlistp(List,Y) stdp standard deviation m1/2

2

stdlist(List,Y) std standard deviation (estimator) k1/2
2

semlistp(List,Y) semp standard error of the mean (m2/n)1/2

semlist(List,Y) sem standard error of the mean (estimator) (k2/n)1/2

skewlistp(List,Y) skewp skewness m3
/

m3/2
2

skewlist(List,Y) skew skewness (estimator) k3
/

k3/2
2

kurtlistp(List,Y) kurtp kurtosis
(
m4
/

m2
2
) − 3

kurtlist(List,Y) kurt kurtosis (estimator) k4
/

k2
2

modelist(List,Y) mode mode (see §4.15) —
amodelist(List,Y) amode mode (see §4.15) —
rmodelist(List,Y) rmode mode (see §4.15) —
pmodelist(List,Y) pmode probabilistic mode (see §4.15) —
medianlist(List,Y) median median —
minlist(List,Y) min minimum min{xi}
maxlist(List,Y) max maximum max{xi}
length(List,Y) len length [B-Prolog’s built-in] n

4.15 Statistical operations
Dozens of built-in predicates are available for calculating statistical measures (such as average and vari-
ance) of a given sequence of values, as listed in Table 4.2. Each predicate takes one input argument List
for a list of values and one output argument Y for the calculated statistical measure. All values in List are
expected to be numeric except for the predicates returning the mode.

In Table 4.2, n denotes the length of List; xi denotes the i-th value in List (1 ≤ i ≤ n); x̄ denotes the
sample mean; mr denotes the r-th sample central moment; and kr denotes the r-th k-statistic or the unique
symmetric unbiased estimator of the r-th cumulant [49].

There are four variants available for obtaining the mode as follows:

• modelist(List,Y) returns a single value with the highest frequency. If multiple values have the
highest frequency, this predicate returns the value coming first in the standard order.16

• amodelist(List,Y) returns a list containing all values with the highest frequency. The values
in the resultant list are sorted by the standard order.

• rmodelist(List,Y) returns one of the values with the highest frequency. If multiple values
have the highest frequency, this predicate chooses one of them randomly.

16 The standard order refers to the order defined by the comparison operator ‘@<’.
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• pmodelist(List,Y) chooses one element according to the frequencies in List.17

In addition, the programming system provides the built-in agglist(List,Queries) that allows us to
calculate two or more statistical measures at once. Queries is a list of queries each having the form
Op=Y, where Op is one of those listed in the column ‘Op’ of Table 4.2 and Y is unified with the corre-
sponding statistics. For example:18

?- agglist([48,64,40,30,82],[mean=Avg,var=Var,std=Std]).
Var = 421.199999999999932
Avg = 52.799999999999997
Std = 20.523157651784484 ?

4.16 List processing
The programming system provides several built-in predicates that implement the map function in func-
tional programming languages, as well as the reduction operation.19 In addition, it is highly recommended
to use the extended syntactic constructs for ‘foreach’ and list comprehensions which are newly introduced
in B-Prolog 7.4 (http://www.probp.com/download/loops.pdf). These syntactic constracts
are compiled at loading time, whereas the current implementation of the maplist predicates uses the
assert/retract utility for evaluation of the Body argument. Here is a list of the built-in predicates:

• maplist(X,Body,Xs) succeeds when Xs is a list, and Body succeeds for every element of Xs.
Body is the body of a deterministic clause that takes one argument X, which will be unified with
each element from Xs.

• maplist(X,Y,Body,Xs,Ys) succeeds when Xs and Ys are lists of the same size, and Body
succeeds for every pair of corresponding elements in Xs and Ys. Body is the body of a deterministic
clause that takes two arguments X and Y, which will be unified with each pair from Xs and Ys,
respectively.

• maplist(X,Y,Z,Body,Xs,Ys,Zs) succeeds when Xs, Ys and Zs are lists of the same size, and
Body succeeds for every triplet of corresponding elements in Xs, Ys and Zs. Body is the body of a
deterministic clause that takes three arguments X, Y and Z, which will be unified with each triplet
from Xs, Ys and Zs, respectively.

• maplist_func(F,Xs) succeeds when Xs is a list, and the predicate F succeeds for every ele-
ment in Xs. This is equivalent to maplist(X,F(X),Xs).

• maplist_func(F,Xs,Ys) succeeds when Xs and Ys are the lists of the same size, and the
predicate F succeeds for every pair of corresponding elements in Xs and Ys. This is equivalent to
maplist(X,Y,F(X,Y),Xs,Ys).

• maplist_func(F,Xs,Ys,Zs) succeeds when Xs, Ys and Zs are the lists of the same size, and
the predicate F succeeds for every triplet of corresponding elements in Xs, Ys and Zs. This is
equivalent to maplist(X,Y,Z,F(X,Y,Z),Xs,Ys,Zs).

• maplist_math(Op,Xs,Ys) constructs a list by applying an algebraic unary operator Op to
each value in Xs, and returns the resultant list to Ys. Xs must be a list containing only numerical
values. This is equivalent to maplist(X,Y,(Y is Op(X)),Xs,Ys), but is more efficient.

17 Indeed, this has the same effect as random_select/2 (§4.14.3) which just randomly chooses one element, although they
are implemented separately.

18 The values do not look exact just because B-Prolog prints floating-point numbers with the precision more than they can retain.
19 A function for reduction operations is called fold in major functional programming languages, but the name reducelist

was chosen rather than foldlist to avoid confusion with unfold/fold transformation of logic programs.
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• maplist_math(Op,Xs,Ys,Zs) constructs a list by applying an algebraic binary operator Op
to each pair of values in Xs and Ys, and returns the resultant list to Zs. Xs and Ys must be lists of
the same size containing only numerical values. This is equivalent to maplist(X,Y,Z,(Z is
Op(X,Y)),Xs,Ys,Zs), but is more efficient.

• reducelist(Y,X,Y ′,Body,List,Init,Value) calls Body for each element of List to obtain
Value, where Body is the body of a deterministic clause that takes three arguments Y , X and Y ′. Let
p(Y,X,Y ′) refer to the given clause and Xi denote the i-th element of List, and then this predicate
calls p(Yi−1,Xi,Yi) for i = 1, . . . , n in turn, where Y0 is given by Init and n is the length of List,
and returns Yn to Value.

• reducelist_func(F,List,Init,Value) calls the predicate F for each element of List to obtain
Value. This is equivalent to reducelist(Y0,X,Y1,F(Y0,X,Y1),List,Init,Value).

• reducelist_math(Op,List,Init,Value) applies an algebraic binary operator Op through the
elements in List to obtain Value. List must consist only of numerical values. This is equivalent to
reducelist(Y0,X,Y1,(Y1 is Op(Y0,X)),List,Init,Value), but is more efficient.

The following examples illustrate the usage of these predicates:

?- maplist(X,Y,(Y is X-1),[1,2,3],Ys).
Ys = [0,1,2]

?- maplist(p(X),q(X),true,[p(x),p(y),p(z)],Ys).
Ys = [q(x),q(y),q(z)]

?- maplist(X,Y,atom_chars(X,Y),Xs,[[f,o,o],[t,r,u,e],[x]]).
Xs = [foo,true,x]

?- maplist(X,Y,Z,(Z is X*X+Y),[1,2,3],[10,20,30],Zs).
Zs = [11,24,39]

?- reducelist(Y0,X,Y1,(Y1 is Y0+2**X),[1,2,3],0,Out).
Out = 14

?- reducelist_func(append,[[2],[3,4],[5]],[0,1],Out)
Out = [0,1,2,3,4,5]

There are also the built-in predicates for list processing:

• sublist(Sub,List) succeeds when Sub is a sublist of List. This is inspired by [47] and equiva-
lent to sublist(Sub,List,_,_), where sublist/4 is defined below.

• sublist(Sub,List,I,J) succeeds when Sub is a list containing the (I+1)-th to the J-th elements
(one-based indices are used here) in List. This predicate is backtrackable.

• splitlist(Prefix,Rest,List,N) succeeds when Prefix and Rest are lists, List is a concatena-
tion of those lists, and Prefix has exactly N elements. This predicate is backtrackable.

• grouplist(List,K,Sizes,Output) succeeds when the elements in List is divided into K groups
according to Sizes and the result is represented by Output. Sizes is a list of K elements in which the
i-th element Ni indicates the size of the i-th group. Output is a nested list in which the i-th inner
list corresponds to the i-th group and contains the (Mi−1 + 1)-th to the Mi-th elements in List where
M0 = 0 and Mi = N1 + · · · + Ni for 1 ≤ i ≤ K. This predicate is backtrackable, but K must be
instantiated.
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• egrouplist(List,K,Output) divides the elements in List into K equal-sized groups. If the
elements cannot be equally divided into the groups, the former groups will have the size larger by
one than the latter groups. Output is a nested list in which the i-th inner list corresponds to the i-th
group formed in the same manner as grouplist/4. List and K must be instantiated,20 and thus
this predicate is deterministic unlike grouplist/4.

• countlist(Term,List,Count) counts the number of elements in List which are variants of
Term, and returns the result to Count.

• countlist(List,Counts) counts the occurrence for each variant appearing in List, and returns
those occurrences as a list Counts. Each element in Counts has the form Term=Count and rep-
resents that variants of Term occurs Count times in List. The elements in Counts are ordered by
decreasing order of Count then by the standard order of Term.

• filter(Patt,Xs,Ys) leaves only the terms matching with Patt in the list Xs, and returns the
resultant list to Ys. In the filtering predicates, a term T is considered to match with Patt if T is more
specific than Patt, or more precisely T can be instantiated from Patt.21 For example, the pattern
f(a,_,_) matches f(a,b,c), f(a,1,_), f(a,X,g(X)), f(a,_,_), and so on, but does
not f(a,b), f(a,b,c,d), f(x,y,z), g(a,b,c), f(_,_,_), a variable, etc.

• filter(Patt,Xs,Ys,Count) leaves only the terms matching with Patt in the list Xs, and returns
the resultant list to Ys and its length to Count.

• filter_not(Patt,Xs,Ys) removes the terms matching with Patt from the list Xs, and returns
the resultant list to Ys.

• filter_not(Patt,Xs,Ys,Count) removes the terms matching with Patt from the list Xs, and
returns the resultant list to Ys and its length to Count.

• number_sort(Xs,Ys) sorts the list Xs in numerically ascending order and returns the resultant
list to Ys. This is equivalent to custom_sort(A,B,(A<B),Xs,Ys), but much more efficient
than custom_sort/5.

• custom_sort(Cmp,Xs,Ys) sorts the list Xs according to the comparator Cmp and returns the
resultant list to Ys. This is equivalent to custom_sort(A,B,Cmp(A,B),Xs,Ys).

• custom_sort(A,B,Body,Xs,Ys) sorts the list Xs according to the comparator Body and re-
turns the resultant list to Ys. Here Body is a clause body that succeeds when A precedes B. Body
should represent a total order for the values in Xs; otherwise the result would be unpredictable. The
order among equal elements are preserved (i.e. the sorting is stable).

Here are some examples:

?- sublist(Sub,[a,b,c,d,e],2,4).
Sub = [c,d] ?

?- splitlist(List1,List2,[a,b,c,d,e,f],2).
List1 = [a,b]
List2 = [c,d,e,f] ?

?- grouplist([p,q,r,s,t,u,v,w],3,[4,2,2],Groups).
Groups = [[p,q,r,s],[t,u],[v,w]] ?

20Note that the length of List is needed to determine the size of each group.
21 This corresponds to the behavior of subsumes_chk/2 available on some Prolog systems (e.g. SWI-Prolog and XSB).
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?- egrouplist([p,q,r,s,t,u,v,w],3,Groups).
Groups = [[p,q,r],[s,t,u],[v,w]] ?

?- countlist(a,[a,b,a,c,a,a,c,b,c],N).
N = 4 ?

?- countlist(f(_),[f(A),f(B),f(x),g(_),f(x),f(g(_)),_,f(_)],N).
N = 3 ?

?- countlist([a,b,a,c,a,a,c,b,c],Counts).
Counts = [a=4,c=3,b=2] ?

?- countlist([f(A),f(B),f(x),g(_),f(x),f(g(_)),_,f(_)],Counts).
Counts = [f(_c80)=3,f(x)=2,_c74=1,f(g(_c70))=1,g(_c8c)=1] ?

?- filter(f(_),[f(A),f(B),f(x),g(_),f(x),f(g(_)),_,f(_)],Ys).
Ys = [f(A),f(B),f(x),f(x),f(g(_5c8)),f(_628)] ?

?- custom_sort(A,B,(A=X-_,B=Y-_,X<Y),[3-a,2-x,5-y,2-a,3-z],Ys).
Ys = [2-x,2-a,3-a,3-z,5-y] ?

4.17 Big arrays
B-Prolog provides a set of built-in predicates and operators to handle arrays. These arrays can be multi-
dimensional, but the index of each dimension is limited up to 65,535. Since version 1.12.1, on the other
hand, the programming system provides a set of built-in predicates to handle one-dimensional arrays
(fixed-size sequences) up to (228 − 1) elements. We call this data structure big arrays. Here are the
built-in predicates for big arrays:

• new_bigarray(Array,N) creates a big array of N elements.

• is_bigarray(Array) succeeds when Array is a big array.

• bigarray_length(Array,N) returns the size N of the big array Array.

• bigarray_get(Array,I,Elem) returns the I-th element of a big array Array to Elem. The
indices are 1-based.

• bigarray_put(Array,I,Elem) put Elem into a big array Array as the I-th element. The indices
are 1-based.

• list_to_bigarray(List,Array) converts a list List to the corresponding big array Array.

• bigarray_to_list(Array,List) converts a big array Array to the corresponding list List.

Similarly to B-Prolog’s built-ins for array handling, big arrays basically need to be kept in the argu-
ments of predicate calls:

?- new_bigarray(A,5),bigarray_put(A,3,a),bigarray_get(A,3,X).
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4.18 File IO
Basically, all B-Prolog’s built-ins for file IO are also available for PRISM. In addition, the programming
system provides utilities for loading/saving Prolog clauses:22

• load_clauses(File,Clauses,Options) reads clauses in File as Clauses, with the options Op-
tions, which is a list of the following Prolog terms:

– from(K) or skip(K) — read from the K-th clause (K is a zero-based index). If this
option is omitted, K will be set as zero.

– size(N) — read N clauses. If this option is omitted or N is ‘max’, the built-in will read
clauses until reaching at the end of file.

• save_clauses(File,Clauses,Options) writes clauses Clauses into File, with the options Op-
tions, which is a list of the following Prolog terms:

– from(K) or skip(K)— write from the K-th element in Clauses (K is a zero-based index).
If this option is omitted, K will be set as zero.

– size(N) — write N elements. If this option is omitted or N is ‘max’, the built-in will write
elements until reaching at the end of Clauses.

Besides, we can load the data in the CSV format by the following built-ins:

• load_csv(File,Rows) reads the lines (rows) in a CSV file File as Rows.

• load_csv(File,Rows,Options) reads the lines (rows) in a CSV file File as Rows, with the
options Options, which is a list of the following Prolog terms:

� Options on the range of rows to be read:

– row_from(K) or row_skip(K) — read from the K-th row (K is a zero-based in-
dex). If this option is omitted, K will be set as zero.

– row_size(N) — read N rows. If this option is omitted or N is ‘max’, the built-in will
read rows until reaching at the end of file.

– col_from(K) or col_skip(K) — read from the K-th column (K is a zero-based
index). If this option is omitted, K will be set as zero.

– col_size(N) — read N columns. If this option is omitted or N is ‘max’, the built-in
will read columns until reaching at the end of line.

� Options on the format of a row:

– pred([]) — read each row in the form [Col1,Col2,...], where Col1, Col2, . . . are
the values separated by commas.

– pred(p/1) or pred(p) — read each row in the form p([Col1,Col2,...]), where
p is an arbitrary predicate name.

– pred(p/n) — read each row in the form p(Col1,Col2,...), where p is an arbitrary
predicate name (here ‘n’ is just a Prolog atom).

� Other options:

– comment(C) — regard as comments the rows beginning with the character C.
22 load_clauses(F,Cls) and load_clauses(F,Cls,M,N) are now obsolete and only available as the aliases

of load_clauses(F,Cls,[]) and load_clauses(F,Cls,[from(M),size(N)]), respectively. Similarly, save_
clauses(F,Cls) and save_clauses(F,Cls,M,N) are equivalent to save_clauses(F,Cls,[]) and save_
clauses(F,Cls,[from(M),size(N)]), respectively.
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– comment — the same as comment(’#’).
– double_quote(X) — enable (with X = yes) or disable (with X = no) to process

the double-quoted columns following RFC 4180 (by default, X = yes).
– parse_number(X) — enable (with X = yes) or disable (with X = no) to parse

numeric strings in the input file (by default, X = yes). For example, by default or if we
specify parse_number(yes), a value “123456” in the input file will be converted
into 123456, which can be evaluated as a number. Otherwise, we obtain ’123456’,
which is just a Prolog atom.

– missing(X) — consider each cell containing X as a missing-data cell, and convert it
with a new logical variable. X must be a Prolog atom such as ’’ (an empty string), ’?’,
’NA’, and so on.

– missing — the same as missing(’’).

For example, let us consider a CSV file named foo.csv which includes three rows:

bill,14
jeff,15
peter,18

Then we can read these three rows by using load_csv/2-3 as follows:

?- load_csv(’foo.csv’,Rs).
Rs = [csvrow([bill,14]),csvrow([jeff,15]),csvrow([peter,18])] ?

?- load_csv(’foo.csv’,Rs,[pred(age/n)]).
Rs = [age(bill,14),age(jeff,15),age(peter,18)] ?

