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Preface
The past few years have witnessed a tremendous interest in logic-based probabilistic learning as testi-
fied by the number of formalisms and systems and their applications. Logic-based probabilistic learning
is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reason-
ing mechanisms, and machine learning and data mining principles. Logic-based probabilistic learning
has found its way into many application areas including bioinformatics, diagnosis and troubleshooting,
stochastic language processing, information retrieval, linkage analysis and discovery, robot control, and
probabilistic constraint solving.

PRISM (PRogramming In Statistical Modeling) is a logic-based language that integrates logic pro-
gramming and probabilistic reasoning including parameter learning. It allows for the description of
independent probabilistic choices and their consequences in general logic programs. PRISM supports
parameter learning, i.e. for a given set of possibly incomplete observed data, PRISM can estimate the
probability distributions to best explain the data. This power is suitable for applications such as learning
parameters of stochastic grammars, training stochastic models for gene sequence analysis, game record
analysis, user modeling, and obtaining probabilistic information for tuning systems performance. PRISM
offers incomparable flexibility compared with specific statistical tools such as hidden Markov models
(HMMs) [4, 26], probabilistic context free grammars (PCFGs) [4] and discrete Bayesian networks.

PRISM employs a proof-theoretic approach to learning. It conducts learning in two phases: the first
phase searches for all the explanations for the observed data, and the second phase estimates the prob-
ability distributions by using the EM algorithm. Learning from flat explanations can be exponential in
both space and time. To speed up learning, the authors proposed learning from explanation graphs and
using tabling to reduce redundancy in the construction of explanation graphs. The PRISM programming
system is implemented on top of B-Prolog (http://www.probp.com/), a constraint logic program-
ming system that provides an efficient tabling system called linear tabling [42]. Tabling shares the same
idea as dynamic programming in that both approaches make full use of intermediate results of compu-
tations. Using tabling in constructing explanation graphs resembles using dynamic programming in the
Baum-Welch algorithm for HMMs and the Inside-Outside algorithm for PCFGs. Thanks to the good
efficiency of the tabling system and the EM learner adopted in PRISM, PRISM is comparable in perfor-
mance to specific statistical tools on relatively large amounts of data. The theoretical side of PRISM is
comprehensively described in [35]. For an implementational view, please refer to [43].

The user is assumed to be familiar with logic programming, the basics of probability theory, and
some of popular probabilistic models mentioned above. The programming system is an extension of the
B-Prolog system, and only PRISM-specific built-ins are elaborated in this document. Please refer to the
B-Prolog user’s manual for details about Prolog built-ins.

Contact information
The latest information and resources on PRISM are available at the website below.

http://sato-www.cs.titech.ac.jp/prism/

For any questions, requests and bug-reports, please send an E-mail to:

prism-query[AT]mi.cs.titech.ac.jp

where [AT] is replaced with @ .
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Organization of this manual
This document is organized as follows:

• Chapter 1 gives an overview of the PRISM language and the PRISM programming system.

• Chapter 2 describes the detail of the language.

• Chapter 3 explains how to use the programming system.

• Chapter 4 gives the detailed descriptions of the basic built-in predicates provided by the program-
ming system.

• Chapter 5 explains how to use the utility for variational Bayesian learning, which is incorporated
in version 1.11, with some introductory description.

• Chapter 6 explains how to use the utility for parallel EM learning using MPI (Message-Passing
Interface), also introduced in version 1.11.

• Chapter 7 shows several program examples with detailed explanations.

To learn PRISM, it is better to see typical usages of PRISM illustrated in Chapter 1 and 7 first, and then
to run the example programs in the released package. The chapters/sections whose titles are marked with
* are considered as advanced, so you can skip these sections for the first time. Chapter 2 may also be
skipped until the examples have been explored, but the content of this chapter (especially §2.2, §2.3 and
§2.4) is essential to understanding the examples. Chapter 3 and 4 are expected to work as a (rough)
reference manual. Chapters 5 and 6 have the facilities newly introduced in version 1.11, and the authors
expect these chapters to be referred to (only) by the users who are interested in these extended facilities.
Note that ‘1.11’ is also referred to as a generic number of the versions numbered as 1.11.x, so if there is
no proviso, all descriptions about version 1.11 apply to versions 1.11.x.
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Chapter 1

Overview of PRISM

PRISM is a probabilistic extension of Prolog. Syntactically, PRISM is just Prolog augmented with a
probabilistic built-in predicate and declarations. There is no restriction on the use of function symbols,
predicate symbols or recursion, and PRISM programs are executed in a top-down left-to-right manner
just like Prolog. In this chapter, we pick up three illustrative examples to overview the major features of
PRISM. These examples will also be used in the following chapters, but for brevity of descriptions, only
a part is shown here. For full descriptions of these examples, please refer to Chapter 7 or the comments
in the example programs included in the released package.

1.1 Building a probabilistic model with random switches
The most characteristic feature of PRISM is that it provides random switches to make probabilistic
choices. A random switch has a name, a space of possible outcomes, and a probability distribution.
The first example is a simple program that uses just one random switch:

target(direction/1).
values(coin,[head,tail]).

direction(D):-
msw(coin,Face),
( Face==head -> D=left ; D=right).

The predicate direction(D) indicates that a person decides the direction to go as D. The decision is
made by tossing a coin: D is bound to left if the head is shown, and to right if the tail is shown.
In this sense, we can say the predicate direction/1 is probabilistic. It is allowed to use disjunctions
(;), the cut symbols (!) and if-then (->) statements as far as they work as expected according to the
execution mechanism of the programming system.1 By combining probabilistic predicates, the user can
build a probabilistic model for the task at hand.

Besides the definitions of probabilistic predicates, we need to make some declarations. The clause
values(coin,[head,tail]) declares the outcome space of a switch named coin, and the call
msw(coin,Face) makes a probabilistic choice (Face will be bound to the result), just like a coin-
tossing. On the other hand, the clause target(direction/1) declares that the observable event is
represented by the predicate direction/1. This means that we can observe the direction he/she goes.

Now let us use this program. After installation, we can invoke the programming system just running
the command ‘prism’:

1 For detailed descriptions on the execution mechanism of the programming system, please visit §2.4.1 and §2.4.2.
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% prism
PRISM 1.11.3, Sato Lab, TITECH, All Rights Reserved. Oct 2008
B-Prolog Version 7.0, All rights reserved, (C) Afany Software 1994-2008.

Type ’prism_help’ for usage.
| ?-

where ‘%’ is the prompt symbol of some shell (on Linux) or the command prompt (on Windows). In the
following, removing the vertical bar, we use ‘?-’ as the prompt symbol for PRISM.

Let us assume that the program above is contained in the file named ‘direction.psm’. Then, we
can load the program using a built-in prism/1 as follows:

?- prism(direction).

After loading the program, we can run the program using built-in predicates. For example, we can make
a sampling by the built-in sample/1:

| ?- sample(direction(D)).
D = left ?

The probability distributions of switches are maintained by the programming system, so they are not
buried directly in the definitions of probabilistic predicates. Since version 1.9, the switches have uniform
distributions by default. So the results obtained by the multiple runs of the query above should not be
biased.

On the other hand, the built-in predicate set_sw/2 and its variations are available for setting prob-
ability distributions manually. For example, to make the coin biased, we may call

?- set_sw(coin,[0.7,0.3]).

which sets the probability of the head being shown to be 0.7. The status of random switches can be
confirmed by:

?- show_sw.
Switch coin: unfixed: head (0.7) tail (0.3)

At this point, the run with sample/1 will show a different probabilistic behavior from that was made
before:

?- sample(direction(D)).

1.2 Basic probabilistic inference and parameter learning
Let us pick up another example that models the inheritance mechanism of human’s ABO blood type. As
is well-known, a human’s blood type (phenotype) is determined by his/her genotype, which is a pair of
two genes (A, B or O) inherited from his/her father and mother.2 For example, when one’s genotype
is AA or AO (OA), his/her phenotype will be type A. In a probabilistic context, on the other hand, we
consider a pool of genes, and let pa, pb and po denote the frequencies of gene A, B and O in the pool,
respectively (pa+ pb+ po = 1). When random mating is assumed, the frequencies of phenotypes, namely,
PA, PB, PO and PAB, are computed by Hardy-Weinberg’s law [11]: PA = p2

a + 2pa po, PB = p2
b + 2pb po,

PO = p2
o, and PAB = 2pa pb. To represent a distribution of phenotypes instead of these mathematical

formulas, we may write the following PRISM program:
2 In this example, we take a view of classical population genetics, where a gene is considered as an abstract genetic factor

proposed by Mendel.
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target(bloodtype/1).
values(gene,[a,b,o]).

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

In this program, we let a switch msw(gene,X) instantiated with X = a, X = b and X = o denote a
random pick-up of gene X from the pool, and becomes true with probability pa, pb and po, respectively.
Then, from the definition of bloodtype/1, we can say that one of bloodtype(P) with P = a,
P = b, P = o and P = ab becomes exclusively true with probability PA, PB, PO and PAB, respectively
(see §2.2 for details). This implies the logical variable P in bloodtype(P) behaves as a random
variable that follows the distribution of phenotypes.3

Here, just like the distribution {PA, PB, PO, PAB} is computed from the basic one {pa, pb, po}, the
probability distributions of switches form a basic distribution from which we can construct the probability
distribution represented by the PRISM program. Then we consider each θi,v, the probability of a switch
instance msw(i,v) being true (i and v are ground terms), as a parameter of the program’s distribution. If
we give appropriate parameters, a variety of probabilistic inferences are available. For example, sampling
is done with the built-in predicate sample/1:

?- sample(bloodtype(X)).

In the above query, the answer X = b will be returned with probability PB, the frequency of blood type
B. Also it is possible to compute the probability of a probabilistic goal (or simply, a goal):

?- prob(bloodtype(a)).
Probability of bloodtype(a) is: 0.360507016168634

Instead of being set manually, the parameters can be estimated from the observed data. We call this
task parameter learning or more specifically, maximum likelihood estimation (ML estimation or MLE)
— given some observed data, a bag of observed goals, find the parameters that maximize the probability
of the observed data being occurred. In this case, the observed data should be a bag of instances of
bloodtype(X), which correspond to phenotypes of (randomly sampled) humans. This is declared in
the program by the clause target(bloodtype/1). Also it should be noted here that we are in a
partially observing situation, that is, we cannot know which switch instances are true (i.e. which genes
are inherited) for some given instances of bloodtype(X) (i.e. some phenotypes). For example, if we
observed a person of blood type A, we do not know whether he has inherited two genes A from both
parents, or he inherits gene A from one parent and gene O from the other. For MLE in such a situation,
one solution is to use the EM (expectation-maximization) algorithm [13],4 and the programming system

3 From a similar discussion, in the previous example, we can see D in direction(D) as a random variable in a probabilistic
context. In many cases, it is useful to define a program so that some logical variables behave as random variables, but it is also
worth noting that there is no need to make all logical variables in the program behave as random variables.

4 A more detailed description for this example (the problem of gene frequency estimation for blood types) can be found in
Section 2.4 of [24].
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has a built-in routine of the EM algorithm. By adding a couple of declarations and preparing some data,
we can estimate the parameters from the data.

For example, let us consider that we have observed 40 persons of blood type A, 20 persons of B, 30
persons of O, and 10 persons of AB. To estimate the parameters from these observed data, we then invoke
the learning command as follows:5

?- learn([count(bloodtype(a),40),count(bloodtype(b),20),
count(bloodtype(o),30),count(bloodtype(ab),10)]).

After parameter learning, we may confirm the estimated parameters:

?- show_sw.
Switch gene: unfixed: a (0.292329558535712) b (0.163020241540856)
o (0.544650199923432)

It can be seen from above and the original meaning given to the program that the frequencies of genes
are estimated as: pa = 0.292, pb = 0.163, po = 0.545. Thus in the context of population genetics, we can
say that, inversely with Hardy-Weinberg’s law, the hidden frequencies of genes can be estimated from
the observed frequencies of phenotypes.

The inheritance model described in this section is considerably simple since we have assumed random
mates. However with the expressive power of PRISM, the case of non-random mates can also be written
(for example, as done in [31]).

1.3 Utility programs and advanced probabilistic inferences
Furthermore, let us consider a PRISM version of a hidden Markov model (HMM) [4, 26]. HMMs not only
dominate in speech recognition but are also well-known as suited for many tasks such as part-of-speech
tagging in natural language processing or biological sequence analysis. An HMM is a probabilistic finite
automaton where the state transitions and the symbol emissions are all probabilistic.

Let us consider a two-state HMM in Figure 1.1. The HMM has the states s0 and s1, and it emits
a symbol a or b at each state. Each of state transitions and symbol emissions is probabilistic, and
conditioned only on the current state. It is assumed in HMMs that we can only observe a string (i.e. a
sequence of emitted symbols), not the sequence of state transitions. The program is described as follows:

target(hmm/1). % hmm(L) is observable
values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop

5 Actually in PRISM, at the query prompt, we cannot make a new line until reaching the end of the query. For readability, in
this manual’s illustrations, the text typed by the user or displayed by the system is sometimes beautified by the authors.
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s0 s1

Figure 1.1: State transition diagram of a 2-state hidden Markov model.

hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T
msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Please note the comments in the program, each states a procedural reading of the corresponding predicate
call. Then we may find that a top-down execution from hmm(L), which represents the distribution for a
string L, simulates a generation process that yields L, or in other words, that we observe L after a chain of
probabilistic choices by switches. In this sense, it is possible to say that the program forms a generative
model. Besides, it may be noticed that we are also in a partially observing situation for HMMs, since the
information about state is hidden from the string L in hmm(L).

In this manual, the code shown above is called the modeling part of the program, and on the other
hand, we can also write non-probabilistic clauses (i.e. usual Prolog clauses) as the utility part. For
example, we define the two predicates hmm_learn/1 and set_params/0, where the former is a
batch predicate for learning, and the latter is the former’s subroutine that sets some particular values to
parameters at once.

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with these samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

get_samples/3,6 learn/1 and set_sw/2 are the built-ins provided by the system, which run
the predicates in the modeling part (at meta-level), or change the status of the system including parameter
values. The built-ins except msw/2 are non-probabilistic, and hence all predicates in the utility part
above are also non-probabilistic. Programming with built-ins in the utility part allows users to take a
variety of ways of experiments according to the application. For example, in the HMM program, we may
add clauses to carry out tasks such as aligning and scoring sequences.

In the literature of applications with HMMs, several efficient algorithms are well-known. One of these
algorithms is the Viterbi algorithm [26], which computes the most probable sequence of (hidden) state

6 get_samples(N,G,Goals) generates N samples as Goals by invoking sample(G) for N times.
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transitions given a string. This is done by dynamic programming, and the computation time is known to
be linear in the length of the given string. The programming system provides a built-in for the Viterbi
algorithm, which is a generalization of the one for HMMs. For example, viterbif/1 writes the most
probable sequence to the output:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])
<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])
<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(2,10,s1,[a,a,a,a,b,b,b,b,b])
<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s1),a) & msw(tr(s1),s0)

...omitted...

hmm(10,10,s1,[b])
<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000117528

We then read from here that the most probable sequence is: s0 → s1 → · · · → s1 → s0 (though the
last transition may be redundant).

It is shown that the algorithm implemented as the system’s built-in works as efficient as the one spe-
cialized for HMMs [34]. So we can handle moderately large datasets with PRISM. The efficiency comes
from linear tabling [42], a tabling mechanism provided by B-Prolog, and an EM algorithm called the
graphical EM algorithm. A similar mechanism is adopted for learning and probability computation men-
tioned above, which is also a generalization of the Baum-Welch algorithm (also known as the forward-
backward algorithm) and the backward probability computation for HMMs respectively [18, 34, 35].

1.4 Handling failures in the generation process*
To realize efficient computation described in the previous section, we need to write PRISM programs
which obey some restrictions. The first major one is the exclusiveness condition, in which all disjunctive
paths in a proof tree are required to be probabilistically exclusive. The second one is the uniqueness
condition, in which all observable goal patterns are probabilistically exclusive to each other and the sum
of their probabilities needs to be unity. For parameter learning, this condition can be relaxed by assuming
the missing-at-random (MAR) condition [35], and with the MAR condition, there is a case that we can
handle the PRISM programs in which the sum of probabilities of observable patterns can exceed unity.
On the other hand, the lack of probability mass with failure in the generation process (in which the sum
of probabilities becomes less than one) is more serious. The uniqueness condition implies that for every
observable pattern, its generation process never fails, and could be a strong restriction in our modeling.
Recently, for a remedy of this, the programming system introduced a new graphical EM algorithm that
takes such failures into account [36, 37, 38]. This algorithm is based both on Cussens’s FAM (failure-
adjusted maximization) algorithm [12] and FOC (First Order Compiler) [29]. With this new learning
framework, we are able to introduce some constraints (which causes some failures) to generative models.
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1.5 Bayesian approaches in PRISM*
When the observed data is not so large compared to the complexity of the model (i.e. the number of
parameters), there should be a risk to rely on the parameters estimated from such data. For example, let
us consider that we just have a data set on blood types of 10 persons, in which only the persons of blood
type B and O are recorded. Even in such a situation, it seems inappropriate to conclude that gene A does
not exist at all. In such a situation, we may take a Bayesian approach to combine our prior knowledge
(bias) with the statistics from the data in a principled way.

In Bayesian approaches, we first consider a prior distribution P(θ) on parameters θ. In PRISM,
a Dirichlet distribution is used as the built-in prior distribution. Since version 1.11, for each switch
instance msw(i,v), the hyperparameter αi,v of the Dirichlet distribution can be specified through a value
called the pseudo count δi,v = (αi,v − 1). Then, the programming system provides two types of facilities
for Bayesian learning. One is for MAP (maximum a posteriori) estimation, and the other for variational
Bayesian learning.

In MAP estimation, pseudo counts work as the statistics on what we have not actually observed. That
is, in estimating a parameter θi,v, the probability of a switch instance msw(i,v) being true, we perform
θ̂i,v = (Ci,v + δi,v)/(

∑
v′∈Vi

(Ci,v′ + δi,v′)), where Ci,v is the (expected) occurrences of the switch instance
msw(i,v) in the data, and Vi is the set of possible outcomes of the switch named i. When the pseudo
count δi,v = 0, this procedure is just that for ML estimation (i.e. θ̂i,v = Ci,v/

∑
v′∈Vi

Ci,v′). When configuring
δi,v to be positive, on the other hand, we can avoid the estimated parameter θ̂i,v being zero, and hence can
relieve the problem of data sparseness to some extent. In the above example, we can assign a positive
probability to the chance that gene A exists. Generally speaking, MAP estimation is a procedure to obtain
the parameters that maximizes a posteriori probability P(θ | D,M) ∝ P(D | M, θ)P(θ), where D is the
observed data, i.e. a multiset of observed goals G1, G2, . . . , GT , and M is the model written as a PRISM
program.

It is often said, on the other hand, that variational Bayesian (VB) learning has high robustness against
data sparseness in model selection and prediction (Viterbi computation). This is because VB learning
gives us an a posteriori distribution P∗(θ | D) and we can make inferences based on some averaged
quantities with respect to P∗(θ | D), instead of particular point-estimated parameters.

Now let us run the blood type program with the facilities above. To set pseudo counts (hyperparame-
ters), we may add the query below to the program:

:- set_prism_flag(default_sw_h,1.0).

The programming system provides dozens of execution flags to allow the users to change the behaviors of
the built-in predicates. The query above will set a value 1.0 to the flag named ‘default_sw_h’. Under
this setting, when the system tries to register a new switch (gene, in this case) to the internal database,
its hyperparameters will be all set to 1.0. The suffix ‘_h’ of the flag name means ‘for hyperparameters.’
Then, let us learn the parameters from the data in which 4 persons of blood type B and 6 persons of blood
type O are recorded:

?- prism(bloodABO).
:

?- learn([count(bloodtype(b),4),count(bloodtype(o),6)]).

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iterations: 0(4) (Converged: -6.730116931)
Statistics on learning:

Graph size: 12
Number of switches: 1
Number of switch instances: 3
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Number of iterations: 4
Final log likelihood: -6.730116931
Total learning time: 0.012 seconds
Explanation search time: 0.000 seconds
Total table space used: 2232 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes

After learning, we can confirm that a positive probability is assigned to the parameter of msw(gene,a),
and that the common pseudo count 1.0 are surely set to each switch:

?- show_sw_b.

Switch gene: unfixed_p,unfixed_h: a (p: 0.000000000, c: 1.000000000)
b (p: 0.225475582, c: 1.000000000) o (p: 0.774524418, c: 1.000000000)

yes

The suffix ‘_b’ of the built-in predicate show_sw_b/0 means ‘for both parameters and pseudo counts
(hyperparameters).’ On the other hand, we can assign the pseudo counts by manual:

?- set_sw_h(gene,[0.5,1.0,1.0]).
:

?- show_sw_b.

Switch gene: unfixed_p,unfixed_h: a (p: 0.000000000, c: 0.500000000)
b (p: 0.225475582, c: 1.000000000) o (p: 0.774524418, c: 1.000000000)

yes

VB learning is easily conducted by setting ‘hparams’ to the execution flag named ‘learn_mode’ and
then invoking the usual learning command (note that there is no need to modify the modeling part):

?- set_prism_flag(learn_mode,hparams).
:

?- learn([count(bloodtype(b),4),count(bloodtype(o),6)]).

#goals: 0(2)
Exporting switch information to the EM routine ...
#vbem-iterations: 0(4) (Converged: -10.758982897)
Statistics on learning:

Graph size: 12
Number of switches: 1
Number of switch instances: 3
Number of iterations: 4
Final variational free energy: -10.758982897
Total learning time: 0.016 seconds
Explanation search time: 0.004 seconds
Total table space used: 2232 bytes

Type show_sw_h or show_sw_b to show the probability distributions.

yes

We can see that the pseudo counts have been adjusted based on the given data. This implies that now we
have the a posteriori distribution P∗(θ | D).
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?- show_sw_b.

Switch gene: unfixed_p,unfixed_h: a (p: 0.000000000, c: 0.526767219)
b (p: 0.225475582, c: 5.645958140) o (p: 0.774524418, c: 16.425913692)

Similarly to parameter learning, Viterbi computation based on the a posteriori distribution P∗(θ | D)
can be invoked with a setting for the execution flag ‘viterbi_mode’. For the HMM program, we may
run the following after VB learning:

?- set_prism_flag(viterbi_mode,hparams).
:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

1.6 Parallel EM learning*
Since version 1.9, a system command named upprism is provided for batch execution (or non-interactive
execution) of PRISM programs. For a batch execution, we first write what we would like to exe-
cute in the clause body of prism_main/0-1. In the HMM program, for example, we may run
hmm_learn(100), which means to conduct EM learning with 100 observed goals (§1.3), in a batch
execution:

prism_main:- hmm_learn(100).

Then, the batch execution can be started by running upprism (recall that the file name of the HMM
program is ‘hmm.psm’):

% upprism hmm
:

#goals: 0.........(95)
Exporting switch information to the EM routine ...
#em-iterations: 0.........100.........200.........300.........400...
......500.........600......(662) (Converged: -689.817528678)
Statistics on learning:

Graph size: 5744
Number of switches: 5
Number of switch instances: 10
Number of iterations: 662
Final log likelihood: -689.817528678
Total learning time: 0.132 seconds
Explanation search time: 0.012 seconds
Total table space used: 378896 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes

Furthermore, since version 1.11, a utility for parallel EM learning is available. Namely, a command
named mpprism (multi-process PRISM) is used instead of upprism (uni-process PRISM). Under
some additional settings for a parallel computing environment (§6.2), we can run mpprism similarly to
upprism. For example, we learn the HMM program from 100 observed goals in a data-parallel fashion
by four processes:

% mpprism hmm
:

loading::hmm.psm.out

9



loading::hmm.psm.out
loading::hmm.psm.out
loading::hmm.psm.out
#goals: 0.........(94)
Exporting switch information to the EM routine ...
Exporting switch information to the EM routine ...
Exporting switch information to the EM routine ...
Exporting switch information to the EM routine ...
#em-iterations: 0.........100.........200.........300.........400......
...500.........600.........700.........800.........900.........1000....
.....1100.........1200....(1250) (Converged: -680.941522532)
Statistics on learning:

Graph size: 7288
Number of switches: 5
Number of switch instances: 10
Number of iterations: 1250
Final log likelihood: -680.941522532
Total learning time: 0.449 seconds
Explanation search time: 0.008 seconds

Type show_sw or show_sw_b to show the probability distributions.

yes
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Chapter 2

PRISM Programs

Generally speaking, a probabilistic model represents some probability distribution which the probabilistic
phenomena in the application domain are assumed to follow, and PRISM is a logic-based representation
language for such probabilistic models. In this chapter, we describe the detail of the PRISM language,
and the basic mechanism of the related algorithms provided as built-in predicates.

2.1 Overall organization
Let us first define that a probabilistic predicate is a predicate which eventually calls (at non-meta level)
the built-in probabilistic predicate msw/2, i.e. random switches. Then we roughly classify the clauses in
a PRISM program into the following three parts:

• Modeling part: the definitions of all probabilistic predicates, and of some non-probabilistic predi-
cates which are called from probabilistic predicates. This part corresponds to the definition of the
model.

• Utility part: the remaining definitions of non-probabilistic predicates. This part is a usual Prolog
program that utilizes the model, and often that can be seen as a meta program of the modeling part.

• Declarations: the clauses of some particular built-in predicates which contain additional informa-
tion on the model (of course, they are non-probabilistic).

In the rest of this chapter, we first describe the basic semantics of PRISM programs and the currently
available probabilistic inferences. Then we proceed to describe the details of each part.

2.2 Basic semantics
PRISM is designed based on the distribution semantics [30, 35], a probabilistic extension of the least
model semantics. In the distribution semantics, all ground atoms are considered as random variables
taking on 1 (true) or 0 (false). With this semantics and the predefined probabilistic property of random
switches, we can give a declarative semantics to programs. However, in the recent versions including
1.11, to make an efficient implementation of tabling, we use a different specification from the original
one [33, 35] of random switches, in which some procedural notion is required. Here we describe msw/2
as follows:

1. For each ground term i in msw(i,v) which is possible to appear in the program, a set of ground
terms Vi should be given by the user with multi-valued switch declaration, and also v ∈ Vi should
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hold. Such an msw(i,v) is hereafter called a switch instance, where i is the switch name, v the
outcome or the value, and Vi the outcome space of i. A collection of msw(i,·) forms switch i.

2. For a switch i, whose outcome space is Vi = {v1, . . . , vk} (k ≥ 1), one of the ground atoms
msw(i,v1), . . . , msw(i,vk) is exclusively true at the same position of a proof tree, and

∑
v∈Vi

θi,v =

1 holds, where θi,v is the probability of msw(i,v) being true and is called a parameter of the pro-
gram. Intuitively, a logical variable V in a predicate call of msw(i,V) behaves as a random variable
which takes a value v from Vi with the probability θi,v.

3. The truth-values of switch instances at the different positions of a proof tree are independently
assigned. This means that the predicate calls of msw/2 behave independently of each other.

Hereafter, for understanding the third condition, it would be a help to introduce IDs which identify
positions in the proof tree,1 and then to associate each occurrence of switch instance with the ID of the
corresponding position. Then the switches at different positions will be syntactically different. The third
condition is referred to as the independence condition.

The probabilistic meaning of the modeling part can be understood in a bottom-up manner.2 Now, for
illustration, let us pick up again the blood type program:

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

First, one of msw(gene,X) instantiated with X = a, X = b or X = o (i.e. a random pick-up of a gene
X from the pool) becomes exclusively true, according to the probabilistic property of switches described
above. Then we associate the parameters of switches with gene frequencies, i.e. θgene,a = pa, θgene,b =
pb and θgene,o = po. Also in view of the independence of switches at different occurrences, the definition
of genotype/2 satisfies the random-mate assumption on genotypes, hence the probability of each is a
product of two gene frequencies. In the body of bloodtype/1’s definition, one of genotype(X,Y)
with X = a,b and o, and Y = a,b and o becomes exclusive, and hence the different instances of the
clause body become exclusively true. We can also see the second conjunct makes a correct many-to-one
mapping from genotypes to phenotypes. Therefore we can say that one of bloodtype(P) with P = a,
P = b, P = o and P = ab becomes exclusively true with probability PA, PB, PO, and PAB, respectively. In
addition, from the exclusiveness discussed above, each of logical variables X and Y in genotype(X,Y)
behaves just like a random variable that takes a gene as its value, whereas P in bloodtype(P) behaves
like a random variable that takes a phenotype.

In PRISM, it would be easier, and so is recommended, to write a program in a top-down (conse-
quently, a generative) manner. On the other hand, sometimes it is also crucial to inspect the program’s
probabilistic meaning in a bottom-up manner, as shown above.

1 In old SICStus Prolog versions, PRISM uses msw(i,n,v) where the users need to explicitly specify n, the ID of an indepen-
dent choice by the switch. This definition is important to give a declarative semantics to programs, and hence the theoretical papers
on PRISM still use msw/3.

2 The discussion in this section should be considerably rough. For the readers interested in the formal semantics of PRISM
(called the distribution semantics), please consult [30, 35].
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2.3 Probabilistic inferences
Before proceeding to the further details of the PRISM language, it would be worth listing what we can
do with this language. First let Pθ(·) be the probability distribution specified by the program, under the
parameters θ of switches buried in the program. Then, in the PRISM programming system, the following
five types of probabilistic inferences are available:

Sampling (§4.3):
Given a goal G of a probabilistic predicate, return the answer substitution σ with the probability

Pθ(Gσ), or fail with the probability that ∃G is false.

Probability calculation (§4.4):
Given a goal G of a probabilistic predicate, compute Pθ(G).

Viterbi computation (§4.6):
Given a goal G of a probabilistic predicate, find E∗ = argmaxE∈{E1,...,EK }Pθ(E), where E1, . . . , EK

are the explanations for G such that G ⇔ E1 ∨ · · · ∨ EK and each Ek is a conjunction of switch
instances.

Hindsight computation (§4.7):
Given a goal G of a probabilistic predicate, compute Pθ(G′) or Pθ(G′ | G) for each subgoal G′ of

G.

Parameter learning (§4.8):
Given a bag of observed goals {G1,G2, . . . ,GT } of probabilistic predicates (i.e. training data), get

the parameters θ of switches which maximizes the likelihood
∏

t Pθ(Gt).

The first inference task works with an execution style called the sampling execution (§2.4.1), and the rest
utilize the explanation search (§2.4.2). For HMMs, the former execution style simulates the behavior of
an HMM as a string generator (i.e. data sampler), and the latter simulates the behavior as an acceptor.
For more details including their variations, please visit the corresponding sections.

2.4 Modeling part
We have seen a couple of examples of the modeling part (sections in Chapter 1 and §2.2). One interesting
feature of PRISM is that we can (or we should) write models as executable. For various probabilistic
inferences, there are two underlying execution styles called sampling execution and explanation search.
So it is expected for users to write the modeling part so that it can work in these two execution styles.
Besides, as far as we understand these two execution styles, it is allowed to write disjunctions (‘;’), the
cut symbols (‘!’), or the if-then (‘->’) statements in a clause body.

In addition, for efficient execution of models, the system assumes that the model follows several
conditions.3 However, it is often difficult for the system to check these conditions, and hence it is required
to write carefully programs to satisfy the conditions (otherwise some unexpected behavior arises).

In the rest of this section, we first explore two underlying execution styles for these inferences, and
then make some advanced discussions concerning to parameter learning. Finally we summarize the
conditions on the modeling part to be satisfied.

3 For the theoretical details, please see [35].
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2.4.1 Sampling execution
Sampling execution is the underlying execution style for a sampling task (§2.3, §4.3). In the literature
of Bayesian networks, this style is sometimes called forward sampling. In the recent versions including
1.11, sampling execution becomes easier to understand. That is, the system only makes a top-down
execution like Prolog, and determines the value v of msw(i,v) on the fly according to the parameters
{θi,v}. A sampling execution of probabilistic goal4 G is invoked by:5

?- sample(G).

Internally, msw/2 for sampling execution is essentially defined as follows:6

msw(I,V):-
values(I,Values),!,
$get_probs(I,Probs),
$choose(Values,Probs,V).

In the definition above, values(I,Values) is declared as a multi-valued switch declaration by the user,
and I should be a ground term. Then Values, a list of ground terms, will be returned based on the declara-
tion. On the other hand, $get_probs(I,Probs) returns Probs which is a list of switch I’s parameters,
and $choose(Values,Probs,V) returns V randomly from Values according to the probabilities Probs.
Also note that $get_probs/2 and $choose/3 are not backtrackable.

One typical trap in sampling execution is the independence among switches. In the previous papers,
the authors often use a blood type program similar to the one below, instead of the one illustrated in this
manual:

bloodtype(a) :- (genotype(a,a) ; genotype(a,o) ; genotype(o,a)).
bloodtype(b) :- (genotype(b,b) ; genotype(b,o) ; genotype(o,b)).
bloodtype(o) :- genotype(o,o).
bloodtype(ab):- (genotype(a,b) ; genotype(b,a)).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

With this program, the following query for sampling execution sometimes fails:

?- sample(bloodtype(X)).

This is because there is a case that all predicate calls genotype(a,a), genotype(a,o), . . . , and
genotype(b,a) in the bloodtype/1’s definition independently fail, without sharing the results of
sampling msw/2. The difference between the program above and the blood type programs in the previous
papers is the use of msw/3, which can share the sampling results by referring to their second arguments.
For sampling execution with msw/2, we need to write a program in a purely generative manner: once
we get a result of a switch sampling, the result should be passed through the predicate arguments to the
predicate which requires it as input.

4 A probabilistic goal is a goal whose predicate is probabilistic.
5 For ease of programming, it is also allowed to run G directly just like Prolog:

?- G.

6 Note that the predicates in the clause body are introduced for illustration — in the actual implementation, they are more
complicatedly defined with different predicate names. On the other hand, as described in §2.6.3, values/2 is just treated as a
unit clause which can work in the other part of the user program.
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2.4.2 Explanation search
Explanation search works as an underlying subroutine of built-in predicates for probabilistic inference
such as probability calculation (§4.4), Viterbi computation (§4.6), hindsight computation (§4.7) and pa-
rameter learning (§4.8).7 To simulate only explanation search, we can use the built-ins probf/1-2
(§4.5). In this section, we describe the explanation search by defining several terminologies.

First, in PRISM, an explanation for probabilistic goal G is a conjunction E of the ground switch
instances, which occurs in a derivation path of a sampling execution for G. In the blood type program,
for example, one possible explanation of goal bloodtype(a) is:

msw(gene,a) ∧ msw(gene,a).

(if we know a person’s blood type is A, one possibility is that he inherits two A genes from both par-
ents.) This corresponds to a phenomenon that we will get bloodtype(a) as a solution of a sampling
execution of bloodtype(X) by having msw(gene,a) twice. Each of two msw(gene,a)s above
indicates an individual gene inheritance from one of the parents, so they should not be suppressed (see
the discussion in §2.2).

Basically we can write the modeling part with keeping in mind that an explanation search finds all
possible explanations for a given goal by a failure-driven loop [40]. For bloodtype(a), we have three
explanations:

msw(gene,a) ∧ msw(gene,a),
msw(gene,a) ∧ msw(gene,o),
msw(gene,o) ∧ msw(gene,a).

Also please note here that the last two explanations correspond to different derivation paths, and so
should not be suppressed. To be more specific, as mentioned in §2.2, this would be understood that,
by associating switches with IDs of the positions in the proof tree, they are probabilistically exclusive.
In PRISM, for the explanations E1, E2, . . . , Ek for a goal G, we assume that k is finite (the finiteness
condition), and G ⇔ E1 ∨ E2 ∨ . . . ∨ Ek.

In a probabilistic context, an explanation E is a conjunction of independent switch instances, and
hence the probability of E is the product of the probabilities of switch instances in E. Also, if we assume
that possible explanations for any goal are all exclusive (i.e. the program satisfies the exclusiveness con-
dition), the probability of a probabilistic goal G is the sum of probabilities of the explanations for G. For
some probabilistic inference or learning given a goal G, the system makes an explanation search for G in
advance of numeric computations.

Unfortunately, it is easily seen that in general, the number of explanations for a goal can be exponen-
tial depending on the complexity of the model or the given goal (input). To compress these explanations
and make them manageable, the system adopts tabling, or more specifically linear tabling [42], for ex-
planation search. In tabling, every solution of a predicate call is stored in the solution table, and once
we have all solutions for the predicate call, the stored solutions are used for the later calls. After the
explanation search by tabling, the stored solutions are converted to a data structure called explanation
graphs, and then the system performs probabilistic computation on these graphs. Furthermore, expla-
nation graphs can be seen as AND/OR graphs consisting of propositional (i.e. ground or existentially
quantified) formulas, and tabling itself can be understood as a kind of propositionalization procedure in
that it receives first-order expressions (i.e. a PRISM program) and observed goals as input, and generates
as output propositional AND/OR graphs that explain observed goals.

For example, let us consider the HMM program in §1.3, with the string length being changed to 3. In
this program, we have the following 16 explanations8 for G = hmm([a,b,b]):

7 The summary of these inferences is given in §2.3
8 Our HMM program can be said as redundant since we distinguish the explanations by the last state transition which do not

contribute to the final output. A more optimized one should have only 8 (= 23) explanations.
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E1 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s0),

E2 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s1),

...

E16 = msw(init,s1) ∧ msw(out(s1),a) ∧ msw(tr(s1),s1) ∧
msw(out(s1),b) ∧ msw(tr(s1),s1) ∧ msw(out(s1),b) ∧ msw(tr(s1),s1).

Then we have G ⇔ E1 ∨ E2 ∨ · · · ∨ E16, and this iff-formula can be converted to a conjunction of iff-
formulas below, which can be derived from Clark’s completion [7] constructed from the definitions of
probabilistic predicates.

hmm([a,b,b]) ⇔ (msw(init,s0) ∧ hmm(1,3,s0,[a,b,b]))

∨ (msw(init,s1) ∧ hmm(1,3,s1,[a,b,b]))

hmm(1,3,s0,[a,b,b]) ⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[b,b]))

hmm(1,3,s1,[a,b,b]) ⇔ (msw(out(s1),a) ∧ msw(tr(s1),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(out(s1),a) ∧ msw(tr(s1),s1) ∧ hmm(2,3,s1,[b,b]))

hmm(2,3,s0,[b,b]) ⇔ (msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ hmm(3,3,s0,[b]))

∨ (msw(out(s0),b) ∧ msw(tr(s0),s1) ∧ hmm(3,3,s1,[b]))
...

hmm(3,3,s1,[b]) ⇔ (msw(out(s1),b) ∧ msw(tr(s1),s0))

∨ (msw(out(s1),b) ∧ msw(tr(s1),s1))

In this converted iff-formula, the ground atoms appearing on the left hand side are called subgoals.
Each conjunction on the right hand side of each iff-formula whose left hand side is G′ is called a sub-
explanation for G′. It is easy to see that a sub-explanation includes subgoals as well as switch instances,
and that G′ depends on the subgoals appearing in the sub-explanations for G′. It should be noticed that, to
make an exact probability computation by dynamic programming possible, the system assumes that these
dependencies cannot form a cycle. This condition is hereafter called the acyclicity condition. Assuming
this condition, we treat the converted iff-formulas as ordered.

As mentioned above, in explanation search, the system tries to find all possible explanations. With
tabling, each subgoal solved in the search process is stored into a table, together with its sub-explanation,
and after the search terminates, the explanation graphs are constructed from the stored information. Fi-
nally the routines for probabilistic inference including learning works on the explanation graphs. The
structure of explanation graphs are isomorphic to the ordered iff-formula described above. Some may
notice that a subgoal hmm(2,3,s0,[b,b]) is found in both sub-explanations for hmm(1,3,s0,
[a,b,b]) and hmm(1,3,s1,[a,b,b]). In this data structure, a substructure can be shared by the
upper substructures to avoid redundant computations. In other words, we can enjoy the efficiency which
comes from dynamic programming. The programming system provides the built-in probf/2 (§4.5) to
get an explanation graph as a Prolog term.
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Besides, at a more detailed level, we have a different definition of msw/2 for explanation search:9

msw(I,V):- values(I,Values),!,member(V,Values).

Note again that it is assumed that, in a predicate call of values(I,Values), I is a ground term. One
may find that there are no probabilistic predicates in the body that work at random. This is because the
explanation search only aims to enumerate all possibilities that a given goal holds, and it requires no
probabilistic consideration.

2.4.3 Additional notes on writing the modeling part
�Writing the modeling part in two styles

It is crucial to notice that the blood type program shown in §2.4.1 (not the one shown in §1.2) can work
for explanation search, while it does not for sampling execution. It would be fine for the modeling part
to work both for sampling execution and explanation search, but if it is difficult or inefficient, we need
to write the modeling part in two styles — one is for sampling execution, and the other for explana-
tion search. The declarations except the multi-valued switch declarations are made with respect to the
modeling part for explanation search.

� Representing dependent choices by independent random switches

In §2.2, it is mentioned that the random switches appearing at different positions in the proof tree behave
independently of each other. On the other hand, some may wonder how we can make the next choice
conditioned on the previous choice(s). To consider about this question, let us consider again the HMM
program picked up in §1.3:

target(hmm/1). % hmm(L) is observable
values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Then, we get a trace of sampling execution (§2.4.1) of hmm(L) as shown in Figure 2.1 (see §3.6 for
the usage of the trace mode). From this trace and the definition of hmm/4, it can be seen that, in the
first recursive call of hmm/4, we use random switches out(S) and tr(S) where the current state S
is chosen by the switch init. Also in the T -th recursive call (T > 2), random switches out(S) and
tr(S) are used, where S is chosen by the switch tr(S ′) used in the (T − 1)-th recursive call. That
is, one may notice that, in the first recursive call of hmm/4 (beginning from Line 14 in Figure 2.1), we

9 Note that the predicate name of msw/2 is different from the one in the actual implementation.
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1 ?- prism([consult],hmm).
2 :
3 ?- trace.
4 :
5 {Trace mode}
6 ?- sample(hmm(L)).
7
8 Call: (0) sample(hmm(_c60)) ?
9 Call: (2) hmm(_c60) ?

10 Call: (3) str_length(_d20) ?
11 Exit: (3) str_length(10) ?
12 Call: (4) msw(init,_d3c):_e34 ?
13 Exit: (4) msw(init,s1):0.5 ? · · · switch init takes a value s1
14 Call: (7) hmm(1,10,s1,_c60) ? · · · first recursive call of hmm/4
15 Call: (8) 1>10 ?
16 Fail: (8) 1>10 ?
17 Call: (9) msw(out(s1),_f24):_1060 ?
18 Exit: (9) msw(out(s1),a):0.5 ? · · · switch out(s1) takes a value a
19 Call: (12) msw(tr(s1),_f6c):_11bc ?
20 Exit: (12) msw(tr(s1),s0):0.5 ? · · · switch tr(s1) takes a value s0
21 Call: (15) _f88 is 1+1 ?
22 Exit: (15) 2 is 1+1 ?
23 Call: (16) hmm(2,10,s0,_f28) ? · · · second recursive call of hmm/4
24 Call: (17) 2>10 ?
25 Fail: (17) 2>10 ?
26 Call: (18) msw(out(s0),_12cc):_1408 ?
27 Exit: (18) msw(out(s0),b):0.5 ? · · · switch out(s0) takes a value b
28 Call: (21) msw(tr(s0),_1314):_1574 ?
29 Exit: (21) msw(tr(s0),s0):0.5 ? · · · switch tr(s0) takes a value s0
30 Call: (24) _1330 is 2+1 ?
31 Exit: (24) 3 is 2+1 ?
32 Call: (25) hmm(3,10,s0,_12d0) ? · · · third recursive call of hmm/4
33 Call: (26) 3>10 ?
34 Fail: (26) 3>10 ?
35 Call: (27) msw(out(s0),_1684):_17c0 ?
36 Exit: (27) msw(out(s0),a):0.5 ? · · · switch out(s0) takes a value b
37 Call: (30) msw(tr(s0),_16cc):_191c ?
38 Exit: (30) msw(tr(s0),s1):0.5 ? · · · switch tr(s0) takes a value s0
39 Call: (33) _16e8 is 3+1 ?
40 Exit: (33) 4 is 3+1 ?
41 Call: (34) hmm(4,10,s1,_1688) ? · · · fourth recursive call of hmm/4
42 Call: (35) 4>10 ?
43 :

Figure 2.1: Trace of a sampling execution of hmm(L).

obtain s0 as a sampled value of the switch tr(s1) (Lines 19–20). Then, in the second recursive call,
letting the current state S = s0, we use switches out(s0) and tr(s0), and get the value b and s0,
respectively (Lines 26–27 and Lines 28–29).

We can say from the above example that, to make a choice C depending on the results R1, R2, . . . ,
RK of previous choices, it is sufficent to use a switch named c(r1,r2,...,rK), where c is a functor
name that refers to the choice C and rk is a ground term that refers to the results Rk (1 ≤ k ≤ K). Of
course, the switch name can be an arbitrary ground term, e.g. choose(c,[r1,r2,...,rK]), as long
as it uniquely refers to the choice C that depends on R1, R2, . . . , RK . To summarize, in PRISM, it is only
allowed to use independent random switches, but we can represent dependent choices by using different
random switches according to the context, i.e. the results of some of previous choices.

With keeping this discussion in mind, we can write a Mealy-type HMM,10 in which each output
probability depends on the state transion (i.e. both the current state and the next state), by modifying only

10 On the other hand, the original HMM program picked up in §1.3 defines a Moore-type HMM, in which each output probability
depends only on the current status.
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a few clauses:

target(hmm/1).
values(init,[s0,s1]).
values(out(_,_),[a,b]). % modified
values(tr(_),[s0,s1]).

hmm(L):-
str_length(N),
msw(init,S),
hmm(1,N,S,L).

hmm(T,N,_,[]):- T>N,!.
hmm(T,N,S,[Ob|Y]) :-

msw(tr(S),Next), % modified
msw(out(S,Next),Ob), % modified
T1 is T+1,
hmm(T1,N,Next,Y).

str_length(10).

Note here that, in the recursive clause of hmm/4, the switch out(S,Next) should be called after Next
is determined as a ground term s0 or s1 by the switch tr(S). The Bayesian network programs shown
in §7.3 are also a typical example.

2.4.4 Handling failures*
As previously mentioned, a PRISM program basically describes a probabilistic generation process of the
data at hand. On the other hand, there could be a case where failures may be caused in the process by
some constraints. In a probabilistic context, this implies that some probability mass is lost, and hence we
cannot directly apply a traditional learning algorithm which assumes the no-failure condition, i.e. there is
no failure in the generation process. However it is sometimes difficult to write a program without failures.
In such a case, the difficulty could be resolved by using a special learning routine.

In usual maximum likelihood (ML) estimation, we try to find the parameters θ that maximize the
likelihood

∏
t Pθ(Gt), the product of probabilities of observed data Gt being generated.11 Instead of this,

we exclude the probability mass which is lost by failures, and try to maximize
∏

t Pθ(Gt | succ), the
product of conditional probabilities of observed data being generated under the condition that no failure
arises (indicated by succ).

To be more specific, let us consider a program which considers the agreement in coin flipping.12 The
modeling part is written as follows:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

11 We assume here that the propositional random variables corresponding to the data are independent and identically distributed
(i.i.d.).

12 This program comes from [38].
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The predicate agree(A) means that two outcomes of flipping two coins meet as A, and that we fail
to observe any result when they differ. So this program violates the no-failure condition. On the other
hand, the predicate success/0 denotes the event succ above since it is equivalent to ∃X agree(X),
i.e. we have some observation. PRISM assumes that all possibilities in which a failure arises are denoted
by a predefined predicate failure/0. In this program, and probably in many cases, failure/0
is defined as a negation of success/0. But in other cases, it is necessary to define failure/0
explicitly. Under this setting, the target of maximization for the system is rewritten as

∏
t Pθ(Gt | succ) =∏

t{Pθ(Gt)/Pθ(succ)} = ∏t{Pθ(Gt)/(1 − Pθ(fail))}, where fail is the event represented by failure/0,
i.e. some failure arises. The failure-adjusted maximization (FAM) algorithm [12] is an EM algorithm that
solves this maximization, by considering the number of failures as hidden information.

It is important to notice that not/1 in the failure/0’s definition does not mean negation as fail-
ure (NAF).13 We cannot directly simulate this negation, and hence it is eliminated by First Order Com-
piler [29] when the program is loaded.14 The program above, excluding the declarations by values/2,
will be compiled as:

failure:- closure_success0(f0).
closure_success0(A):- closure_agree0(A).
closure_agree0(_):-
msw(coin(a),A),
msw(coin(b),B),
\+ A=B.

where \+/1 means negation as failure. To enable such a compilation, we use the predicate prismn/1,
not the usual one (i.e. prism/1). Then it is also required to invoke the learning command with adding
a special symbol failure to the list of observed goals. A detailed description for the usage is given in
§4.11, and a program example can be found in §7.5.

2.4.5 Learning from goals with logical variables*
In parameter learning, the system accepts observed goals with (existentially quantified) logical variables.
However, we need to be aware that it is justified under the condition called the missing-at-random (MAR)
condition, which is firstly addressed by Rubin [27]. The discussion made in this section can be gener-
alized to some cases where the sum of probabilities of observable goal patterns exceeds unity, but as a
typical case, we will concentrate on the case of observed goals with logical variables.

First, let G be a set of observable ground atoms, and G+ be a set of atoms in G or atoms with
existentially quantified logical variables, whose ground instances are in G (i.e. G ⊆ G+). Also let us
consider that the uniqueness condition holds with G (i.e.

∑
G∈G Pθ(G) = 1 for any θ). Furthermore, for

explanatory simplicity, we assume here that every atom in G has a positive probability. For example,
in the HMM program with the string length being 2, hmm([a,b]) is in G, and hmm([a,X]) in G+.
Here, it is easily seen that there is a many-to-many mapping on ground instantiation from G to G+, and
hence the sum of probabilities of goals in G+ can exceed unity.

For such a case, logical variables can be seen as a kind of missing values, and sometimes we assume
that there is a missing-data mechanism that lurks in our observation process where some part of data turns
to be missing. To be more specific, the missing-data mechanism is modeled as Pφ(G+|G), a conditional
distribution of final observations G+ ∈ G+ on events G ∈ G, which are fully informative but hidden from
us (φ are the distribution parameters). Trivially, Pφ(G+|G) = 0 holds where G is not the instance of G+.

13 Please do not confuse it with not/1 provided by B-Prolog, which simulates negation as failure. From the theoretical view, it
is important to notice that PRISM allows general clauses, i.e. clauses that may contain negated atoms in the body.

14 More generally, First Order Compiler eliminates universally quantified implications, i.e. goals of the form ∀y(p(x, y) →
q(y, z)))
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Table 2.1: The conditional probability table Pφ(G+|G) for the HMM program which satisfies the MAR
condition. The predicate name hmm is simply abbreviated to h. All logical variables are existentially
quantified.

G+ ∈ G+
G ∈ G h([X,Y]) h([X,X]) h([a,X]) h([b,X]) h([X,a]) h([X,b]) h([a,a]) h([a,b]) h([b,a]) h([b,b])

h([a,a]) p1 p2 p3 0 p5 0 p7 0 0 0
h([a,b]) p1 0 p3 0 0 p6 0 p8 0 0
h([b,a]) p1 0 0 p4 p5 0 0 0 p9 0
h([b,b]) p1 p2 0 p4 0 p6 0 0 0 p10

Then we further assume the MAR condition and the parameter distinctness condition, respectively, as
follows:15

• For an actual observation G+ ∈ G+ and some φ, Pφ(G+|G1) = Pφ(G+|G2) holds for any ground
instances G1,G2 of G.

• φ is distinct from θ.16

For the HMM program, the conditional probability table Pφ(G+|G) under the MAR condition is shown in
Table 2.1, where p1, p2, . . . , p10 (which form φ) need to be assigned so that

∑
G+ Pφ(G+|G) = 1 holds for

each G ∈ G. For example, we may have: p1 = 1/2, p2 = 0, p3 = p4 = · · · = p10 = 1/6.
As we have mentioned, in this situation, the logical variables can be seen as the missing part, and

one may find from Table 2.1 that the probability of G+ ∈ G+ only depends on the observed part, not on
the missing part17 in the case with G+. For example, we have a constant probability p3 for the different
instantiations of X in hmm([a,X]).

If the MAR condition holds, it is shown that the missing-data mechanism is ignorable in making
inferences for the model parameters θ (i.e. learning θ). The programming system blindly ignores the
missing-data mechanism, but under the MAR condition, learning θ based on the goals from G+ (goals
with logical variables) is justified. Otherwise, the missing-data mechanism is said to be non-ignorable,
and we may need to consider an explicit model of the observation process. One difficulty with the MAR
condition is its testability. For example, a recent work by Jaeger tackles with this problem [17].

2.4.6 Summary: modeling assumptions
For all efficient probability computations offered by the system to be realized, we have pointed out several
assumptions on the modeling part. In this section, let us summarize them as follows:

• Independence condition: the sampling results of the different switches are probabilistically inde-
pendent, and the sampling results of a switch with different trials (i.e. at different positions in a
proof tree) are also probabilistically independent.

15 The first sub-condition implies that Pφ(G+ |G) = Pφ(G+)/
∑

G′: G′ is an instance of G+ Pθ(G′) for any ground instance G of
G+ [16].

16 φ is said to be distinct from θ if the joint parameter space of θ and φ is the product of θ’s parameter space and φ’s parameter
space.

17 It should be noted that the original definition of the MAR condition [27] is made on a data matrix which has missing-data
cells. We can make a correspondence between our setting (the many-to-many mapping from G to G+) and such a data matrix, by
an encoding method briefly described in Section 4.1.1 of [13]. The MAR condition roughly defined in this section should rather be
called the coarsened-at-random (CAR) condition, a generalization of the MAR condition. There are several formal definitions on
the MAR/CAR condition, so it would be useful for the interested users to consult the papers in the literature ([16], for example).
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• Finiteness condition: for any observable goal18 G, both the size of any explanation for G and the
number of explanations for G are finite.

• Exclusiveness condition: with any parameter settings, for any observable goal G, the explanations
for G are probabilistically exclusive to each other, and the sub-explanations for each subgoal of G
are also probabilistically exclusive to each other.

• Uniqueness condition: with any parameter settings, all observable goals are exclusive to each other,
and the sum of probabilities of all observable goals is equal to unity. For parameter learning, the
following two conditions form a relaxation of the uniqueness condition:

– Missing-at-random (MAR) condition: in the observation process for the data of interest, there
is a missing-data mechanism in which the probability of the data being generated does not
depend on its missing part.

– No-failure condition: for any observable goal G, the generation process for G (i.e. a sampling
execution of G) never fails.

• Acyclicity condition: for any observable goal G, there is no cyclic dependency with respect to the
calling relationship among the subgoals, which are found in a generation process for G.

It may look difficult to satisfy all the conditions above. But if we keep in mind to write terminating
programs in a generative fashion with care for the exclusiveness among disjunctive paths, these conditions
are likely to be satisfied. It can be seen in Chapter 7 that popular generative models including hidden
Markov models, probabilistic context-free grammars or Bayesian networks are written in this fashion.
If the program violates the no-failure condition, one possible solution is to utilize the system’s facility
described in §2.4.4.