4.19 Built-in predicates as operators
Since version 2.0, popular unary built-in predicates for probabilistic inference are available as prefix
operators. These built-ins include: sample/1, prob/1, log_prob/1, probf/1, probfi/1,
probfo/1, probfv/1, probfio/1, viterbi/1, viterbif/1, viterbig/1, hindsight/1
and chindsight/1. Their priorities are all set to 1150. Here are some examples:

?- sample bloodtype(X).
?- prob bloodtype(ab).
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Chapter 5

Variational Bayesian learning*

5.1 Background
In this section, we briefly describe the background about the VB approach. The paper [44] gives a full
description on this topic with some applications.

5.1.1 VB-EM learning
As mentioned in §1.5, variational Bayesian (VB) learning has high robustness against data sparseness in
model selection and prediction (Viterbi computation). For model selection, an introductory description
in Bayesian approaches is given in §4.9. To choose the best model (the best PRISM program) M∗ that
fits best the data D at hand, we consider M = M∗ is the model that maximizes the marginal likelihood
p(D | M). It has been also known that if D is complete data Dc, p(D | M) can be obtained in closed
form. However, when D is incomplete, i.e. there is some hidden data z such that Dc = (D, z) (in PRISM,
z corresponds to a hidden explanation for the observed goals), some approximation is required.

First, let us consider log of the marginal likelihood L(D) def
= log p(D | M), and then we have:

L(D) = log
∑

z

∫
Θ

p(D, z, θ | M)dθ

= log
∑

z

∫
Θ

q(z, θ | D,M)
p(D, z, θ | M)
q(z, θ | D,M)

dθ

≥
∑

z

∫
Θ

q(z, θ | D,M) log
p(D, z, θ | M)
q(z, θ | D,M)

dθ.
(
from Jensen’s inequality

)
For the space limitation, we fix the model M for the moment, and simply write p(· | M) = p(·) and
q(· | D,M) = q(· | D), and then obtain:

L(D) ≥ F[q] def
=
∑

z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ

where F[q] can be seen as a lower limit of L(D), and is called the variational free energy. So to get a
good approximation of L(D), we attempt to find a distribution function q = q∗ that maximizes a functional
F[q]. In model selection, we use the variational free energy F[q] as a model score. Besides, to get another
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view, we have the following by considering L(D) =
∑

z
∫
Θ

q(z, θ | D) log p(D)dθ:

L(D) − F[q] =
∑

z

∫
Θ

q(z, θ | D) log
{

p(D) · q(z, θ | D)
p(D, z, θ)

}
dθ

=
∑

z

∫
Θ

q(z, θ | D) log
q(z, θ | D)
p(z, θ | D)

dθ = KL(q(z, θ | D) || p(z, θ | D)).

From the above, maximizing F[q] implies minimizing the Kullback-Liebler divergence between q(z, θ |
D) and p(z, θ | D). So finding q∗ is to make a good approximation of p(z, θ | D), the conditional
distribution of hidden variables and parameters.

In VB learning, we further assume q(z, θ | D) ≈ q(z | D)q(θ | D), and obtain a generic form of
variational Bayesian EM (VB-EM) algorithm as an iterative procedure consisting of the following two
updating rules:

q(z | D) ∝ exp
(∫
Θ

q(θ | D) log p(D, z | θ)dθ
)
,

q(θ | D) ∝ p(θ) exp
(∑

z q(z | D) log p(D, z | θ)) .
Please recall that, in PRISM, D is a multiset of the observed goals G1,G2, . . . ,GT , and that z corresponds
to a hidden explanation for the goals. The VB-EM algorithm for PRISM is then derived from the above
generic procedure as follows:

Initialization step:
Initialize the hyperparameters of random switches as α(0)

i,v = αi,v + ξi,v where αi,v are the hyperpa-
rameters configured by the user and ξi,v are small positive random noises, and then iterate the next
two steps until the variational free energy converges.

Expectation step:
For each msw(i,v), compute C̃i,v, the statistics corresponding to the expected occurrences of
msw(i,v) under the hyperparameters α(m)

i,v .

Maximization step:
Using the expected occurrences, update each hyperparameter by α(m+1)

i,v = α(0) + C̃i,v and then
increment m by one.

After VB-EM learning, we finally obtain the adjusted hyperparameters α∗i,v of random switches instead
of the parameters, and the converged variational free energy which is considered as an approximation of
log of the marginal likelihood. αi,v need to be configured in advance by the user via the built-ins such
as set_sw_a/2 (§4.1). By default, the system considers that P(θ) is uninformative, that is, αi,v = 1.
Besides, as long as the user program satisfies the modeling conditions listed in §2.4.6, it is still possible to
compute C̃i,v in the expectation step in a dynamic programming fashion. So at least in algorithmic level,
we can perform VB learning as fast as in the case of ML/MAP estimation. In this sense, the derived
VB-EM algorithm can be seen as a generalization of dynamic programming based VB-EM algorithm for
hidden Markov models [27], probabilistic context-free grammars [25], and discrete directed graphical
models (Bayesian networks) [3].
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5.1.2 Viterbi computation
Now let P∗(θ) be the a posteriori distribution given the observed data, which includes the adjusted hyper-
parameters α∗i,v. Then we can perform the Viterbi computation based on the a posteriori distribution:

E∗ = argmax
E∈ψ(G)

P(E | G) = argmax
E∈ψ(G)

P(E,G)
P(G)

= argmax
E∈ψ(G)

P(E)

= argmax
E∈ψ(G)

∫
Θ

P∗(θ)P(E | θ)dθ.

The inference based on
∫
Θ

P∗(θ)P(E | θ)dθ seems more robust than that based on P(E | θ̂), since the
former relies on the averaged quantity with respect to the a posteriori distribution, not on any particular
point-estimated parameters.

However, there still remains a computational problem. Although
∫
Θ

P∗(θ)P(E | θ)dθ can be computed
efficiently in closed form for each E ∈ ψ(G), the number of explanations for an observed goal G (i.e.
|ψ(G)|) can exponentially grow. In addition, the integral over θ prevents us from introducing a simple
dynamic programming based computation.

As a remedy for this difficulty, we take a reranking approach [8], which is popular for the predictive
tasks in statistical natural language processing (e.g. part-of-speech tagging, parsing, and so on). To be
specific, for a given goal G, we follow the two-staged procedure below:

1. Run top-K Viterbi computation in a dynamic programming fashion based on the point-estimated
parameters. These parameters are obtained the mean values θ̄i,v of the parameters (i.e. θ̄i,v =

α∗i,v/
∑

v′ α
∗
i,v′ ).

2. Return E = Ẽ∗ which comes with the highest
∫
Θ

P∗(θ)P(E | θ)dθ among K explanations obtained
in the first step.

The point-estimated parameters used in the first step seems reliable to some extent, so if K is sufficiently
large, the true Viterbi explanation E∗ based on the a posteriori distribution (i.e. E∗ = argmaxE

∫
Θ

P∗(θ)P(E |
θ)dθ) will be found in K explanations obtained in the first step. So we can expect Ẽ∗ to be E∗ in most
cases.

It is obvious from above that reranking requires extra computational effort. On the other hand, we
need not use reranking if every random switch i (i.e. an atom of the form msw(i,·)) only appears at
most once in any explanation for any observed goal, or in other words, if we do not use any random
switch twice or more in any generation process of any observed goal. For such a case, the first step above
with θ̄i,v and K = 1 will return the exact E∗. To be specific, it is easy to see that the following Bayesian
network program (see §7.3 for detailed descriptions) does not use any random switch twice or more to
yield an observation represented by world/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

On contrary, the HMM program (§1.3) may use repeatedly a particular switch such as msw(tr(s0),·).
This fact implies that we need not use reranking for the Bayesian network program above, while reranking
is indispensable for the HMM program.
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5.1.3 Other probabilistic inferences
For the probabilistic inferences other than Viterbi computation, it is also required to compute quantities
based on the a posteriori distribution P∗(θ). For example, the marginal (averaged) probability of goal G
will be computed as:

P(G) =
∫
Θ

P∗(θ)P(G | θ)dθ =
∫
Θ

P∗(θ)
(∑

E∈ψ(G) P(E | θ)
)

dθ.

In VB, it also seems difficult to perform dynamic programming based computation for these probabilistic
inferences. This is because, as explained in [2], the independencies among subgoals, which are fully
exploited in dynamic programming, are lost due to the integral over θ.

In the programming system, we may utilize the routines for inferences used in ML/MAP with con-
sidering the parameters θ to be the mean values of the parameters θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ [2, 27], under the

assumption that these mean values are a representative of the entire a posteriori distribution.

5.1.4 Deterministic annealing EM for VB learning
The deterministic annealing EM (DAEM) algorithm (§4.7.5) is also supported in VB learning. To be
specific, following [24], let us transform the variational free energy as follows:

F[q] =
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ −
∑

z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ

Again, from an analogy to statistical mechanics, we correspond F[q] with −F (F : the free energy),
the first term in the above equation with −U (U: the internal energy) and the second term with S (S:
the entropy). Then we newly introduce the variational free energy that takes into account the inverse
temperature β:

Fβ[q] def
=
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ − 1
β

∑
z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ.

The VB-EM algorithm that tries to maximize Fβ[q] (i.e. the deterministic annealing version of the VB-
EM algorithm) has a similar procedure to that of the DAEM algorithm (§4.7.5) for ML/MAP estimation.

5.2 Built-in utilities for variational Bayesian learning

5.2.1 VB-EM learning
On contrary to the long descriptions above on VB learning, the usages of the built-in predicates are con-
siderably simple. That is, in the programming system, we can switch between ML/MAP-EM learning
and VB-EM learning only by configuring the execution flag ‘learn_mode’. To enable VB-EM learn-
ing, we give a value ‘hparams’ (which indicates that we wish to get the adjusted hyperparameters by
VB-EM) to the learn_mode flag, and then run the usual learning command (learn/0-1) as follows:

?- set_prism_flag(learn_mode,hparams).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

While learning, we will see the messages similar to those in the case of ML/MAP-EM learning. Another
way is to call learn_h/0-1 directly (the suffix ‘_h’ indicates that the target of learning is hyperpa-
rameters):
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?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn_h(Goals).

One may find here that the hyperparameters have been increased by VB-EM learning. By default, these
hyperparameters will be reset in advance of the next learning, but when turning ‘off’ the reset_
hparams flag (§4.13.2), we can keep the current hyperparameters as the initial hyperparameters for the
next learning (so the hyperparameters will monotonically increase).

On the other hand, to disable VB-EM, give ‘params’ to the learn_mode flag (the default value of
the learn_mode flag is ‘params’). This indicates that we wish to get the point-estimated parameters
of the model, and indeed the next call of learn/0-1 will start ML/MAP-EM learning:

?- set_prism_flag(learn_mode,params).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

It is also possible to run ML/MAP-EM learning by invoking learn_p/0-1 directly:

?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn_p(Goals).

Furthermore, as described above, we sometimes need the point-estimated parameters as well as hy-
perparameters for the later probabilistic inferences. To get such point-estimated parameters, we give
‘both’ (i.e. we wish to get both the adjusted hyperparameters and the point-estimated parameters) to the
flag ‘learn_mode’.

?- set_prism_flag(learn_mode,both).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

learn_b/0-1 is also available for conducting VB-EM learning directly. After having the adjusted hy-
perparameters, we will compute the mean values of the parameters θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ as point-estimated

parameters. Eventually, we can run as usual the routines for the probabilistic inferences other than Viterbi
computation (see §5.2.2 for the case of Viterbi computation). The DAEM algorithm can be used in the
same way as that in ML/MAP-EM learning, which is described in §4.7.5.

5.2.2 Viterbi computation
Similarly to the case of EM learning, by configuring the viterbi_mode flag, we can switch the un-
derlying statistical framework for Viterbi computation. If we give a value ‘hparams’ to this flag, the
programming system will invoke a routine for the Viterbi computation based on the current hyperparam-
eters (with a help of the current parameters) using reranking (§5.1.2). On the other hand, if we give a
value ‘params’ to the viterbi_mode flag, the system will invoke the usual Viterbi routines based
only on the current parameters.

All built-ins shown in §4.5 also work within the framework of VB learning. In these built-ins, the
number K of the intermediate candidates of the Viterbi explanation(s) in reranking can be specified by the
rerank flag (K = 10 by default; see §4.13 for details). In addition, K can be specified as an argument
of the built-ins. That is, for top-N Viterbi routines such as n_viterbif([N,K],G), we can give a
pair [N,K] to the first argument, where K is the number of intermediate candidates in reranking. For
example, n_viterbif([N,K],G) is the same as n_viterbif(N,G) which uses K intermediate
candidates. If N > K, the built-ins return only top-K Viterbi explanations.

Instead of configuring the viterbi_mode flag, we can directly call the built-ins for Viterbi compu-
tation based on VB. To do this, we add a suffix ‘_h’ to the predicate name of the built-in we would like
to use. For example,

?- set_prism_flag(viterbi_mode,hparams).
?- viterbif(hmm([a,b,b,b,a]).
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and

?- viterbif_h(hmm([a,b,b,b,a])).

yield the same result. On the other hand, we can directly run the parameter-based Viterbi routines by
adding ‘_p’ to the predicate name of the corresponding built-in (e.g. viterbif_p/1). Similarly,
the built-ins viterbif_p/3 and viterbif_h/3 are also available, whose usage is the same as
viterbif/3.

Furthermore, as described in §5.1.2, if we are sure that every random switch i only appears at most
once in any explanation for any observed goal, we need not take the reranking approach. Instead, in
variational Bayesian learning, we first obtain the mean values of parameters as the point-estimated pa-
rameters, and then run built-ins for usual (basic) Viterbi computation, such as viterbif/1-2 (§4.5).
Note that these point-estimated parameters will not be stored into the switch database (i.e. just thrown
away) after the Viterbi computation. It is also worth noting that, at the implementation level, the usual
Viterbi built-ins work more efficiently (in both time and space) than ones for top-K Viterbi computation.

5.2.3 Initialization of hyperparameters
As described in §5.1.1, in VB-EM learning, the programming system initializes the hyperparameter of a
switch instance msw(i,v) as α(0)

i,v = αi,v + ξi,v where αi,v are the hyperparameter configured by the user
and ξi,v are small positive random noises. More specifically, in the current version, the hyperparameter
of the instance msw(i,v) of a k-valued random switch i is initialized by α(0)

i,v = αi,v(1 + |ξ′i,v|), where ξ′i,v
is drawn from a Gaussian distribution with the mean 0 and the standard deviation s/k, and s is given in
advance by the std_ratio flag.

This way of initialization makes the magnitude of a noise proportional to the magnitude of the cor-
responding user-specified hyperparameter αi,v (since ξi,v = αi,v|ξ′i,v|). On the other hand, the noise can be
too small to escape from local maxima when αi,v is small or the random switch has so many outcomes
(i.e. k is very large). In such a case, we need to choose the value of the std_ratio flag carefully.

5.2.4 Summary: typical flag settings for variational Bayesian learning
The setting of the execution flags related to variational Bayes (VB) is rather complicated, so in this
section, we will show several typical usages. Before listing them, we remark two styles for a simpler set-
ting. First, the execution flag learn_mode (resp. viterbi_mode) switches the underlying statistical
framework (called ‘mode’ here) between ML/MAP and VB, for learning (resp. for Viterbi computation).
Thus, the use of learn_mode and viterbi_mode enables us to continue to use the built-in predicates
such as learn/1 and viterbif/1-2, instead of the mode-specific built-ins such as learn_p/1.1

Secondly, it is usually convenient to write query statements beginning with ‘:-’, to make the setting valid
every time the program is loaded (see §4.13.1 for other ways to set execution flags).

Now we list the typical settings for execution flags related to variational Bayesian learning:

• First of all, we configure the pseudo counts (hyperparameters) αi,v according to the data:

:- set_prism_flag(default_sw_a,0.1).

• Suppose that we learn the hyperparameters α∗i,v by the VB-EM algorithm and the point-estimated
parameters θ̄i,v by taking the averages of hyperparameters (i.e. θ̄i,v = α∗i,v/

∑
v′ α
∗
i,v′ ; see §5.1.2

and §5.1.3 for details). We also make Viterbi computation based on the a posteriori distribution
specified by the learned hyperparameters α∗i,v. Then, the query statements are written as follows:

1 On the other hand, the mode-specific built-in predicates have an advantage that they can directly start learning or Viterbi
computation, without specifying the mode by execution flags.
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:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,hparams).

• Let us consider a case that we learn both the hyperparameters α∗i,v and the point-estimated pa-
rameters θ̄i,v, but we make Viterbi computation based on the point-estimated parameters θ̄i,v. This
procedure makes sense if every random switch only appears at most once in any explanation for
any observation. Then we may write:

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,params).

or equivalently,

:- set_prism_flag(learn_mode,both).

(the default value of the viterbi_mode flag is params).

• When we just want to learn the hyperparameters α∗i,v and make Viterbi computation based on the a
posteriori distribution specified by α∗i,v, the queries would be:

:- set_prism_flag(learn_mode,hparams).
:- set_prism_flag(viterbi_mode,hparams).

On the other hand, one may find that the setting

:- set_prism_flag(learn_mode,hparams).
:- set_prism_flag(viterbi_mode,params).

or equivalently,

:- set_prism_flag(learn_mode,hparams).

does not make sense in most cases, because we will not learn the parameters, which are to be used
for Viterbi computations.

• We can add some VB-specific execution flags:

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,hparams).
:- set_prism_flag(rerank,5).

The number K of candidates for the most probable explanation(s) in reranking (§5.1.2) can be
specified by the rerank flag. See §4.13.2 for the details of these execution flags.