Theoretically speaking, it is sometimes misunderstood and hence is desired to note that the distribu-
tion semantics [30, 35] itself assumes none of the conditions above. We can say PRISM’s semantics is just
a restricted version of the distribution semantics, which is conscious of efficient probability computation.

2.5 Utility part
As compared to the modeling part, the utility part is quite simple — it is just a usual Prolog program with
the system’s built-ins. It is also possible to write queries, each of which takes the form “:- Q.” The
queries are executed after the program is completely loaded.

2.6 Declarations
Declarations are made with several predefined predicates to give additional information to the system
— observable probabilistic predicates (target declarations), outcome spaces of switches (multi-valued
switch declarations), the source of observed data (data file declarations), tabled and non-tabled predicates
(table declarations), and some other program files to be included (inclusion declarations).

2.6.1 Target declarations
A target declaration takes the following form:

target(Pred,Arity).
18 Observable goals are the goals which can all potentially arise in the data. We can of course consider a countably infinite

number of observable goals.
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or

target(Pred/Arity).

A target declaration specifies a target predicate, i.e. a predicate that is observable. Training data used
in learning must be atoms of observable predicate. The target predicate must be probabilistic and each
program must contain at least one target declaration.

2.6.2 Data file declaration
A data file declaration takes the form:

data(Filename).

where Filename is the filename of observed data. As in Prolog, a filename must be an atomic symbol. If
the filename contains a special symbol such as dot (“.”), it should be quoted by “’”. For example,

data(’bloodtype.dat’).

Data file declarations are optional. If no data declaration is given, then observed data must be given as an
argument of learn/1 (See §4.8). The format of the data file is described in §4.8.3.

2.6.3 Multi-valued switch declarations
� Basic form

A multi-valued switch declaration takes the following form:

values(I,Values).

where I denotes a switch identifier and Values is the list of ground terms indicating possible outcomes (or
outcome space) of I. For example,

values(color,[red,yellow,blue]).

declares that switch color has three possible outcomes: red, yellow and blue.
The first argument I in a switch declaration can be an arbitrary Prolog term. All switches that have

matching identifiers will have a declaration list of outcomes. If there are multiple declarations for a
switch, the first matching declaration is used. For instance, consider the declarations:

values(f(a,a),[1,2,3]).
values(f(X,X),[a,b]).
values(f(_,_),[x,y,z]).

Then, switch f(a,a) has the outcomes 1, 2 and 3, switch f(b,b) has the outcomes a and b, and
switch f(a,b) has the outcomes x, y and z.

� On-demand specification of the outcome space

A value declaration can have a body that dynamically generates a list of outcomes (a list of ground terms)
for the corresponding switch. For instance, in the following declaration,

values(s,Vals):-
findall([X,Y],(member(X,[1,2,3]),member(Y,[a,b])),Vals).
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switch s has as outcomes the pairs of terms in which one from {1, 2, 3} and another from {a, b}. From
a view point of efficiency, however, please remember that the body of a value declaration is evaluated
at each time the corresponding msw/2 is called.19 Furthermore, values/2 is just treated as a non-
probabilistic clause which can work in the other part of the program (i.e. both the modeling part and the
utility part). In the example above, we can run ‘?- values(s,X).’ directly.

There is a case where some switches have outcome spaces that dynamically change. Let us consider
a part of a program as follows:

:- dynamic s2_vals/1.

values(s2,Vs):- s2_vals(Vs). % Value declaration

s2_vals([a,b,c]).

change_values(Vs):- retract(s2_vals(_)), assert(s2_vals(Vs)).

In this program fragment, the outcome space of a switch s2 is specified by s2_vals/1, a user-defined
non-probabilistic predicate. Also it is easy to see that the outcome space of s2 are (indirectly) modified
by calling change_values(Vs), where Vs is a list of new outcomes. For such a case, the probabil-
ity distributions (or parameters) of s2 maintained by the programming system can be inconsistent, and
should be problematic in many cases. By default, when some modification in the outcome space of a
switch is detected, the system automatically sets the default distribution to the switch (by set_sw/1;
§4.2.3), before invoking the routines that refer to the distributions of switches (e.g. sampling, proba-
bility computations, get_sw/2 and so on). If you wish to disable such automatic configuration, set
the dynamic_default_sw flag to ‘off’ (§4.14), and if necessary, call suitable set_sw predicates
before calling the routines that refer to the switch distributions.

� Extended form

Since version 1.9, values_x/2-3 are introduced as a syntactic sugar for values/2. With values_x/2,
we can rewrite the value declaration above as:

values_x(s,[1-10]).

We can specify two or more ranges in a list, and it is also possible to specify the skip number N in the
form @N suffixed to the range element. For example,

values_x(foo,[3,8,0-3@2,7-20@5]).

is the same as values(foo,[3,8,0,2,7,12,17]).20 Internally, values_x/2 will be translated
to values/2 with the corresponding expanded values.21 To be specific, the clauses “values_x(Sw,
Values)” and “values_x(Sw,Values):- Body” will be translated respectively to:

values(Sw,Values1):- expand_values(Values,Values1).
values(Sw,Values1):- Body,expand_values(Values,Values1).

19 If you wish to avoid the repetitive evaluation of the body, one way is to specify values/2 as a tabled predicate (see B-
Prolog’s manual for details):

:- table values/2.

However it should be noted that this declaration could lead to a trouble when the evaluation result dynamically changes (e.g. by
some randomness, or a dynamic modification of the program with the assert/retract predicates).

20 Currently, the system does not consider sorting or deletion of duplicate values on the expanded values.
21 This also implies that we cannot execute values_x/2 directly.
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The built-in expand_values/2 will make an expansion of values like above. Thus we can have
parameterized value declarations:

num_class(20).
values_x(class,[1-X]):- num_class(X).

In addition, using values_x/3, we can set/fix parameters of switches with ground names after
loading the program. Please note however that, for the declarations of switches with non-ground names,
the parameters can neither be set nor fixed. Similarly to values_x/2, values_x/3will be also trans-
lated to values/2 with the corresponding expanded values. For the detailed descriptions on setting and
fixing switch parameters, please visit §4.2.3 and §4.2.4, respectively. Now let us consider the examples:

values_x(foo(0),[1,2,3],fix@[0.2,0.7,0.1]).
values_x(bar,[1,2,3],set@[0.2,0.7,0.1]).
values_x(baz(a,b),[1,2,3],[0.2,0.7,0.1]).
values_x(u_sw,[1,2,3],uniform).

In the first case, we declare a switch foo(0) whose values are 1, 2, and 3 and whose parameters
are fixed to 0.2, 0.7, and 0.1 respectively. In the second case, we declare a switch bar, only setting
parameters, not fixing parameters. In the third case in which set@ or fix@ prefixes are omitted, the
parameters will not be fixed (i.e. the default is set@). As in the last case, we can set/fix the parameters
in a distribution form.

Inside the system, to set/fix parameters, set_sw/2 or fix_sw/2 will be invoked after loading
without evaluating the body of values_x/3. So no parameters will be set for the declarations with
values_x/3 whose third argument includes logical variables. Also it should be noted that, for each
of the declarations with values_x/3, set_sw/2 or fix_sw/2 is called only once after loading —
not every time the specified switch is called. So for the switches whose outcome spaces are dynamically
changed, values_x/3 may not work as expected.

Since version 1.11, we can configure the pseudo counts of switches as well as the parameters. For
the switches specified with set_h@ (resp. fix_h@), the programming system will call set_sw_h/2
(resp. fix_sw_h/2) while loading the program. h@ can be used as an abbreviation of set_h@. For
example, we may declare:

values_x(foo(0),[1,2,3],fix_h@[1.0,2.0,0.5]).
values_x(bar,[1,2,3],set_h@[1.0,2.0,0.5]).
values_x(baz(a,b),[1,2,3],h@[1.0,2.0,0.5]).
values_x(u_sw,[1,2,3],h@0.5).

2.6.4 Table declarations
In PRISM, all probabilistic predicates are tabled by default. On the other hand, the user can declare what
predicates are to be tabled. The statement,

:- p_table p/n.

declares that the probabilistic predicate p/n is tabled, where p is the predicate name and n is the arity. In
this case, please note here that all other probabilistic predicates that are not declared will not be tabled.

The user can also declare predicates that need not be tabled by using the statement:

:- p_not_table p/n.

The declaration p_table and p_not_table cannot co-exist in a program. Once a program contains
a p_not_table declaration, all the probabilistic predicates that do not occur in any p_not_table
declaration are assumed to be tabled. p_not_table seems useful in the following cases:
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• It is obviously inefficient (especially in space) to store the solutions for probabilistic but determin-
istic predicates (i.e. the predicates which only call probabilistic predicates deterministically). So
it is recommended to use the p_not_table declarations for such predicates, as long as they are
not referred to as subgoals.22

• When tracing the program (by trace/0, §3.6), it is also recommended to disable tabling for all
probabilistic predicates.

• The solutions for tabled predicates will appear as subgoals in the explanation graphs, and we
can handle such explanation graphs in various ways (by probf/2 or viterbif/3, for exam-
ple). If we wish to make such explanation graphs simple and readable, it might be useful to use
p_not_table for the predicates which are not important to understand the explanation graphs.
Of course there is a trade-off between the readability of such explanation graphs and the efficiency
in computation.

For non-probabilistic predicates, B-Prolog’s table declaration is available (see B-Prolog’s manual for
details):

:- table p/n.

2.6.5 Inclusion declarations
If probabilistic predicates are stored in several files, then all these files must be included by using the
directive :- include(File) in the main file. The filename of a PRISM program should be enclosed
by the single quotation mark like :- include(’foo.psm’).

2.6.6 Mode declarations
Mode declarations supported by B-Prolog can also be used in PRISM. For a detailed description, please
consult the user’s manual of B-Prolog.

22 In hindsight computation (§4.7) or after extracting explanations graphs (§4.5), we often need to refer to some particular
subgoals explicitly. In such cases, we cannot apply p_not_table to the predicates of these subgoals.
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Chapter 3

PRISM Programming System

3.1 Installing PRISM
PRISM is implemented on top of B-Prolog. The release package contains all standard functionalities of
B-Prolog, and therefore it is unnecessary to install B-Prolog separately.

3.1.1 Windows
To install PRISM on Windows, you need to make the following steps:

1. Download the package prism1112_win.zip.

2. Unzip the downloaded package under C:\.

3. Append C:\prism\bin to the environment variable PATH so PRISM can be started at every
working folder.

Note that if PRISM is installed in a folder other than C:\, then you have to change the batch file
prism.bat in the bin folder and the path C:\prism\bin accordingly.

3.1.2 Linux
A single united package prism1112_linux.tar.gz is provided for x86-based Linux systems. The
binaries are expected to work on the systems with glibc 2.3 or higher.1 Typical steps for installation are
as follows:

1. Download the package prism1112_linux.tar.gz into your home directory.

2. Unpack the downloaded package using the tar command.

3. Append $HOME/prism/bin to the environment variable PATH so PRISM can be started at every
working directory.

Note that if PRISM is installed in a directory other than your home directory, please change the path
$HOME/prism/bin accordingly. Internally, the package contains both binaries for 32-bit and 64-bit
systems. The start-up commands (prism, upprism and mpprism) automatically choose a binary
suitable for your environment.

1Note that the utility of parallel EM learning has more requirements on the environments; see §6.2 for details.
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3.1.3 Mac OS X
Since version 1.11, a binary package is also provided for Mac OS X (currently this package is considered
to be experimental). The package prism1112_macx.tar.gz contains a universal binary for Pow-
erPC and Intel processors. To install the package, please follow the steps for Linux (§3.1.2). Please note
that we have not tested the Mac OS X package well, since our test environment for Mac OS X is rather
limited.

3.2 Entering and quitting PRISM
You need to open a command terminal first before entering PRISM. To do so on Windows, select [Start]
→ [Run] and then run cmd, or select

[Start]→ [Programs]→ [Accessories]→ [Command Prompt].

To enter PRISM, type

prism

at the command prompt. Once the system is started, it responds with the prompt ‘| ?-’ (in this manual,
we simply write ‘?-’ instead) and is ready to accept Prolog queries.

To quit the system, use the query:

?- halt.

or simply enter ˆD (Control-D) when the cursor is located at an empty line.

3.3 Loading PRISM programs
The command prism(File) compiles the program in File and loads the binary code into the system.
For example, suppose ‘coin.psm’ stores a PRISM program, then the command

?- prism(coin).

compiles the program into a byte code program ‘coin.psm.out’ and loads ‘coin.psm.out’ into
the system.

A program may be stored in multiple files, but only the main file may be loaded. In the main file,
all the files in the program that contain probabilistic predicates must be included by using the directive
‘:- include(FileName)’ (§2.6.5). In this way, the system’s compiler will access all the probabilistic
predicates when the program is loaded. Standard Prolog program files that do not contain probabilistic
predicates can be compiled and loaded separately by using compile/1 and load/1 commands of
B-Prolog.

The command prism(Options,File) loads the PRISM program stored in File into the system under
the control of the options given in a list Options. If the file has the extension name ‘.psm’, then only the
main file name needs to be given. The following options are allowed:

• compile — Load the program after it is compiled (default).

• consult — Load the program without compilation. This option must be specified if the program
is to be debugged.
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• load— Load the (compiled) binary code program with the suffix .psm.out . This option allows
us to save the compilation time. To load a program containing probabilistic predicates, it is highly
recommended to use this option rather than direct use of load/1 (B-Prolog’s built-in), though it
was described in the manuals of the previous versions.2

• v — Monitor the learning process.

• nv — Do not monitor the learning process (default).

For example, by ?- prism([consult],foo), we can load the program without compilation.
In addition, we can specify the values of execution flags (§4.14) as options, each takes the form

‘Flagname=Value’. For example, if we want to set a value on to the log_viterbi flag, add log_
viterbi=on to Options. The above options v and nv can also be specified by ‘verb=on’ and
‘verb=off’, respectively. The command prism(File) described above is the same as prism([],
File), which means that the program is loaded with the default options and the default flag values.

3.4 Configuring the sizes of memory areas*
B-Prolog, the fundamental system of the PRISM programming system, has four memory areas: program
area, control stack + heap, trail stack and table area. Since version 1.10, these areas are automatically
expanded on demand, so there is no need to specify the sizes of memory areas by manual.

If you already know the memory sizes used by your program, as did in version 1.9 or earlier, you can
specify the sizes of initial memory areas by modifying the corresponding values in the start-up commands
prism (a shell script on Linux) and prism.bat (a batch file on Windows), or by specifying command
line options -s (control stack + heap), -b (trail stack), -t (table area) and -p (program area). For
example,

prism -s 8000000

starts the programming system with 8 megawords (32 megabytes on 32-bit environments, 64 megabytes
on 64-bit environments) allocated to the control stack + heap. B-Prolog’s built-in statistics/0 will
show the allocated sizes of these memory areas.

3.5 Running PRISM programs
The command prism_help/0 displays the usage of the basic built-ins in the programming system
(Figure 3.1). The details of these built-ins are described in Chapter 4.

As mentioned before, the modeling part of a PRISM program can be executed in two different styles,
namely sampling execution (§2.4.1) and explanation search (§2.4.2). The system is in sampling execution
if it is given a probabilistic goal or sample(Goal) (§4.3). In sampling execution, a goal may give
different results depending on the outcomes of the switches. On the other hand, an explanation search
will be invoked in advance of numerical computations in learning (with learn/0 or learn/1; §4.8),
probability calculation (with prob/2 and so on; §4.4), Viterbi computation (with viterbif/3 and so
on; §4.6), and hindsight computation (with hindsight/3 and so on; §4.7). probf/2 or its variation
(§4.5) only makes an explanation search and outputs explanation graphs, the intermediate data structure
used in the numeric computations above.

In addition, there are miscellaneous built-in predicates which handle switch parameters (set_sw/2
and so on; §4.2) or the flags for various settings of the system (set_prism_flags/2 and get_
prism_flags/2; §4.14).

2 Despite that, we can load the compiled binary code of a usual (i.e. non-probabilistic) Prolog program by load/1.
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prism(File) -- Load a program in File.
prism(Opts,File) -- Load a program in File under control of Opts.

msw(I,V) -- Switch I randomly outputs the value V.

learn(Facts) -- Learn the parameters of the switches using Facts.
learn -- Learn the parameters of the switches using

facts stored in the file declared by data(File).
sample(Goal) -- The same as call(Goal) but Goal must be probabilistic.
prob(Goal,P) -- P is the probability of Goal.
probf(Goal,F) -- F is the explanation graph of Goal.
viterbi(Goal,P) -- P is the Viterbi probability of Goal.
viterbif(Goal,P,F) -- F is the Viterbi explanation of Goal, and P is

the probability of F (the Viterbi probability of Goal).
hindsight(G,G1,Ps) -- Ps are the hindsight probs of G’s subgoals matching

with G1.

set_sw(S,Params) -- Set the parameters Params of the switch S.
get_sw(S,Info) -- Info contains the information about the switch S.
set_prism_flag(F,V) -- Set the value V to the execution flag F.
get_prism_flag(F,V) -- Get the current value V of the execution flag F.

Figure 3.1: The output of prism_help/0.

3.6 Debugging PRISM programs
As described above, probabilistic inferences with some given goal G are made on the explanations for G.
So probf/1-2 (§4.5) should be the first choice as a debugging tool at symbolic level since they output
all explanations for G.

Furthermore, programs can be executed in the trace mode. The command

trace

switches the execution mode to the trace mode, and the command

notrace

switches the execution mode back to the usual mode. In the trace mode, the execution steps of programs
loaded with the option consult (§3.3) can be traced. To trace part of the execution of a program, use
spy to set spy points:

spy(Atom/Arity).

The spy points can be removed by:

nospy.

To remove only one spy point, use:

nospy(Atom/Arity).
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In (forward) sampling, the trace of a program looks the same as that of a normal Prolog program
except that for the built-in msw(I,V) the probability of the outcome V is shown. For example, the
following trace steps show that the outcome of the trial of the switch is ‘head’, which has probability
0.5.

Call: (7) msw(coin,_580ebc):_580ff8 ?
Exit: (7) msw(coin,head):0.5 ?

In explanation search (§2.4.2), a trace displays the steps that lead to the findings of explanation paths.
Each explanation path consists of a subgoal to be explained, a list of explaining subgoals and a list of
switch instances. For instance, we may see the following path:

Add: (12) path(direction(left),[],[msw(coin,head)])

From this we can see that a subgoal direction(left) is explained by the outcome ‘head’ of the
switch ‘coin’. Unfortunately, however, it should be difficult to trace the process of explanation search
with tabling. Please turn off tabling for all probabilistic predicates by the p_not_table declarations
(§2.6.4).

In our experience, it is also difficult to identify the subgoal which causes an unexpected failure. One
ad-hoc way should be so-called “printf debugging.” Or we may rewrite the clause

p(X):- q(X,Y).

into

p(X):- ( q(X,Y) ; format("Failed ˜w !!", [q(X,Y)]), fail ).

where q(X,Y) is a suspicious subgoal, and check the call pattern of q/2 that leads to failure. To provide
a debugging facility for unexpected failures in explanation search is future work.

3.7 Batch execution*
Since version 1.9, the package provides additional commands for batch execution. To enable batch
execution, we need the following two steps:

• Add a query we attempt to run as a batch execution to the program.

• Run the command upprism at the shell prompt (Linux) or the command prompt (Windows),
instead of prism.

The query for batch execution is specified in the body of prism_main/0-1. For example, for
a simple learning session, we may add the following definition of prism_main/0 to the program
foo.psm:

prism_main:-
set_seed(5893421),
get_data_from_somewhere(Gs), % user-defined predicate
learn(Gs).

Then we run upprism specifying the program name:

upprism foo
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at the shell prompt (Linux) or the command prompt (Windows). If we want to pass arguments to
upprism, it is needed to define prism_main/1 instead of prism_main/0. For example, let us
introduce two arguments, where the first is a seed for random numbers and the second is the data size.
The corresponding batch clause could be as follows:

prism_main([Arg1,Arg2]):-
parse_atom(Arg1,Seed), % parse_atom/2 is provided by B-Prolog
parse_atom(Arg2,N),
set_seed(Seed),
get_data_from_somewhere(N,Gs), % assume that we’ll get N data
learn(Gs). % as Gs here

The command arguments will be passed to prism_main/1 as a list of atoms. Hence it is important to
note that to pass integers, we need to parse the corresponding atoms in advance, that is, we need to get
an integer 5893421 from an atom ’5893421’. The parsing is done by parse_atom/2, a built-in
provided by B-Prolog. After this setting, we can conduct a batch execution as follows:

upprism foo 5893421 1000

If both prism_main/0 and prism_main/1 co-exist in one program, upprism will try to run only
prism_main/1. For such a program, if we invoke upprism with no command-line arguments,
prism_main([]) will be called, and so an unexpected behavior is likely to be caused.

Furthermore, upprism provides some variations in the file specification:3

• upprism prism:foo
This is the same as “upprism foo”, that is, the system will read a usual program file foo.psm

(which has no definition of the predicate failure/0).

• upprism prismn:foo
The system will read a failure program file foo.psm (which has a definition of failure/0; see
§4.11). This is a replacement for the command upprismn, which was introduced in version 1.9.

• upprism load:foo
The system will read a (compiled) binary code file foo.psm.out . By this, we would save the

compilation time.

In version 1.1, mpprism is newly introduced as a command for batch execution of parallel learning.
Please consult Chapter 6 for the detailed usage.

3.8 Error handling
In the current implementation, when the system encounters an error, the current query is immediately
halted by abort/0 (B-Prolog’s built-in). In such a case, to avoid being affected by the remaining side-
effects, it is recommended to quit the system by halt/0 and then to start the system again. If the error
message you meet includes “internal error”, the problem should not have been caused by the user
program, but the system. In such a case, please make a contact to the development team (see page i).

3 Some users may want to use ‘-g’ option introduced since B-Prolog 6.9. That is, we can run “prism foo.psm.out -g
’go’” to load the binary code ‘foo.psm.out’ and then to execute a query “go”.
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Chapter 4

PRISM Built-in Utilities

4.1 Program information
After a program loaded, we can get the basic information about the program by the following built-ins:

• show_values/0 displays the value declarations.

• show_prob_preds/0 displays the list of probabilistic predicates.

• show_tabled_preds/0 displays the list of tabled predicates.

4.2 Random switches

4.2.1 Making probabilistic choices
The built-in msw(I,V) succeeds if a trial of a random switch I gives an outcome V. To use a switch I,
there must be a multi-valued switch declaration (§2.6.3) for I in the program. As described in §2.2, the
probabilistic behavior of random switches are specified by their parameters. That is, a random switch I
gives an outcome V with probability θI,V , and we consider θI,V as a parameter for the switch I. Also, as
previously mentioned, switches have different behaviors for sampling execution (§2.4.1) and explanation
search (§2.4.2). These parameters can be set by using set_sw/2 (§4.2.3) or by parameter learning
(§4.8).

Furthermore, in Bayesian approaches, we consider that the parameters θ follow the prior distribution
(a Dirichlet distribution) which has hyperparameters αI,V , each corresponding to a parameter θI,V . For
maximum a posteriori (MAP) estimation (§4.8.2) or variational Bayesian (VB) learning (§5.1), we need
to handle these hyperparameters. It should be noted however that, in the programming system, each
hyperparameter αI,V can be accessed only through the corresponding pseudo count δI,V = (αI,V −1). Also
in the current implementation, δI,V should be non-negative. These pseudo counts can be set manually by
the built-ins such as set_sw_h/2, as described below.

4.2.2 Registration of switches
Let us consider a program which contains no query statements (that begin with ‘:-’). Just after the
program loaded, the programming system will not have recognized any random switches at all. This
is because the switch names in the program are not always ground, and the system does not know at
that moment what switches will be used later (please recall that each switch is identified by a ground
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term). Random switches are registered to the programming system’s internal database only after their
parameters or pseudo counts are set explicitly by manual (i.e. with the built-ins in §4.2.3, §4.2.4, and so
on) or by parameter learning (§4.8).

4.2.3 Setting the parameters/hyperparameters of switches
The built-in set_sw(I,Params) sets the parameters of outcomes of a switch I to Params where Params
is a list [p1,p2,...,pK] (recommended) or a term of the form p1+p2+· · ·+pK where the numbers p1,
p2, . . . , pK sum up to unity (i.e.

∑
k pk = 1). Please note that the switch name I must be ground. For

example, to make a biased coin, we may run:

?- set_sw(coin,[0.8,0.2]).

That is, this will set 0.8 to the parameter of the first value of switch coin, and set 0.2 to the parameter
of the second value, where the order of values follows the multi-valued switch declaration (§2.6.3).

Since version 1.9, it is also allowed to set parameters in a distribution form:1

• set_sw(I) is the same as set_sw(I,default).

• set_sw(I,default) sets a distribution specified by the default_sw flag.

• set_sw(I,uniform) sets a uniform distribution.

• set_sw(I,f_geometric) is the same as set_sw(I,f_geometric(2,desc)).

• set_sw(I,f_geometric(Base)) is the same as set_sw(I,f_geometric(Base,desc)).

• set_sw(I,f_geometric(Base,Type)) sets a finite geometric distribution, where Base is its
base (an integer greater than 1) and Type is asc or desc. For finite geometric distributions, see
the description on the default_sw flag in §4.14.

We need to add descriptions for the first two cases. In the versions earlier than 1.9, parameters should be
set explicitly by manual if we do not have learning data. On the other hand, since 1.9, we can specify the
default parameters in a distribution form. For example,

?- set_prism_flag(default_sw,uniform).

makes the default parameters to be uniform (see §4.14 for handling execution flags). Then, if we attempt
a sampling, or a probability computation, the parameters of switches that has not been used yet will be
set to be uniform on the fly.

Since the default value of the default_sw flag is ‘uniform’, we can use switches which follow
a uniform distribution just after invoking the system. The other available values for the flag are ‘none’,
‘f_geometric(Base)’ (Base is the base, an integer greater than 1), and so on. The first one means that
we have no default parameters, as in the previous versions. The second one stands for a finite geometric
distribution.

Also, the following predicates set the parameters to one or more switches that have been registered to
the internal database at that time (see §4.2.2):

• set_sw_all(Patt) sets a default distribution to all switches matching with Patt (i.e. all switches
whose names unify with Patt).

• set_sw_all(Patt,Dist) sets a distribution Dist to all switches matching with Patt.

1 The introduction of finite geometric distributions is inspired by [1].
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• set_sw_all (with no args) is the same as set_sw_all(_).

Similarly to the above, pseudo counts of random switches can be set by set_sw_h/1-2 and
set_sw_all_h/0-2:

• set_sw_h(I) is the same as set_sw_h(I,default).

• set_sw_h(I,[δ1,δ2,...,δK]) sets the pseudo counts δ1, δ2, . . . , δK to switch I, where K is
the number of possible values of switch I, and each δk (1 ≤ k ≤ K) is a non-negative floating point
number.

• set_sw_h(I,δ) is the same as set_sw_h(I,[δ,δ,...,δ]), where δ is a non-negative
floating-point number.

• set_sw_h(I,uniform(δ)) is the same as set_sw_h(I,[δ/K,δ/K,...,δ/K]), where δ
is a non-negative floating-point number, K is the number of possible values of switch I.

• set_sw_h(I,uniform) is the same as set_sw_h(I,uniform(1.0)).2

• set_sw_h(I,default) sets the default pseudo counts specified by the default_sw_h flag.

• set_sw_all_h(Patt,PseudoCs) sets the pseudo counts PseudoCs to all switches matching
with Patt, where PseudoCs is a Prolog term allowed to the second argument of set_sw_h/2.