• The execution flags for controlling the ML/MAP-EM algorithm (§4.7.1 and §4.7.2) are also appli-
cable to the VB-EM algorithm (see §4.13.2 for the details):
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:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,hparams).
:- set_prism_flag(restart,10). % # of random restarts
:- set_prism_flag(max_iterate,50). % Maximum # of EM iters
:- set_prism_flag(epsilon,1.0e-3). % Threshold for convergence
:- set_prism_flag(std_ratio,1.0). % Gaussian noises used in

% initialization

Note that the value of the std_ratio flag is used in a different way from that in ML/MAP-based
EM learning (see §5.2.3 for details).

• The execution flags for the DAEM algorithm are also applicable to the VB-EM algorithm (see
§4.13.2):

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,hparams).
:- set_prism_flag(daem,on). % Enabling DAEM
:- set_prism_flag(itemp_init,0.3). % Initial value of inverse temperature
:- set_prism_flag(itemp_rate,1.2). % Increasing rate of inverse temperature

• When turning off the reset_hparams flag, the expected statistics will be accumulated into the
hyperparameters, every time VB learning is invoked (see §4.13.2):

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,hparams).
:- set_prism_flag(reset_hparams,off).
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Chapter 6

Parallel EM learning*

6.1 Background
In these days, there are more and more opportunities for us to work in parallel computing environments
such as computer grids. To benefit from those environments on large-scale EM learning, the programming
system provides a parallel learning utility, which is characterized by the following features:

• Data parallelism. Since we assume that observed goals in training data are i.i.d. (independent and
identically distributed), the major part of the learning procedure, the explanation search (§2.4.2)
and a large part of the EM algorithm (§4.7.1), can be conducted independently for each observed
goal.

• Master-slave model. Our implementation is supposed to run with one master process and many
(one or more) slave processes, which are allocated over processors. The master process controls
the entire procedure, whereas the slave processes perform the substantial tasks of the explanation
search and the expectation step of the EM algorithm. The expected occurrences of random switches
are accumulated among the processes before every maximization step, then the parameters are
updated on each process.

• Dynamic load balancing. The computation time required for each observed goal G is linear in
the size of the explanation graph for G, but in general the size is unknown before the explanation
search. This makes it difficult to partition the entire observed data into the subsets which require
an almost equal amount of efforts to complete. To cope with such difficulty, we take a work-pool
approach (also known as a processor-farm approach), in which all observed goals are firstly put
into a work pool, and then the master process picks up observed goals one by one and assigns each
of them to a slave process that becomes available.

• Distributed memory computing. The algorithm used in this utility is primarily designed for parallel
computer systems in which each processor has a local memory of its own. The communications
among the processes are realized by message passing via MPI (message-passing interface) [15].
Thanks to this design, we would be able to collectively utilize memory resources which are dis-
tributed among computers.

The parallel learning algorithm implemented in this system is empirically shown in [18] to have an
advantage in computation time and space for hidden Markov models (HMMs) and probabilistic context-
free grammars (PCFGs).1

1Due to the removal of some redundant computations in version 1.11, the speed-up might not be so drastic as reported in [18].
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6.2 Requirements
The parallel learning utility is provided as an experimental feature and only for Linux systems (32-bit
and 64-bit) with the following runtime libraries installed:

• glibc version 2.4 or higher, and

• MPICH version 1.x with the ch_p4 device.

MPICH is one of open-source MPI implementations and is available at its authors’ website (http://
www-unix.mcs.anl.gov/mpi/mpich1/). Many Linux distributions also provide official and/or
unofficial packages for MPICH, and we believe most of these packages are suitable for running the
utility. All binaries for parallel learning in the released package of PRISM were built with GCC 4.4.1 and
MPICH 1.2.7p1 provided as part of openSUSE 11.2. The PATH environment variable should contain the
directory where the commands mpicc and mpirun is located.

In addition to the above requirements, the programming system needs to be installed into a directory
accessible from all computers used for parallel learning. The utility is expected to work well even in the
environments that consist of heterogeneous (but not so much different) computers, except that mixed use
of 32-bit and 64-bit systems is not supported.

It is also possible to run the utility on a single computer with a multi-core processor (or multiple
processors) in order to reduce the learning time (§6.3.3), as long as the required libraries are available
in that computer. Note that, however, parallel learning requires more memory space in total than non-
parallel learning (§6.4).

6.3 Usage

6.3.1 Running the utility
The parallel learning utility provides no interactive sessions. All programs therefore have to run via batch
execution (§3.7). Also, the utility needs to be started on a directory shared among the computers, since
all processes require access to byte-code files of compiled PRISM programs.2

The utility can be started by invoking mpprism instead of prism and upprism. Basically, its
usage is the same as upprism. The user who is familiar with running MPI programs should note that
mpirun is called inside mpprism. Here are a couple of example commands:

mpprism foo
mpprism foo 5893421 1000
mpprism load:foo

The utility runs with four processes on the local machine by default. The number of processes can be
changed by the environment variable NPROCS. For example, the command below starts the utility with
twelve processes:

env NPROCS=12 mpprism foo

Also, the name of the machine file (the file that contains the name of machines where the distributed pro-
cesses work) is specified by the environment variable MACHINES. For example, if you wish to distribute
the processes to three machines named host1, host2 and host3, you need to create a file which
contains the following lines:

2PRISM programs given to mpprism are firstly compiled on the master process, and then the resulting byte-code files are
loaded by each process (master and slave).
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host1
host2
host3

Suppose that the name of this file is machines. Then, you start the utility with the following command:

env MACHINES=machines mpprism foo

If you are familiar with the usage of mpirun, and you have options you wish to pass, you can specify
them in the variable PRISM_MPIRUN_OPTS. Note that the -np option (the number of processes) and
the -machinefile option (the machine file) should not be included in this variable. For example, you
may pass an option “-bar xxxx” by:

env PRISM_MPIRUN_OPTS="-bar xxxx" mpprism foo

6.3.2 Writing programs for parallel learning
Most PRISM programs are expected to run without changes, provided batch clauses (prism_main/0-1)
are defined. Note here that only parameter learning is conducted in parallel. The other computations are
simply performed on a (single) master process and thus no performance improvement will be made.
There are also some limitations in functionalities (§6.4).

6.3.3 Some remarks for effective use
Here are some remarks on the use of the parallel learning utility:

• The parallel learning utility is not yet so reliable as the non-parallel one in many aspects. It is
highly recommended to make sure that your program works on prism or upprism before using
mpprism.

• It is often a good idea to have a single processor (or computer) shared between a master process and
one of slave processes, in particular if the number of available processors is limited. The influence
of the master process is considered to be small, since the master process is usually at a very low
load throughout parameter learning. Moreover, the influence is mostly adjusted by dynamic load
balancing (§6.1). This can be done by specifying (n + 1) as the number of processes where n is
the number of available processors. Accordingly, for learning on a single computer with a dual-
core processor (or dual processors), you can gain the best time performance by running with three
processes. In this setting, the first processor is expected to work for the master and one slave
processes, and the second processor for the other slave process. Be warned that sufficient memory
space is needed on that computer (§6.4).

• If possible, order the observed goals (training data) so that larger ones precede shorter. Here, large
goals mean ones which consume much time in the explanation search and the expectation steps of
the EM algorithm. The work-pool approach works more effectively when heavy subtasks enqueued
first in the work pool. In PCFG programs (§7.2), for instance, we can list training sentences in the
decreasing order of their lengths.

• The degree of speed-up compared to the number of processors depends on programs. For some
programs, the learning time is reduced simply as the number of processors increases. On the
other hand, there are even cases in which learning with less processors is faster than with more
processors. It is therefore not recommended to stick on the as-many-as-possible strategy.
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• The amount of memory consumed by each process is expected to be roughly proportional to the
speed of processor on which it runs. Recall this property when you wish to make full use of
memory resources distributed among multiple computers.

• The resulting parameters of parallel learning can be saved by calling save_sw/0-1 (§4.1.10) in
the batch clause (prism_main/0-1). Then they can be restored on interactive sessions (of the
normal prism command) by restore_sw/0-1 to be utilized on sampling, probability calcu-
lation, Viterbi computation, and hindsight computation. This also applies to the cases with pseudo
counts (hyperparameters).

6.4 Limitations and known problems
The parallel learning utility has the following limitations and known problems (note that many of them
have already been mentioned above):

• No computations other than parameter learning are parallelized.

• The utility has not been tested sufficiently yet.

• When the utility is aborted by some error, there occasionally remain defunct processes. This is
due to difficulty in aborting MPI programs cleanly. When you face this situation, please kill those
processes manually.

• Parallel learning requires, in total, more memory resources than non-parallel learning. This might
be critical when the utility is run on a single computer or shared-memory systems.

• The learning time might not be reduced as expected for some programs, in particular those with
failure (§4.10).

• The statistics on the explanation graph (§4.8) can be different from those obtained on the non-
parallel utility, and even can vary from execution to execution.3

• The explanation graphs will not be displayed even with the verb flag set to ‘graph’ or ‘full’.

• The total table space used for learning will not be displayed.

• The learning time is given by elapsed time, not by CPU time as on the non-parallel utility (this is
not actually a limitation).

• The programming system may be crushed if there is a process that are not assigned any goal.
Accordingly, the number of observed goals should not be smaller than the number of processes.

3 The reason is as follows. In the constructed explanation graphs, there can be subgoals which are shared among distinct
observed goals (this mechanism is called inter-goal sharing [22]). In parallel learning, however, such sharing will be made only
within each slave process, and therefore the number of subgoals in the entire graph varies depending on how the observed goals are
assigned to the slave processes.
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Chapter 7

Examples

PRISM is suited for building complex systems that involve both symbolic and probabilistic elements
such as discrete hidden Markov models, stochastic string/graph grammars, game analysis, data mining
and bio-sequence analysis. In this chapter, we describe several program examples including the ones that
can be found under the directories named ‘exs’ or ‘exs_fail’ in the released package.

7.1 Hidden Markov models
The HMM (hidden Markov model) program has been fragmentarily picked up throughout this manual.
In this section, on the other hand, we attempt to collect the previous descriptions as a single session of an
artificial experiment.

7.1.1 Writing an HMM program
As described in §1.3, the HMM we consider has only two states ‘s0’ and ‘s1’, and two emission symbols
‘a’ and ‘b’. In top-down writing such an HMM, we make a couple of multi-valued switch declarations
first:

values(init,[s0,s1]). % state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

These declarations declare three types of switches: switch init chooses ‘s0’ or ‘s1’ as an initial state
to start with, the symbol emission switches out(·) chooses ‘a’ or ‘b’ as an emitted symbol at each state,
and the state transition switches tr(·) chooses the next state ‘s0’ or ‘s1’.

We then proceed to the modeling part. The modeling part is described only with four clauses:

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: The state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
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T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

As described in the comments, the modeling part expresses a probabilistic generation process for an
output string in the HMM. The observed goals take the form hmm(L) where L is an output string, i.e. a
list of emitted symbols. As long as possible, we recommend such a purely generative fashion in writing
the modeling part. One of its benefits here is that the modeling part works both in sampling execution
and explanation search.1

Optionally we can add the utility part. In the utility part, we can write an arbitrary Prolog program
which may use built-ins of the programming system. Here, we conduct a simple and artificial learning
experiment. That is, in this experiment, we first give some predefined parameters to the HMM, and
generate 100 strings under the parameters. Then we learn the parameters from such sampled strings.
Instead of running each step interactively, we write the following utility part that makes a batch execution
of the learning procedure:

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with the samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

hmm_learn(N) is a batch predicate for the experiment, where N is the number of samples used for
learning. set_params/0 specifies the parameters of each switch manually. Since hmm/1 works in
sampling execution, we can use a PRISM’s built-in get_samples/3 (§4.2) that calls hmm/1 for N
times.

7.1.2 EM learning
Let us run the program. We first load the program:

% prism
:

?- prism(hmm).

1 If we wish, we can confirm even at this point whether it is possible to run sampling or the explanation search. To be more
concrete, let us include only the declarations and the modeling part to the file named ‘hmm.psm’, and load the program:

% prism
:
?- prism(hmm).

Then, for example, we may run the following to sample a goal with a string X and get the explanations for it:

?- sample(hmm(X)),probf(hmm(X)).

It should be noted that sample/1 and probf/1 simulate sampling execution and explanation search, respectively. Also one
may notice that, since we have no specific parameter settings for switches here, the sampling is made under the (default) uniform
parameters.
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compiled in 4 milliseconds
loading::hmm.psm.out

yes

Then we run the batch predicate to generate 100 samples and to learn the parameters from them:

?- hmm_learn(100).

#goals: 0.........(93)
Exporting switch information to the EM routine ...
#em-iters: 0......(63) (Converged: -683.493898022)
Statistics on learning:

Graph size: 5520
Number of switches: 5
Number of switch instances: 10
Number of iterations: 63
Final log likelihood: -683.493898022
Total learning time: 0.020 seconds
Explanation search time: 0.008 seconds
Total table space used: 728832 bytes

Type show_sw or show_sw_b to show the probability distributions.

We can confirm the learned parameters by the built-in show_sw/0 (§4.1.8):2

?- show_sw.

Switch init: unfixed_p: s0 (p: 0.722841424) s1 (p: 0.277158576)
Switch out(s0): unfixed_p: a (p: 0.623359863) b (p: 0.376640137)
Switch out(s1): unfixed_p: a (p: 0.497027993) b (p: 0.502972007)
Switch tr(s0): unfixed_p: s0 (p: 0.554684130) s1 (p: 0.445315870)
Switch tr(s1): unfixed_p: s0 (p: 0.550030827) s1 (p: 0.449969173)

7.1.3 Other probabilistic inferences
Here we can make some probabilistic inferences based on the parameters estimated as above. To compute
the most probable explanation (the Viterbi explanation) and its probability (the Viterbi probability) for a
given observation, we can use the built-in viterbif/1 (§4.5).

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])
<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])
<= hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(2,10,s0,[a,a,a,a,b,b,b,b,b])
<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(3,10,s0,[a,a,a,b,b,b,b,b])
<= hmm(4,10,s0,[a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(4,10,s0,[a,a,b,b,b,b,b])
<= hmm(5,10,s0,[a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

2 At least there are many local maxima for ML estimation, so it is not guaranteed that we can recover the parameters that have
been set by set_params/0.
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...omitted...

hmm(8,10,s1,[b,b,b])
<= hmm(9,10,s1,[b,b]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(9,10,s1,[b,b])
<= hmm(10,10,s1,[b]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(10,10,s1,[b])
<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000002081735251

On the other hand, to compute the hindsight probabilities (§4.6) of subgoals for a goal hmm([a,
a,a,a,a,b,b,b,b,b]), we may run:

?- hindsight(hmm([a,a,a,a,a,b,b,b,b,b])).

hindsight probabilities:
hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]): 0.000710038386251
hmm(1,10,s1,[a,a,a,a,a,b,b,b,b,b]): 0.000216848626541
hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]): 0.000564388970965
hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]): 0.000362498041827
hmm(3,10,s0,[a,a,a,b,b,b,b,b]): 0.000563735498733
hmm(3,10,s1,[a,a,a,b,b,b,b,b]): 0.000363151514060

...omitted...

hmm(8,10,s0,[b,b,b]): 0.000444735040586
hmm(8,10,s1,[b,b,b]): 0.000482151972207
hmm(9,10,s0,[b,b]): 0.000444736503096
hmm(9,10,s1,[b,b]): 0.000482150509696
hmm(10,10,s0,[b]): 0.000445050456081
hmm(10,10,s1,[b]): 0.000481836556711
hmm(11,10,s0,[]): 0.000511887384988
hmm(11,10,s1,[]): 0.000414999627805

According to the purpose, the queries above can be included into the batch predicate in the utility part.

7.1.4 Execution flags and MAP estimation
By specifying the execution flags (§4.13), we can add some variations to learning or the other probabilistic
inferences. For example, we may conduct an MAP estimation with the pseudo count being 0.5, and try
10 runs of the EM algorithm. To do this, we first set the flags for multiple run of the EM algorithm as
follows:

?- set_prism_flag(restart,10).

Next we set all pseudo counts to 0.5:

?- set_sw_all_d(_,0.5).

Now the batch predicate and the routines for later probabilistic inferences can be run in the same way as
above:
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?- hmm_learn(100).

#goals: 0.........(98)
Exporting switch information to the EM routine ...
[0] #em-iters: 0.........100.(115) (Converged: -692.022272523)
[1] #em-iters: 0.........100.(115) (Converged: -692.022846163)
[2] #em-iters: 0.........100..(130) (Converged: -692.028058623)
[3] #em-iters: 0.........100.........200...(240) (Converged: -692.0
24704657)
[4] #em-iters: 0.......(79) (Converged: -692.022673972)
[5] #em-iters: 0......(62) (Converged: -692.024814351)
[6] #em-iters: 0.........100.........(192) (Converged: -692.0231354
79)
[7] #em-iters: 0.........100.(111) (Converged: -692.020478776)
[8] #em-iters: 0.........100.........200..(228) (Converged: -692.03
1937456)
[9] #em-iters: 0(2) (Converged: -692.010584638)
Statistics on learning:

Graph size: 5840
Number of switches: 5
Number of switch instances: 10
Number of iterations: 2
Final log of a posteriori prob: -692.010584638
Total learning time: 0.148 seconds
Explanation search time: 0.008 seconds
Total table space used: 770832 bytes

Type show_sw or show_sw_b to show the probability distributions.

If we always use the above flag values, it should be useful to include the following queries into the utility
part:

:- set_prism_flag(restart,10).
:- set_prism_flag(default_sw_d,0.5).