• set_sw_all_h(Patt) is the same as set_sw_all_h(Patt,default).

• set_sw_all_h (with no args) is the same as set_sw_all_h(_).

4.2.4 Fixing the parameters/hyperparameters of switches
Sometimes we need constant parameters which are not updated during learning. For example, letting g
be a gene of interest, we may want the probability of g being selected from one parent to be constant at
1/2. To handle with such situations, the following built-in predicates are provided:

• fix_sw(I) fixes the parameters of all switches matching with I (i.e. all switches whose names
unify with I). Then the parameters of these switches cannot be updated and will be kept unchanged
during learning. These switches are said to be fixed.

• fix_sw(I,Params) sets the parameters Params to a switch I, as done in set_sw/2, and then
fixes the parameters. Please note that I in fix_sw(I,Params) should be ground, while I in
fix_sw(I) does not need to be ground.

• unfix_sw(I) makes changeable the parameters of all switches matching with I.

• fix_sw_h(I) fixes the pseudo counts (or equivalently, the hyperparameters) of all switches
matching with I. Then the pseudo counts of these switches cannot be updated and will be kept
unchanged during VB learning (§5.2.1).

• fix_sw_h(I,PseudoCs) sets the pseudo counts PseudoCs to a switch I, as done in set_sw_h/2,
and then fixes the pseudo counts. Similarly to fix_sw/2, I should be ground here.

• unfix_sw_h(I) makes changeable the pseudo counts of all switches matching with I.

2 This setting is the same as that in AutoClass, a well-known probabilistic clustering tool [5].
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4.2.5 Displaying the switch information
The programming system provides the built-in predicates for checking the current status of switches (we
hereafter call this the switch information):

• show_sw (with no args) displays information about the parameters of all switches used so far (i.e.
all switches that have been registered into the internal database at that time; see §4.2.2). For
example, in the direction program, we may run:

?- show_sw.
Switch coin: head (0.8) tail (0.2)

• show_sw(I) displays information about the parameters of the switches whose names match with
I. For example:

?- show_sw(coin).
Switch coin: head (0.8) tail (0.2)

• show_sw_h (with no args) displays information about the pseudo counts of all switches.

• show_sw_h(I) displays information about the pseudo counts of the switches whose names match
with I.

• show_sw_b (with no args) displays information about both the parameters and the pseudo counts
of all switches.

• show_sw_b(I) displays information about both the parameters and the pseudo counts of the
switches whose names match with I.

4.2.6 Getting the switch information
The switch information can be obtained as Prolog terms:

• get_sw(I,Info) binds Info to a Prolog term in the form [Status,Vals,Params] that contains
information about switch I:

– Status is either fixed or unfixed. The former (resp. the latter) indicates that the parame-
ters of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

For example, we may run:

?- get_sw(coin,Info)
Info = [unfixed,[head,tail],[0.8,0.2]]

• get_sw(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,Params) where
I is the identifier, Status is either fixed or unfixed, Vals is a list of possible outcomes, and
Params is a list of the parameters. On backtracking, Info is bound to the one about the next switch.

• get_sw(I,Status,Vals,Params) is the same as get_sw(I,[Status,Vals,Params]).
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• get_sw(I,Status,Vals,Params,Cs) additionally returns the expected occurrences Cs of switch
I, which are computed in EM learning (this built-in is of course available after learning; see §4.8).3

• get_sw_h(I,Info) binds Info to a Prolog term in the form [Status,Vals,PseudoCs] that con-
tains information about switch I:

– Status is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the
pseudo counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– PseudoCs is a list of the pseudo counts of switch I.

• get_sw_h(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,PseudoCs)
where I is the identifier, Status is either fixed_h or unfixed_h, Vals is a list of possible out-
comes, and PseudoCs is a list of the pseudo counts. On backtracking, Info is bound to the one
about the next switch.

• get_sw_h(I,Status,Vals,PseudoCs) is the same as get_sw_h(I,[Status,Vals,PseudoCs]).

• get_sw_b(I,Info) binds Info to a Prolog term in the form [[StatusP,StatusH],Vals,Params,
PseudoCs] that contains information about switch I, that is:

– StatusP is either fixed or unfixed. The former (resp. the latter) indicates that the param-
eters of switch I is fixed (resp. unfixed).

– StatusH is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the
pseudo counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

– PseudoCs is a list of the pseudo counts of switch I.

• get_sw_b(Info) binds Info to a Prolog term in the form switch(I,[StatusP,StatusH],Vals,
Params,PseudoCs) where I is the identifier, StatusP is either fixed or unfixed, StatusH is
either fixed_h or unfixed_h, Vals is a list of possible outcomes, Params is a list of the param-
eters, and PseudoCs is a list of the pseudo counts. On backtracking, Info is bound to the one about
the next switch.

• get_sw_b(I,[StatP,StatH],Vals,Ps,PseudoCs) is the same as get_sw_b(I,[[StatP,
StatH],Vals,Ps,PseudoCs]).

• get_sw_b(I,[StatP,StatH],Vals,Ps,Cs,PseudoCs) additionally returns the expected occur-
rences Cs of switch I, which are computed in EM learning.

4.2.7 Saving the switch information
By using the following built-ins, all switch information can be saved into, or restored from, a file:

• save_sw(File) saves all switch information about the parameters into the file File.

• save_sw (with no args) is the same as save_sw(’Saved_SW’).

3 These expected occurrences are used in computing Cheeseman-Stutz score (§4.10), and might be used to judge whether we
need to apply so-called backoff smoothing. If the observed data is complete (§4.8.1), Cs is just a list of numbers of occurrences of
msw(I,·) in the data.
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• restore_sw(File) restores all switch information about the parameters from the file File.

• restore_sw (with no args) is the same as restore_sw(’Saved_SW’).

• save_sw_h(File) saves all switch information about the pseudo counts (or equivalently, the
hyperparameters) into the file File.

• save_sw_h (with no args) is the same as save_sw_h(’Saved_SW_H’).

• restore_sw_h(File) restores all switch information about the pseudo counts (or equivalently,
the hyperparameters) from the file File.

• restore_sw_h (with no args) is the same as restore_sw_h(’Saved_SW_H’).

4.3 Sampling
An execution with sample(Goal) (or a direct execution of Goal) simulates a sampling execution. A
more detail description of sampling execution is found in §2.4.1. For example, for the program in §1.1,
we may have a result of sampling execution such as:

?- sample(direction(D)).
D = left ?

Of course, the result is at random, and follows the distribution specified by the program.
Besides, there are some built-ins to get two or more samples. get_samples(N, G,Gs) returns

a list Gs which contains the results of sampling G for N times. For example:

?- get_samples(10,direction(D),Gs).
Gs = [direction(right),direction(left),direction(right),

direction(left),direction(right),direction(right),
direction(right),direction(right),direction(left),
direction(right)] ?

Inside the system, on each trial of sampling, a copy G′ of the target goal G is created and called by
sample(G′). Please note that if one of N trials ends in failure, this predicate totally fails.

On the other hand, get_samples_c(N,G,C,Gs) tries to make sampling G under the constraint
C for N times, and returns a list Gs which only contains the successful results of sampling. Note here
that this predicate never fails by sampling, and if some trial ends in failure, nothing is added to Gs (thus
the size of Gs can be less than N). Internally, this predicate first creates a copy [G′,C′] of [G,C], and
then executes sample(G′) and call(C′) in this order. In addition, get_samples_c/4 writes the
numbers of successful and failed trials to the current output stream. For example,

?- get_samples_c(10,pcfg(Ws),(length(Ws,L),L<5),Gs).

will return to Gs a list of sampled pcfg(Ws) where the length of Ws is less than 5. Besides, the last two
of the following queries show the same behavior, but the first query may fail due to the failure at some
trial of sampling:

?- get_samples(100,hmm([a|_]),Gs).
?- get_samples_c(100,hmm([a|_]),true,Gs).
?- get_samples_c(100,hmm(Xs),Xs=[a|_],Gs).
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The built-in get_samples_c(N,G,C,Gs,[SN,FN]) behaves similarly to get_samples_
c(N,G,C,Gs), except returning the numbers of successful and failed trials to SN and FN, respectively.

Since version 1.10, the programming system additionally provides a couple of variations on argu-
ments for get_samples_c/4-5. If we specify the first argument in the form [N,M], the predicates
will try to make sampling for N times at maximum to get M samples. If we specify [inf,M], then the
system tries to get M samples with no limit on the number of trials. For example, we can always get 100
samples with the following query:

?- get_samples_c([inf,100],pcfg(Ws),(length(Ws,L),L<5),Gs).

However it should be noticed here that there is a risk of entering an almost infinite loop in the use of
‘inf’ if the goal G (or G under the constraint C) is unlikely to succeed.

As discussed in §2.4.1 and §2.4.2, sometimes we need to write models in two different styles for
sampling and explanation search with different sets of predicates. For example, we may use a predicate
foo_s/1 for sampling, and use foo/1 for explanation search. To get training data for foo/1 by
sampling foo_s/1 in an artificial experiment, we may replace the predicate name of sampled goals by
modifying the second argument as follows:

?- get_samples_c(100,[foo_s(Ws),foo(Ws)],true,Gs).

4.4 Probability calculation
The built-in prob(Goal,Prob) calculates the probability Prob with which Goal becomes true. Under
the independence and exclusiveness conditions (see §2.4.6), the probability of a conjunction (A,B) is
computed as the product of the probabilities of A and B (because they are assumed to be independent),
and the probability of a disjunction (A;B) is computed as the sum of the probabilities of A and B
(because they are assumed to be exclusive). For a switch instance msw(I,V), the probability is 1.0 if
V is a variable, and the probability assigned to the outcome V if V is one of outcomes of switch I. For
example, for the program in §1.1, we have:

?- prob(direction(left),P).
P = 0.5

The built-in prob(Goal) is the same as prob(Goal,Prob) except that the computed probability Prob
is sent to the current output stream. Note here that, when enabling the methods for avoiding underflow
(§4.12), prob/1-2 returns the log of probabilities. log_prob(G) and log_prob(G,P) are the
same as prob(G) and prob(G,P), respectively, except that they always return the log-valued proba-
bility of the goal G.

4.5 Explanation graphs
The built-in probf(Goal,EGraph) returns the explanation graph EGraph for Goal as a Prolog term,
where Goal must be a subgoal of the target predicate. An explanation graph is represented as a list
of nodes, each corresponds to one of the ordered iff-formulas in §2.4.2. Each node takes the form
node(G′,Paths) where G′ is a subgoal of G and Paths is a list of paths that explain G′. With the
terminology in §2.4.2, one of these paths corresponds to a sub-explanation E′ for G′. Each path takes
the form path(Nodes,Switches) where Nodes is a list of subgoals found in E′, and Switches is a list
of switch instances also found in E′. If we have subgoals which include logical variables, all of these
variables will be treated as the distinct ones, for implementational reasons.

For example, in the HMM program with string length being 2, the explanation graph for hmm([a,b])
is obtained as follows:
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?- probf(hmm([a,b]),EGraph).

EGraph =
[node(hmm([a,b]),

[path([hmm(1,2,s0,[a,b])],[msw(init,s0)]),
path([hmm(1,2,s1,[a,b])],[msw(init,s1)])]),

node(hmm(1,2,s0,[a,b]),
[path([hmm(2,2,s,[b])],[msw(out(s0),a),msw(tr(s0),s0)]),
path([hmm(2,2,s1,[b])],[msw(out(s0),a),msw(tr(s0),s1)])]),

node(hmm(1,2,s1,[a,b]),
[path([hmm(2,2,s0,[b])],[msw(out(s1),a),msw(tr(s1),s0)]),
path([hmm(2,2,s1,[b])],[msw(out(s1),a),msw(tr(s1),s1)])]),

node(hmm(2,2,s0,[b]),
[path([hmm(3,2,s0,[])],[msw(out(s0),b),msw(tr(s0),s0)]),
path([hmm(3,2,s1,[])],[msw(out(s0),b),msw(tr(s0),s1)])]),

node(hmm(2,2,s1,[b]),
[path([hmm(3,2,s0,[])],[msw(out(s1),b),msw(tr(s1),s0)]),
path([hmm(3,2,s1,[])],[msw(out(s1),b),msw(tr(s1),s1)])]),

node(hmm(3,2,s0,[]),[]),
node(hmm(3,2,s1,[]),[])] ?

Be warned that the result is manually beautified by the authors for making the data structure clear. Usu-
ally, the results by probf/2 are appropriate to be handled by the program, but too complicated for hu-
mans to understand. For post-processing such Prolog-term representation of an explanation graph, since
version 1.11, we can use strip_switches(EGraph,EGraph′), which drops all switch instances
from EGraph and then returns the resultant graph as EGraph′. Furthermore, the built-in probf(Goal)
finds and displays the explanation graph for Goal in a human-readable form. For the same goal as above,
we have:

?- probf(hmm([a,b])).

hmm([a,b])
<=> hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)
hmm(1,2,s0,[a,b])

<=> hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])
<=> hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)
hmm(2,2,s0,[b])

<=> hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])
<=> hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)
hmm(3,2,s0,[])
hmm(3,2,s1,[])

We may notice that this output corresponds to the ordered iff-formula described in §2.4.2. The last two
formulas say that subgoals hmm(3,2,s0,[]) and hmm(3,2,s1,[]) are always true.

The built-in predicate probef(Goal) is the same as probf(Goal) except that all subgoals and
switches in explanations are encoded. Also probef(Goal,EGraph) is the same as probf(Goal,
EGraph) except that all the subgoals and switches in the graph are encoded. In these predicates, each
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subgoal has a unique number and so does each switch instance (i.e. they are encoded) . The subgoal table
stores the relation between subgoals and their numbers, and the switch table stores the relation between
switch instances and their numbers. The following built-ins are provided to get the tables:

• get_subgoal_hashtable(Table) gets the subgoal hashtable which can be used to decode
encoded subgoals in explanation graphs.

• get_switch_hashtable(Table) gets the switch hashtable which can be used to decode
encoded switches in explanation graphs.

Some pretty-printing routines used internally in probf/1 are also available as built-ins. print_
graph(Graph) prints an explanation graph Graph (as a Prolog term with functors node and path,
as illustrated above) to the current output stream. print_graph(Graph,Options) is the same as
print_graph(Graph) except it replaces connectives with the ones specified in Options. Options can
contain and(C1), or(C2) and lr(C3), which indicates the AND connectives will be replaced with
C1, the OR connectives with C2, and the primary connectives with C3, respectively. For example, we can
have:

?- probf(hmm([a,b]),EGraph),print_graph(EGraph,[lr(’iff’)]).

hmm([a,b])
iff hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)
hmm(1,2,s0,[a,b])

iff hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])
iff hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)
hmm(2,2,s0,[b])

iff hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])
iff hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)
hmm(3,2,s0,[])
hmm(3,2,s1,[])

print_graph(Stream,Graph,Options) is the same as print_graph(Graph,Options) except the
output is set to Stream.

4.6 Viterbi computation

4.6.1 Basic usage
By the Viterbi computation, we mean to get the most probable explanation E∗ for a given goal G, that is,
E∗ = arg maxE∈ψ(G) P(E), where ψ(G) is a set of explanations for G. Also the probability of E∗ can be
obtained. Here we call them respectively the Viterbi explanation and the Viterbi probability of G.

• viterbi(G) displays the Viterbi probability of G.

• viterbi(G,P) returns the Viterbi probability of G to P.

• viterbif(G) displays the Viterbi probability and the Viterbi explanation for G.
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• viterbif(G,P,Expl) returns the Viterbi probability of G to P, and a Prolog-term representa-
tion of the Viterbi explanation E∗ for G to Expl.

• viterbig(G) is the same as viterbi(G) except that G is unified with its instantiation found
in the most probable path when G is non-ground.

• viterbig(G,P) is the same as viterbi(G,P) except that G is unified with its instantiation
found in the most probable path when G is non-ground.

• viterbig(G,P,Expl) is the same as viterbif(G,P,Expl) except that G is unified with its
instantiation found in the most probable path when G is non-ground.

If there is no explanation for G, the call of the predicates above will fail. A Prolog-term representation
of an explanation takes the same form as an explanation graph except that a node has exactly one path.
That is, it takes the form:

[node(G′1,[path(GL1,SL1)]),..., node(G′n,[path(GLn,SLn)])],

where G′i is a subgoal in the explanation path for G, and G′i is directly explained by subgoals GLi and
switches SLi. This Prolog term can be printed in a human-readable form by using print_graph/1-2
(see §4.5).

In a practical situation, we often suffer from the problem of underflow for a very long Viterbi ex-
planation. Setting ‘on’ to the log_viterbi flag enables log-valued Viterbi computation in which all
probabilities are contained as log-valued (see §4.14 for details), and so the problem of underflow will be
cleared.

4.6.2 Top-N Viterbi computation
Furthermore, in version 1.11, built-in predicates for computing top-N Viterbi explanations or top-N
Viterbi probabilities are available. That is, we can obtain N explanations with the highest probabili-
ties, where the number N can be specified in the query. This procedure is sometimes called top-N Viterbi
computation or N-Viterbi computation in short. The following is a list of built-ins for top-N Viterbi
computation where the specifications of the last two predicates were a bit changed since version 1.11.2:

• n_viterbi(N,G) displays the top-N Viterbi probabilities of the goal G.

• n_viterbi(N,G,Ps) returns the top-N Viterbi probabilities of the goal G as a list Ps.

• n_viterbif(N,G) diplays the top-N Viterbi explanations for the goal G.

• n_viterbif(N,G,VPathL) returns Prolog-term representations of the top-N Viterbi explana-
tions for the goal G as a list VPathL. Each element in VPathL takes the form v_expl(K,P,Expl),
where Expl is the K-th ranked explanation and P is its generative probability.

• n_viterbig(N,G,P,Expl) unifies G with its instantiation found in the most probable path
when G is non-ground. This built-in also returns the corresponding Viterbi probability and the
corresponding Viterbi explanation to P and Expl, respectively. On backtracking, this built-in returns
the answers w.r.t. the second most probable path, the third most probable path, and so on, in turn.

• n_viterbig(N,G) is the same as n_viterbig(N,G,_,_) when G is non-ground, and is
the same as n_viterbi(N,G) when G is ground, except that the Viterbi probability will be
displayed.
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• n_viterbig(N,G,P) is the same as n_viterbig(N,G,P,_) when the goal G is non-
ground, or returns top-N Viterbi probabilities of G to P one by one on backtracking when G is
ground.

Since the implemenatation of these N-Viterbi routines is different from (and is more complicated than)
that of the basic Viterbi routines such as viterbif/1 (§4.6.1), the efficiency (both time and space) of
the N-Viterbi routines seems inferior to that of the basic ones. So it is recommended to use the basic
ones if you only need to the most probable explanation (i.e. N = 1). Besides, for the same reason,
the results from n_viterbif(1,G) and viterbif(G) can be different if there are more than one
Viterbi explanation of G with the same generative probability.

4.6.3 Post-processing
In version 1.11, two post-processing built-ins for Viterbi computation are newly introduced:

• viterbi_subgoals(Expl,Goals) extracts the subgoals G′1,. . . ,G′n in the explanation Expl,
and returns them as a list Goals.

• viterbi_switches(Expl,Sws) extracts the switch instances in the explanation Expl, and re-
turns them as a list Sws (i.e. returns the concatenation of SL1,. . . ,SLn).

4.7 Hindsight computation*

4.7.1 Basic usage
A hindsight probability is Pθ(G′), the probability of a subgoal G′ for a given top-goal G.4 Inside the
system, the hindsight probability of a subgoal G′ is computed as a product of the inside probability
and the outside probability of G′. For illustration, let us consider the HMM program (§1.3) with string
length being 4. In an HMM given some sequence, we may want to compute the probability distribution on
states for every time step. The programming system computes such a probability distribution as hindsight
probabilities. That is, we get the distribution at time step 2 as follows:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_)).
hindsight probabilities:

hmm(2,4,s0,[b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564

We read from above that, given a string [a,b,a,b], the probability of the hidden state being s0 at time
step 2 is about 0.0139, whereas the probability of the hidden state being s1 is about 0.0545. Generally
speaking, hindsight(G,GPatt) writes the hindsight probabilities of G’s subgoals that match with
GPatt to the current output. In a similar way, hindsight(G,GPatt,Ps) returns the list of pairs of
subgoal and its hindsight probability to Ps:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_),Ps).

Ps = [[hmm(2,4,s0,[b,a,b]),0.013880247702822],
[hmm(2,4,s1,[b,a,b]),0.054497179729564]] ?

4 The name of ‘hindsight’ comes from an inference task with temporal models such as dynamic Bayesian networks [28].
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When omitting the matching pattern GPatt, hindsight(G) writes the hindsight probabilities for all
subgoals of G to the current output.

?- hindsight(hmm([a,b,a,b])).
hindsight probabilities:

hmm(1,4,s0,[a,b,a,b]): 0.058058181772934
hmm(1,4,s1,[a,b,a,b]): 0.010319245659452
hmm(2,4,s0,[b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564
hmm(3,4,s0,[a,b]): 0.062748214275926
hmm(3,4,s1,[a,b]): 0.005629213156460
hmm(4,4,s0,[b]): 0.015964697775827
hmm(4,4,s1,[b]): 0.052412729656559
hmm(5,4,s0,[]): 0.047234593867704
hmm(5,4,s1,[]): 0.021142833564682

It should be noted that, if you want the list of all pairs of subgoal and its hindsight probability, we need to
run hindsight(G,_,Ps) (not hindsight(G,Ps), in which Ps will be interpreted as the matching
pattern).

4.7.2 Summing up hindsight probabilities
Furthermore, sometimes it is required to compute the sum of hindsight probabilities of several particular
subgoals. Although this procedure may be implemented by the user with hindsight/1-3 and addi-
tional Prolog routines, for ease of programming, the system provides a built-in utility of such summation
(marginalization).

To illustrate this utility, let us consider another example that describes an extended hidden Markov
model, in which there are two state variables, only one depends on another:

target(hmm/1).

values(init,[s0,s1,s2]).
values(out(_),[a,b]).
values(tr(_),[s0,s1,s2]).
values(tr(_,_),[s0,s1,s2]).

hmm(L):-
str_length(N),
msw(init,S1),
msw(init,S2),
hmm(1,N,S1,S2,L).

hmm(T,N,S1,S2,[]) :-T>N,!.
hmm(T,N,S1,S2,[Ob|Y]) :-

msw(out(S2),Ob),
msw(tr(S1),Next1), % Transition in S1 depends on S1 itself
msw(tr(S1,S2),Next2), % Transition in S2 depends both on S1 and S2
T1 is T+1,
hmm(T1,N,Next1,Next2,Y).

str_length(4).
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Each state variable takes on three values (s0, s1 and s2), and the state of the HMM itself is determined
as a combination of the values of the two variables (hence we can say that the number of possible states
is (3 × 3 =) 9). Under some parameter configuration (e.g. after learning), we can compute the hindsight
probabilities for all subgoals.

?- hindsight(hmm([a,b,a,b])).
hindsight probabilities:

hmm(1,4,s0,s0,[a,b,a,b]): 0.129277300817752
hmm(1,4,s0,s1,[a,b,a,b]): 0.000547187686019
hmm(1,4,s0,s2,[a,b,a,b]): 0.001995647575806

:
hmm(5,4,s2,s0,[]): 0.038066015885796
hmm(5,4,s2,s1,[]): 0.030640117459401
hmm(5,4,s2,s2,[]): 0.013513864959245

Now let us suppose that we want to marginalize out the second state variable (i.e. the fourth argument).
It is achieved by running hindsight_agg/2 as follows:

?- hindsight_agg(hmm([a,b,a,b]),hmm(integer,_,query,_,_)).
hindsight probabilities:

hmm(1,*,s0,*,*): 0.131820136079577
hmm(1,*,s1,*,*): 0.012972174566148
hmm(1,*,s2,*,*): 0.050479679093070
hmm(2,*,s0,*,*): 0.031258649883958
hmm(2,*,s1,*,*): 0.116570845419607
hmm(2,*,s2,*,*): 0.047442494435231

:
hmm(5,*,s0,*,*): 0.041483563280137
hmm(5,*,s1,*,*): 0.071568428154217
hmm(5,*,s2,*,*): 0.082219998304441

In the above, hmm(integer,_,query,_,_) is a control statement that means “group subgoals ac-
cording to the first (integer) argument, and then, within each group, sum up the hindsight probabilities
among the subgoals that has the same pattern in the argument specified by query (i.e. the third argu-
ment). In general, query is a reserved constant symbol that specifies an argument of interest, and the
arguments specified by unbound variables are ineffective in grouping and then bundled up in summation.

For the control of grouping, 6 reserved constant symbols are defined: integer, atom, compound,
length, d_length, depth. The first 3 symbols just mean grouping by exact matching5 for the
integer argument, the argument with an atoms, and the argument with a compound term, respectively.
On the other hand, length will make groups according to the length of a list in the corresponding
argument. Similarly, d_length considers the length of a difference list (which is assumed to take the
form D0-D1), and depth considers the term depth. The last 3 symbols would be useful if we have no
appropriate argument for exact matching. For example, we can make grouping by the list length in the
fifth argument, instead of the first argument (L-n means that the length is n):

?- hindsight_agg(hmm([a,b,a,b]),hmm(_,_,query,_,length)).
hindsight probabilities:

hmm(*,*,s0,*,L-0): 0.041483563280137
hmm(*,*,s1,*,L-0): 0.071568428154217
hmm(*,*,s2,*,L-0): 0.082219998304441

5 The matching is done by ==/2, where the variables in the distinct subgoals are considered as different and thus do not match
with each other.
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:
hmm(*,*,s0,*,L-4): 0.131820136079577
hmm(*,*,s1,*,L-4): 0.012972174566148
hmm(*,*,s2,*,L-4): 0.050479679093070

The arguments in the control statement, which are neither variable nor reserved constant symbols,
will be used for filtering, that is, they are considered as matching patterns, just as in hindsight/1-3.
For example, to get the distribution at time step 3, we run:

?- hindsight_agg(hmm([a,b,a,b]),hmm(2,_,query,_,_)).
hindsight probabilities:

hmm(2,*,s0,*,*): 0.031258649883958
hmm(2,*,s1,*,*): 0.116570845419607
hmm(2,*,s2,*,*): 0.047442494435231

Besides, hindsight_agg(G,GPatt,Ps) will return to Ps a Prolog term representing the above com-
puted results, where ‘*’ can be handled just as a Prolog’s constant symbol.

By default, each group in the computed result is sorted in the Prolog’s standard order with respect to
the subgoals. When setting ‘by_prob’ to the sort_hindsight flag (§4.14), the group will be sorted
by the magnitude of the hindsight probabilities.

Furthermore, chindsight/1-3 and chindsight_agg/2-3 compute the conditional hind-
sight probabilities Pθ(G′|G) = Pθ(G′)/Pθ(G) instead of Pθ(G′), where G is a given top-goal and G′

is its subgoal.6 The usages for them are respectively the same as those for the hindsight or the
hindsight_agg predicates with the same arity. Conditional hindsight probabilities can be seen as a
restricted version of conditional probabilities. For instance, in the example program which represents
a Bayesian network (§7.3), we compute conditional probabilities on the network by using conditional
hindsight probabilities.