By the latter query we can give the default pseudo counts as 0.5, instead of setting the pseudo counts
manually using set_sw_all_d/2.

7.1.5 Batch execution
Furthermore, let us conduct a batch execution of learning at the shell (or command prompt) level. As a
preparation, we define a clause with prism_main/1 (see §3.7) as follows:

prism_main([Arg]):-
parse_atom(Arg,N),
hmm_learn(N).

With this definition, the system receives one argument Arg from the shell an atomic symbol (for example,
’100’) and then converts such a symbol to the data N which can be numerically handled (i.e. as an
integer), and finally the batch predicate used above is invoked with the argument N. So if we run the
command upprism at the shell prompt with specifying the filename of the program and the argument
to be passed to prism_main/1 above:

% upprism hmm 50
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then a learning with 50 samples will be conducted:

% upprism hmm 50
:

#goals: 0....(49)
Exporting switch information to the EM routine ...
[0] #em-iters: 0.........100......(163) (Converged: -347.326727176)
[1] #em-iters: 0.........100.....(151) (Converged: -347.326798056)
[2] #em-iters: 0.........100.........200........(289) (Converged: -347
.330719096)
[3] #em-iters: 0.........100.........(194) (Converged: -347.326873331)
[4] #em-iters: 0.........100.........200.........(293) (Converged: -34
7.330935748)
[5] #em-iters: 0.........100.........200........(287) (Converged: -347
.330848992)
[6] #em-iters: 0.........100........(185) (Converged: -347.327995530)
[7] #em-iters: 0.........100.......(180) (Converged: -347.327563031)
[8] #em-iters: 0.........100........(189) (Converged: -347.327339025)
[9] #em-iters: 0.........100......(163) (Converged: -347.327150784)
Statistics on learning:

Graph size: 3400
Number of switches: 5
Number of switch instances: 10
Number of iterations: 163
Final log of a posteriori prob: -347.326727176
Total learning time: 0.124 seconds
Explanation search time: 0.004 seconds
Total table space used: 447392 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
%

It is worth noting that the control is returned back to the shell after the execution, so we can make more
flexible experiments by combining this batch execution with the other facilities in a shell script.

7.2 Probabilistic context-free grammars
Probabilistic context-free grammars (PCFGs) are another well-known model class that can handle se-
quences of symbols. A PCFG is a context-free grammar whose production rules are annotated prob-
abilities. Starting from the start symbol and applying production rules one by one, with a probability
annotated to the rule, we can generate a sequence of terminal symbols (i.e. a sentence). Figure 7.1 shows
an example of a PCFG introduced in [4], where ‘s’ is the start symbol.

Now let us write a PRISM program that represents the PCFG in Figure 7.1. We first show the decla-
rations:

values(s,[[np,vp],[vp]]).
values(np,[[noun],[noun,pp],[noun,np]]).
values(vp,[[verb],[verb,np],[verb,pp],[verb,np,pp]]).
values(pp,[[prep,np]]).
values(verb,[[swat],[flies],[like]]).
values(noun,[[swat],[flies],[ants]]).
values(prep,[[like]]).
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s → np vp (0.8) pp → prep np (1.0)
s → vp (0.2)

np → noun (0.4) verb → swat (0.2)
np → noun pp (0.4) verb → flies (0.4)
np → noun np (0.2) verb → like (0.4)
vp → verb (0.3) noun → swat (0.05)
vp → verb np (0.3) noun → flies (0.45)
vp → verb pp (0.2) noun → ants (0.5)
vp → verb np pp (0.2) prep → like (1.0)

Figure 7.1: Example of a probabilistic context-free grammar from [4].

:- p_not_table proj/2.

It is seen from the values declarations that we use random switches whose instances take the form
msw(A,[B1,B2,...,Bn]), which represents a probabilistic event “a production rule A→ B1B2 · · · Bn

is chosen.” Then, the parameter of a switch instance msw(A,[B1,B2,...,Bn]) corresponds to the
rule probability of A → B1B2 · · · Bn. In this example, we will not table the probabilistic predicates
proj/2 (this is just for making the inference results simple and readable; see §2.6.3). We may write the
modeling part as follows:

pcfg(L):- pcfg(s,L-[]).

pcfg(LHS,L0-L1):-
( nonterminal(LHS) -> msw(LHS,RHS),proj(RHS,L0-L1)
; L0 = [LHS|L1]
).

proj([],L-L).
proj([X|Xs],L0-L1):-

pcfg(X,L0-L2),proj(Xs,L2-L1).

nonterminal(s).
nonterminal(np).
nonterminal(vp).
nonterminal(pp).
nonterminal(verb).
nonterminal(noun).
nonterminal(prep).

In this program, we observe pcfg(Words), where Words is a sentence to be generated. pcfg/1-2
and proj/2 are generic in the sense that these predicates can be applied to any underlying context-free
grammar which does not include ε-rules.3 Also, as is usually done for definite clause grammars, we use
difference lists to represent the substrings. The if-then statement nonterminal(LHS) -> ... in
the body of pcfg/2 is used to check if LHS is a non-terminal symbol. Lastly, in the utility part, we
assign the rule probabilities by using query statements:

:- set_sw(s,[0.8,0.2]).
:- set_sw(np,[0.4,0.4,0.2]).

3 We also assume that the underlying grammar does not produce a unit chain A
∗⇒ A.
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:- set_sw(vp,[0.3,0.3,0.2,0.2]).
:- set_sw(pp,[1.0]).
:- set_sw(verb,[0.2,0.4,0.4]).
:- set_sw(noun,[0.05,0.45,0.5]).
:- set_sw(prep,[1.0]).

Let us run the program. First, we compute the generative probability of a sentence “swat flies like
ants.” prob/1 can be utilized for this purpose:

?- prob(pcfg([swat,flies,like,ants])).

Probability of pcfg([swat,flies,like,ants]) is: 0.001010560000000

We can also get the most probable parse tree for “swat flies like ants.” This is nothing but probabilistic
parsing using a PCFG model. From the result of viterbit/1 shown below, it is found that the most
probable parse tree is [[swatverb[fliesnoun[likeprep [antsnoun]np]pp]np]vp]s, and its generative probability is
0.000432.

?- viterbit(pcfg([swat,flies,like,ants]))

pcfg([swat,flies,like,ants])
| pcfg(s,[swat,flies,like,ants]-[])
| | pcfg(vp,[swat,flies,like,ants]-[])
| | | pcfg(verb,[swat,flies,like,ants]-[flies,like,ants])
| | | | pcfg(swat,[swat,flies,like,ants]-[flies,like,ants])
| | | | msw(verb,[swat])
| | | pcfg(np,[flies,like,ants]-[])
| | | | pcfg(noun,[flies,like,ants]-[like,ants])
| | | | | pcfg(flies,[flies,like,ants]-[like,ants])
| | | | | msw(noun,[flies])
| | | | pcfg(pp,[like,ants]-[])
| | | | | pcfg(prep,[like,ants]-[ants])
| | | | | | pcfg(like,[like,ants]-[ants])
| | | | | | msw(prep,[like])
| | | | | pcfg(np,[ants]-[])
| | | | | | pcfg(noun,[ants]-[])
| | | | | | | pcfg(ants,[ants]-[])
| | | | | | | msw(noun,[ants])
| | | | | | msw(np,[noun])
| | | | | msw(pp,[prep,np])
| | | | msw(np,[noun,pp])
| | | msw(vp,[verb,np])
| | msw(s,[vp])

Viterbi_P = 0.000432000000000

Furthermore, using n_viterbit/2, we can get the three most probable parse trees for “swat flies like
ants” as follows:

?- n_viterbit(3,pcfg([swat,flies,like,ants])).
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Figure 7.2: Example of a discrete Bayesian network.

7.3 Discrete Bayesian networks

7.3.1 Representing Bayesian networks
Bayesian networks have become a popular representation for encoding and reasoning about uncertainty in
various applications. A Bayesian network is a directed acyclic graph whose nodes are considered as ran-
dom variables and whose directed edges indicate conditional dependencies/independencies among such
variables. Conditional probability tables (CPTs) in a Bayesian network can be represented by switches
with complex names in PRISM. To be more specific, let B and C be two random variables, and assume
B (resp. C) has the k (resp. n) possible values. Then a conditional distribution P(B|C) can be represented
by n switches: msw(b(ci),·) (i = 1, . . . , n), each of which has k outcomes: vi, j ( j = 1, . . . , k).4 Then it
is easily seen that each switch parameter corresponds to one entry of the CPT.

For illustration, let us consider an example from [30], shown in Figure 7.2. In this network, we
assume that all random variables take on yes or no (i.e. they are binary), and also assume that only two
nodes, Smoke and Report, are observable. This Bayesian network defines a joint distribution:

p(Fire,Tampering, Smoke,Alarm,Leaving,Report).

From the conditional independencies indicated by the graph structure, this joint distribution is reduced to
a computationally feasible form:

p(Fire,Tampering, Smoke,Alarm, Leaving,Report)
= p(Fire)p(Tampering)p(Smoke | Fire) ·

p(Alarm | Fire,Tampering)p(Leaving | Alarm)p(Report | Leaving). (7.1)

The factored probabilities in the RHS will be stored in CPTs, where P(Fire) and P(Tampering) are seen
as conditional probabilities with an empty condition. On the other hand, the observable distribution on
Smoke and Report is computed by marginalizing the joint distribution:

p(Smoke,Report)

=
∑

Fire, Tampering, Alarm, Leaving

p(Fire,Tampering, Smoke,Alarm,Leaving,Report). (7.2)

It is easy to notice that the marginalization above takes an exponential time with respect to the number
of variable to marginalize. In the literature of research on Bayesian networks, efficient algorithms are

4 In other words, we have (n × k) switch instances: msw(b(ci),vi, j) (i = 1, . . . , n and j = 1, . . . , k).
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known to compute such marginalization, but in this section, we concentrate on how we represent Bayesian
networks in PRISM. Indeed, for a certain class called singly-connected Bayesian networks, it is shown
in [40] that we can write a PRISM program that can simulate the Pearl’s propagation algorithm.

Now we start to describe the Bayesian network in Figure 7.2. Also for this case, a generative way
of thinking should be useful in writing the modeling part. For example, we first get the value of Fire by
flipping a coin (i.e. sampling) according to P(Fire). We then proceed to flip a coin for Smoke according
to P(Smoke | Fire), and so on. Here we represent such a coin flipping by msw(I,V), and define the joint
distribution (Eq. 7.1) with a predicate world/6:

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

This clause indicates that we flip the coins in the order of Fire, Tampering, Smoke, Alarm, Leaving and
Report. As is declared later, the switches above are assumed here to output yes or no. The switch
named fi corresponds to the coin flipping for Fire, and switch sm(Fi) corresponds to the coin flipping
for Smoke, given the value of Fire as Fi. Recall here that each parameter of these switches corresponds
to one entry of the CPTs in the target Bayesian network. For instance, the parameter θsm(yes),no,
the probability of a switch instance msw(sm(yes),no) being true, corresponds to the conditional
probability P(Smoke = no | Fire = yes).

The observable distribution is defined by world/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

The probability of world(yes,no) corresponds to P(Smoke = yes,Report = no). We can find that, for
world(yes,no), all instantiations of the body are probabilistically exclusive to each other, so we can
compute the probability of world(yes,no) by summing up the probabilities of these instantiations.
This fact corresponds to Eq. 7.2, so we can say the program precisely express what we would like to
model. The model part of our Bayesian network program consists of the two clauses above.

We add a multi-valued switch declaration which specifies all switches have outcomes yes and no as
follows:

values(_,[yes,no]).

Now let us make a similar experiment to one with the HMM program (§7.1). Namely, we first gener-
ate goals by sampling as training data under some predefined parameters, and then learn the parameters
from such training data. The difference is that we attempt to fix (or preserve) one parameter in learning.
Such a parameter can be considered as a constant parameter in the model. The utility part may contain
the following batch predicate for the experiment:

alarm_learn(N) :-
unfix_sw(_), % Make all parameters changeable
set_params, % Set parameters as you specified
get_samples(N,world(_,_),Gs), % Get N samples
fix_sw(fi), % Preserve the parameter values
learn(Gs). % for {msw(fi,yes), msw(fi,no)}

The experimental steps are written as comments. In this predicate, set_params/0 (which specifies
the parameters of all switches; §4.1.6), get_samples/3 (which generate training data; §4.2), and
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learn/1 (§4.7.3) are used similarly to those in the batch routine for the experiments with HMMs
(§7.1). set_params/0 is a user-defined predicate:

set_params :-
set_sw(fi,[0.1,0.9]),
set_sw(ta,[0.15,0.85]),
set_sw(sm(yes),[0.95,0.05]),
set_sw(sm(no),[0.05,0.95]),
set_sw(al(yes,yes),[0.50,0.50]),
set_sw(al(yes,no),[0.90,0.10]),
set_sw(al(no,yes),[0.85,0.15]),
set_sw(al(no,no),[0.05,0.95]),
set_sw(le(yes),[0.88,0.12]),
set_sw(le(no),[0.01,0.99]),
set_sw(re(yes),[0.75,0.25]),
set_sw(re(no),[0.10,0.90]).

As described above, the additional functionality is that we do not learn (i.e. fix or preserve) the parameters
for switch fi. This is done by using the built-ins unfix_sw/1 and fix_sw/1 (§4.1.7).

Now our PRISM program has been completed, and we are ready to run the program. Let us as-
sume that the program is contained in the file ‘alarm.psm’, then load the program by the command
prism(alarm):

?- prism(alarm).

We conduct learning with 500 samples by alarm_learn/1 which is previously defined:

?- alarm_learn(500).

#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -464.034430688)
Statistics on learning:

Graph size: 448
Number of switches: 12
Number of switch instances: 24
Number of iterations: 2
Final log likelihood: -464.034430688
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 47008 bytes

Type show_sw or show_sw_b to show the probability distributions.

We can confirm the learned parameters as follows:

?- show_sw.

Switch fi: fixed_p: yes (p: 0.100000000) no (p: 0.900000000)
Switch ta: unfixed_p: yes (p: 0.682231979) no (p: 0.317768021)
Switch le(no): unfixed_p: yes (p: 0.419688112) no (p: 0.580311888)
Switch le(yes): unfixed_p: yes (p: 0.476437741) no (p: 0.523562259)
Switch re(no): unfixed_p: yes (p: 0.283975504) no (p: 0.716024496)
Switch re(yes): unfixed_p: yes (p: 0.167325271) no (p: 0.832674729)
Switch sm(no): unfixed_p: yes (p: 0.130802678) no (p: 0.869197322)
Switch sm(yes): unfixed_p: yes (p: 0.122775877) no (p: 0.877224123)
Switch al(no,no): unfixed_p: yes (p: 0.480950708) no (p: 0.519049292)
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Switch al(no,yes): unfixed_p: yes (p: 0.451939009) no (p: 0.548060991)
Switch al(yes,no): unfixed_p: yes (p: 0.472514062) no (p: 0.527485938)
Switch al(yes,yes): unfixed_p: yes (p: 0.380557386) no (p: 0.619442614)

It is also possible to get the frequencies of the sampled goals:

?- show_goals.

Goal world(yes,yes) (count=34, freq=6.800%)
Goal world(no,no) (count=353, freq=70.600%)
Goal world(yes,no) (count=31, freq=6.200%)
Goal world(no,yes) (count=82, freq=16.400%)
Total_count=500

7.3.2 Computing conditional probabilities
Furthermore, for the Bayesian network program described in this section, conditional probabilities can
be computed as conditional hindsight probabilities (§4.6). Let us recall that a conditional hindsight prob-
ability is denoted as Pθ(G′|G) = Pθ(G′)/Pθ(G), where G is a given top goal and G′ is one of its subgoals.
For instance, let us consider to compute the conditional probability p(Alarm | Smoke = yes,Report = no)
by using conditional hindsight probabilities. Since the target conditional probability p(Alarm = x |
Smoke = yes,Report = no) can be computed as p(Alarm = x, Smoke = yes,Report = no)/p(Smoke =
yes,Report = no), if we let G = world(_,_,_,yes,_,no) and G′ = world(_,_,x,yes,_,no),
it can be seen that Pθ(G′|G) is equal to the target conditional probability. To get the conditional distribu-
tion on Alarm, we run chindsight_agg/2 with specifying the third argument in world/6 (which
corresponds to Alarm) as a query argument:5

?- chindsight_agg(world(_,_,_,yes,_,no),world(_,_,query,yes,_,no)).
conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

Of course, from the definition of world/2, we can make the same computation with world/2:

?- chindsight_agg(world(yes,no),world(_,_,query,yes,_,no)).
conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

As mentioned before, the definition of world/6 is computationally naive, so we need to write a different
representation of Bayesian networks which takes into account the computational effort for conditional
hindsight probabilities, as shown in the next section.

7.3.3 Bayesian networks in junction-tree form
For probabilistic inferences on Bayesian networks, especially, on multiply-connected Bayesian networks
(BNs), several sophisticated techniques have been proposed so far. As another example of a BN, let us
consider a Bayesian network called the Asia network [26], which is illustrated in Figure 7.3. This network
can be said to be a multiply-connected BN since there are two paths from S to D: S → L → TL → D
and S → B → D. One of the most popular inference methods for such multiply-connected BNs is
the junction-tree algorithm. In the junction-tree algorithm, we first convert the original network to an

5 In this computation, it is assumed that the parameters are set by set_params/0 in advance.
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Figure 7.3: Example of a multiply-connected Bayesian network (known as the Asia network).

undirected tree-structured network called a junction tree, whose node corresponds to a set consisting of
one or more original nodes. Figure 7.4 depicts a junction tree for the Asia network. For example, α2 in
Figure 7.4 corresponds to a set {S , L, B} of the original nodes in Figure 7.3.