4.7.3 Computing goal probabilities all at once
One interesting use of the hindsight predicates is to compute the probabilities of several goals
all at once. For example, in the HMM program, let us compute the conditional distrubution on the
strings that have a prefix ‘ab’. To do this, we compute the hindsight probabilities of subgoals of
hmm([a,b,_,_]), which take the form hmm(_):

?- chindsight(hmm([a,b,_,_]),hmm(_)).
conditional hindsight probabilities:

hmm([a,b,a,a]): 0.150882383997529
hmm([a,b,a,b]): 0.375321053537642
hmm([a,b,b,a]): 0.162375115518536
hmm([a,b,b,b]): 0.311421446946293

On the other hand, in the blood type program, we may compute the distribution on blood types:

?- hindsight(bloodtype(_),bloodtype(_)).
hindsight probabilities:

6 Generally speaking, we need to say that what is computed by the chindsight predicates is not a probability but Eθ[G′ |G],
the expected occurrences of G′ given G, which can exceed unity. This is because, in a general case, some subgoal G′ can appear
more than once in G’s proof tree. On the other hand, in typical programs of HMMs, PCFGs (with neither ε-rule nor chain of unit
productions) or Bayesian networks, each of subgoals should appear just once, hence Eθ[G′ |G] can be considered as a conditional
probability, say Pθ(G′ |G). The discussion in this footnote also holds for the hindsight predicates.
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bloodtype(a): 0.403912166491685
bloodtype(ab): 0.095321638418523
bloodtype(b): 0.204152312431112
bloodtype(o): 0.296613882658681

Furthermore, by giving ‘by_prob’ to the sort_hindsight flag (§4.14), we can list goals in de-
scending order of their probabilities:

?- set_prism_flag(sort_hindsight,by_prob).
:

?- hindsight(bloodtype(_),bloodtype(_)).
hindsight probabilities:

bloodtype(a): 0.403912166491685
bloodtype(o): 0.296613882658681
bloodtype(b): 0.204152312431112
bloodtype(ab): 0.095321638418523

Of course it is important to note that, since we use a top goal which contains logical variables, the
computational cost (especially the size of memory consumption) can be very large for some programs.

4.8 Parameter learning

4.8.1 Maximum likelihood estimation and EM learning
The programming system supports parameter learning called maximum likelihood estimation (ML es-
timation). That is, we can learn the parameters θ of switches buried in a program from data. More
concretely, in ML estimation, the system tries to find the parameters θ that maximize the likelihood∏

t Pθ(Gt), the product of probabilities of given observed goals (i.e. training data).7

If we know that there is just one way to yield each observation Gt, ML estimation of the parameters
θ is quite easy. In such a case, Gt has only one explanation Et (a conjunction of switch instances which
used to generate Gt; see §2.4.2 for illustrated details of explanations), and hence it is only required
to count up Ci,v, the number of occurrences of msw(i,v) among all Et, and then to get the estimate
θ̂i,v = Ci,v/

∑
v′ Ci,v′ of the parameters of the switch.

The situation above is frequently seen in supervised learning where we say each observation Gt is a
complete data. In partially observing situation such as unsupervised or semi-supervised learning, on the
other hand, we can consider two or more ways to yield Gt (i.e. Gt has two or more explanations). To deal
with such partially observed goals (incomplete data) as observations, the programming system provides
the utility of EM learning .

In the system, EM learning is conducted in two phases: the first phase searches for all explanations
for observed data Gt (i.e. make an explanation search for Gt; see §2.4.2), and the second phase finds an
ML estimate of θ by using the EM algorithm. The EM algorithm is an iterative algorithm:

Initialization step:
Initialize the parameters as θ(0), and then iterate the next two steps until the likelihood converges.

Expectation step:
For each msw(i,v), compute Ĉi,v, the expected occurrences of msw(i,v) under the parameters
θ(m).

7 It should be noted here that each goal Gt is assumed to be observed independently.
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Maximization step:
Using the expected occurrences, update each parameter by θ̂(m+1)

i,v = Ĉi,v/
∑

v′ Ĉi,v′ and then incre-
ment m by one.

When the likelihood converges, the system stores the estimated parameters to its internal database, and
then we can make further probabilistic inferences based on these parameters. The threshold ε is used for
judging convergence, that is, if the difference between the likelihood under the updated parameters and
one under the original parameters is less than ε (i.e. sufficiently small), we can think that the likelihood
converges. The value of ε can be configured by the epsilon flag (see §4.14; the default is 10−4).

4.8.2 Maximum a posteriori estimation
As mentioned in §1.5, the programming system also supports maximum a posteriori estimation (MAP
estimation) for parameter learning, which tries to find parameters θ that maximize, P(θ | G1, . . . ,GT ) ∝
P(θ)
∏

t Pθ(Gt), the a posteriori probability of the parameters given training data from a Bayesian point of
view.8 In MAP estimation, the system assumes the prior distribution P(θ) follows a Dirichlet distribution
P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v , where Z is a normalizing constant and each αi,v is a hyperparameter of the Dirichlet

distribution, which corresponds to msw(i,v). Then in estimating parameters, it introduces δi,v = (αi,v −
1), as a pseudo count for each msw(i,v).9

This term comes from the fact that, in the complete-data case, each parameter is estimated by θ̂i,v =

(Ci,v+δi,v)/(
∑

v′(Ci,v′ +δi,v′ )). Similarly, in the incomplete-data case, each parameter is updated by the EM
algorithm with θ̂i,v = (Ĉi,v + δ)/(

∑
v′ (Ĉi,v′ + δi,v′ )), until the a posteriori probability converges. Practically

speaking, even for small training data (compared to the number of parameters to be estimated), this
pseudo count guarantees all estimated parameters to be positive, and hence we can escape from the
problem of so-called data sparseness or zero frequency. If all pseudo count are zero, the MAP estimation
is just an ML estimation, and it is sometimes called Laplace smoothing when all pseudo counts are set
to be unity. We can configure these pseudo counts individually via the built-ins for handling switches
(§4.2).

4.8.3 Running learning commands
The built-in learn(Goals) takes Goals, a list of observed goals, and estimates the parameters of the
switches to maximize the likelihood of the goals. For example, in the direction program (§1.1), we make
the program learn with three observed goals:

?- learn([direction(left),direction(right),direction(left)]).

Then we may receive messages like:

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iterations: 0(2) (Converged: -1.909542505)
Statistics on learning:

Graph size: 2
Number of switches: 1

8 In this view, the parameterized probability distribution Pθ(G) which we used so far should be considered as P(G|θ), a condi-
tional probability given the parameters.

9 We use the term ‘pseudo counts’ in the sense of ones used in the MAP estimator, and for various compatibilities, it is
designed that the users are expected to configure the hyperparameters αi,v through the corresponding pseudo counts δi,v (even in
VB learning). In the Bayesian estimator, on the other hand, hyperparameters αi,v themselves can be considered as pseudo counts.
Another confusing issue is that δi,v is not allowed to be negative in version 1.11. Of course this restriction is reasonable for MAP
estimation, but theoretically it should be noted that the prior distribution P(θ) itself is defined for αi,v ≥ 0 (equivalently, δi,v ≥ −1).
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Number of switch instances: 2
Number of iterations: 2
Final log likelihood: -1.909542505
Total learning time: 0.004 seconds
Explanation search time: 0.004 seconds
Total table space used: 1088 bytes

Type show_sw or show_sw_b to show the probability distributions.

The line beginning with #goals shows the number of distinct goals whose explanation searches have
been done. The line beginning with #iterations show the number of EM iterations. Since each
of direction(left) and direction(right) has just one explanation msw(coin,head) and
msw(coin,tail) respectively (i.e. they are complete data), EM learning finishes with only two iter-
ations. After learning, the statistics on learning are displayed. These statistics can also be obtained as
Prolog terms (see §4.9). We may confirm the estimated parameters by show_sw/0 (§4.2.5):

?- show_sw.
Switch coin: unfixed: head (0.666666666666667) tail (0.333333333333333)

This result indicates that the estimated parameters are θ̂coin,head = 2/3 and θ̂coin,tail = 1/3. It is easily
seen that this is because, for the whole training data, we have the explanation msw(coin,head) for
two goals, and msw(coin,tail) for one goal.

The built-in learn/0 can be used only when the program gives the data file declaration (§2.6.2)
which specifies the file containing observed goals. The built-in learn (with no arguments) is the same
as learn(Goals) except that the observed goals are read from the file specified by the data file dec-
laration (§2.6.2). For example, assume the file ‘direction.dat’ contains the following two unit
clauses:

direction(left).
direction(right).

and the program contains the declaration:

data(’direction.dat’).

Then running the command learn/0 is equivalent to:

?- learn([direction(left),direction(right)]).

Furthermore, we can specify the data by goal-count pairs by using count/2. That is, the data

count(direction(left),3).
count(direction(right),2).

are equally treated as below:

direction(left).
direction(left).
direction(left).
direction(right).
direction(right).

Such goal-count pairs can also be given to learn/1:

?- learn([count(direction(left),3),count(direction(right),2)]).

49



In the programming system, the default learning method is ML estimation (§4.8.1). On the other
hand, as mentioned above, we can enable MAP estimation (§4.8.2) by setting the pseudo count δI,V ,
which is greater than zero, for each switch instance msw(I,V). For example, let us set all pseudo counts
as 0.5. There are two typical cases:

• No random switches have been registered into the internal database yet (§4.2.2). In such a case, we
set the default pseudo counts as follows:

?- set_prism_flag(default_sw_h,0.5).

With this setting, the pseudo counts of the switches found (and registered) in the next learning will
be all set to 0.5.

• The switches whose parameters are the target of learning have already been registered. In such a
case, we use set_sw_all_h/2 to change the pseudo counts of these switches as follows:

?- set_sw_all_h(Patt,0.5).

In the query above, Patt is the matching pattern of the target switches. See §4.2.3 for the detailed
usage of set_sw_all_h/2 and other built-ins for setting the pseudo counts of switches.

Note that the settings above can co-exist. Finally, the learning command is invoked in the same way as
that of ML estimation:

?- learn([direction(left),direction(right),direction(left)]).

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iterations: 0(2) (Converged: -2.646252953)
Statistics on learning:

Graph size: 2
Number of switches: 1
Number of switch instances: 2
Number of iterations: 2
Final log of a posteriori prob: -2.646252953
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 1088 bytes

Type show_sw or show_sw_b to show the probability distributions.

It may be confusing that ‘log of a posteriori prob’ in the messages above is indeed the log of
unnormalized a posteriori probability of the observed goals (i.e. the sum of the log-likelihood and the log-
valued prior probability10), which is the substantial target of maximization. Finally we find the estimated
parameters are θ̂coin,head = (2+0.5)/(3+2∗0.5) = 0.625 and θ̂coin,tail = (1+0.5)/(3+2∗0.5) = 0.375.

?- show_sw.
Switch coin: unfixed_p: head (p: 0.625000000) tail (p: 0.375000000)

10 To be precise, suppose we have some predefined probabilistic model and let D be the data at hand. Then, from a Bayesian
point of view, a posteriori probability of parameter θ given D is computed by P(θ | D) = P(θ)P(D | θ)/P(D), where P(θ) is a prior
probability of θ, and P(D | θ) is the likelihood of D under θ. As stated in §4.8.2, P(θ) is assumed to follow a Dirichlet distribution,
and the ‘unnormalized’ a posteriori probability is just P(θ | D) ignoring the constant factors with respect to θ (i.e. the constant
factors in the Dirichlet distribution and P(D)). Of course, such an unnormalized version can be used only for relative comparison
such as a judgment of the EM algorithm’s convergence, or selecting the ‘best’ parameters in multiple runs of the EM algorithm
(§4.8.4).
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Figure 4.1: Image of the deterministic annealing EM algorithm.

Let us recall that the above example is a program with complete data. When EM learning is conducted
with incomplete data, the procedure is the same as above, but the larger number of iterations may be
required for complex models or large data. If some parameters are fixed (§4.2.4), they will not be updated
in the process of learning. Please note however that it is not allowed to fix any parameters at zero in MAP
estimation.

4.8.4 Avoiding undesirable local maxima
It is only guaranteed by the EM algorithm that each iteration monotonically increases the likelihood
(or a posteriori probability), and hence we often face the problem of being trapped in undesirable local
maxima. In the current version, the system provides two solutions. The first one is quite simple. That
is, we try multiple runs of the EM algorithm by restarting with different initial parameters. The final
estimates are the ones with the highest likelihood (or a posteriori probability) among all trials. The
number of such trials can be specified by the restart flag (see §4.14). For example, if you wish to
restart for 10 times, just type:

?- set_prism_flag(restart,10).

Another solution is to use the deterministic annealing EM (DAEM) algorithm [41]. It is easy to
see that, in the usual EM algorithm, the final estimate of the parameters depends on the choice of initial
parameters. On the other hand, the DAEM algorithm is designed to reduce an undesirable influence from
the initial parameters in the early stage of EM iterations. In the rest of this section, we briefly describe
the DAEM algorithm.

Let us consider first that we have the observed data (a multiset of observed goals) D = {G1,G2, . . . ,GT },
and ψ(Gt) is the set of explanations for the t-th observed goal. Then, from analogy to statistical mechan-
ics, the free energy is introduced as:

Fβ = −
1
β

T∑
t=1

log
∑

E∈ψ(Gt)

Pθ(E)β, (4.1)
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where β is the inverse temperature which controls the influence from the initial parameters. The DAEM
algorithm is derived so that it tries to minimize the free energy Fβ at each temperature 1/β. Fig. 4.1
shows an expected behavior of the DAEM algorithm, where Lβ is introduced as −Fβ (then we will try
to maximize Lβ). In the DAEM algorithm, we start from the small β, under which Lβ is expected to
have a smooth shape, and hopefully has only one local maximum (i.e. the global maximum). So under
the smaller β, we may be able to find the global maximum or good local maxima. When β increases,
on the other hand, the shape of Lβ changes (becomes sharper), and hence we should continue to update
the parameters by EM iterations. Please note that the starting point of these EM iterations is expected
to be more promising than the initial parameters. Finally we perform EM iterations at β = 1, which is
equivalent to the usual EM iterations.

For an effective use of the DAEM algorithm, the annealing schedule is important. In PRISM, follow-
ing [41], we start from β0 = βinit and then update β by the update rule βt+1 ← βt ·βrate, where βinit and βrate
are given by the user (the default values are 0.1 and 1.5, respectively). In our experience, the appropriate
annealing schedule seems to vary depending on the model and the observed data.

The DAEM algorithm will be enabled when the daem flag is set as ‘on’, and controlled by the
itemp_init and the itemp_rate flags which correspond to βinit (the initial value) and βrate (the
increasing rate), respectively. For example, the followings will enable the DAEM algorithm with βinit =

0.3 and βrate = 1.2.

?- set_prism_flag(daem,on).
?- set_prism_flag(itemp_init,0.3).
?- set_prism_flag(itemp_rate,1.2).

While the DAEM algorithm running, the programming system displays the inverse temperature at
the moment it is updated. Namely, ‘<βt>’ (t = 0, 1, . . .) will be displayed in the line beginning with
‘#em-iterations’. For example, in the HMM program, we will see the messages as follows:

?- prism(hmm).
:

?- set_prism_flag(daem,on).
:

?- set_prism_flag(itemp_init,0.3).
:

?- set_prism_flag(itemp_rate,1.2).
:

?- hmm_learn(100).

#goals: 0.........(96)
Exporting switch information to the EM routine ...
#em-iterations: <0.300>0<0.360><0.432><0.518><0.622>.<0.746><0.896>
<1.000>(14) (Converged: -692.178867976)
Statistics on learning:

Graph size: 5832
Number of switches: 5
Number of switch instances: 10
Number of iterations: 14
Final log likelihood: -692.178867976
Total learning time: 0.024 seconds
Explanation search time: 0.004 seconds
Total table space used: 769232 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
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Table 4.1: Available statistics on the explanation graphs, on learning, and on the probabilistic inference
other than learning

graph_statistics(Name,Stat)
Name Stat

num_subgraphs Number of subgraphs in the explanation graphs
num_nodes Total number of nodes in the explanation graphs

(the sum of num_goal_nodes and num_switch_nodes)
num_goal_nodes Number of subgoal nodes
num_switch_nodes Number of switch nodes
avg_shared Average number of nodes which shares a particular node (note: this average value

can be misleading if there is a node which is shared by extremely many nodes)
learn_statistics(Name,Stat)

Name Stat
log_likelihood Log likelihood (only available in ML/MAP)
log_post Log of unnormalized a posteriori probability (in MAP)
log_prior Log of a priori probability (in MAP)
lambda Same as log_likelihood (in ML) or log_post (in MAP)
num_switches Number of occurred switches in the last learning
num_switch_values Number of occurred switch values in the last learning
num_parameters Number of free parameters in the last learning
num_iterations Number of EM iterations in the last learning
goals List of goals used in the last learning
goal_counts List of goal-count pairs used in the last learning
bic Bayesian Information Criterion (in ML/MAP, see §4.10)
cs Cheeseman-Stutz score (in MAP, see §4.10)
free_energy Variational free energy (in VB, see §5.1)
learn_time Total time consumed by the built-in (in seconds, including miscellaneous jobs)
learn_search_time Time consumed by the explanation search (in seconds)
em_time Time consumed by the EM algorithm (in seconds)

infer_statistics(Name,Stat)
Name Stat

infer_time Total time consumed by the built-in (in seconds, including miscellaneous jobs)
infer_search_time Time consumed by the explanation search (in seconds)
infer_calc_time Time consumed by the numerical calculation (in seconds)

4.9 Getting statistics on probabilistic inferences
In version 1.11, the routines for accessing the statistics on probabilistic inferences in PRISM were en-
tirely reorganized.11 The built-ins graph_statistics/0, learn_statistics/0 and infer_
statistics/0 display the statistics on the explanation graphs, on learning, and on the probabilistic
inferences other than learning. prism_statistics/0 displays all statistics displayed by the above
three built-ins.

To get an individual statistic, we can respectively use graph_statistics(Name,Stat), learn_
statistics(Name,Stat), infer_statistics(Name,Stat) and prism_statistics(Name,
Stat), where Name is the name of a statistic and Stat is the value of the statistic. For example, to get the
time consumed by learning, we may run:

?- prism_statistics(learn_time,T).

11 The built-ins such as get_log_likelihood/1 have been removed.
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When calling prism_statistics(Name,Stat) with Name being unbound, we can get all avail-
able statistics one after another by backtracking (this behavior also applies to graph_statistics/2,
learn_statistics/2 and infer_statistics/2). The available statistics are shown in Ta-
ble 4.1.12 Combining these statistics with the facilities for saving/restoring switch information (§4.2.7),
it is possible to a customized routine for multiple runs of the EM algorithm (§4.8.4).

In addition, the observed goals (with their counts and frequencies) used in the last learning is dis-
played by show_goals, and can be obtained as Prolog terms by get_goals/1 and get_goal_
counts/1:

?- show_goals.
Goal direction(right) (count=1, freq=33.333%)
Goal direction(left) (count=2, freq=66.667%)
Total_count=3

?- get_goals(Gs).
Gs = [direction(left),direction(right)] ?

?- get_goal_counts(GCs).
GCs = [[direction(left),2,66.666666666666657],

[direction(right),1,33.333333333333329]] ?

4.10 Model scoring*
In practical applications, we often face a problem of model selection — that is, we need to select the
model that fits best the data at hand, from possible candidates. In PRISM, the programming system
just provides three Bayesian scores called Bayesian Information Criterion (BIC) [39], the Cheeseman-
Stutz (CS) score [5] and variational (negative) free energy. The first two are used after ML (§4.8.1) or
MAP (§4.8.2) estimation, whereas the last one is used after variational Bayesian learning (Chapter 5).
Generally speaking, these Bayesian scores are known to be ‘deterministic’ approximations of log P(D |
M), log of the marginal likelihood of the observed data D under the model M, and so in model selection
with some Bayesian score (BIC, for example), we compare the model candidates according to the score
(i.e. the model with the larger score is considered to be better).

To be more concrete, let us consider first that the joint distribution p(D,M, θ) of the observed data D, a
probabilistic model M, and its parameters θ. In PRISM, D is a multiset of observed goals G1,G2, . . . ,GT ,
and M corresponds to the modeling part of a PRISM program. p(D,M, θ) is then factored as p(D |
M, θ)p(θ | M)p(M) by the chain rule, where p(M) is the prior distribution of the model M, p(θ | M) is
the a posteriori distribution of the parameters θ of the model M, and p(D | M, θ) is the likelihood of the
data D based on the model M with the parameters θ. Then, in model selection, our goal is to find the
most probable model M∗ based on the data D at hand, that is, we attempt to find M∗ such that:

M∗ = argmaxM p(M | D) = argmaxM
p(D | M)p(M)

p(D)
= argmaxM p(D | M),

where we assume p(M) to be uniform for simplicity. Now the goal is reduced to finding M (= M∗) that
maximizes p(D | M). p(D | M) is commonly called the marginal likelihood of D given M, and is used as
a Bayesian score for model selection. The marginal likelihood can be interpreted as the expectation (or

12 The number of occurred switch instances is just the sum of the numbers of possible outcomes of switches occurred in all
explanations for all observed goals. This means that the switch instances not occurring in any of these explanations are also taken
into account there. The number of free parameters is just computed as the number of occurred switch instances subtracted by the
number of occurred switches.
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the average) of the likelihood p(D | M, θ) with respect to the prior distribution p(θ | M):

p(D | M) =
∫
Θ

p(D, θ | M)dθ =
∫
Θ

p(D | M, θ)p(θ | M)dθ = 〈p(D | M, θ)〉p(θ|M) .

If the observed data were complete data Dc, where each d ∈ Dc is a pair (Gt, Et) of the t-th goal Gt and
its unique explanation Et, then p(Dc | M) is obtained in closed form (see [9] for the case with a Bayesian
network). On the other hand, when the data is incomplete, as in the case of probabilistic clustering, the
integral in the above equation is difficult to compute. As mentioned above, BIC and the CS score are the
approximations of log of the marginal likelihood, which are defined as:

ScoreBIC(M) def
= p(D | M, θ̂MAP) − |θ|

2
log N

ScoreCS(M) def
= p(D̃c | M) − p(D̃c | M, θ̂MAP) + p(D | M, θ̂MAP),

where N is the total size of dataset, |θ| denotes the number of free parameters, θ̂MAP is the MAP estimate
of the parameters, and D̃c is pseudo complete data whose sufficient statistics are the expected occurrences
of random switches obtained by the EM algorithm. See [6] for more detailed descriptions about BIC and
the CS score. The definition of the variational free energy will be shown in Chapter 5. In the program-
ming system, learn_statistics(bic,Score) or learn_statistics(cs,Score) (§4.9) will
provide us BIC and the CS score after ML or MAP learning (§4.8.3) with some observed goals D.

4.11 Handling failures*
The programming system provides a facility of dealing with failure in generative models. The background
and general descriptions are given in §1.4 and §2.4.4, and so in this section, we will concentrate on the
usage of this facility.

For example, let us consider again the program which takes into account the agreement in the results
of coin-tossings, and suppose that the program is contained in the file named ‘agree.psm’:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

See §2.4.4 for a detailed reading of this program. Like the program above, for the model that may cause
failures, we need to define the predicate failure/0 which describes all generation processes leading
to failure. In a probabilistic context, the sum of probabilities of successful generation processes and the
probability that failure/0 holds (called failure probability) should always sum to unity. Of course it
is possible to define failure/0 in a usual manner of PRISM programming, but the definition should
be much simpler if we can appropriately use the negation not/1 as above.

When some negation not/1 occurs in a program, the system first attempts to eliminate it from the
program by applying a certain type of program transformation, called First Order Compiler (FOC) [29],
to produce an ordinary PRISM program. If this transformation is successful, PRISM then loads the
transformed program into memory. prismn(File) carries out this two-staged process automatically
(please note that ‘n’ is added to the last). File must include a definition of the failure/0 predicate
described above.
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By default, the transformed program is stored into the file ‘temp’ in the current working directory.
If you prefer another file, say TempFile, prismn(File,TempFile) should be used instead. For example,
for the agreement program above,

?- prismn(agree).

loads ‘agree.psm’ into memory. The user can check the result of the transformation by FOC, looking
at ‘temp’. To estimate the parameters of switches for this program, include a special symbol failure
as data:

?-learn([failure,agree(heads),agree(heads),agree(tails)]).

For a batch execution (§3.7) of the program that deals with failures, we need to run a command ‘upprism
prismn:foo’ instead of ‘upprism foo’.

foc/2 is the built-in predicate internally invoked by prismn/1-2. That is, foc(File,TempFile)
eliminates negation (or more generally universally quantified implications) and generates executable code
into TempFile. For example, we can find the program ‘max’ in the ‘foc’ directory obtained by extracting
the package. With the following query, we transform ‘max’ into ‘temp’, and load the translated program:

?- foc(max,temp),[temp].

Allowing negation in the clause body is equivalent to allowing arbitrary first-order formulas as goals
which are obviously impossible to solve in general. So foc/2may fail depending on the source program.
Users are advised to look into the examples of foc/2 usage in the ‘foc’ directory.

It is unfortunate that the deterministic annealing EM (DAEM) algorithm (§4.8.4) does not work with
the failure-adjusted maximization (FAM) algorithm. This is because, under β < 1 (β is the inverse
temperature used in the DAEM algorithm), the failure probability can exceed unity, whereas the FAM
algorithm is derived from the property of a negative binomial distribution under the condition that the
failure probability is less than unity [12].

4.12 Avoiding underflow*

4.12.1 Background
For large data, such as very long sequential data, we often suffer from the problem that the probability of
some explanation goes into underflow. For Viterbi computation (§2.3 or §4.6), since no summations of
probabilities arise in the computation, we have an easy solution — keeping probabilities as log-valued.

For the probabilistic inferences other than Viterbi computation, on the other hand, the programming
system supports two methods — constant scaling and log-valued probability computation.13 In the for-
mer, each time we multiply a parameter of msw/2 to the probability of some explanation, we also mul-
tiply a constant number (greater than one) to avoid underflow. Hereafter this number is called a scaling
factor . It is assumed that the users can give some appropriate constant number as the scaling factor.

4.12.2 Using methods for avoiding underflow
For Viterbi computation, setting ‘on’ to the log_viterbi flag enables the log-valued Viterbi compu-
tation. See §4.14 for handling execution flags. The returned probability is log-valued.

For the other probabilistic inferences, the methods described in the previous section (§4.12.1) are
specified by the scaling flag. This flag takes on none, const and log_exp. The value none

13 To make the system’s internal architecture simple, the method called layered-scaling was removed in version 1.11.
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(default) means that we do not care about underflow. const means doing the constant scaling. By
specifying log_exp, we perform the log-valued probability computations. For example, the following
query enables the constant scaling:

:- set_prism_flag(scaling,const).

Keep in mind that, for either the constant scaling or the log-valued probability computation, the probabil-
ities returned by built-ins that computes probabilities (§4.4 and §4.7) will be log-valued. For the constant
scaling, we need to tell the scaling factor to the system, by specifying the scaling_factor flag. For
example, the following specifies it to be 2.0 as follows (the default is 8.0):

:- set_prism_flag(scaling_factor,2.0).

4.12.3 Efficiency
It is desired to understand that the methods for avoiding underflow bring loss of computation time. For
the probabilistic inferences other than Viterbi computation, the constant scaling (specified by ‘const’)
runs faster than the log-valued probability computation (specified by ‘log_exp’) since we only need to
multiply a constant number for each occurrence of switch instances. On the other hand, the log-valued
probability computation requires additional computation time to call the logarithmic and the exponential
functions.

4.13 Keeping the solution table*
Since version 1.10, when the clean_table flag is set as ‘off’ (see §4.14), the programming system
will come not to clean up the solution table. On the other hand, if this flag is set as ‘on’, which is the
default, the programming system will automatically clean up all past results of explanation search (say,
solutions) in the solution table14 when invoking a routine that performs explanation search (i.e. learning
(§4.8) and other probabilistic inferences (§4.4, §4.6, §4.7)). Keeping and reusing the past solutions can be
significantly useful when we only attempt to repeatedly compute the probabilities of some specific goal
repeatedly with different parameter settings. Of course, the efficiency is gained at the price of memory
space, so we need to care about the size of memory (i.e. the table area).