We can write a ‘naive’ version of the PRISM program that represents the Asia network as did in the
previous section. Also in this program, all switches are supposed to be binary, i.e. they take values ‘t’
(true) and ‘f’ (false). incl_or/3 represents the inclusive OR. We set the parameters given in [26] by
set_params/0.

values(bn(_,_),[t,f]).

world(A,S,X,D):- world(A,_,S,_,_,X,_,D).

world(A,T,S,L,TL,X,B,D) :-
msw(bn(a,[]),A),msw(bn(t,[A]),T),
msw(bn(s,[]),S),msw(bn(l,[S]),L),
incl_or(T,L,TL),
msw(bn(x,[TL]),X),msw(bn(b,[S]),B),
msw(bn(d,[TL,B]),D).

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

:- set_params.

set_params:-
set_sw(bn(a,[]),[0.01,0.99]),
set_sw(bn(t,[t]),[0.05,0.95]),
set_sw(bn(t,[f]),[0.01,0.99]),
set_sw(bn(s,[]),[0.5,0.5]),
set_sw(bn(l,[t]),[0.1,0.9]),
set_sw(bn(l,[f]),[0.01,0.99]),
set_sw(bn(x,[t]),[0.98,0.02]),
set_sw(bn(x,[f]),[0.05,0.95]),
set_sw(bn(b,[t]),[0.60,0.40]),
set_sw(bn(b,[f]),[0.30,0.70]),
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Figure 7.4: Junction tree for the Asia network.

set_sw(bn(d,[t,t]),[0.90,0.10]),
set_sw(bn(d,[t,f]),[0.70,0.30]),
set_sw(bn(d,[f,t]),[0.80,0.20]),
set_sw(bn(d,[f,f]),[0.10,0.90]).

After loading the program, for example, we can compute the conditional distribution P(T = true | A =
false,D = true) = 0.018 and P(T = false | A = false,D = true) = 0.982 as follows:

?- chindsight_agg(world(f,_,_,t),world(_,query,_,_,_,_,_,_)).
conditional hindsight probabilities:

world(*,f,*,*,*,*,*,*): 0.981873562361255
world(*,t,*,*,*,*,*,*): 0.018126437638745

Surely this program returns the consistent results, but is not so efficient. On the other hand, let us see
another PRISM program that represents a junction tree and is expected to run faster than the naive version.
For the readers who are interested in the formal discussion on such PRISM programs in junction-tree
form, please consult [37, 43]. For instance, the following is a junction-tree version of the PRISM program
for the Asia network:

values(bn(_,_),[t,f]).

world(E):- msg_1_0(E-[]).

msg_1_0(E0-E1) :- node_1(L,TL,B,E0-E1).
msg_2_1(L,B,E0-E1) :- node_2(S,L,B,E0-E1).
msg_3_1(L,TL,E0-E1) :- node_3(T,L,TL,E0-E1).
msg_4_3(T,E0-E1) :- node_4(A,T,E0-E1).
msg_5_1(TL,B,E0-E1) :- node_5(TL,B,D,E0-E1).
msg_6_5(TL,E0-E1) :- node_6(TL,X,E0-E1).

node_1(L,TL,B,E0-E1) :-
msg_2_1(L,B,E0-E2),msg_3_1(L,TL,E2-E3),msg_5_1(TL,B,E3-E1).

node_2(S,L,B,E0-E1) :-
cpt(s,[],S,E0-E2),cpt(l,[S],L,E2-E3),cpt(b,[S],B,E3-E1).

node_3(T,L,TL,E0-E1) :- incl_or(L,T,TL),msg_4_3(T,E0-E1).
node_4(A,T,E0-E1) :- cpt(a,[],A,E0-E2),cpt(t,[A],T,E2-E1).
node_5(TL,B,D,E0-E1) :- cpt(d,[TL,B],D,E0-E2),msg_6_5(TL,E2-E1).
node_6(TL,X,E0-E1) :- cpt(x,[TL],X,E0-E1).
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cpt(X,Par,V,E0-E1):- ( E0=[(X,V)|E1] -> true ; E0=E1 ),msw(bn(X,Par),V).

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

In this program, we consider that α1 in Figure 7.4 is the root node of the junction tree. The predicate
whose name is msg_i_ j corresponds to the edge between nodes i and j in the junction tree. We also
define a predicate named node_i for each node i in the junction tree. One may find that the evidences
will be kept as difference lists in the last arguments of the msg_i_ j and the node_i predicates. We can
input evidences through the argument of world/1, but for simplicity, the evidences are assumed here to
be given in the same order as that of the appearances of msw/2 in the top-down execution of world/1.
cpt/4 is a wrapper predicate that can handle evidences. We omit here set_params/0 which is also
included in the naive version.

Using this program, let us compute the conditional distribution P(T | A = false,D = true). To realize
this, We attempt to compute the hindsight probabilities for the predicate node_4/3 since α4 includes
the original node (i.e. the random variable) T , as shown in Figure 7.4.

?- chindsight_agg(world([(a,f),(d,t)]),node_4(_,query,_)).
conditional hindsight probabilities:

node_4(*,f,*): 0.981873562361255
node_4(*,t,*): 0.018126437638745

It is proved in [37] that this hindsight computation is equivalent to the belief propagation procedure in a
junction tree.

Instead of using difference lists, we can take evidences into account by adding them into the Prolog
database before making probabilistic inferences. That is, we may write:

world(Es):- assert_evid(Es),msg_1_0.

msg_1_0 :- node_1(_L,_TL,_B).
msg_2_1(L,B) :- node_2(_S,L,B).
msg_3_1(L,TL):- node_3(_T,L,TL).
msg_4_3(T) :- node_4(_A,T).
msg_5_1(TL,B):- node_5(TL,B,_D).
msg_6_5(TL) :- node_6(TL,_X).

node_1(L,TL,B):- msg_2_1(L,B),msg_3_1(L,TL),msg_5_1(TL,B).
node_2(S,L,B) :- cpt(s,[],S),cpt(l,[S],L),cpt(b,[S],B).
node_3(T,L,TL):- incl_or(L,T,TL),msg_4_3(T).
node_4(A,T) :- cpt(a,[],A),cpt(t,[A],T).
node_5(TL,B,D):- cpt(d,[TL,B],D),msg_6_5(TL).
node_6(TL,X) :- cpt(x,[TL],X).

cpt(X,Par,V):- ( evid(X,V) -> true ; true ),msw(bn(X,Par),V).

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

assert_evid(Es):- retractall(evid(_,_)),assert_evid0(Es).
assert_evid0([]).
assert_evid0([(X,V)|Es]):- assert(evid(X,V)),!,assert_evid0(Es).
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Table 7.1: CPT for Alarm constructed by the noisy-OR rule
Fire Tampering P(alarm) P(¬alarm)
true true 0.94 = 1 − 0.3 × 0.2 0.06 = 0.3 × 0.2
true false 0.7 = 1 − 0.3 0.3
false true 0.8 = 1 − 0.2 0.2
false false 0 1

It is obvious that this program is simpler and more flexible than the one with difference lists. On the
other hand, we should note that the program’s declarative semantics has been lost, and that in learning,
the subgoals are inappropriately shared among the observed goals, each of which is associated with a
different set of evidences.6

It is possible to implement a translator (including a junction-tree constructor) from a network spec-
ification in some standard format (e.g. XMLBIF) to a PRISM program of the corresponding junction
tree. Since version 1.12.1, a Java implementation of such a translator, named BN2Prism, is included
under the exs/jtree directory in the released package. BN2Prism uses a tree-decomposition tech-
nique described in [23] to generate a PRISM program in junction-tree form7 and such a decomposition
technique can be a bridge from PRISM to probabilistic-logical modeling/inference systems based on
Bayesian networks.

7.3.4 Using noisy OR
In modeling with Bayesian networks, we sometimes use combination rules to make the CPTs simpler,
and noisy OR is one of the most well-known combination rules [33]. To be specific, let us consider the
alarm network (Figure 7.2) again, and suppose that the Alarm node in the alarm network has a CPT
defined with the noisy-OR rule. Also we suppose that the individual inhibition probabilities are given as
follows:8

P(¬alarm | fire,¬tampering) = 0.3
P(¬alarm | ¬fire, tam − paring) = 0.2.

Then we have a CPT for Alarm shown in Table 7.1. To write the alarm network program that deals with
the noisy-OR rules, we modify the definitions of world/6 and introduce the predicates named cpt_x
for each variable named x. Then world/6 calls such cpt_x predicates instead of directly calling
random switches. The modeling part of the resulting program is as follows:

world(Fi,Ta,Al,Sm,Le,Re) :-
cpt_fi(Fi),
cpt_ta(Ta),
cpt_sm(Fi,Sm),
cpt_al(Fi,Ta,Al),
cpt_le(Al,Le),
cpt_re(Le,Re).

6 This optimization is called inter-goal sharing, and unconditionally enabled in the current programming system. An ad-hoc
workaround is to introduce an ID for each set of evidences and keep the ID through the arguments (e.g. we define world(ID,E),
msg_2_1(ID,L,B), and so on).

7 To be exact, a PRISM program generated by BN2Prism has a graph structure called a bucket tree. For details, please see
the documents under the exs/jtree/bn2prism/doc directory. The bucket-tree elimination algorithm is a message-passing
algorithm on a bucket tree [23].

8 We denote the propositions Alarm = true, Alarm = false, Fire = true, and so on by alarm, ¬alarm, fire, and so on, respectively.
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cpt_fi(Fi):- msw(fi,Fi).
cpt_ta(Ta):- msw(ta,Ta).
cpt_sm(Fi,Sm):- msw(sm(Fi),Sm).
cpt_al(Fi,Ta,Al):-

( Fi = yes, Ta = yes ->
msw(cause_al_fi,N_Al_Fi),
msw(cause_al_ta,N_Al_Ta),
( N_Al_Fi = no, N_Al_Ta = no -> Al = no
; Al = yes
)

; Fi = yes, Ta = no -> msw(cause_al_fi,Al)
; Fi = no, Ta = yes -> msw(cause_al_ta,Al)
; Fi = no, Ta = no -> Al = no
).

cpt_le(Al,Le):- msw(le(Al),Le).
cpt_re(Le,Re):- msw(re(Le),Re).

It can be seen that cpt_al/3 is an implementation of the noisy-OR rule. The key step is to consider the
generation process underlying the noisy-OR rule. For example, when Fire = true and Tampering = true,
we make choices twice by random switches named cause_al_fi and cause_al_ta according to
the corresponding inhibition probabilities. Then, if one of these choices returns yes, we consider that
Alarm becomes true.

Let us further write a more generic version. We first write the network-specific part of the model by
modifying the definition of world/6 and by adding noisy_or/3 for the specifications of noisy-OR
nodes:

world(Sm,Re):- world(_,_,_,Sm,_,Re).

world(Fi,Ta,Al,Sm,Le,Re) :-
cpt(fi,[],Fi),
cpt(ta,[],Ta),
cpt(sm,[Fi],Sm),
cpt(al,[Fi,Ta],Al),
cpt(le,[Al],Le),
cpt(re,[Le],Re).

noisy_or(al,[fi,ta],[[0.7,0.3],[0.8,0.2]]).

In the above, cpt/3 in the clause body of world/6 is an abstract (or a wrapper) predicate that can deal
with the noisy-OR rule, and its definition is included in the network-independent part of the model:

:- p_not_table choose_noisy_or/4, choose_noisy_or/6.

cpt(X,PaVs,V):-
( noisy_or(X,Pa,_) -> choose_noisy_or(X,Pa,PaVs,V)
; msw(bn(X,PaVs),V)
).

choose_noisy_or(X,Pa,PaVs,V):- choose_noisy_or(X,Pa,PaVs,no,no,V).

choose_noisy_or(_,[],[],yes,V,V).
choose_noisy_or(_,[],[],no,_,no).
choose_noisy_or(X,[Y|Pa],[PaV|PaVs],PaHasYes0,ValHasYes0,V):-

( PaV=yes ->
msw(cause(X,Y),V0),
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PaHasYes=yes,
( ValHasYes0=no, V0=no -> ValHasYes=no
; ValHasYes=yes
)

; PaHasYes=PaHasYes0,
ValHasYes=ValHasYes0

),
choose_noisy_or(X,Pa,PaVs,PaHasYes,ValHasYes,V).

choose_noisy_or/4 is a generalization of cpt_al/3 described above. Some might feel this
network-independent part procedural, but conversely we can say that this exhibits the flexibility of the
PRISM (and underlying Prolog) language. It is also possible to put the definition of choose_noisy_
or/4 into a separate library file loaded by the inclusion declaration (§2.6.4), and then the network-
specific part (namely, the definitions of world/2, world/6 and noisy_or/3) will be left more
declarative. The PRISM language only provides a simple built-in probabilistic predicate implementing
random switches, but as long as we deal with generative models, there seems to be ways to construct a
more abstract formalism combining these random switches. The p_not_table declarations are added
for making the inference results simple and readable.

The utility part should be modified accordingly. First, we add a couple of batch routines for setting
parameters:

set_params:-
set_sw(bn(fi,[]),[0.1,0.9]),
set_sw(bn(ta,[]),[0.15,0.85]),
set_sw(bn(sm,[yes]),[0.95,0.05]),
set_sw(bn(sm,[no]),[0.05,0.95]),
set_sw(bn(le,[yes]),[0.88,0.12]),
set_sw(bn(le,[no]),[0.01,0.99]),
set_sw(bn(re,[yes]),[0.75,0.25]),
set_sw(bn(re,[no]),[0.10,0.90]).

set_nor_params:-
( noisy_or(X,Pa,DistList),

set_nor_params(X,Pa,DistList),
fail

; true
).

set_nor_params(_,[],[]).
set_nor_params(X,[Y|Pa],[Dist|DistList]):-

set_sw(cause(X,Y),Dist),!,
set_nor_params(X,Pa,DistList).

:- set_params.
:- set_nor_params.

In the above, set_nor_params/0 sets the switch parameters according to the specifications of the
noisy-OR nodes. To confirm whether the network-independent part of the model works well, let us
introduce the following routines:

print_dist_al:-
( member(Fi,[yes,no]),

member(Ta,[yes,no]),
member(Al,[yes,no]),
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get_cpt_prob(al,[Fi,Ta],Al,P),
format("P(al=˜w | fi=˜w, ta=˜w):˜t˜6f˜n",[Al,Fi,Ta,P]),
fail

; true
).

print_expl_al:-
( member(Fi,[yes,no]),

member(Ta,[yes,no]),
member(Al,[yes,no]),
get_cpt_probf(al,[Fi,Ta],Al),
fail

; true
).

get_cpt_prob(X,PaVs,V,P):-
( prob(cpt(X,PaVs,V),P)
; P = 0.0
),!.

get_cpt_probf(X,PaVs,V):-
( probf(cpt(X,PaVs,V))
; format("cpt(˜w,˜w,˜w): always false˜n",[X,PaVs,V])
),!.

print_dist_al/0 shows the distribution of the Alarm node for each instantiations of its parents by
a failure-driven loop, and print_expl_al/0 shows a logical expression of the probabilistic behavior
of the Alarm node. get_cpt_prob/4 and get_cpt_probf/3 are just introduced for dealing with
the cases that prob/2 or probf/1 fails. Finally, we can confirm that the generic version of the alarm
network program with the noisy-OR rule works correctly:

?- print_dist_al.

P(al=yes | fi=yes, ta=yes): 0.940000
P(al=no | fi=yes, ta=yes): 0.060000
P(al=yes | fi=yes, ta=no): 0.700000
P(al=no | fi=yes, ta=no): 0.300000
P(al=yes | fi=no, ta=yes): 0.800000
P(al=no | fi=no, ta=yes): 0.200000
P(al=yes | fi=no, ta=no): 0.000000
P(al=no | fi=no, ta=no): 1.000000

?- print_expl_al.

cpt(al,[yes,yes],yes)
<=> msw(cause(al,fi),yes) & msw(cause(al,ta),yes)

v msw(cause(al,fi),yes) & msw(cause(al,ta),no)
v msw(cause(al,fi),no) & msw(cause(al,ta),yes)

cpt(al,[yes,yes],no)
<=> msw(cause(al,fi),no) & msw(cause(al,ta),no)

cpt(al,[yes,no],yes)
<=> msw(cause(al,fi),yes)

cpt(al,[yes,no],no)
<=> msw(cause(al,fi),no)

cpt(al,[no,yes],yes)
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<=> msw(cause(al,ta),yes)
cpt(al,[no,yes],no)

<=> msw(cause(al,ta),no)
cpt(al,[no,no],yes): always false
cpt(al,[no,no],no)

Here, one may think from the iff-formula for cpt(al,[yes,yes],yes) that the number of
sub-explanations for cpt(al,·,yes) can exponentially grows as the Alarm node has more parent
nodes. This problem comes from the modeling assumption (i.e. the exclusiveness condition) that the
sub-explanations should be exclusive to each other. On the other hand, if we could use inclusive OR, the
iff-formula will be much simplified as follows:

cpt(al,[yes,yes],yes)⇔ msw(cause(al,fi),yes) ∨ msw(cause(al,ta),yes).

Recent works [13, 16, 17] introduce binary decision diagrams (BDDs) for probability inferences based on
logical expressions, where inclusive disjunctions are automatically converted into exclusive disjunctions
in a compressed form. The programming system should incorporate such mechanisms in future.

7.4 Statistical analysis
PRISM is a suitable tool for analyzing statistical data. In this section, we present three examples. In
the first example, we consider gene inheritance of human’s blood type again, and show a typical way to
answer the question of model selection. The second example attempts to find a probabilistic justification
for a common practice seen in tennis games: players serve second services more conservatively than first
services. We write a program to demonstrate that the percentage of points won would normally decline
should a player serve second services as hard as first ones. The third example attempts to obtain statistics
that can be used to tune the unification procedure.

7.4.1 Another hypothesis on blood type inheritance
The ABO gene model on the inheritance of ABO blood type, described in §1.2, was introduced in early
20th century [10]. Around that time, there was another hypothesis that we have two loci for ABO blood
type with dominant alleles A/a and B/b. According to this hypothesis, genotypes aabb, A∗bb, aaB∗ and
A∗B∗ correspond to the blood types (phenotypes) O, A, B and AB, respectively, where ∗ stands for a
“don’t care” symbol. In this section, let us call this hypothesis the AaBb gene model. The following is a
PRISM program for the AaBb gene model:

%%%% Declarations:

:- set_prism_flag(data_source,file(’bloodtype.dat’)).

values(locus1,[’A’,a]).
values(locus2,[’B’,b]).

%%%% Modeling part:

bloodtype(P) :-
genotype(locus1,X1,Y1),
genotype(locus2,X2,Y2),
( X1=a, Y1=a, X2=b, Y2=b -> P=o
; ( X1=’A’ ; Y1=’A’ ), X2=b, Y2=b -> P=a
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; X1=a, Y1=a, ( X2=’B’ ; Y2=’B’) -> P=b
; P=ab
).

genotype(L,X,Y) :- msw(L,X),msw(L,Y).

In this program, we use two random switches each of which represents a random pick-up of a gene in
the corresponding locus. The question here is which hypothesis from these two hypotheses on blood
type inheritance (i.e. the ABO gene model and the AaBb gene model) is more plausible. To answer this
question, we consider to use a Bayesian model score called BIC (Bayesian Information Criterion). One
may notice that this is an example of a model selection problem.

Suppose that bloodABO.psm and bloodAaBb.psm are the program files for the ABO gene model
(given in §1.2) and for the AaBb gene model (given just above), respectively. We also assume that a data
file named bloodtype.dat which contains 38 persons of blood type A, 22 persons of blood type B,
31 persons of blood type O and 9 persons of blood type AB. The ratio of frequencies of blood types
in this data is almost the same as that in Japanese people. Lastly, for simplicity, we consider that both
programs have the following flag specification:

:- set_prism_flag(data_source,file(’bloodtype.dat’)).

Under these settings, we first load bloodABO.psm, and then call a built-in for EM learning. Finally
we can get the BIC value as −132.667082:

?- prism(bloodABO).
:

?- learn.
#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iters: 0(5) (Converged: -128.061911600)
Statistics on learning:

Graph size: 27
Number of switches: 1
Number of switch instances: 3
Number of iterations: 5
Final log likelihood: -128.061911600
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 5888 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
Switch gene: unfixed_p: a (p: 0.272288804) b (p: 0.169511387) o (p: 0.55
8199809)

:
?- learn_statistics(bic,BIC).
BIC = -132.667081786147037 ?

On the other hand, we repeat the same procedure for bloodAaBb.psm, and get the BIC value as
−135.649847:

?- prism(bloodAaBb).
:
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?- learn.
#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iters: 0(5) (Converged: -131.044676485)
Statistics on learning:

Graph size: 48
Number of switches: 2
Number of switch instances: 4
Number of iterations: 5
Final log likelihood: -131.044676485
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 7808 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
Switch locus1: unfixed_p: A (p: 0.272006612) a (p: 0.727993388)
Switch locus2: unfixed_p: B (p: 0.169341684) b (p: 0.830658316)

:
?- learn_statistics(bic,BIC).
BIC = -135.649846671234258 ?

As a result, the ABO gene model has a larger BIC value, so we can conclude that the ABO gene model
is more plausible than the AaBb gene model according to the data in bloodtype.dat.

7.4.2 Why not serving second services as hard in tennis?
In tennis games, we observe a common practice, namely, players normally serve second services much
more conservatively than serving first services. Most people accept the practice without asking why. We
write a program to model the statistical relationship between serving and winning in tennis games and
use real statistics of Andy Roddick, one of top players, to answer the question.

In tennis, a player has at most two chances to serve in each point. If the first service is a fault, he has
another chance to serve. If both services are faults, he loses the point. The following program models
this process.

values(serve(_),[in,out]). % switches serve(1) serve(2)
values(result(_),[win,loss]). % switches result(1) result(2)

play(Res):- % the predicate to be observed
msw(serve(1),S1),
( S1 == in -> msw(result(1),Res)
; msw(serve(2),S2),

( S2 == in -> msw(result(2),Res)
; Res = loss
)

).

We use two switches, serve(1) and serve(2), to represent the outcomes of services, and use
another two switches, result(1) and result(2), to represent the results: result(1) gives the
result of the point when the first service is legal and result(2) the result of the point when the second
service is legal. The result is loss if both services are faults.
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The following sets the parameters of the switches based on Andy Roddick’s statistics: his serving
percentages are 61 and 95 at first and second services, respectively, and his percentages of points won at
two services are 81 and 56, respectively.

roddick:-
set_sw(serve(1),[0.61,0.39]),
set_sw(serve(2),[0.95,0.05]),
set_sw(result(1),[0.81,0.19]),
set_sw(result(2),[0.56,0.44]).

From the program and the switch parameters, we know Andy Roddick’s wining probability is 0.70158.

?- prob(play(win),Prob)
Prob = 0.70158

If Andy Roddick served second services like first services, the predicate play should be redefined as
follows:

play(Res):-
msw(serve(1),S1),
( S1 == in -> msw(result(1),Res)
; msw(serve(1),S2),

( S2 == in -> msw(result(1),Res)
; Res = loss
)

).

His winning probability would decline to 0.686799. This explains why serious tennis players serve
second services much more conservatively than first services although the percentage of points won at
first services is much higher than that at second services.

7.4.3 Tuning the unification procedure
Given two terms, the unification procedure determines if they are unifiable, and if so finds a substitution
for the variables in the two terms to make them identical. A term is one of the following four types:
variable, atomic, list, and structure. The unification procedure behaves as follows:

unify(t1,t2) {
if (t1 is variable) bind t1 to t2;
else if (t1 is atomic) {

if (t2 is variable) bind t2 to t1;
else return t1==t2;

} else if (t1 is a list) {
if (t2 is variable) bind t2 to t1;
else if (t2 is a list)

return unify(car(t1),car(t2)) && unify(cdr(t1),cdr(t2));
else return false;

} else if (t1 is a structure) {
if (t2 is variable) bind t2 to t1;
else if (t2 is a structure) {

let t1 be f(a1,. . . ,an) and t2 be g(b1,. . . ,bm);

122



if (f != g || m != n) return false;
return unify(a1,b1) && . . . && unify(an,bn);

} else return false;
}

}

Since the order of tests affects the speed of the unification procedure, one question arises: how to tune
the procedure such that it performs fewest tests on a set of sample data.

The following shows a PRISM program written for this purpose:

values(s1,[var,atom,list,struct]).
values(s2(_),[var,atom,list,struct]). %switches: s2(var),s2(atom),...

:- set_prism_flag(data_source,file(’unification.dat’)).

prob_unify(T1,T2,Res) :- % the predicate to be observed
get_type(T1,Type1),
msw(s1,Type1),
get_type(T2,Type2),
msw(s2(Type1),Type2),
unify(T1,T2,Res).

unify(T1,T2,Res) :- var(T1), !, T1 = T2, Res = true.
unify(T1,T2,Res) :- var(T2), !, T1 = T2, Res = true.
unify(T1,T2,Res) :- atomic(T1), !, (T1 == T2 -> Res = true ; Res = false).
unify([H1|T1],[H2|T2],Res) :- !,

prob_unify(H1,H2,Res1),
(Res1 = true -> prob_unify(T1,T2,Res) ; Res = false).

unify(T1,T2,Res) :-
functor(T1,F1,N1),
functor(T2,F2,N2),!,
( (F1 \= F2 ; N1 \= N2) -> Res = false
; unify(T1,T2,1,N1,Res)
).

unify(T1,T2,N0,N,Res) :- N0 > N, !, Res = true.
unify(T1,T2,N0,N,Res) :-

arg(N0,T1,A1),
arg(N0,T2,A2),
prob_unify(A1,A2,Res1),
N1 is N0+1,
( Res1 = true -> unify(T1,T2,N1,N,Res)
; Res = false
).

get_type(T,var) :- var(T),!.
get_type(T,atom) :- atomic(T),!.
get_type(T,list) :- nonvar(T), T = [_|_],!.
get_type(T,struct) :- nonvar(T), functor(T,F,N), N > 0.

In learning mode, this program basically counts the occurrences of each type encountered in execution.
The switch s1 gives the probability distribution of the types of the first argument, and for each type of
the first argument T the switch s2(T) gives the probability distribution of the second argument.
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Figure 7.5: Bayesian network representation of a naive Bayes model.

Let us suppose that we have the following observed data stored in ’unification.dat’:

prob_unify(f(A,B,1,C),f(0,0,0,1),false).
prob_unify(A,def,true).
prob_unify(g(A,B),g(A,fin),true).

Then, we can conduct learning and see the results of learning as follows:

?- learn.

#goals: 0(3)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -9.704060528)
Statistics on learning:

Graph size: 35
Number of switches: 4
Number of switch instances: 16
Number of iterations: 2
Final log likelihood: -9.704060528
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 12688 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.

Switch s1: unfixed_p: var (p: 0.625000000) atom (p: 0.125000000) list
(p: 0.000000000) struct (p: 0.250000000)
Switch s2(atom): unfixed_p: var (p: 0.000000000) atom (p: 1.000000000)
list (p: 0.000000000) struct (p: 0.000000000)
Switch s2(struct): unfixed_p: var (p: 0.000000000) atom (p: 0.00000000
0) list (p: 0.000000000) struct (p: 1.000000000)
Switch s2(var): unfixed_p: var (p: 0.200000000) atom (p: 0.800000000)
list (p: 0.000000000) struct (p: 0.000000000)

From this result, we know how to order the tests of types so that the unification procedure performs the
best on the samples.

7.5 n-fold cross validation of a naive Bayes classifier
The main goal in version 1.12 was to add facilities for ease of programming, and under this goal, dozens
of built-in predicates for randomization, statistical operations and list processing were introduced to the
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programming system (see §4.14, §4.15 and §4.16, respectively). To demonstrate the usefulness of these
built-ins, in this section, we try to write a compact evaluation routine of a naive Bayes classifier [29]
based on n-fold cross validation.

A naive Bayes classifier is a probabilistic classifier based on a naive Bayes model, a special form of a
Bayesian network (see Fig. 7.5). First, the attribute values 〈a1, a2, . . . , am〉 of an example are considered
as a realization of a random vector 〈A1, A2, . . . , Am〉, and also the class c to which the example belongs
is a realization of a random variable C. Then, in naive Bayes models, the joint probability distribution is
simplified under the conditional independence among attributes:

P(c, a1, a2, . . . , am) = P(c)
m∏

j=1

P(a j | c),

where we abbreviate P(A j = a j, . . .) as P(a j, . . .), and P(C = c, . . .) as P(c, . . .). After the probabilities
P(c) and P(a j | c) estimated from training examples, we get the most probable class c∗ for a test example
having 〈a1, a2, . . . , am〉 by:

c∗ = argmax
c

P(c | a1, a2, . . . , am)

= argmax
c

P(c, a1, a2, . . . , am)

= argmax
c

P(c)
m∏

j=1

P(a j | c). (7.3)

To conduct an n-fold cross validation for a naive Bayes classifier, we have at least five types of tasks:
(1) estimation of the probabilities P(c) and P(a j | c) from training examples, (2) computation of the most
probable class c∗, (3) rotated splitting of the whole dataset into training examples and test examples, (4)
computation of predictive accuracy, and (5) iteration of the tasks (1)–(4) for n times. Using the built-
ins for EM learning and Viterbi computation, we can realize the tasks (1) and (2), respectively. For the
task (3), new built-in predicates for shuffling and splitting lists can be used. The task (4) will be easily
implemented by a new built-in predicate for average operation. Finally, to realize the loops for the task (5)
compactly, we use map functions instead of recursive predicates.

Now let us see the program. The target is the congressional voting records dataset, which is available
from UCI machine learning repository (http://archive.ics.uci.edu/ml/). We suppose that
the data file house-votes-84.data has been downloaded and is placed ‘as is’ under the current
directory. First of all, we declare random switches:

values(class,[democrat,republican]).
values(attr(_,_),[y,n]).

The random switch class takes two values that indicate the class labels democrat and republican.
The probabilities P(c) correspond to θclass,c, the parameters of a random switch class (c = democrat,
republican). On the other hand, since all attributes only take ‘y’ or ‘n’ (here ‘?’ is treated as a miss-
ing value9), all random switches named attr( j,c) also take on values ‘y’ and ‘n’. The probabilities
P(a j | c) correspond to θattr( j,c),a j ( j = 1, . . . ,m).

The modeling part only includes four clauses. Since a naive Bayes model is a special form of a
Bayesian network, the programming is basically done in the manner described in §7.3:

nbayes(C,Vals):- msw(class,C),nbayes(1,C,Vals).

9 The data description file house-votes-84.names, also downloadable from the repository, contains a warning — It is
important to recognize that “?” in this database does not mean that the value of the attribute is unknown. It means simply, that the
value is not “yea” or “nay” (. . . ). In this section, on the other hand, we consider ‘?’ as a missing value just for demonstration.
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nbayes(_,_,[]).
nbayes(J,C,[V|Vals]):-

choose(J,C,V),
J1 is J+1,
nbayes(J1,C,Vals).

choose(J,C,V):-
( V == ’?’ -> msw(attr(J,C),_)
; msw(attr(J,C),V)
).

In this program, the logical variables C and Vals in nbayes(C,Vals) correspond to the random vari-
able C and the random vector 〈A1, A2, . . . , Am〉. Also, instead of calling msw(attr(J,C),V) directly,
we use a wrapper choose(J,C,V) which has an additional if-then branch for handling missing values.

Let us move to the utility part, which includes evaluation routines. First, we can conduct an N-fold
cross validation by running the top predicate votes_cv(N):

votes_cv(N):-
random_set_seed(81729), % Fix the random seed to keep the same splitting
load_data_file(Gs0), % Load the entire data
random_shuffle(Gs0,Gs), % Randomly reorder the data
numlist(1,N,Ks), % Get Ks = [1,...,N] (B-Prolog built-in)
maplist(K,Rate,votes_cv(Gs,K,N,Rate),Ks,Rates),

% Call votes_cv/2 for K=1...N
avglist(Rates,AvgRate), % Get the avg. of the precisions
maplist(K,Rate,format("Test #˜d: ˜2f%˜n",[K,Rate*100]),Ks,Rates),
format("Average: ˜2f%˜n",[AvgRate*100]).

Please see the comments to understand the behavior. load_data_file(Gs0) reads the whole dataset
from house-votes-84.data and returns a list of nbayes(C,Vals) to Gs0 (the definition will
be given later). The examples Gs0 are shuffled into Gs by random_shuffle/2, a built-in predicate
newly introduced in version 1.12. The first call of maplist/5 invokes votes_cv(Gs,K,N,Rate)
for each K in Ks = [1,...,N], and stores its output Rate into a list Rates. Here votes_cv(Gs,
K,N,Rate) takes as input Gs, K and N, and returns the predictive accuracy Rate for the K-th splitting.
We finally get the average predictive accuracy AvgRate by avglist(Rates,AvgRate), a built-in
for average operation. It is important to note that, by using maplist/5, we can often avoid writing a
definition of the recursive clause representing a loop for K, and keep the program compact.

The predicate votes_cv(Gs,K,N,Rate), which we have seen above, works on EM learning and
Viterbi computation for the K-th splitting:

votes_cv(Gs,K,N,Rate):-
format("<<<< Test #˜d >>>>˜n",[K]),
separate_data(Gs,K,N,Gs0,Gs1), % Gs0: training data, Gs1: test data
learn(Gs0), % Learn by PRISM’s built-in
maplist(nbayes(C,Vs),R,(viterbig(nbayes(C0,Vs)),(C0==C->R=1;R=0)),Gs1,Rs),

% Predict the class by viterbig/1 for each test example
% and evaluate it with the answer class label

avglist(Rs,Rate), % Get the accuracy for the K-th splitting
format("Done (˜2f%).˜n˜n",[Rate*100]).

In the clause body, separate_data(Gs,K,N,Gs0,Gs1) splits the whole dataset Gs into training
examples Gs0 and test examples Gs1. We train the naive Bayes model in a usual manner by learn/1
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and make predictions for test examples one by one using viterbig/1. Here we use maplist/5
again for repeated testings. Furthermore, the predicted classes are evaluated with the answer class labels,
and the evaluation results will be stored as a list of 1 (correct) and 0 (incorrect). Lastly, by interpreting
these 1s and 0s numerically and taking their average, we get the predictive accuracy as Rate.

The remaining predicates are defined as follows:

separate_data(Data,K,N,Learn,Test):-
length(Data,L),
L0 is L*(K-1)//N, % L0: offset of the test data (// - integer division)
L1 is L*(K-0)//N-L0, % L1: size of the test data
splitlist(Learn0,Rest,Data,L0), % Length of Learn0 = L0
splitlist(Test,Learn1,Rest,L1), % Length of Test = L1
append(Learn0,Learn1,Learn).

load_data_file(Gs):-
load_csv(’house-votes-84.data’,Gs0),
maplist(csvrow([C|Vs]),nbayes(C,Vs),true,Gs0,Gs).