4.14 Execution flags

4.14.1 Handling execution flags
Since version 1.9, the programming system provides dozens of execution flags to change its behavior.
The below is the usage of these execution flags:

• Setting flags:

Flags are set by the command set_prism_flag(FlagName,Value). When writing the query
“:- set_prism_flag(FlagName,Value).” in a program, the flag will be set when the pro-
gram is loaded. Also, flags can be specified by the command prism/2 (§3.3), that is, by running:

?- prism([FlagName=Value],Filename).
14 Internally, the system calls both initialize_table/0 (B-Prolog’s built-in) and the routine that erases the ID tables of

PRISM’s own. So it is not guaranteed for the system to work when you call only initialize_table/0 at an arbitrary timing.
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• Printing flags:

show_flags/0 will print the current values of flags.

• Getting flag values:

By get_prism_flag(FlagName,X), you can get the value of FlagName as X. If we call this
with FlagName being unbound, all available flags and their values are retrieved one after another
by backtracking.

• Running built-ins based on flags:

For example, to enable the log-valued version of Viterbi routine (§4.12), we need to run set_
prism_flag(log_viterbi,on) beforehand. Also we may run as a query set_prism_
flag(epsilon,E) in advance to conduct EM learning with the threshold of convergence being
E (§4.8.1).

4.14.2 Available execution flags
Here we list the available execution flags in the alphabetical order. Please note that this list also includes
ones for the functions described in later chapters.

• clean_table (possible values: on and off; default: on) — the flag for automatic cleaning
of the solution table (see §4.13 for details). If this flag is set as ‘on’, the programming system
will automatically clean up all past solutions in the solution table when invoking any routine that
executes the explanation search. On the other hand, with this flag turned ‘off’, we can keep the
past solutions.

• daem (possible values: on and off; default: off) — the flag for enabling the deterministic
annealing EM (DAEM) algorithm (see §4.8.4). If this flag is set as ‘on’, the programming system
will invoke the DAEM algorithm while EM learning. On the other hand, with this flag turned
‘off’, it will be disabled.

• default_sw (possible values: none, uniform, f_geometric, f_geometric(Base),
f_geometric(Base,Type); default: uniform) — the default distribution for parameters. If
none is set, we have no default distribution for parameters, and hence as in the versions ear-
lier than 1.9, we cannot make sampling or probability computation without an explicit param-
eter setting (via set_sw/2, and so on) or learning. uniform means that the default distri-
bution for each switch is a uniform distribution. f_geometric(Base,Type) means the de-
fault distribution for each switch is a finite geometric distribution where Base is its base (an
integer greater than 1) and Type is asc (ascending order) or desc (descending order). For
example, when the flag is set as f_geometric(2,asc), the parameters of some 3-valued
switch are set to 0.142· · · (= 20/(20 + 21 + 22)), 0.285· · · (= 21/(20 + 21 + 22)), and 0.574· · ·
(= 22/(20 +21 +22)), according to the order of values specified in the corresponding value declara-
tion. f_geometric(Base) is the same as f_geometric(Base,desc), and f_geometric
is the same as f_geometric(2,desc).

• default_sw_h (possible values: none, uniform, uniform(δ), δ (δ is a non-negative float);
default: 0.0) — the default value for pseudo counts. If none is set, we have no default dis-
tribution for pseudo counts, and hence we cannot perform probabilistic inferences unless giving
the pseudo counts, by set_sw_h/2 or variational Bayesian learning (§5.2.1). uniform (resp.
uniform(δ)) means that each pseudo count will be set as 1/K (resp. δ/K) by default, where
K is the number of possible values of the corresponding switch. If a non-negative floating-point
number δ is set to this flag, the system use δ as the default value of pseudo counts. Since version
1.11, the execution flag named smooth is deprecated and so please use this flag instead.
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• dynamic_default_sw (possible values: on and off; default: on) — the flag on the mode
on automatic setting of the default distributions to the switches whose outcome spaces are dynam-
ically changed (see §2.6.3 for a typical case). If this flag is set as ‘on’, the programming system
automatically sets the default distribution to such switches before invoking the routines that refers
to the switch distributions (e.g. sampling, probability computations, get_sw/2, and so on). The
default distribution is given by the default_sw flag.

• dynamic_default_sw_h (possible values: on and off; default: on) — the flag on the mode
on automatic setting of the default pseudo counts to the switches whose outcome spaces are dy-
namically changed (see §2.6.3 for a typical case). If this flag is set as ‘on’, the programming
system automatically sets the default pseudo counts to such switches before invoking the routines
that refers to the pseudo counts (e.g. VB learning). The default pseudo counts are given by the
default_sw_h flag.

• em_progress (possible value: non-negative integer; default: 10) — the frequency of printing
the progress message (i.e. the dot symbol) in the EM algorithm (§4.8.1). If this flag is set as 0, the
message is suppressed.

• epsilon (possible value: non-negative float; default: 1.0e-4) — the threshold ε for conver-
gence in the EM algorithm (see §4.8.1).

• error_on_cycle (possible values: on and off; default: on) — the flag for checking cycles
in the calling relationship. By default or when this flag is set as ‘on’, the programming system
checks the existence of a cycle in the calling relationship, and if any cycle exists, the system will
stop immediately. When this flag is set as ‘off’, the system does not check such acyclicity and
we may be able to obtain an explanation graph that violates the acyclicity condition. Of course this
flag is very experimental and seems not to be used in usual cases.

• fix_init_order (possible values: on and off; default: on) — the flag for fixing the order
of parameter initialization among switches. For an implementational reason, in the EM algorithm
(§4.8.1), the order of parameter initialization among switches can vary according to the platform,
and hence we may have different learning results among the various platforms. Turning this flag
‘on’ fixes the initialization order in some manner, and will yield the same learning result.

• init (possible values: none, random and noisy_u; default: random) — the initialization
method in the EM algorithm (§4.8.1). none means no initialization, random means that the
parameters are initialized considerably at random, and noisy_u means that the parameters are
initialized to be uniform with (small) Gaussian noises. The variance of Gaussian noises can be
changed by the std_ratio flag.

• itemp_init (possible value: float b such that 0 < b ≤ 1; default: 0.1) — the initial value βinit
of the inverse temperature β used in the deterministic annealing EM (DAEM) algorithm (§4.8.4).

• itemp_rate (possible value: float b such that b > 1; default: 1.5) — the increasing rate βrate of
the inverse temperature β used in the DAEM algorithm (§4.8.4).

• learn_mode (possible values: params, hparams and both; default: params) — the under-
lying statistical framework for parameter learning. If this flag is set as ‘params’, the system will
conduct the EM algorithm for ML/MAP estimation (§4.8), by which we can get the point-estimated
parameters of random switches. If this flag is set as ‘hparams’, the system will conduct the EM al-
gorithm for VB learning (§5.2.1), by which we can get the adjusted pseudo counts (or equivalently,
the hyperparameters) of switches. With ‘both’, we can get both the point-estimated parameters
and the adjusted hyperparameters.
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• log_viterbi (possible values: on and off; default: off) — the flag for enabling/disabling
the log-valued version of Viterbi computation (§4.12). For large data, we often suffer from the
problem that the probability of some explanation goes into underflow. Specifically to the Viterbi
computation however, we can avoid this problem by changing the multiplication of probabilities
to summation of log-valued probabilities. Please note that the value of this flag does not make
any influence on the scaling methods (§4.12). If you wish to use some scaling method, use the
scaling flag.

• max_iterate (possible value: positive integer, default and inf; default: default) — the
maximum number of EM iterations to be performed. In the EM algorithm (§4.8.1), sometimes we
need a large number of iterations until convergence. For such a case, we can stop the EM algorithm
before convergence by this flag. ‘default’ means that the maximum number of iterations is the
system’s default value (10000, in version 1.11). With ‘inf’, the system do not put any limit on the
number of iterations.

• params_after_vbem (possible values: none, mean and max; default: mean) — the method
for obtaining the new point-estimated parameters after VB learning (§5.2.1). ‘none’ means that
the programming system does not newly produce the parameters. If ‘mean’ is set, the system will
compute the mean values of the parameters θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ as the new parameters. With ‘max’,

the system will further conduct the ML/MAP-EM algorithm to obtain the new parameters.

• reduce_copy (possible values: on and off; default: off) — the flag for automatic copying of
the Prolog terms returned by several built-ins (probf/2, viterbif/3, and so on; See §4.18).
If this flag is set as ‘off’, the programming system will automatically make a copy of the Prolog
term returned by these built-ins. On the other hand, with this flag turned ‘on’, such a copying will
be skipped.

• rerank (possible value: positive integer; default: 5) — the number of intermediate candidates in
reranking for the Viterbi computation based on the hyperparameters (§5.2.2).

• reset_hparams (possible values: on and off; default: off) — the flag on resetting of the
pseudo counts (hyperparameters) in the repeated runs of VB learning (§5.2.1). In the default set-
tings, it can be observed that the pseudo counts monotonically increases as we repeatedly run VB
learning. If this flag is set as ‘on’, on the other hand, the programming system will reset the
pseudo counts with the default values (that is, it calls set_sw_all_h/0; §4.2.3) in advance of
VB learning.

• restart (possible value: positive integer; default: 1) — the number of restarts (§4.8.4). Gener-
ally speaking, the EM algorithm (§4.8.1) only finds a local ML/MAP estimate, so we often restart
the EM algorithm for several times with different initial parameters, and get the best parameters
(i.e. with the highest log-likelihood or log of a posteriori probability) among these restarts.

• scaling (possible values: none, const and log_exp; default: none) — the scaling meth-
ods. none means no scaling, const means doing the constant scaling, and log_exp means
performing log-valued computation of probabilities. log_exp is the most general and applicable
to any programs, but is preferred to be used with MAP estimation (§4.8.2) in parameter learning
(this is because all relevant parameters should be non-zero to use log_exp). See §4.12 for a
general description on these scaling methods. If any value other than none is specified, the com-
puted probabilities are obtained as log-valued. Also note that the value of this flag does not make
any influence on the use of the log-valued version of Viterbi computation (§4.6). If you wish to
enable/disable the log-valued Viterbi computation, use the log_viterbi flag.
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• scaling_factor (possible value: float (> 1); default: 8.0) — the scaling factor for constant
scaling.

• search_progress (possible value: non-negative integer; default: 10) — the frequency of
printing the progress message (i.e. the dot symbol) in explanation search and in constructing ex-
planation graphs. If this flag is set as 0, the message is suppressed.

• smooth (possible value: non-negative float; default: 0) — this has become an alias of ‘default_
sw_h’ since version 1.11. This flag is only for backward compatibility and it is recommended to
use ‘default_sw_h’ instead, combining with set_sw_all_h/0-2 (see the descriptions for
the case of MAP estimation in §4.8.3).

• sort_hindsight (possible values: by_goal and by_prob; default: by_goal) — the flag
for the mode on sorting the results of hindsight computation (§4.7). With by_goal, the result will
be sorted in the Prolog’s standard order with respect to the subgoals. With by_prob, the result
will be ordered by the magnitude of the hindsight probability.

• std_ratio (possible value: non-negative float; default: 0.2) — control parameter for the vari-
ance of Gaussian noises used in initialization of switch parameters in the EM algorithm (§4.8.1;
see also the description on the init flag). When we initialize parameters with a k-valued switch
according to a uniform distribution with Gaussian noises from N(1/k, (std_ratio∗(1/k))2). The
parameters will be normalized at the end of initialization.

• verb (possible values: none, graph, em and full; default: none) — the flag for extra mes-
sages in EM learning (§4.8.1). ‘none’ means that no extra message will be displayed. If this flag
is set as ‘graph’, the explanation graphs will be displayed after the explanation search. By ‘em’,
we can get the more detailed information about the EM algorithm. If ‘full’ is set, we will see
both the explanation graphs and the information about EM.

• viterbi_mode (possible values: params and hparams; default: params) — the underlying
statistical framework for Viterbi computation. If this flag is set as ‘params’, the system will
conduct the Viterbi computation based on the current parameter values (§4.6). If ‘hparams’ is
set, on the other hand, the system will conduct the Viterbi computation for VB learning based on
the adjusted hyperparameters (§5.2.2), which utilizes reranking.

• warn (possible values: on and off; default: off) — the flag for enabling/disabling warning
messages.

4.15 Random number generator
The following built-ins are provided to set information or retrieve information of the random number
generator. As a random number generator, the programming system uses Mersenne Twister (http://
www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html). For sampling utilities based
on a finite set of discrete values, see §4.16.

• random_float(Max,R): Generates a random floating-point number R from the range 0 ≤ R ≤
Max (Max > 0).

• random_int(Max,I): Generates a random integer I from the range 0...Max (Max > 0).

• set_seed(Seed): Seed is set to be the new seed used in the random number generator.

• set_seed_time: The current time is set to be the seed used in the random number generator.
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• set_seed_time(T): The current time is set to both T and the seed used in the random number
generator.

4.16 Sampling on temporary distributions
By sampling, random switches (msw/2) can generate random outputs, but sometimes it is tedious to as-
sign their parameters in advance of sampling. dice/2-3 are sampling utilities that work independently
of the model, based on the probabilities temporarily assigned. These built-ins are implemented on the
random number generator described in §4.15.

dice(Values,Probs,V) chooses V randomly from Values according to the distribution Probs, and
dice(Values,V) chooses V randomly from Values according to the uniform distribution. For example,
we may sample the phenotypes of blood type according to the distribution PA = 0.4, PB = 0.2, PO = 0.3,
PAB = 0.1:

?- dice([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = a ?

?- dice([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = o ?

?- dice([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = b ?

These runs would be useful for generating synthetic samples without specifying a distribution of genes.
Moreover, we can specify some extended form of a set of integer values. Namely, each element of the

list Values can take the form ‘Nmin-Nmax@Nskip’ or ‘Nmin-Nmax’, where Nmin (resp. Nmax) is the minimum
(resp. the maximum) value of some range, and Nskip is the skip number. For example, the following
choose a value from [1,3,5,10,15,20].

?- dice([1-5@2,10-20@5],X).

At the implementation level, the conversion from such an extended form to the basic one is done by
expand_values/2, which is also used internally for values_x/2-3, the extended multi-valued
switch declarations (see §2.6.3).

4.17 File IO
Basically, all B-Prolog’s built-ins for file IO are also available for PRISM. In addition, the programming
system provides utilities for loading/saving Prolog clauses:

• load_clauses(File,Clauses) reads all clauses as a list Clauses from a file File,

• load_clauses(File,Clauses,M,N) reads N clauses in File as Clauses, starting at the M-th
line, where the lines are numbered from zero. This built-in is deprecated, and it is recommended
to use load_clauses/3 instead.

• load_clauses(File,Clauses,Options) reads clauses in File as Clauses, with the options Op-
tions, which is a list of the following Prolog terms:

– from(K) — read from the K-th clause (K is a zero-based index). If this option is omitted,
K will be set as zero.
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– size(N) — read N clauses. If this option is omitted or N is ‘max’, the built-in will read
clauses until reaching at the end of file.

• save_clauses(File,Clauses) writes each element in Clauses as a clause into File.

• save_clauses(File,Clauses,M,N) writes N clauses in Clauses into File, starting at the M-
th element, where the elements are numbered from zero. This built-in is deprecated, and it is
recommended to use save_clauses/3 instead.

• save_clauses(File,Clauses,Options) writes clauses Clauses into File, with the options Op-
tions, which is a list of the following Prolog terms:

– from(K) — write from the K-th element in Clauses (K is a zero-based index). If this option
is omitted, K will be set as zero.

– size(N) — write N elements. If this option is omitted or N is ‘max’, the built-in will write
elements until reaching at the end of Clauses.

Besides, we can load the data in the CSV format by the following built-ins:

• load_csv(File,Rows) reads the contents of a CSV file File as Rows.

• load_csv(File,Rows,Options) reads the contents of a CSV file File as Rows, with the options
Options, which is a list of the following Prolog terms:

� Options on the range of rows to be read:
– row_from(K) or row_skip(K) — read from the K-th row (K is a zero-based in-

dex). If this option is omitted, K will be set as zero.
– row_size(N) — read N rows. If this option is omitted or N is ‘max’, the built-in will

read rows until reaching at the end of file.
– column_from(K) or column_skip(K) — read from the K-th column (K is a

zero-based index). If this option is omitted, K will be set as zero.
– column_size(N) — read N columns. If this option is omitted or N is ‘max’, the

built-in will read columns until reaching at the end of line.
� Options on the format of a row:

– pred([]) — read each row in the form [Col1,Col2,...], where Col1, Col2, . . . are
the values separated by commas.

– pred(p/1) or pred(p) — read each row in the form p([Col1,Col2,...]), where
p is an arbitrary predicate name.

– pred(p/n) — read each row in the form p(Col1,Col2,...), where p is an arbitrary
predicate name.

� Other options:
– comment(C) — regard as comments the rows beginning with the character C.
– comment — regard as comments the rows beginning with the character ’#’ (this is the

same as comment(’#’)).
– double_quote(X) — enable (with X = yes) or disable (with X = no) to process

the double-quoted columns following RFC 4180 (by default, X = yes).
– parse_number(X) — enable (with X = yes) or disable (with X = no) to parse

numeric strings in the input file (by default, X = yes). For example, by default or if we
specify parse_number(yes), a value “123456” in the input file will be converted
into 123456, which can be evaluated as a number. Otherwise, we obtain ’123456’,
which is just an atom.
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For example, let us consider a CSV file named foo.csv which includes three rows:

bill,14
jeff,15
peter,18

Then we can read these three rows by using load_csv/2-3 as follows:

?- load_csv(’foo.csv’,Rs).
Rs = [csvrow([bill,14]),csvrow([jeff,15]),csvrow([peter,18])] ?

?- load_csv(’foo.csv’,Rs,[pred(age/n)]).
Rs = [age(bill,14),age(jeff,15),age(peter,18)] ?

4.18 Accessing Prolog terms returned from the built-ins*
(This section is targeted at the users who are already familiar with PRISM.)

There are several built-in predicates that return Prolog terms consisting of subgoals or switch in-
stances: probf/2, viterbif/3, viterbig/1-2, hindsight/3, hindsight_agg/3,
chindsight/3, and chindsight_agg/3. Now let us consider a situation where we are setting
the clean_table flag to ‘on’ (i.e. the system cleans up the solution table at each call of the built-ins),
and where a predicate p, one from the built-ins above, is called repeatedly in a query. Then, after a call
of p has finished, the references to the Prolog terms returned by the previous calls of p would be lost,
and thus it is possible that a memory fault is arisen if we try to follow these references. It would cause no
problem if we can finish the task before the next call of p, but to make things safer, the predicates above
are implemented to return copies by default. One drawback of this implementation, on the other hand, is
that the term copying requires memory in the heap area, and could lead to running out of memory when
we deal with quite large Prolog terms.

To adapt to various situations, we introduce another flag named ‘reduce_copy’, as a temporary
treatment. If the reduce_copy flag is ‘on’ (resp. ‘off’), the term copying described above will be
disabled (resp. enabled). Three typical cases can be considered in the possible flag settings:

• clean_table = on and reduce_copy = off:
This is the default. The memory is consumed by copying but the solution table is always cleaned
up.

• clean_table = on and reduce_copy = on:
This case is least memory consuming but has a risk of the memory fault as described above. For-
tunately, it would be safe if we are able to finish accessing the terms before the next call of p.

• clean_table = off with any value for reduce_copy:
In this case, the solution table will not be cleaned up, so it should be always safe except a risk of
memory exhaustion.

In typical programs, there seems to be no need to care about the issue described in this section since the
default setting is safe, and sufficiently efficient in most cases. Also as mentioned above, the mechanism
introduced here is considered as a temporary treatment, and could be changed in the future version.
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Chapter 5

Variational Bayesian learning*

5.1 Background

5.1.1 VB-EM learning
As mentioned in §1.5, variational Bayesian (VB) learning has high robustness against data sparseness in
model selection and prediction (Viterbi computation). For model selection, an introductory description
in Bayesian approaches is given in §4.10. To choose the best model (the best PRISM program) M∗ that
fits best the data D at hand, we consider M = M∗ is the model that maximizes the marginal likelihood
p(D | M). It has been also known that if D is complete data Dc, p(D | M) can be obtained in closed form.
However, when D is incomplete, i.e. there is some hidden data z such that Dc = (D, z) (in PRISM, z cor-
responds to the explanations for the observed goals), some approximation is required. In the followings,
we briefly describe the approximation via the VB approach.

First, let us consider log of the marginal likelihood L(D) def
= log p(D | M), and then we have:

L(D) = log
∑

z

∫
Θ

p(D, z, θ | M)dθ

= log
∑

z

∫
Θ

q(z, θ | D,M)
p(D, z, θ | M)
q(z, θ | D,M)

dθ

≥
∑

z

∫
Θ

q(z, θ | D,M) log
p(D, z, θ | M)
q(z, θ | D,M)

dθ.
(
from Jensen’s inequality

)
For the space limitation, we fix the model M for the moment, and simply write p(· | M) = p(·) and
q(· | D,M) = q(· | D), and then obtain:

L(D) ≥ F[q] def
=
∑

z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ

where F[q] can be seen as a lower limit of L(D), and is called the variational free energy. So to get a
good approximation of L(D), we attempt to find a distribution function q = q∗ that maximizes a functional
F[q]. In model selection, we use the variational free energy F[q] as a model score. Besides, to get another
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view, we have the following by considering L(D) =
∑

z
∫
Θ

q(z, θ | D) log p(D)dθ:

L(D) − F[q] =
∑

z

∫
Θ

q(z, θ | D) log
{

p(D) · q(z, θ | D)
p(D, z, θ)

}
dθ

=
∑

z

∫
Θ

q(z, θ | D) log
q(z, θ | D)
p(z, θ | D)

dθ = KL(q(z, θ | D) || p(z, θ | D)).

From the above, maximizing F[q] implies minimizing the Kullback-Liebler divergence between q(z, θ |
D) and p(z, θ | D). So finding q∗ is to make a good approximation of p(z, θ | D), the conditional
distribution of hidden variables and parameters.

In VB learning, we further assume q(z, θ | D) ≈ q(z | D)q(θ | D), and obtain a generic form of
variational Bayesian EM (VB-EM) algorithm as an iterative procedure consisting of the following two
updating rules:

q(z | D) ∝ exp
(∫
Θ

q(θ | D) log p(D, z | θ)dθ
)
,

q(θ | D) ∝ p(θ) exp
(∑

z q(z | D) log p(D, z | θ)) .
Please recall that, in PRISM, D is a multiset of the observed goals G1,G2, . . . ,GT , and that z corresponds
to (hidden) explanations for the goals. The VB-EM algorithm for PRISM is then derived from the above
generic procedure as follows:

Initialization step:
Initialize the hyperparameters of random switches as α(0)

i,v = αi,v + ξi,v where αi,v are the hyper-
parameters configured by the user and ξi,v are small random noises, and then iterate the next two
steps until the variational free energy converges.

Expectation step:
For each msw(i,v), compute C̃i,v, the sufficient statistics corresponding to the expected occur-

rences of msw(i,v) under the hyperparameters α(m)
i,v .

Maximization step:
Using the expected occurrences, update each hyperparameter by α(m+1)

i,v = α(0) + C̃i,v and then
increment m by one.

After VB-EM learning, we finally obtain the adjusted hyperparameters α∗i,v of random switches instead of
the parameters, and the converged variational free energy which is considered as an approximation of log
of the marginal likelihood. αi,v need to be configured in advance by the user through the corresponding
pseudo counts δi,v = (αi,v − 1) via the built-ins for handling switches (§4.2). By default, the system
considers that P(θ) is uninformative, that is, αi,v = 1 (or equivalently δi,v = 0). Besides, as long as the
user program satisfies the modeling conditions listed in §2.4.6, it is still possible to compute C̃i,v in the
expectation step in a dynamic programming fashion. So at least in algorithmic level, we can perform VB
learning as fast as in the case of ML/MAP estimation.1

1 In this sense, the derived VB-EM algorithm can be seen as a generalization of dynamic programming based VB-EM algorithm
for hidden Markov models [23], probabilistic context-free grammars [21], and directed graphical models (Bayesian networks) [3].
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5.1.2 Viterbi computation
Now let P∗(θ) be the a posteriori distribution given the observed data, which includes the adjusted hyper-
parameters α∗i,v. Then we can perform the Viterbi computation based on the a posteriori distribution:

E∗ = argmax
E∈ψ(G)

P(E | G) = argmax
E∈ψ(G)

P(E,G)
P(G)

= argmax
E∈ψ(G)

P(E)

= argmax
E∈ψ(G)

∫
Θ

P∗(θ)P(E | θ)dθ.

The inference based on
∫
Θ

P∗(θ)P(E | θ)dθ seems more robust than that based on P(E | θ̂), since the
former relies on the averaged quantity with respect to the a posteriori distribution, not on any particular
point-estimated parameters.

However, there still remains a computational problem. Although
∫
Θ

P∗(θ)P(E | θ)dθ can be computed
efficiently in closed form for each E ∈ ψ(G), the number of explanations for an observed goal G (i.e.
|ψ(G)|) can exponentially grow. In addition, the integral over θ prevents us from introducing a simple
dynamic programming based computation.

As a remedy for this difficulty, we take a reranking approach [8], which is popular for the predic-
tive tasks (part-of-speech tagging, parsing, and so on) in statistical natural language processing. To be
specific, for a given goal G, we follow the two-staged procedure below:

1. Run top-K Viterbi computation in a dynamic programming fashion based on the point-estimated
parameters. These parameters obtained by ML/MAP estimation or the mean values of the param-
eters θ̄i,v obtained by θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ .

2. Return E = Ẽ∗ which comes with the highest
∫
Θ

P∗(θ)P(E | θ)dθ among K explanations obtained
in the first step.

The point-estimated parameters used in the first step seems reliable to some extent, so if K is sufficiently
large, the true Viterbi explanation E∗ based on the a posteriori distribution (i.e. E∗ = argmaxE

∫
Θ

P∗(θ)P(E |
θ)dθ) will be found in K explanations obtained in the first step. So we can expect Ẽ∗ to be E∗ in most
cases.

It is obvious from above that reranking requires extra computational effort. On the other hand, we
need not use reranking if every random switch i (i.e. an atom of the form msw(i,·)) only appears at most
once in any explanation for any observed goal, or in other words, if we do not use any random switch
twice or more in any generation process of any observed goal. Instead, for such a case, the first step above
with θ̄i,v and K = 1 will return the exact E∗. To be specific, it is easy to see that the following Bayesian
network program (see §7.3 for detailed descriptions) does not use any random switch twice or more to
yield an observation represented by world/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

On contrary, the HMM program (§1.3) may use repeatedly a particular switch such as msw(tr(s0),·).
This fact implies that we need not use reranking for the Bayesian network program above, while reranking
is indispensable for the HMM program.
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5.1.3 Other probabilistic inferences
For the probabilistic inferences other than Viterbi computation, it is also required to compute quantities
based on the a posteriori distribution P∗(θ). For example, the marginal (averaged) probability of goal G
will be computed as:

P(G) =
∫
Θ

P∗(θ)P(G | θ)dθ =
∫
Θ

P∗(θ)
(∑

E∈ψ(G) P(E | θ)
)

dθ.

In VB, it also seems difficult to perform dynamic programming based computation for these probabilistic
inferences. This is because, as explained in [2], the independencies among subgoals, which are fully
exploited in dynamic programming, are lost due to the integral over θ.

In the programming system, we may utilize the routines for inferences used in ML/MAP with con-
sidering the parameters θ to be the mean values of the parameters θ̄i,v = α∗i,v/

∑
v′ α
∗
i,v′ [2, 23], on the

assumption that these mean values are a representative of the entire a posteriori distribution. Another
workaround provided by the programming system is to run the MAP-EM algorithm under α∗i,v.