In the definition of separate_data/5, we use splitlist/4, a new built-in for splitting lists.
load_data_file/1 uses load_csv/2 to read a CSV file (house-votes-84.data) directly
and maplist/5 to convert each row in the CSV file into an observed goal nbayes(C,Vs) in the
model.

It has been claimed that one advantage of PRISM programming is the compactness of the modeling
part. Besides, as we have seen, with the built-ins introduced in version 1.12, we can make the utility part
compact as well. It is also interesting to see that we can write a routine for n-fold cross validation just by
combining general-purpose built-in predicates. Now let us run the program:

% prism
:

?- prism(votes).
:

?- votes_cv(10).

<<<< Test #1 >>>>
#goals: 0.........100.........200.........300.(312)
Exporting switch information to the EM routine ... done
#em-iters: 0(8) (Converged: -3076.540683710)
Statistics on learning:

Graph size: 6284
Number of switches: 33
Number of switch instances: 66
Number of iterations: 8
Final log likelihood: -3076.540683710
Total learning time: 0.024 seconds
Explanation search time: 0.016 seconds
Total table space used: 1671056 bytes

Type show_sw or show_sw_b to show the probability distributions.
Done (81.40%).

:

<<<< Test #10 >>>>
#goals: 0.........100.........200.........300.(311)
Exporting switch information to the EM routine ... done
#em-iters: 0(8) (Converged: -3134.945195139)
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Figure 7.6: State transition diagram of the dieting professor.

Statistics on learning:
Graph size: 6260
Number of switches: 33
Number of switch instances: 66
Number of iterations: 8
Final log likelihood: -3134.945195139
Total learning time: 0.028 seconds
Explanation search time: 0.016 seconds
Total table space used: 1663976 bytes

Type show_sw or show_sw_b to show the probability distributions.
Done (90.91%).

Test #1: 81.40%
Test #2: 88.64%
Test #3: 90.70%
Test #4: 93.18%

:
Test #9: 95.35%
Test #10: 90.91%
Average: 90.11%

yes

7.6 Dieting professor*
The last example is a program that deals with failures in the generation process. Let us consider a scenario
as follows. There is a professor who takes a lunch everyday at one of two restaurants ‘s0’ and ‘s1’, and
he changes the restaurant to visit probabilistically. Also as he is on a diet, he needs to satisfy a constraint
that the total calories for lunch in a week are less than 4K calories. He probabilistically orders pizza
(which is denoted by ‘p’ and has 900 calories) or sandwich (‘s’; 400 calories) at the restaurant ‘s0’, and
hamburger (‘h’; 400 calories) or sandwich (‘s’; 500 calories) at the restaurant ‘s1’. He records what he
has eaten like [p,s,s,p,h,s,h] in a week and he preserves the record only if he succeeds in keeping
the constraint. For example, we have a list of preserved records, and attempt to estimate the probability
that he violates the constraint.

First of all, let us introduce a two-state hidden Markov model (HMM), shown in Figure 7.6, as a basic
model that captures the professor’s probabilistic behavior. We then try to write a PRISM program which
represents this basic model with the additional constraint on the total calories. Hereafter we call the
model a constrained HMM. Let us describe the program. From Figure 7.6, we can see that four switches
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are required as follows:

values(tr(s0),[s0,s1]).
values(tr(s1),[s1,s0]).
values(lunch(s0),[p,s]). % pizza:900, sandwich:400
values(lunch(s1),[h,s]). % hamburger:400, sandwich:500

where the switches named tr(·) choose the next restaurant, and those named lunch(·) select the
menu of lunch at the chosen restaurant.

The central part of the model is chmm/4, which is defined as follows:

chmm(L,S,C,N):- N>0,
msw(tr(S),S2),
msw(lunch(S),D),
( S == s0,

( D = p, C2 is C+900
; D = s, C2 is C+400 )

; S == s1,
( D = h, C2 is C+400
; D = s, C2 is C+500 )

),
L=[D|L2],
N2 is N-1,
chmm(L2,S2,C2,N2).

chmm([],_,C,0):- C < 4000.

This predicate behaves similarly to hmm/3 (§7.1), a recursive routine, except that chmm/4 has an addi-
tional argument that accumulates the total calories in a week. It is important to notice here that, when the
recursion terminates, the total calories will be checked in the second clause, and if the total calories vio-
late the constraint, the predicate chmm/4 totally fails. This corresponds to the scenario that the professor
only preserves the record only if he succeeds to keep the constraint.

To learn the parameters from his records, or to know the probability that he fails to keep the constraint,
we need to make further settings. For example, we may define the four predicates as follows:

failure:- not(success).
success:- success(_).
success(L):- chmm(L,s0,0,7).
failure(L):- not(success(L)).

From the definition of chmm/4, success(L) says that the professor succeeds to keep the constraint
with the menus L. So success/0 indicates the fact that he succeeds to keep the constraint. failure/0
is the negation of success/0 and therefore means that he fails to satisfy the constraint. failure(L)
is optional here but says that he fails to keep the constraint due to the menus L.
We consider the predicates success/1 and failure/0 as observable predicates, and we use learn/1
as a learning command.

The experiment we attempt is artificial, similarly to those with HMMs (§7.1) and discrete Bayesian
networks (§7.3) — we first generate samples under the predefined parameters, and then learn the pa-
rameters from the generated samples. For this experiment, we define a predicate in the utility part, that
specifies some predefined parameters:

set_params:-
set_sw(tr(s0),[0.7,0.3]),
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set_sw(tr(s1),[0.7,0.3]),
set_sw(lunch(s0),[0.4,0.6]),
set_sw(lunch(s1),[0.5,0.5]).

Now we are in a position to start the experiment. We first load the program with the built-in
prismn/1 (please note ‘n’ at the last of the predicate name):

?- prismn(chmm).

step1.
step2.
step3.
Compilation done by FOC

compiled in 12 milliseconds
loading::temp.out

yes

Let us recall that the definition clauses of failure/0 and failure/1 have negation not/1 in
their bodies. This is not negation as failure (NAF), and we need a special treatment for such negation.
prismn/1 calls an implementation of First Order Compiler (FOC) [34] to eliminate negation not/1.
In the messages above, the messages from “step1” to “Compilation done by FOC” are pro-
duced by the FOC routine, and we may notice that the predicates whose names start with ‘closure_’
are newly created by the FOC routine and registered as table predicates (because they are probabilistic).

After loading, we set the parameters by set_params/0, and confirm the specified parameters:

?- set_params,show_sw.

Switch lunch(s0): unfixed_p: p (p: 0.400000000) s (p: 0.600000000)
Switch lunch(s1): unfixed_p: h (p: 0.500000000) s (p: 0.500000000)
Switch tr(s0): unfixed_p: s0 (p: 0.700000000) s1 (p: 0.300000000)
Switch tr(s1): unfixed_p: s1 (p: 0.700000000) s0 (p: 0.300000000)

We can compute the probability that the professor fails to keep the constraint under the parameters above:

?- prob(failure).
Probability of failure is: 0.348592596784000

From this, we can say that the professor skips preserving the record once in three weeks.
To make it sure that the program correctly represents our model (in particular, the definition of the

failure predicate), we may give a couple of queries. For example, the following query confirms
whether the sum of the probability that the professor satisfy the constraint and the probability that he
does not becomes unity:10

?- prob(success,Ps),prob(failure,Pf),X is Ps+Pf.

Pf = 0.348592596784
Ps = 0.651407403215999
X = 0.999999999999998 ?

10 Unfortunately, as shown here, the actual result of the sum will not always be unity for precision errors.
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Or we have a similar query which is limited to some specific menu (obtained as L by sampling):

?- sample(success(L)),
prob(success(L),Ps),prob(failure(L),Pf),
X is Ps+Pf.

Pf = 0.9999321868
Ps = 0.0000678132
L = [s,p,h,s,h,p,h]
X = 1.0 ?

It is confirmed for each goal appearing in the queries above that the sum of probabilities of the goal and
its negation is always unity, so we can proceed to a learning experiment. To conduct it, we use the built-in
get_samples_c/4 to generate 500 samples (note that we cannot simply use get_samples/3 since
a sampling of success(L) may fail), and invoke the learning command with the samples:

?- get_samples_c([inf,500],success(L),true,Gs),learn([failure|Gs]).

sampling -- #success = 500
sampling -- #failure = 249
#goals: 0.........100.........200......(266)
Exporting switch information to the EM routine ...
#em-iters: 0........(83) (Converged: -2964.788301553)
Statistics on learning:

Graph size: 9328
Number of switches: 4
Number of switch instances: 8
Number of iterations: 83
Final log likelihood: -2964.788301553
Total learning time: 0.036 seconds
Explanation search time: 0.016 seconds
Total table space used: 1486208 bytes

Type show_sw or show_sw_b to show the probability distributions.
Gs = [success([s,s,s,h,s,h,h]),success([s,p,h,s,h,h,s]),

... omitted ...
success([s,p,h,h,s,p,s]),success([p,s,s,s,h,s,s])] ?

yes

It should be noted that, if a special symbol failure is included to the goals in learn/1, the EM
algorithm considering failure called the failure-adjusted maximization (FAM) algorithm will be invoked.
After learning, we can confirm the learned parameters as usual:

?- show_sw.

Switch lunch(s0): unfixed_p: p (p: 0.380041828) s (p: 0.619958172)
Switch lunch(s1): unfixed_p: h (p: 0.537922906) s (p: 0.462077094)
Switch tr(s0): unfixed_p: s0 (p: 0.714988121) s1 (p: 0.285011879)
Switch tr(s1): unfixed_p: s1 (p: 0.677016948) s0 (p: 0.322983052)
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Concept Index

ε (threshold for convergence), 64

a posteriori distribution, 7, 9, 71, 90
a posteriori probability, 7, 65, 67, 71

unnormalized —, 67, 70
acyclicity condition, 16, 23, 76
AND/OR graph, 15
annealing schedule, 68

B-Prolog, 29
backoff smoothing, 47
backward probability computation, 6
batch execution, 9, 35, 72, 97, 104
Baum-Welch algorithm, 6, 57
Bayesian Information Criterion, 70, 71, 120
Bayesian network, 24, 71, 89, 108

multiply-connected —, 111, 112
singly-connected —, 109

Bayesian score, 71
BDD, see binary decision diagram
belief propagation, 114
BIC, see Bayesian Information Criterion
big array, 85
binary decision diagram, 119
BN, see Bayesian network
bucket tree, 115

— elimination, 115

CAR condition, see coarsened-at-random con-
dition

Cheeseman-Stutz score, 47, 70, 71
coarsened-at-random condition, 23
combination rule, 115
compilation (of the program), 30
complete data, 47, 64, 65, 67, 88
completion, 16
conditional probability table, 108, 109
conditions on the model, see modeling assump-

tion
constraint, 6, 128, 129
control stack + heap, 31, 76
CPT, see conditional probability table
cross validation, 125
CS score, see Cheeseman-Stutz score
CSV format, 86
cut symbol, 1, 13

DAEM algorithm, see deterministic annealing
EM algorithm

data file declaration, 24, 75
data parallelism, 10, 96
data sparseness, 7, 65, 88
debugging, 32
declaration, 1, 11
definite clause grammar, 106
deterministic annealing EM algorithm, 68, 73,

75, 76, 91, 92
difference list, 106, 114
Dirichlet distribution, 7, 38, 65, 67
distributed memory computing, 96
distribution semantics, 11, 12, 24
dynamic load balancing, 96
dynamic programming, 6, 16, 55, 89, 90

eager strategy (in linear tabling), 20
EM algorithm, see expectation-maximization al-

gorithm
EM learning, see expectation-maximization al-

gorithm
evidence, 114
exclusiveness condition, 6, 23, 24, 119
executable model, 13
execution flag, 7, 31, 74
execution message, 33
expectation-maximization algorithm, 6, 21, 64,

65, 67, 76–78, 96, 131
convergence of —, 64, 67, 76, 77
deterministic annealing —, see determinis-

tic annealing EM algorithm
expectation step of —, 64, 96
initialization step of —, 64
maximization step of —, 64, 96
multiple runs of —, see restart
variational Bayesian —, see variational Bayesian

EM algorithm
expected occurrence, 7, 47–49, 64, 89, 96
explanation, 15, 23, 64

— path, see sub-explanation
most probable —, see Viterbi explanation
sub- —, 16
Viterbi —, see Viterbi explanation

explanation graph, 15, 16, 53, 70, 77, 78
explanation search, 13, 15, 17, 20, 31, 33, 38,

52, 64, 73, 75, 77, 96, 101
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failure (in the generation process), 6, 21, 72,
128, 131

failure probability, 72, 73
failure-adjusted maximization algorithm, 6, 21,

131
failure-driven loop, 15
FAM algorithm, see failure-adjusted maximiza-

tion algorithm
file IO, 85
finite geometric distribution, 40, 43, 75
finiteness condition, 15, 23
First Order Compiler, 6, 21, 72, 130
FOC, see First Order Compiler
foreach, 82
forward probability computation, 6
forward sampling, 14, 33
forward-backward algorithm, see Baum-Welch

algorithm
free energy

— in statistical mechanics, 68, 91
variational —, see variational free energy

fully observing situation, 4

garbage collection, 76
general clause, 21
generalized inside-outside algorithm, 6
generation process, 5, 6, 21, 72, 101, 116, 128
generative manner in programming, 5, 12, 23
generative model, 5, 6, 24, 72
goal, see probabilistic goal
goal-count pair, 66, 70

hidden Markov model, 4, 6, 24, 89, 96, 100, 128
Mealy-type —, 18
Moore-type —, 18

hindsight computation, 13, 15, 60, 78
hindsight probability, 60, 78

conditional —, 63, 111
HMM, see hidden Markov model
hyperparameter, 7, 38, 44, 77, 89–92

if-then statement (->), 1, 13
(ordered) iff-formula, 16, 19, 53
inclusion declaration, 24, 28, 117
incomplete data, 64, 65, 67, 88
independence condition, 12, 23
independent and identically distributed (i.i.d.),

21, 96
infinite term, 20
inside probability, 55, 57, 60

installation, 29
inter-goal sharing, 99, 115
inverse temperature, 68, 69, 73, 76, 78, 91

increasing rate of —, 69
initial value of —, 68

junction tree, 112, 113
— algorithm, 111

kurtosis, 81

Laplace smoothing, 65
lazy strategy (in linear tabling), 20
likelihood, 21, 64, 67, 70, 71
linear tabling, 6, 15, 20
list comprehension, 82
loading (the program), 24, 26, 27, 30, 72
local maximum, 67, 68, 77, 102
logarithmic-scaled probability, 53, 73, 77
logical variable, 3, 12, 22

machine file, 97
MAP estimation, see maximum a posteriori es-

timation
map function, 82, 125
MAR condition, see missing-at-random condi-

tion
marginal likelihood, 71, 88

approximation of —, 89
master process, 96–98
master-slave model, 96
maximum a posteriori estimation, 7, 65, 66, 73,

77, 103
maximum likelihood estimation, 3, 7, 21, 64,

65, 77
mean

arithmetic —, 81
geometric —, 81
harmonic —, 81

median, 81
memory area, 31

automatic expansion of —, 31
Mersenne Twister, 78
missing value, 22
missing-at-random condition, 6, 22, 23
missing-data cell, 23, 86
missing-data mechanism, 22

ignorable —, 23
non-ignorable —, 23

ML estimation, see maximum likelihood esti-
mation
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MLE, see maximum likelihood estimation
mode, 81

probabilistic —, 81
model selection, 7, 71, 88, 120
modeling assumption, 13, 23
modeling part, 5, 11, 13, 71, 100, 129
MPI (message passing interface), 96
MPICH, 97
multi-valued switch declaration, 24, 38, 42

naive Bayes classifier, 125
negation, 73
negation as failure, 21, 22, 130
negative binomial distribution, 73
no-failure condition, 21, 23
noisy OR, 115

inhibition probability in —, 115, 116
non-probabilistic predicate, 5, 11
non-tabled predicate, 27

observation process, 22, 23
observed data, see observed goal, see observed

goal
observed goal, 3, 64, 65, 70, 96, 101
occur check, 20
outside probability, 57, 60

parallel EM learning, 9, 10
parameter, 3, 7, 12, 21, 26, 38, 42, 45, 47–49,

64, 65, 77, 92
fixed —, 45, 67
mean value of a —, 90–92
point-estimated —, 7, 90, 92

parameter distinctness condition, 22
parameter learning, 3, 6, 13, 15, 22, 23, 38, 64,

65, 102, 109, 129
partially observing situation, 3, 5, 64
PCFG, see probabilistic context-free grammar
prior distribution, 7, 38, 65, 71

uninformative —, 89
prior probability, 70
probabilistic choice, 1
probabilistic context-free grammar, 24, 89, 96,

105
probabilistic goal, 3, 14
probabilistic inference, 13
probabilistic model, 11
probabilistic parsing, 107
probabilistic predicate, 1, 11, 30
probability calculation, 13, 15, 53

processor-farm approach, 96
program area, 31
program transformation, 72
propositionalization, 15
pseudo count, 7, 27, 39, 43, 45–50, 65, 66, 75,

77, 103
pseudo counts, 44

query, 24, 104

random seed, 78
random switch, see switch
reduction operation, 82
reranking, 77, 90, 92
restart, 67, 70, 77, 103

sampling, 3, 13, 14, 33, 52
sampling execution, 13–15, 17, 31, 38, 51, 101
skewness, 81
slave process, 96–98
solution table, 15, 20, 73

automatic cleaning of —, 73, 75
sorting, 84
spy point, 33
standard deviation, 81
standard error of the mean, 81
statistics on probabilistic inferences, 71
sub-explanation, 16, 53
subgoal, 16

encoded —, 54
substructure sharing, 16, 19
supervised learning, 64
switch, 1, 11, 12, 38, 42, 45–47, 49

default distribution of a —, 26, 43, 75
default pseudo counts of a —, 43, 44, 75
definition of a — for backtrackable sam-

pling execution, 50
definition of a — for explanation search,

17, 38
definition of a — for sampling execution,

14, 38
hyperparameter of a —, see hyperparame-

ter
name of a —, 12, 38
outcome of a —, 12, 38
outcome space of a —, 1, 12, 24, 47–49

— that dynamically changes, 25
parameter of a —, see parameter
pseudo count of a —, see pseudo count
registration of a —, 7, 39, 43, 46
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switch information, 46–50
switch instance, 3, 7, 12, 15, 53

encoded —, 54

table area, 31, 73
table declaration, 24, 27
tabled predicate, 27
tabling, 11, 15, 16
trace mode, 17, 33
trail stack, 31
training data, 64

underflow problem, 58, 73, 77
uniform distribution, 2, 42, 43, 75
uniqueness condition, 6, 23
utility part, 5, 11, 24, 101, 109, 126, 129

variance, 81
variational Bayesian EM algorithm, 89, 91

expectation step of —, 89
initialization step of —, 89
maximization step of —, 89

variational Bayesian learning, 7, 77
repeated runs of —, 77

variational free energy, 70, 71, 88, 89, 91
VB learning, see variational Bayesian learning
VB-EM algorithm, see variational Bayesian EM

algorithm
Viterbi computation, 7, 9, 13, 15, 57, 73, 88

log-scaled —, 73
N- —, see top-N Viterbi computation
top-N —, 58, 92

Viterbi explanation, 57, 58, 73, 92, 102
top-N —, 58, 90

Viterbi probability, 57, 73, 102
top-N —, 58

Viterbi tree, 59, 60

warning message, 78
work pool, 96, 98
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Programming Index

.out (file suffix), 30, 31

.psm (file suffix), 30
??*/1, 34
??+/1, 34
??-/1, 34
??/1, 34
??</1, 34
??>/1, 34

agglist/2, 81
amodelist/2, 81
avg_shared (statistic), 70
avglist/2, 81

b_msw/2, 51
bic (statistic), 70
bigarray_get/3, 85
bigarray_length/2, 85
bigarray_put/3, 85
bigarray_to_list/2, 85

catch/3 (B-Prolog built-in), 37
chindsight/1, 63, 87
chindsight/2, 63
chindsight/3, 63
chindsight_agg/2, 63, 111, 113, 114
chindsight_agg/3, 63
clean_table (execution flag), 73, 75
compile (prism/2 option), 30
compile/1 (B-Prolog built-in), 30
consult (prism/2 option), 18, 30, 33
count/2, 66
countlist/2, 83
countlist/3, 83
cs (statistic), 70
custom_sort/3, 84
custom_sort/5, 84

daem (execution flag), 68, 69, 75, 95
data/1, 24, 123
data_source (execution flag), 66, 75
default (built-in distribution), 41
default (built-in pseudo counts), 41
default_sw (execution flag), 42, 43, 75
default_sw_a (execution flag), 8, 39, 44, 75,

93
default_sw_d (execution flag), 7, 43, 66, 75

disable_write_call (declaration), 28, 35

egrouplist/3, 83
em_progress (execution flag), 76
em_time (statistic), 70
epsilon (execution flag), 64, 76, 94
error_on_cycle (execution flag), 76
expand_probs/2, 40
expand_probs/3, 40
expand_pseudo_counts/2, 41
expand_pseudo_counts/3, 41
expand_values/2, 26, 40
explicit_empty_expls (execution flag),

54, 58, 76

f_geometric (built-in distribution), 40, 42
f_geometric (built-in pseudo counts), 41
failure (Prolog atom used in learn/1), 22,

72, 131
failure/0, 21, 36, 72, 129, 130
filter/3, 84
filter/4, 84
filter_not/3, 84
filter_not/4, 84
fix_init_order (execution flag), 76
fix_sw/1, 45, 109
fix_sw/2, 27, 45
fix_sw_a/1, 45
fix_sw_a/2, 27, 46
fix_sw_d/1, 45
fix_sw_d/2, 27, 45
foc/2, 72
force_gc (execution flag), 76
foreach (B-Prolog built-in), 82
free_energy (statistic), 70

get_goal_counts/1, 70
get_goals/1, 70
get_prism_flag/2, 31, 74
get_reg_sw/1, 39
get_reg_sw_list/1, 40
get_samples/3, 5, 51, 52, 101, 109, 131
get_samples_c/3, 52
get_samples_c/4, 52, 131
get_samples_c/5, 52
get_subgoal_hashtable/1, 54
get_sw/1, 47
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get_sw/2, 47
get_sw/4, 47
get_sw/5, 47
get_sw_a/1, 48
get_sw_a/2, 48
get_sw_a/4, 49
get_sw_a/5, 49
get_sw_d/1, 48
get_sw_d/2, 47
get_sw_d/4, 48
get_sw_d/5, 48
get_sw_pa/1, 49
get_sw_pa/2, 49
get_sw_pa/5, 49
get_sw_pa/6, 49
get_sw_pd/1, 48
get_sw_pd/2, 48
get_sw_pd/5, 48
get_sw_pd/6, 48
get_switch_hashtable/1, 54
get_values/2, 25, 42
get_values0/2, 42
get_values1/2, 14, 38, 42
get_version/1, 30
gmeanlist/2, 81
goal_counts (statistic), 70
goals (statistic), 70
graph_statistics/0, 69
graph_statistics/2, 69
grouplist/4, 83

halt/0 (B-Prolog built-in), 30
hindsight/1, 60, 61, 87, 103
hindsight/2, 60, 61, 63
hindsight/3, 31, 60, 61
hindsight_agg/2, 62
hindsight_agg/3, 63
hmeanlist/2, 81

include (declaration), 28, 30
infer_calc_time (statistic), 70
infer_search_time (statistic), 70
infer_statistics/0, 69
infer_statistics/2, 69
infer_time (statistic), 70
init (execution flag), 76, 78
initialize_table/0 (B-Prolog built-in),

73
is_bigarray/1, 85
is_prob_pred/1, 32

is_prob_pred/2, 32
is_tabled_pred/1, 32
is_tabled_pred/2, 32
itemp_init (execution flag), 69, 76, 95
itemp_rate (execution flag), 69, 76, 95

kurtlist/2, 81
kurtlistp/2, 81

lambda (statistic), 70
learn/0, 31, 66, 92, 120, 124
learn/1, 4, 5, 8, 31, 36, 65–67, 72, 91, 92,

101, 109, 131
learn_b/0, 92
learn_b/1, 92
learn_h/0, 91
learn_h/1, 91
learn_message (execution flag), 76
learn_mode (execution flag), 8, 77, 91–95
learn_p/0, 92
learn_p/1, 92
learn_search_time (statistic), 70
learn_statistics/0, 69
learn_statistics/2, 69, 71, 120
learn_time (statistic), 70
length/2 (B-Prolog built-in), 81
list_to_bigarray/2, 85
load (prism/2 option), 31
load/1 (B-Prolog built-in), 30, 31
load_clauses/3, 85
load_csv/2, 86, 87
load_csv/3, 86, 87
log_likelihood (statistic), 70
log_post (statistic), 70
log_prior (statistic), 70
log_prob/1, 53, 87
log_prob/2, 53
log_scale (execution flag), 58, 73, 77

MACHINES (environment variable), 10, 97
maplist/3, 82
maplist/5, 20, 82
maplist/7, 82
maplist_func/2, 82
maplist_func/3, 82
maplist_func/4, 82
maplist_math/3, 82
maplist_math/4, 82
max_iterate (execution flag), 77, 94
maxlist/2, 81
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meanlist/2, 81
medianlist/2, 81
member/1 (B-Prolog built-in), 38
minlist/2, 81
modelist/2, 81
mpprism (system command/file), 10, 29, 97
msw/2, 1, 11, 12, 14, 17, 33, 38, 53, 100

n_viterbi/2, 58
n_viterbi/3, 58
n_viterbif/2, 58, 92
n_viterbif/3, 58
n_viterbig/2, 58
n_viterbig/3, 58, 59
n_viterbit/2, 60, 107
n_viterbit/3, 60
new_bigarray/2, 85
noisy_u (built-in distribution), 41
nospy/0 (B-Prolog built-in), 33
nospy/1 (B-Prolog built-in), 33
not/1, 21, 72, 130
not/1 (B-Prolog built-in), 21
notrace/0, 33
NPROCS (environment variable), 10, 97
num_goal_nodes (statistic), 70
num_iterations (statistic), 70
num_nodes (statistic), 70
num_parameters (statistic), 70
num_subgraphs (statistic), 70
num_switch_nodes (statistic), 70
num_switch_values (statistic), 70
num_switches (statistic), 70
number_sort/2, 84
nv (prism/2 option), 31

p_not_table (declaration), 27, 105, 117
p_table (declaration), 27
parse_atom/2 (B-Prolog built-in), 36
pmodelist/2, 81
print_graph/1, 54, 58
print_graph/2, 55, 58
print_graph/3, 55
print_tree/1, 59
print_tree/2, 59
print_tree/3, 59
print_version/0, 30
prism (system command/file), 1, 29–31, 35,

101
prism.bat (system command/file), 31
prism/1, 2, 22, 30, 31, 101, 110

prism/2, 30
prism_help/0, 31, 32
prism_main/0, 9, 36, 99
prism_main/1, 9, 36, 99, 104
PRISM_MPIRUN_OPTS (environment variable),

98
prism_statistics/0, 69
prism_statistics/2, 69
prismn/1, 22, 72, 130
prismn/2, 72
prob/1, 3, 53, 87, 107, 117, 130
prob/2, 31, 53, 122, 130, 131
probef/1, 54
probef/2, 54
probefi/1, 57
probefi/2, 57
probefio/1, 57
probefio/2, 57
probefo/1, 57
probefo/2, 57
probefv/1, 57
probefv/2, 57
probf/1, 15, 32, 54, 55, 87, 101, 117
probf/2, 15, 16, 28, 31, 32, 53, 76
probfi/1, 33, 57, 87
probfi/2, 33, 55
probfio/1, 57, 87
probfio/2, 57
probfo/1, 33, 57, 87
probfo/2, 33, 57
probfv/1, 33, 57, 87
probfv/2, 33, 57

random (built-in distribution), 41
random_gaussian/1, 79
random_gaussian/3, 79
random_get_seed/1, 79
random_group/3, 80
random_int/2, 79
random_int/3, 79
random_int_excl/3, 79
random_int_incl/3, 79
random_multiselect/3, 80
random_select/2, 79
random_select/3, 79
random_set_seed/0, 79
random_set_seed/1, 36, 79
random_shuffle/2, 80
random_uniform/1, 79
random_uniform/2, 79
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random_uniform/3, 79
reducelist/7, 82
reducelist_func/4, 82
reducelist_math/4, 83
rerank (execution flag), 77, 92, 94
reset_hparams (execution flag), 77, 95
restart (execution flag), 67, 77, 94
restore_sw/0, 49
restore_sw/1, 49
restore_sw_a/0, 50
restore_sw_a/1, 50
restore_sw_d/0, 50
restore_sw_d/1, 50
restore_sw_pa/0, 50
restore_sw_pa/2, 50
restore_sw_pd/0, 50
restore_sw_pd/2, 50
rmodelist/2, 81

sample/1, 2, 3, 14, 31, 51, 87, 101, 129, 131
save_clauses/3, 86
save_sw/0, 49, 99
save_sw/1, 49, 99
save_sw_a/0, 50
save_sw_a/1, 50
save_sw_d/0, 50
save_sw_d/1, 49
save_sw_pa/0, 50
save_sw_pa/2, 50
save_sw_pd/0, 50
save_sw_pd/2, 50
Saved_SW (system command/file), 49
Saved_SW_A (system command/file), 50
Saved_SW_D (system command/file), 50
search_progress (execution flag), 77
semlist/2, 81
semlistp/2, 81
set_prism_flag/2, 7, 31, 43, 66, 74, 103
set_sw/1, 42
set_sw/2, 2, 5, 27, 31, 38, 42, 43, 101, 106,

110, 122, 129
set_sw_a/1, 44
set_sw_a/2, 27, 39, 44
set_sw_a_all/0, 44
set_sw_a_all/1, 44
set_sw_a_all/2, 44
set_sw_all/0, 43
set_sw_all/1, 43
set_sw_all/2, 43
set_sw_all_a/0, 44

set_sw_all_a/1, 44
set_sw_all_a/2, 44
set_sw_all_d/0, 44
set_sw_all_d/1, 44
set_sw_all_d/2, 44, 66, 103
set_sw_d/1, 43
set_sw_d/2, 27, 39, 43
set_sw_d_all/0, 44
set_sw_d_all/1, 44
set_sw_d_all/2, 44
show_goals/0, 70, 111
show_itemp (execution flag), 69, 78
show_prism_flags/0, 74
show_prob_preds/0, 32
show_reg_sw/0, 39
show_sw/0, 2, 4, 46, 65, 67, 102, 110, 130,

131
show_sw/1, 46
show_sw_a/0, 46
show_sw_a/1, 46
show_sw_d/0, 46
show_sw_d/1, 46
show_sw_pa/0, 47
show_sw_pa/1, 47
show_sw_pd/0, 8, 46
show_sw_pd/1, 46
show_tabled_preds/0, 32
show_values/0, 32
skewlist/2, 81
skewlistp/2, 81
soft_msw/2, 50
sort_hindsight (execution flag), 63, 78
splitlist/4, 83
spy/1, 33
statistics/0 (B-Prolog built-in), 31
std_ratio (execution flag), 41, 76, 78, 93, 95
stdlist/2, 81
stdlistp/2, 81
strip_switches/2, 54
sublist/2, 83
sublist/4, 83
sumlist/2 (B-Prolog built-in), 81

table (B-Prolog built-in), 28
temp (system command/file), 72
throw/1 (B-Prolog built-in), 37
times/2, 66
trace/0, 18, 33

unfix_sw/1, 45, 109
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unfix_sw_a/1, 46
unfix_sw_d/1, 45
uniform (built-in distribution), 40, 42
uniform (built-in pseudo counts), 41
upprism (system command/file), 9, 29, 35, 36,

72, 104

v (prism/2 option), 31
values/2, 1, 14, 24–26, 38, 100, 105, 109,

121, 123, 129
values/3, 26, 27, 39
varlist/2, 81
varlistp/2, 81
verb (execution flag), 78, 99
viterbi/1, 57, 87
viterbi/2, 57
viterbi_mode (execution flag), 9, 78, 92–95
viterbi_subgoals/2, 20, 58
viterbi_switches/2, 58
viterbif/1, 6, 57, 59, 87, 92, 102
viterbif/3, 20, 28, 31, 57
viterbif_h/1, 93
viterbif_h/3, 93
viterbif_p/1, 93
viterbif_p/3, 93
viterbig/1, 57, 87
viterbig/2, 57
viterbig/3, 57
viterbit/1, 59, 107
viterbit/2, 107
viterbit/3, 60

warn (execution flag), 78
write_call/1, 28, 33, 35, 78
write_call/2, 28, 33, 35, 78
write_call_events (execution flag), 33, 35,

78
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Example Index

AaBb gene model, 119
ABO gene model, 119
agree/1, 21, 72
agreement program, 21, 72
alarm network program, 108–111

— using noisy OR, 115
alarm_learn/1, 110
Asia network program

junction-tree version of —, 113–115
naive version of —, 112–113

assert_evid/1, 114

Bayesian network program, 108–119
blood type, 2
blood type program, 2, 7–9, 12, 14, 15, 63

AaBb —, 119–121
bloodtype/1, 2, 12, 14, 15, 119
BN2Prism, 115

choose/3, 125
choose_noisy_or/4, 116
choose_noisy_or/6, 116
congressional voting records dataset, 125
cpt/3, 114
cpt/4, 113, 114
cpt_al/3, 115, 116

dieting professor program, 128–131
direction program, 1, 33, 46, 51, 53, 65–67, 70
direction/1, 1, 2, 51, 53, 65, 67

failure/1, 129

genotype, 2
genotype/2, 2, 12, 14
genotype/3, 119

Hardy-Weinberg’s law, 2
HMM program, 4–6, 9, 15, 17, 20, 52–55, 60,

63, 69, 100–105
— with an auxiliary argument, 19
— with two state variables, 61
constrained —, 128
Mealy-type —, 18
Moore-type —, 17

hmm/1, 4–6, 15, 16, 53–55, 60, 100
hmm/2, 19
hmm/4, 4, 16, 53–55, 60, 100

hmm/5, 19
hmm_learn/1, 5, 9, 101, 102

incl_or/3, 112

load_data_file/1, 127

msg_i_ j predicates, 113, 114

nbayes/2, 125
nbayes/3, 125
node_i predicates, 113, 114
noisy_or/3, 116
nonterminal/1, 106

PCFG program, 98, 105–107
pcfg/1, 106
pcfg/2, 106
phenotype, 2
proj/2, 106

random mating, 2, 4

separate_data/2, 127
set_params/0, 5, 101, 112
success/0, 21, 129
success/1, 129

tennis program, 121–122

UCI machine learning repository, 125
unification program, 122–124

viterbi_states/2, 20
votes_cv/1, 126, 127
votes_cv/4, 126

world/1, 113, 114
world/2, 90, 109, 111, 116
world/4, 112
world/6, 90, 109, 111, 112, 115, 116
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