5.1.4 Deterministic annealing EM for VB learning
The deterministic annealing EM (DAEM) algorithm (§4.8.4) is also supported for VB learning. To be
specific, following [20], let us transform the variational free energy as follows:

F[q] =
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ −
∑

z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ

Again, from an analogy to statistical mechanics, we correspond F[q] with −F (F : the free energy),
the first term in the above equation with −U (U: the internal energy) and the second term with S (S:
the entropy). Then we newly introduce the variational free energy that takes into account the inverse
temperature β:

Fβ[q] def
=
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ − 1
β

∑
z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ.

The VB-EM algorithm that tries to maximize Fβ[q] (i.e. the deterministic annealing version of the VB-
EM algorithm) has a similar procedure to that of the DAEM algorithm (§4.8.4) for ML/MAP estimation.

5.2 Built-in utilities for variational Bayesian learning

5.2.1 VB-EM learning
On contrary to the long descriptions above on VB learning, the usages of the built-in predicates are con-
siderably simple. That is, in the programming system, we can switch between ML/MAP-EM learning
and VB-EM learning only by configuring the execution flag ‘learn_mode’. To enable VB-EM learn-
ing, we give a value ‘hparams’ (which indicates that we wish to get the adjusted hyperparameters by
VB-EM) to the learn_mode flag, and then run the usual learning command (learn/0-1) as follows:

?- set_prism_flag(learn_mode,hparams).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

While learning, we will see the messages similar to those in the case of ML/MAP-EM learning. Another
way is to call learn_h/0-1 directly (the suffix ‘_h’ indicates that the target of learning is hyperpa-
rameters):
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?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn_h(Goals).

On the other hand, to disable VB-EM, please give ‘params’ to the learn_mode flag (the default
value of the learn_mode flag is ‘params’). This indicates that we wish to get the point-estimated
parameters of the model, and indeed the next call of learn/0-1 will start ML/MAP-EM learning:

?- set_prism_flag(learn_mode,params).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

It is also possible to run ML/MAP-EM learning by invoking learn_p/0-1 directly:

?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn_p(Goals).

Furthermore, as described above, we sometimes need the point-estimated parameters as well as hy-
perparameters for the later probabilistic inferences. To get such point-estimated parameters, we give
‘both’ (i.e. we wish to get both the adjusted hyperparameters and the point-estimated parameters) to the
flag ‘learn_mode’.

?- set_prism_flag(learn_mode,both).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

learn_b/0-1 is also available for conducting VB-EM learning directly. By default or by giving
‘mean’ to the params_after_vbem flag, we will obtain the mean values of the parameters θ̄i,v =

α∗i,v/
∑

v′ α
∗
i,v′ as the point-estimated parameters. On the other hand, with the params_after_vbem

flag set as ‘max’, the programming system will run the MAP-EM algorithm after the VB-EM algorithm
to get the MAP estimate of parameters:

?- set_prism_flag(learn_mode,both).
?- set_prism_flag(params_after_vbem,max).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

After the point-estimated parameters obtained, we can run as usual the routines for the probabilistic
inferences other than Viterbi computation (see §5.2.2 for the case of Viterbi computation). The DAEM
algorithm can be used in the same way as that in ML/MAP-EM learning, which is described in §4.8.4.

5.2.2 Viterbi computation
Similarly to the case of EM learning, by configuring the viterbi_mode flag, we can switch the un-
derlying statistical framework for Viterbi computation. If we give a value ‘hparams’ to this flag, the
programming system will invoke a routine for the Viterbi computation based on the adjusted hyperpa-
rameters (and the point-estimated parameters) using reranking (§5.1.2). On the other hand, if we give
a value ‘params’ to the viterbi_mode flag, the system will invoke the usual Viterbi routines based
only on the point-estimated parameters.

The built-ins shown in §4.6 also work within the framework of VB learning. In these built-ins, the
number K of the intermediate candidates of the Viterbi explanation(s) in reranking can be specified by
the rerank flag (K = 5 by default; see §4.14 for details). In addition, K can be specified as an argument
of the built-ins. That is, for top-N Viterbi routines such as n_viterbif([N,K],G), we can give a
pair [N,K] to the first argument, where K is the number of intermediate candidates in reranking. For
example, n_viterbif([N,K],G) is the same as n_viterbif(N,G) which uses K intermediate
candidates. If N > K, the built-ins return only top-K Viterbi explanations.

Instead of configuring the viterbi_mode flag, we can directly call the built-ins for Viterbi compu-
tation based on VB. To do this, we add a suffix ‘_h’ to the predicate name of the built-in we would like
to use. For example,
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?- set_prism_flag(viterbi_mode,hparams).
?- viterbif(hmm([a,b,b,b,a]).

and

?- viterbif_h(hmm([a,b,b,b,a]).

yield the same result. On the other hand, we can directly run the ML/MAP-based Viterbi routines by
adding ‘_p’ to the predicate name of the corresponding built-in (e.g. viterbif_p/1).

Furthermore, as discribed in §5.1.2, if we are sure that every random switch i only appears at most
once in any explanation for any observed goal, we need not take the reranking approach. Instead, in
variational Bayesian learning, we first obtain the mean values of parameters as the point-estimated pa-
rameters (by giving ‘mean’ to the params_after_vbem flag), and then run built-ins for usual (basic)
Viterbi computations, such as viterbif/2 (§4.6). It is also worth noting that, at the implementation
level, the usual Viterbi built-ins work more efficiently (in both time and space) than ones for top-K Viterbi
computation.
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Chapter 6

Parallel EM learning*

6.1 Background
In these days, there are more and more opportunities for us to work with parallel computing environments
such as computer grids. To benefit from those environments on large-scale EM learning, the programming
system provides a parallel learning utility since version 1.11. This utility is characterized by the following
features:

• Data parallelism. Since we assume that observed goals in training data are i.i.d. (independent and
identically distributed), the major part of the learning procedure, the explanation search (§2.4.2)
and large part of the EM algorithm (§4.8.1), can be conducted independently for each observed
goal.

• Master-slave model. Our implementation is supposed to run with one master process and many
(one or more) slave processes, which are allocated over processors. The master process controls
the entire procedure, whereas the slave processes perform the substantial tasks of the explana-
tion search and the expectation steps of the EM algorithm. The expected occurrences of random
switches are accumulated among the processes before every maximization step, then the parame-
ters are updated on each process.

• Dynamic load balancing. The computation time required for each observed goal G is linear in
the size of the explanation graph for G, but in general the size is unknown before the explanation
search. This makes it difficult to partition the entire observed data into the subsets which require
an almost equal amount of efforts to complete. To cope with such difficulty, we take a work-pool
approach (also known as a processor-farm approach), in which all observed goals are firstly put
into a work pool, and then the master process picks up observed goals one by one and assigns each
of them to a slave process that becomes available.

• Distributed memory computing. The algorithm used in this utility is primarily designed for parallel
computer systems in which each processor has a local memory of its own. The communications
among the processes are realized by message passing via MPI (message-passing interface) [14].
Thanks to this design, we would be able to collectively utilize memory resources which are dis-
tributed among computers.

The parallel learning algorithm implemented in this system is empirically shown in [15] to have an
advantage in computation time and space for hidden Markov models (HMMs) and probabilistic context-
free grammars (PCFGs).1

1Due to the removal of some redundant computations in version 1.11, the speed-up might not be so drastic as reported in [15].

71



6.2 Requirements
The parallel learning utility is provided as an experimental feature and only for Linux systems (32-bit
and 64-bit) with the following runtime libraries installed:

• glibc version 2.3.4 or higher, and

• MPICH version 1.x with the ch_p4 device.

MPICH is one of open-source MPI implementations and is available at its authors’ website (http://
www-unix.mcs.anl.gov/mpi/mpich1/). Many Linux distributions also provide official and/or
unofficial packages for MPICH, and we believe most of these packages are suitable for running the
utility. All binaries for parallel learning in the released package of PRISM were built with GCC 4.0.2
and MPICH 1.2.7 provided as part of openSUSE 10.0.

In addition to the above requirements, the programming system needs to be installed into a directory
accessible from all computers used for parallel learning. The utility is expected to work well even on
environments that consist of heterogeneous (but not so much different) computers, except that mixed use
of 32-bit and 64-bit systems is not supported.

It is also possible to run the utility on a single computer with a multi-core processor (or multiple
processors) in order to reduce the learning time (§6.3.3), as long as the required libraries are available
in that computer. Note that, however, parallel learning requires more memory space than non-parallel
learning (§6.4).

6.3 Usage

6.3.1 Running the utility
The parallel learning utility provides no interactive sessions. All programs therefore have to run via batch
execution (§3.7). Also, the utility needs to be started on a directory shared among the computers, since
all processes require access to byte-code files of compiled PRISM programs.2

The utility can be started by invoking mpprism instead of prism and upprism. Basically, its
usage is the same as upprism. The user who is familiar with running MPI programs should note that
mpirun is called inside mpprism. Here are a couple of example commands:

mpprism foo
mpprism foo 5893421 1000
mpprism load:foo

The utility runs with four processes in default. The number of processes can be changed by the
variable NPROCS. For example, the command below starts the utility with twelve processes:

env NPROCS=12 mpprism foo

If you are familiar with how to use mpirun, and you have options you wish to pass, you can specify them
in the variable PRISM_MPIRUN_OPTS. Note that the -np option (the number of processes) should not
be included in this variable. Here is an example:

env NPROCS=8 PRISM_MPIRUN_OPTS="-machinefile machines" mpprism foo

2PRISM programs given to mpprism are firstly compiled on the master process, and then the resulting byte-code files are
loaded by each process (master and slave).
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6.3.2 Writing programs for parallel learning
Most PRISM programs are expected to run without changes, provided batch clauses (prism_main/0-1)
are defined. Note that, however, only the parameter learning is conducted in parallel. The other compu-
tations are simply performed on a (single) master process and thus no performance improvement will be
made. There are also some limitations in functionalities (§6.4).

6.3.3 Some remarks for effective use
Here are some remarks on use of the parallel learning utility:

• The parallel learning utility is not yet so reliable as the non-parallel one in many respects. It is
highly recommended to make sure that your program works on prism or upprism before using
mpprism.

• It is often a good idea to have a single processor (or computer) shared between a master process
and one of slave processes, in particular if the number of processors is limited. The influence of
the master process is considered to be small, since the master process is usually at a very low
load throughout parameter learning. Moreover, the influence is mostly adjusted by dynamic load
balancing (§6.1). This can be done by specifying (n + 1) as the number of processes where n is
the number of available processors. Accordingly, for learning on a single computer with a dual-
core processor (or dual processors), you can gain the best time performance by running with three
processes. In this setting, the first processor is expected to work for the master and one slave
processes, and the second processor for the other slave process. Be warned sufficient memory
space is needed on that computer (§6.4).

• If possible, order the goals (training data) so that larger ones precede shorter. Here, large goals
mean ones which consume much time in the explanation search and the expectation steps of the
EM algorithm. The work-pool approach works more effectively when heavy subtasks enqueued
first in the work pool. In PCFG programs (§7.2), for instance, we can list training sentences in the
decreasing order of their lengths.

• The relationship between speed-up and the number of processors depends on programs. For some
programs, the learning time is reduced simply as the number of processors increases. For others,
on the other hand, there are even cases in which learning with less processors is faster than with
more processors. It is therefore not recommended to stick on as-many-as-possible strategies.

• The amount of memory consumed by each process is expected to be roughly proportional to the
speed of processor on which it runs. Recall this property if you wish to make full use of memory
resources distributed among multiple computers.

• The resulting parameters of parallel learning can be saved by calling save_sw/0-1 (§4.2.7) in
the batch clause (prism_main/0-1). Then they can be restored on interactive sessions (of the
normal prism command) by restore_sw/0-1 to be utilized on sampling, probability calcu-
lation, Viterbi computation, and hindsight computation. This also applies to the cases with pseudo
counts (hyperparameters).

6.4 Limitations
The parallel learning utility has the following limitations (note that many of them have already been
mentioned above):
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• No computations other than parameter learning are parallelized.

• The utility has not been tested sufficiently yet.

• When the utility is aborted by some error, there occasionally remain defunct processes. This is due
to difficulty in aborting MPI programs cleanly. In case you face this situation, please kill those
processes manually.

• Parallel learning requires, in total, more memory resources than non-parallel learning. This might
be critical when the utility is run on a single computer or shared-memory systems.

• The learning time might not be reduced as expected for some programs, in particular those with
failure (§4.11).

• The statistics on the explanation graph (§4.9) can be different from those obtained on the non-
parallel utility, and even can vary from execution to execution.3

• The explanation graph is not displayed even with the verb flag set to ‘graph’ or ‘full’.

• The total table space used for learning is not displayed.

• The learning time is given by elapsed time, not by CPU time as on the non-parallel utility (this is
not actually a limitation).

3 The reason is as follows. Since version 1.11, in the constructed explanation graphs, there can be subgoals which are shared
among distinct observed goals (this mechanism is called inter-goal sharing [19]). In parallel learning, however, such sharing will
be made only within each slave process, and therefore the number of subgoals in the entire graph varies depending on how the
observed goals are assigned to the slave processes.
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Chapter 7

Examples

PRISM is suited for building complex systems that involve both symbolic and probabilistic elements
such as discrete hidden Markov models , stochastic string/graph grammars, game analysis, data mining,
performance tuning and bio-sequence analysis. In this chapter, we describe several program examples
including the ones that can be found under the directories named ‘exs’ or ‘exs_fail’ in the released
package.

7.1 Hidden Markov models
The HMM (hidden Markov model) program has been fragmentarily picked up throughout this manual.
In this section, on the other hand, we attempt to collect the previous descriptions as a single session of an
artificial experiment.

As described in §1.3, the HMM we consider has only two states ‘s0’ and ‘s1’, and two emission
symbols ‘a’ and ‘b’. In top-down writing such an HMM, we make several declarations first:

target(hmm,1).
data(user).

values(init,[s0,s1]). % state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

The first declaration means observed goals take the form hmm(L) where L is an output string, i.e. a list
of emitted symbols. The last three declarations declare three types of switches: switch init chooses
‘s0’ or ‘s1’ as an initial state to start with, the symbol emission switches out(·) chooses ‘a’ or ‘b’ as
an emitted symbol at each state, and the state transition switches tr(·) chooses the next state ‘s0’ or
‘s1’.

We then proceed to the modeling part. The model part is described only with four clauses:

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: The state is S at time T

75



msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

As described in the comments, the modeling part expresses a probabilistic generation process for an
output string in the HMM. If possible, we recommend such a purely generative fashion in writing the
modeling part. One of its benefits here is that the modeling part works both in sampling execution and
explanation search.1

Optionally we can add the utility part. In the utility part, we can write an arbitrary Prolog program
which may use built-ins of the programming system. Here, we conduct a simple and artificial learning
experiment. That is, in this experiment, we first give some predefined parameters to the HMM, and
generate 100 strings under the parameters. Then we learn the parameters from such sampled strings.
Instead of running each step interactively, we write the following utility part that makes a batch execution
of the learning procedure:

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with the samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

hmm_learn(N) is a batch predicate for the experiment, where N is the number of samples used for
learning. set_params/0 specifies the parameters of each switch manually. Since hmm/1 works in
sampling execution, we can use a PRISM’s built-in get_samples/3 (§4.3) that calls hmm/1 for N
times.

Let us run the program. We first load the program:

% prism
:

?- prism(hmm).

compiled in 4 milliseconds
1 Since version 1.9, if we wish, we can confirm even at this point whether it is possible to run sampling or the explanation

search. To be more concrete, let us include only the declarations and the modeling part to the file named ‘hmm.psm’, and load the
program:

% prism
:

?- prism(hmm).

Then, for example, we may run the following to sample a goal with a string X and get the explanations for it:

?- sample(hmm(X)),probf(hmm(X)).

It should be noted that sample/1 and probf/1 simulate sampling execution and explanation search, respectively. Also one
may notice that, since we have no specific parameter settings for switches here, the sampling is made under the (default) uniform
parameters.
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loading::hmm.psm.out

yes

Then we run the batch predicate to generate 100 samples and to learn the parameters from them:

?- hmm_learn(100).

#goals: 0.........(93)
Exporting switch information to the EM routine ...
#em-iterations: 0......(63) (Converged: -683.493898022)
Statistics on learning:

Graph size: 5520
Number of switches: 5
Number of switch instances: 10
Number of iterations: 63
Final log likelihood: -683.493898022
Total learning time: 0.020 seconds
Explanation search time: 0.008 seconds
Total table space used: 728832 bytes

Type show_sw or show_sw_b to show the probability distributions.

We can confirm the learned parameters by the built-in show_sw/0 (§4.2.5):2

?- show_sw.

Switch init: unfixed_p: s0 (p: 0.722841424) s1 (p: 0.277158576)
Switch out(s0): unfixed_p: a (p: 0.623359863) b (p: 0.376640137)
Switch out(s1): unfixed_p: a (p: 0.497027993) b (p: 0.502972007)
Switch tr(s0): unfixed_p: s0 (p: 0.554684130) s1 (p: 0.445315870)
Switch tr(s1): unfixed_p: s0 (p: 0.550030827) s1 (p: 0.449969173)

Here we can make some probabilistic inferences based on the parameters estimated as above. To compute
the most probable explanation (the Viterbi explanation) and its probability (the Viterbi probability) for a
given observation, we can use the built-in viterbif/1 (§4.6).

| ?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])
<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])
<= hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(2,10,s0,[a,a,a,a,b,b,b,b,b])
<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(3,10,s0,[a,a,a,b,b,b,b,b])
<= hmm(4,10,s0,[a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(4,10,s0,[a,a,b,b,b,b,b])
<= hmm(5,10,s0,[a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

...omitted...

hmm(8,10,s1,[b,b,b])
<= hmm(9,10,s1,[b,b]) & msw(out(s1),b) & msw(tr(s1),s1)

2 At least there are many local maxima for ML estimation, so it is not guaranteed that we can restore the parameters that have
been set by set_params/0.
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hmm(9,10,s1,[b,b])
<= hmm(10,10,s1,[b]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(10,10,s1,[b])
<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000002081735251

On the other hand, to compute the hindsight probabilities (§4.7) of subgoals for a goal hmm([a,
a,a,a,a,b,b,b,b,b]), we may run:

| ?- hindsight(hmm([a,a,a,a,a,b,b,b,b,b])).

hindsight probabilities:
hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]): 0.000710038386251
hmm(1,10,s1,[a,a,a,a,a,b,b,b,b,b]): 0.000216848626541
hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]): 0.000564388970965
hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]): 0.000362498041827
hmm(3,10,s0,[a,a,a,b,b,b,b,b]): 0.000563735498733
hmm(3,10,s1,[a,a,a,b,b,b,b,b]): 0.000363151514060

...omitted...

hmm(8,10,s0,[b,b,b]): 0.000444735040586
hmm(8,10,s1,[b,b,b]): 0.000482151972207
hmm(9,10,s0,[b,b]): 0.000444736503096
hmm(9,10,s1,[b,b]): 0.000482150509696
hmm(10,10,s0,[b]): 0.000445050456081
hmm(10,10,s1,[b]): 0.000481836556711
hmm(11,10,s0,[]): 0.000511887384988
hmm(11,10,s1,[]): 0.000414999627805

According to the purpose, the queries above can be included to the batch predicate in the utility part.
By specifying the execution flags (§4.14), we can add some variations to learning or the other prob-

abilistic inferences. For example, we may conduct an MAP estimation with the pseudo count being 0.5,
and try 10 runs of the EM algorithm. To do this, we first set the flags for multiple rules of the EM
algorithm as follows:

?- set_prism_flag(restart,10).

Next we set all pseudo counts to 0.5:

?- set_sw_all_h(_,0.5).

Now the batch predicate and the routines for later probabilistic inferences can be run in the same way as
above:

?- hmm_learn(100).

#goals: 0.........(98)
Exporting switch information to the EM routine ...
[0] #em-iterations: 0.........100.(115) (Converged: -692.022272523)
[1] #em-iterations: 0.........100.(115) (Converged: -692.022846163)
[2] #em-iterations: 0.........100..(130) (Converged: -692.028058623)
[3] #em-iterations: 0.........100.........200...(240) (Converged: -692.0
24704657)
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[4] #em-iterations: 0.......(79) (Converged: -692.022673972)
[5] #em-iterations: 0......(62) (Converged: -692.024814351)
[6] #em-iterations: 0.........100.........(192) (Converged: -692.0231354
79)
[7] #em-iterations: 0.........100.(111) (Converged: -692.020478776)
[8] #em-iterations: 0.........100.........200..(228) (Converged: -692.03
1937456)
[9] #em-iterations: 0(2) (Converged: -692.010584638)
Statistics on learning:

Graph size: 5840
Number of switches: 5
Number of switch instances: 10
Number of iterations: 2
Final log of a posteriori prob: -692.010584638
Total learning time: 0.148 seconds
Explanation search time: 0.008 seconds
Total table space used: 770832 bytes

Type show_sw or show_sw_b to show the probability distributions.

If we always use the above flag values, it should be useful to include the following queries into the utility
part:

:- set_prism_flag(restart,10).
:- set_prism_flag(default_sw_h,0.5).

By the latter query we can give the default pseudo counts as 0.5, instead of setting the pseudo counts
manually using set_sw_all_h/2.

Furthermore, let us conduct a batch execution of learning at the shell (or command prompt) level. As
a preparation, we define a clause with prism_main/1 (see §3.7) as follows:

prism_main([Arg]):-
parse_atom(Arg,N),
hmm_learn(N).

With this definition, the system receives one argument Arg from the shell an atomic symbol (for example,
’100’) and then converts such a symbol to the data N which can be numerically handled (i.e. as an
integer), and finally the batch predicate used above is invoked with the argument N. So if we run the
command upprism at the shell prompt with specifying the filename of the program and the argument
to be passed to prism_main/1 above:

% upprism hmm 50

then a learning with 50 samples will be conducted:

% upprism hmm 50
:

#goals: 0....(49)
Exporting switch information to the EM routine ...
[0] #em-iterations: 0.........100......(163) (Converged: -347.326727176)
[1] #em-iterations: 0.........100.....(151) (Converged: -347.326798056)
[2] #em-iterations: 0.........100.........200........(289) (Converged: -347
.330719096)
[3] #em-iterations: 0.........100.........(194) (Converged: -347.326873331)
[4] #em-iterations: 0.........100.........200.........(293) (Converged: -34
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7.330935748)
[5] #em-iterations: 0.........100.........200........(287) (Converged: -347
.330848992)
[6] #em-iterations: 0.........100........(185) (Converged: -347.327995530)
[7] #em-iterations: 0.........100.......(180) (Converged: -347.327563031)
[8] #em-iterations: 0.........100........(189) (Converged: -347.327339025)
[9] #em-iterations: 0.........100......(163) (Converged: -347.327150784)
Statistics on learning:

Graph size: 3400
Number of switches: 5
Number of switch instances: 10
Number of iterations: 163
Final log of a posteriori prob: -347.326727176
Total learning time: 0.124 seconds
Explanation search time: 0.004 seconds
Total table space used: 447392 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
%

It is worth noting that the control is returned back to the shell after the execution, so we can make more
flexible experiments by combining this batch execution with the other facilities in a shell script.

7.2 Probabilistic context-free grammars
Probabilistic context-free grammars (PCFGs) are another well-known model class that can handle se-
quences of symbols. A PCFG is a context-free grammar whose production rules are annotated prob-
abilities. Starting from the start symbol and applying production rules one by one, with a probability
annotated to the rule, we can generate a sequence of terminal symbols (i.e. a sentence). Figure 7.1 shows
an example of a PCFG introduced in [4], where ‘s’ is the start symbol.

Now let us write a PRISM program that represents the PCFG in Figure 7.1. We first show the decla-
rations:

target(pcfg/1).

values(s,[[np,vp],[vp]]).
values(np,[[noun],[noun,pp],[noun,np]]).
values(vp,[[verb],[verb,np],[verb,pp],[verb,np,pp]]).
values(pp,[[prep,np]]).
values(verb,[[swat],[flies],[like]]).
values(noun,[[swat],[flies],[ants]]).
values(prep,[[like]]).

:- p_not_table proj/2.

By target/1, we declare that the goals of the form pcfg(Words) will be observed, where Words
is a sentence to be generated. It is seen from the values declarations that we use random switches
whose instance takes the form msw(A,[B1,B2,...,Bn]), which represents a probabilistic event “a
production rule A→ B1B2 · · · Bn is chosen.” Then, the parameter of a switch instance msw(A,[B1,B2,
...,Bn]) corresponds to the rule probability of A→ B1B2 · · · Bn. In this example, we will not table the
probabilistic predicates proj/2 (this is just for making the inference results simple and readable; see
§2.6.4). We may write the modeling part as follows:
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s → np vp (0.8) pp → prep np (1.0)
s → vp (0.2)

np → noun (0.4) verb → swat (0.2)
np → noun pp (0.4) verb → flies (0.4)
np → noun np (0.2) verb → like (0.4)
vp → verb (0.3) noun → swat (0.05)
vp → verb np (0.3) noun → flies (0.45)
vp → verb pp (0.2) noun → ants (0.5)
vp → verb np pp (0.2) prep → like (1.0)

Figure 7.1: Example of a probabilistic context-free grammar from [4].

pcfg(L):- pcfg(s,L-[]).

pcfg(LHS,L0-L1):-
( nonterminal(LHS) -> msw(LHS,RHS),proj(RHS,L0-L1)
; L0 = [LHS|L1]
).

proj([],L-L).
proj([X|Xs],L0-L1):-

pcfg(X,L0-L2),proj(Xs,L2-L1).

nonterminal(s).
nonterminal(np).
nonterminal(vp).
nonterminal(pp).
nonterminal(verb).
nonterminal(noun).
nonterminal(prep).

pcfg/1-2 and proj/2 are generic in the sense that these predicates can be applied to any underlying
context-free grammar which does not include ε-rules.3 Also, as is usually done for definite clause gram-
mars, we use difference lists to represent the substrings. The if-then statement nonterminal(LHS)
-> ... in the body of pcfg/2 is used to check if LHS is a non-terminal symbol. Lastly, in the utility
part, we assign the rule probabilities by using query statements:

:- set_sw(s,[0.8,0.2]).
:- set_sw(np,[0.4,0.4,0.2]).
:- set_sw(vp,[0.3,0.3,0.2,0.2]).
:- set_sw(pp,[1.0]).
:- set_sw(verb,[0.2,0.4,0.4]).
:- set_sw(noun,[0.05,0.45,0.5]).
:- set_sw(prep,[1.0]).

Let us run the program. First, we compute the generative probability of a sentence “swat flies like
ants.” prob/1 can be utilized for this purpose:

?- prob(pcfg([swat,flies,like,ants])).

Probability of pcfg([swat,flies,like,ants]) is: 0.001010560000000

3 We also assume that the underlying grammar does not produce a unit chain A
∗⇒ A.
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We can also get the most probable parse tree for “swat flies like ants.” This is nothing but probabilistic
parsing using a PCFG model. Looking into the result of viterbif/1 shown below,4 it can be found
that the most probable parse tree is [[swatverb[fliesnoun[likeprep [antsnoun]np]pp]np]vp]s, and its generative
probability is 0.000432.

?- viterbif(pcfg([swat,flies,like,ants])).

pcfg([swat,flies,like,ants])
<= pcfg(s,[swat,flies,like,ants]-[])

pcfg(s,[swat,flies,like,ants]-[])
<= pcfg(vp,[swat,flies,like,ants]-[]) & msw(s,[vp])

pcfg(vp,[swat,flies,like,ants]-[])
<= pcfg(verb,[swat,flies,like,ants]-[flies,like,ants])

& pcfg(np,[flies,like,ants]-[]) & msw(vp,[verb,np])
pcfg(verb,[swat,flies,like,ants]-[flies,like,ants])

<= pcfg(swat,[swat,flies,like,ants]-[flies,like,ants]) & msw(verb,[swat])
pcfg(swat,[swat,flies,like,ants]-[flies,like,ants])
pcfg(np,[flies,like,ants]-[])

<= pcfg(noun,[flies,like,ants]-[like,ants])
& pcfg(pp,[like,ants]-[]) & msw(np,[noun,pp])

pcfg(noun,[flies,like,ants]-[like,ants])
<= pcfg(flies,[flies,like,ants]-[like,ants]) & msw(noun,[flies])

pcfg(flies,[flies,like,ants]-[like,ants])
pcfg(pp,[like,ants]-[])

<= pcfg(prep,[like,ants]-[ants]) & pcfg(np,[ants]-[]) & msw(pp,[prep,np])
pcfg(prep,[like,ants]-[ants])

<= pcfg(like,[like,ants]-[ants]) & msw(prep,[like])
pcfg(like,[like,ants]-[ants])
pcfg(np,[ants]-[])

<= pcfg(noun,[ants]-[]) & msw(np,[noun])
pcfg(noun,[ants]-[])

<= pcfg(ants,[ants]-[]) & msw(noun,[ants])
pcfg(ants,[ants]-[])

Viterbi_P = 0.000432

Furthermore, using n_viterbif/2, we can get the three most probable parse trees for “swat flies
like ants” as follows:

?- n_viterbif(3,pcfg([swat,flies,like,ants])).

7.3 Discrete Bayesian networks

7.3.1 Representing Bayesian networks
Bayesian networks have become a popular representation for encoding and reasoning about uncertainty
in various applications. A Bayesian network is a directed acyclic graph whose nodes are considered as
random variables and whose directed edges indicate conditional independencies among such variables.
Conditional probability tables (CPTs) in a Bayesian network can be represented by switches with complex
names in PRISM. To be more specific, let B and C be two random variables, and assume B (resp. C) has

4 For the space limitation, we have inserted some line breaks and indentions.
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Fire Tampering

Alarm

Leaving

Smoke

Report

Figure 7.2: Example of a discrete Bayesian network.

the k (resp. n) possible values. Then a conditional distribution P(B|C) can be represented by n switches:
msw(b(ci),·) (i = 1, . . . , n), each of which has k outcomes: vi, j ( j = 1, . . . , k).5 Then it is easily seen
that each switch parameter corresponds to one entry of the CPT.

For illustration, let us consider an example from [25], shown in Figure 7.2. In this network, we
assume that all random variables take on yes or no (i.e. they are binary), and also assume that only two
nodes, Smoke and Report, are observable. This Bayesian network defines a joint distribution:

p(Fire,Tampering, Smoke,Alarm,Leaving,Report).

From the conditional independencies indicated by the graph structure, this joint distribution is reduced to
a computationally feasible form:

p(Fire,Tampering, Smoke,Alarm, Leaving,Report)
= p(Fire)p(Tampering)p(Smoke | Fire) ·

p(Alarm | Fire,Tampering)p(Leaving | Alarm)p(Report | Leaving). (7.1)

The factored probabilities in the RHS will be stored in CPTs, where P(Fire) and P(Tampering) are seen
as conditional probabilities with an empty condition. On the other hand, the observable distribution on
Smoke and Report is computed by marginalizing the joint distribution:

p(Smoke,Report)

=
∑

Fire, Tampering, Alarm, Leaving

p(Fire,Tampering, Smoke,Alarm,Leaving,Report). (7.2)

It is easy to notice that the marginalization above takes an exponential time with respect to the number
of variable to marginalize. In the literature of research on Bayesian networks, efficient algorithms are
known to compute such marginalization, but in this section, we concentrate on how we represent Bayesian
networks in PRISM. Indeed, for a certain class called singly-connected Bayesian networks, it is shown
in [35] that we can write a PRISM program that can simulate the Pearl’s propagation algorithm.

Now we start to describe the Bayesian network in Figure 7.2. Also for this case, a generative way
of thinking should be useful in writing the modeling part. For example, we first get the value of Fire by
flipping a coin (i.e. sampling) according to P(Fire). We then proceed to flip a coin for Smoke according
to P(Smoke | Fire), and so on. Here we represent such a coin flipping by msw(I,V), and define the joint
distribution (Eq. 7.1) with a predicate world/6:

5 In other words, we have (n × k) switch instances: msw(b(ci),vi, j) (i = 1, . . . , n and j = 1, . . . , k).
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world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

This clause indicates that we flip the coins in the order of Fire, Tampering, Smoke, Alarm, Leaving and
Report. As is declared later, the switches above are assumed here to output yes or no. The switch
named fi corresponds to the coin flipping for Fire, and switch sm(Fi) corresponds to the coin flipping
for Smoke, given the value of Fire as Fi. Recall here that each parameter of these switches corresponds to
one entry of the CPTs in the target Bayesian network. For instance, the parameter θsm(yes),no, the prob-
ability of a switch instance msw(sm(yes),no) being true corresponds to the conditional probability
P(Smoke = no | Fire = yes).

The observable distribution is defined by world/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

The probability of world(yes,no) corresponds to P(Smoke = yes,Report = no). We can find that, for
world(yes,no), all instantiations of the body are probabilistically exclusive to each other, so we can
compute the probability of world(yes,no) by summing up the probabilities of these instantiations.
This fact correspond to Eq. 7.2, so we can say the program precisely express what we would like to
model. The model part of our Bayesian network program consists of the two clauses above.

We add some declarations as follows:

target(world,2).
data(user).
values(_,[yes,no]).

The first clause means world/2 is observable, and from the second clause, we can use the built-in
learn/1 for learning, by passing a list of observed goals to its arguments. The third clause specifies all
switches have outcomes yes and no.

Now let us make a similar experiment to that with the HMM program (§7.1). Namely, we first gener-
ate goals by sampling as training data under some predefined parameters, and then learn the parameters
from such training data. The difference is that we attempt to fix (or preserve) one parameter in learning.
Such a parameter can be considered as a constant parameter in the model. The utility part may contain
the following batch predicate for the experiment:

alarm_learn(N) :-
unfix_sw(_), % Make all parameters changeable
set_params, % Set parameters as you specified
get_samples(N,world(_,_),Gs), % Get N samples
fix_sw(fi), % Preserve the parameter values
learn(Gs). % for {msw(fi,yes), msw(fi,no)}

The experimental steps are written as comments. In this predicate, set_params/0 (which specifies
the parameters of all switches; §4.2.3), get_samples/3 (which generate training data; §4.3), and
learn/1 (§4.8.3) are used similarly to those in the batch routine for the experiments with HMMs
(§7.1). set_params/0 is a user-defined predicate:

set_params :-
set_sw(fi,[0.1,0.9]),
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set_sw(ta,[0.15,0.85]),
set_sw(sm(yes),[0.95,0.05]),
set_sw(sm(no),[0.05,0.95]),
set_sw(al(yes,yes),[0.50,0.50]),
set_sw(al(yes,no),[0.90,0.10]),
set_sw(al(no,yes),[0.85,0.15]),
set_sw(al(no,no),[0.05,0.95]),
set_sw(le(yes),[0.88,0.12]),
set_sw(le(no),[0.01,0.99]),
set_sw(re(yes),[0.75,0.25]),
set_sw(re(no),[0.10,0.90]).

As described above, the additional functionality is that we do not learn (i.e. fix or preserve) the parameters
for switch fi. This is done by using the built-ins unfix_sw/1 and fix_sw/1 (§4.2.4).

Now our PRISM program has been completed, and we are ready to run the program. Let us as-
sume that the program is contained in the file ‘alarm.psm’, then load the program by the command
prism(alarm):

?- prism(alarm).

We conduct learning with 500 samples by alarm_learn/1 which is previously defined:

?- alarm_learn(500).

#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iterations: 0(2) (Converged: -464.034430688)
Statistics on learning:

Graph size: 448
Number of switches: 12
Number of switch instances: 24
Number of iterations: 2
Final log likelihood: -464.034430688
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 47008 bytes

Type show_sw or show_sw_b to show the probability distributions.

We can confirm the learned parameters as follows:

?- show_sw.

Switch fi: fixed_p: yes (p: 0.100000000) no (p: 0.900000000)
Switch ta: unfixed_p: yes (p: 0.682231979) no (p: 0.317768021)
Switch le(no): unfixed_p: yes (p: 0.419688112) no (p: 0.580311888)
Switch le(yes): unfixed_p: yes (p: 0.476437741) no (p: 0.523562259)
Switch re(no): unfixed_p: yes (p: 0.283975504) no (p: 0.716024496)
Switch re(yes): unfixed_p: yes (p: 0.167325271) no (p: 0.832674729)
Switch sm(no): unfixed_p: yes (p: 0.130802678) no (p: 0.869197322)
Switch sm(yes): unfixed_p: yes (p: 0.122775877) no (p: 0.877224123)
Switch al(no,no): unfixed_p: yes (p: 0.480950708) no (p: 0.519049292)
Switch al(no,yes): unfixed_p: yes (p: 0.451939009) no (p: 0.548060991)
Switch al(yes,no): unfixed_p: yes (p: 0.472514062) no (p: 0.527485938)
Switch al(yes,yes): unfixed_p: yes (p: 0.380557386) no (p: 0.619442614)

It is also possible to get the frequencies of the sampled goals:
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?- show_goals.

Goal world(yes,yes) (count=34, freq=6.800%)
Goal world(no,no) (count=353, freq=70.600%)
Goal world(yes,no) (count=31, freq=6.200%)
Goal world(no,yes) (count=82, freq=16.400%)
Total_count=500

7.3.2 Computing conditional probabilities
Furthermore, for the Bayesian network program described in this section, conditional probabilities can
be computed as conditional hindsight probabilities (§4.7). Let us recall that a conditional hindsight prob-
ability is denoted as Pθ(G′|G) = Pθ(G′)/Pθ(G), where G is a given top goal and G′ is one of its subgoals.
For instance, let us consider to compute the conditional probability p(Alarm | Smoke = yes,Report = no)
by using conditional hindsight probabilities. Since the target conditional probability p(Alarm = x |
Smoke = yes,Report = no) can be computed as p(Alarm = x, Smoke = yes,Report = no)/p(Smoke =
yes,Report = no), if we let G = world(_,_,_,yes,_,no) and G′ = world(_,_,x,yes,_,no),
it can be seen that Pθ(G′|G) is equal to the target conditional probability. To get the conditional distribu-
tion on Alarm, we run chindsight_agg/2 with specifying the third argument in world/6 (which
corresponds to Alarm) as a query argument:6

?- chindsight_agg(world(_,_,_,yes,_,no),world(_,_,query,yes,_,no)).
conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

Of course, from the definition of world/2, we can make the same computation with world/2:

?- chindsight_agg(world(yes,no),world(_,_,query,yes,_,no)).
conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

As mentioned before, the definition of world/6 is computationally naive, so we need to write a different
representation of Bayesian networks which takes into account the computational effort for conditional
hindsight probabilities, as shown in the next section.

7.3.3 Bayesian networks in a junction-tree form
For probabilistic inferences on Bayesian networks, especially, on multiply-connected Bayesian networks
(BNs), several sophisticated techniques have been proposed so far. As another example of a BN, let us
consider a Bayesian network called the Asia network [22], which is illustrated in Figure 7.3. This network
can be said to be a multiply-connected BN since there are two paths from S to D: S → L → TL → D
and S → B → D. One of the most popular inference methods for such multiply-connected BNs is
the junction-tree algorithm. In the junction-tree algorithm, we first convert the original network to an
undirected tree-structured network called a junction tree, whose node corresponds to a set consisting of
one or more original nodes. Figure 7.4 depicts a junction tree for the Asia network. For example, α2 in
Figure 7.4 corresponds to a set {S , L, B} of the original nodes in Figure 7.3.

We can write a ‘naive’ version of the PRISM program that represents the Asia network as did in the
previous section. Also in this program, all switches are supposed to be binary, i.e. they take values ‘t’

6 In this computation, it is assumed that the parameters are set by set_params/0 in advance.
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Figure 7.3: Example of a multiply-connected Bayesian network (known as the Asia network).

(true) and ‘f’ (false). incl_or/3 represents the inclusive OR. We set the parameters given in [22] by
set_params/0.

target(world/4).
values(bn(_,_),[t,f]).

world(A,S,X,D):- world(A,_,S,_,_,X,_,D).

world(A,T,S,L,TL,X,B,D) :-
msw(bn(a,[]),A),msw(bn(t,[A]),T),
msw(bn(s,[]),S),msw(bn(l,[S]),L),
incl_or(T,L,TL),
msw(bn(x,[TL]),X),msw(bn(b,[S]),B),
msw(bn(d,[TL,B]),D).

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

:- set_params.

set_params:-
set_sw(bn(a,[]),[0.01,0.99]),
set_sw(bn(t,[t]),[0.05,0.95]),
set_sw(bn(t,[f]),[0.01,0.99]),
set_sw(bn(s,[]),[0.5,0.5]),
set_sw(bn(l,[t]),[0.1,0.9]),
set_sw(bn(l,[f]),[0.01,0.99]),
set_sw(bn(x,[t]),[0.98,0.02]),
set_sw(bn(x,[f]),[0.05,0.95]),
set_sw(bn(b,[t]),[0.60,0.40]),
set_sw(bn(b,[f]),[0.30,0.70]),
set_sw(bn(d,[t,t]),[0.90,0.10]),
set_sw(bn(d,[t,f]),[0.70,0.30]),
set_sw(bn(d,[f,t]),[0.80,0.20]),
set_sw(bn(d,[f,f]),[0.10,0.90]).
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Figure 7.4: Junction tree for the Asia network.

After loading the program, for example, we can compute the conditional distribution P(T = true | A =
false,D = true) = 0.018 and P(T = false | A = false,D = true) = 0.982 as follows:

?- chindsight_agg(world(f,_,_,t),world(_,query,_,_,_,_,_,_)).
conditional hindsight probabilities:

world(*,f,*,*,*,*,*,*): 0.981873562361255
world(*,t,*,*,*,*,*,*): 0.018126437638745

Surely this program returns the consistent results, but it is not so efficient. On the other hand, let us
see another PRISM program that represents a junction tree and is expected to run faster than the naive
version. For the readers who are interested in the formal discussion on such PRISM programs in a
junction-tree form, please consult [32]. It is possible to implement a translator (including a junction-tree
converter) from a network specification in some standard format (e.g. XMLBIF) to a PRISM program
of the corresponding junction tree. For instance, the following is a junction-tree version of the PRISM
program for the Asia network:

target(world/1).
values(bn(_,_),[t,f]).

world(E):- msg_1_0(E-[]).

msg_1_0(E0-E1) :- node_1(L,TL,B,E0-E1).
msg_2_1(L,B,E0-E1) :- node_2(S,L,B,E0-E1).
msg_3_1(L,TL,E0-E1) :- node_3(T,L,TL,E0-E1).
msg_4_3(T,E0-E1) :- node_4(A,T,E0-E1).
msg_5_1(TL,B,E0-E1) :- node_5(TL,B,D,E0-E1).
msg_6_5(TL,E0-E1) :- node_6(TL,X,E0-E1).

node_1(L,TL,B,E0-E1) :-
msg_2_1(L,B,E0-E2),msg_3_1(L,TL,E2-E3),msg_5_1(TL,B,E3-E1).

node_2(S,L,B,E0-E1) :-
cpt(s,[],S,E0-E2),cpt(l,[S],L,E2-E3),cpt(b,[S],B,E3-E1).

node_3(T,L,TL,E0-E1) :- incl_or(L,T,TL),msg_4_3(T,E0-E1).
node_4(A,T,E0-E1) :- cpt(a,[],A,E0-E2),cpt(t,[A],T,E2-E1).
node_5(TL,B,D,E0-E1) :- cpt(d,[TL,B],D,E0-E2),msg_6_5(TL,E2-E1).
node_6(TL,X,E0-E1) :- cpt(x,[TL],X,E0-E1).

cpt(X,Par,V,E0-E1):- ( E0=[(X,V)|E1] -> true ; E0=E1 ),msw(bn(X,Par),V).
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Table 7.1: CPT for Alarm constructed by the noisy-OR rule
Fire Tampering P(alarm) P(¬alarm)
true true 0.94 = 1 − 0.3 × 0.2 0.06 = 0.3 × 0.2
true false 0.7 = 1 − 0.3 0.3
false true 0.8 = 1 − 0.2 0.2
false false 0 1

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

In this program, we consider that α1 in Figure 7.4 is the root node of the junction tree. The predicate
whose name is msg_i_ j corresponds to the edge between nodes i and j in the junction tree. We also
define a predicate named node_i for each node i in the junction tree. One may find that the evidences
will be kept as difference lists in the last arguments of the msg_i_ j and the node_i predicates. We can
input evidences through the argument of world/1, but for simplicity, the evidences are assumed here to
be given in the same order as that of the appearances of msw/2 in the top-down execution of world/1.
cpt/4 is a ‘wrapper’ predicate that can handle evidences. We omit here set_params/0 which is also
included in the naive version.

Using this program, let us compute the conditional distribution P(T | A = false,D = true). To realize
this, We attempt to compute the hindsight probabilities for the predicate node_4/3 since α4 includes
the original node (i.e. the random variable) T , as shown in Figure 7.4.

?- chindsight_agg(world([(a,f),(d,t)]),node_4(_,query,_)).
conditional hindsight probabilities:

node_4(*,f,*): 0.981873562361255
node_4(*,t,*): 0.018126437638745

It is proved in [32] that this hindsight computation is equivalent to the belief propagtion procedure in a
junction tree.

7.3.4 Using noisy OR
In modeling with Bayesian networks, we sometimes use combination rules to make the CPTs simpler,
and noisy OR is one of the most well-known combination rules [28]. To be specific, let us consider the
alarm network (Figure 7.2) again, and suppose that the Alarm node in the alarm network has a CPT
defined with the noisy-OR rule. Also we suppose that the individual inhibition probabilities are given as
follows:7

P(¬alarm | fire,¬tamparing) = 0.3
P(¬alarm | ¬fire, tamparing) = 0.2.

Then we have a CPT for Alarm shown in Table 7.1. To write the alarm network program that deals with
the noisy-OR rules, we modify the definitions of world/6 and introduce the predicates named cpt_x
for each variable named x. Then world/6 calls such cpt_x predicates instead of directly calling
random switches. The modeling part of the resulting program is as follows:

7 We denote the propositions Alarm = true, Alarm = false, Fire = true, and so on by alarm, ¬alarm, fire, and so on, respectively.
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world(Fi,Ta,Al,Sm,Le,Re) :-
cpt_fi(Fi),
cpt_ta(Ta),
cpt_sm(Fi,Sm),
cpt_al(Fi,Ta,Al),
cpt_le(Al,Le),
cpt_re(Le,Re).

cpt_fi(Fi):- msw(fi,Fi).
cpt_ta(Ta):- msw(ta,Ta).
cpt_sm(Fi,Sm):- msw(sm(Fi),Sm).
cpt_al(Fi,Ta,Al):-

( Fi = yes, Ta = yes ->
msw(cause_al_fi,N_Al_Fi),
msw(cause_al_ta,N_Al_Ta),
( N_Al_Fi = no, N_Al_Ta = no -> Al = no
; Al = yes
)

; Fi = yes, Ta = no -> msw(cause_al_fi,Al)
; Fi = no, Ta = yes -> msw(cause_al_ta,Al)
; Fi = no, Ta = no -> Al = no
).

cpt_le(Al,Le):- msw(le(Al),Le).
cpt_re(Le,Re):- msw(re(Le),Re).

It can be seen that cpt_al/3 is an implementation of the noisy-OR rule. The key step is to consider the
generation process underlying the noisy-OR rule. For example, when Fire = true and Tampering = true,
we make choices twice by random switches named cause_al_fi and cause_al_ta according to
the corresponding inhibition probabilities. Then, if one of these choices returns yes, we consider that
Alarm becomes true.

Let us further write a more generic version. We first write the network-specific part of the model by
modifying the definition of world/6 and by adding noisy_or/3 for the specifications of noisy-OR
nodes:

world(Sm,Re):- world(_,_,_,Sm,_,Re).

world(Fi,Ta,Al,Sm,Le,Re) :-
cpt(fi,[],Fi),
cpt(ta,[],Ta),
cpt(sm,[Fi],Sm),
cpt(al,[Fi,Ta],Al),
cpt(le,[Al],Le),
cpt(re,[Le],Re).

noisy_or(al,[fi,ta],[[0.7,0.3],[0.8,0.2]]).

In the above, cpt/3 in the clause body of world/6 is an abstract (or a wrapper) predicate that can deal
with the noisy-OR rule, and its definition is included in the network-independent part of the model:

:- p_not_table choose_noisy_or/4, choose_noisy_or/6.

cpt(X,PaVs,V):-
( noisy_or(X,Pa,_) -> choose_noisy_or(X,Pa,PaVs,V)
; msw(bn(X,PaVs),V)
).
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choose_noisy_or(X,Pa,PaVs,V):- choose_noisy_or(X,Pa,PaVs,no,no,V).

choose_noisy_or(_,[],[],yes,V,V).
choose_noisy_or(_,[],[],no,_,no).
choose_noisy_or(X,[Y|Pa],[PaV|PaVs],PaHasYes0,ValHasYes0,V):-

( PaV=yes ->
msw(cause(X,Y),V0),
PaHasYes=yes,
( ValHasYes0=no, V0=no -> ValHasYes=no
; ValHasYes=yes
)

; PaHasYes=PaHasYes0,
ValHasYes=ValHasYes0

),
choose_noisy_or(X,Pa,PaVs,PaHasYes,ValHasYes,V).

choose_noisy_or/4 is a generalization of cpt_al/3 described above. Some might feel this
network-independent part procedural, but conversely we can say that this exhibits the flexibility of the
PRISM (and underlying Prolog) language. It is also possible to put the definition of choose_noisy_
or/4 into a separate library file loaded by the inclusion declaration (§2.6.5), and then the network-
specific part (namely, the definitions of world/2, world/6 and noisy_or/3) will be left more
declarative. The PRISM language only provides a simple built-in probabilistic predicate implementing
random switches, but as long as we deal with generative models, there seems to be ways to construct a
more abstract formalism combining these random switches. The p_not_table declarations are added
for making the inference results simple and readable.

The utility part should be modified accordingly. First, we add a couple of batch routines for setting
parameters:

set_params:-
set_sw(bn(fi,[]),[0.1,0.9]),
set_sw(bn(ta,[]),[0.15,0.85]),
set_sw(bn(sm,[yes]),[0.95,0.05]),
set_sw(bn(sm,[no]),[0.05,0.95]),
set_sw(bn(le,[yes]),[0.88,0.12]),
set_sw(bn(le,[no]),[0.01,0.99]),
set_sw(bn(re,[yes]),[0.75,0.25]),
set_sw(bn(re,[no]),[0.10,0.90]).

set_nor_params:-
( noisy_or(X,Pa,DistList),

set_nor_params(X,Pa,DistList),
fail

; true
).

set_nor_params(_,[],[]).
set_nor_params(X,[Y|Pa],[Dist|DistList]):-

set_sw(cause(X,Y),Dist),!,
set_nor_params(X,Pa,DistList).

:- set_params.
:- set_nor_params.
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In the above, set_nor_params/0 sets the switch parameters according to the specifications of the
noisy-OR nodes. To confirm whether the network-independent part of the model works well, let us
introduce the following routines:

print_dist_al:-
( member(Fi,[yes,no]),

member(Ta,[yes,no]),
member(Al,[yes,no]),
get_cpt_prob(al,[Fi,Ta],Al,P),
format("P(al=˜w | fi=˜w, ta=˜w):˜t˜6f˜n",[Al,Fi,Ta,P]),
fail

; true
).

print_expl_al:-
( member(Fi,[yes,no]),

member(Ta,[yes,no]),
member(Al,[yes,no]),
get_cpt_probf(al,[Fi,Ta],Al),
fail

; true
).

get_cpt_prob(X,PaVs,V,P):-
( prob(cpt(X,PaVs,V),P)
; P = 0.0
),!.

get_cpt_probf(X,PaVs,V):-
( probf(cpt(X,PaVs,V))
; format("cpt(˜w,˜w,˜w): always false˜n",[X,PaVs,V])
),!.

print_dist_al/0 shows the distribution of the Alarm node for each instantiations of its parents by
a failure-driven loop, and print_expl_al/0 shows a logical expression of the probabilistic behavior
of the Alarm node. get_cpt_prob/4 and get_cpt_probf/3 are just introduced for dealing with
the cases that prob/2 or probf/1 fails. Finally, we can confirm that the generic version of the alarm
network program with the noisy-OR rule works correctly:

?- print_dist_al.

P(al=yes | fi=yes, ta=yes): 0.940000
P(al=no | fi=yes, ta=yes): 0.060000
P(al=yes | fi=yes, ta=no): 0.700000
P(al=no | fi=yes, ta=no): 0.300000
P(al=yes | fi=no, ta=yes): 0.800000
P(al=no | fi=no, ta=yes): 0.200000
P(al=yes | fi=no, ta=no): 0.000000
P(al=no | fi=no, ta=no): 1.000000

?- print_expl_al.

cpt(al,[yes,yes],yes)
<=> msw(cause(al,fi),yes) & msw(cause(al,ta),yes)

v msw(cause(al,fi),yes) & msw(cause(al,ta),no)
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v msw(cause(al,fi),no) & msw(cause(al,ta),yes)
cpt(al,[yes,yes],no)

<=> msw(cause(al,fi),no) & msw(cause(al,ta),no)
cpt(al,[yes,no],yes)

<=> msw(cause(al,fi),yes)
cpt(al,[yes,no],no)

<=> msw(cause(al,fi),no)
cpt(al,[no,yes],yes)

<=> msw(cause(al,ta),yes)
cpt(al,[no,yes],no)

<=> msw(cause(al,ta),no)
cpt(al,[no,no],yes): always false
cpt(al,[no,no],no)

7.4 Statistical analysis
PRISM is a suitable tool for analyzing statistical data. In this section, we present three examples. In
the first example, we consider gene inheritance of human’s blood type again, and show a typical way to
answer the question of model selection. The second example attempts to find a probabilistic justification
for a common practice seen in tennis games: players serve second services more conservatively than first
services. We write a program to demonstrate that the percentage of points won would normally decline
should a player serve second services as hard as first ones. The third example attempts to obtain statistics
that can be used to tune the unification procedure.

7.4.1 Another hypothesis on blood type inheritance
The ABO gene model on the inheritance of ABO blood type, described in §1.2, was introduced in early
20th century [10]. Around that time, there was another hypothesis that we have two loci for ABO blood
type with dominant alleles A/a and B/b. According to this hypothesis, genotypes aabb, A∗bb, aaB∗ and
A∗B∗ correspond to the blood types (phenotypes) O, A, B and AB, respectively, where ∗ stands for a
“don’t care” symbol. In this section, let us call this hypothesis the AaBb gene model. The following is a
PRISM program for the AaBb gene model:

%%%% Declarations:

target(bloodtype,1).
data(’bloodtype.dat’).

values(locus1,[’A’,a]).
values(locus2,[’B’,b]).

%%%% Modeling part:

bloodtype(P) :-
genotype(locus1,X1,Y1),
genotype(locus2,X2,Y2),
( X1=a, Y1=a, X2=b, Y2=b -> P=o
; ( X1=’A’ ; Y1=’A’ ), X2=b, Y2=b -> P=a
; X1=a, Y1=a, ( X2=’B’ ; Y2=’B’) -> P=b
; P=ab

93



).

genotype(L,X,Y) :- msw(L,X),msw(L,Y).

In this program, we use two random switches each of which represents a random pick-up of a gene in
the corresponding locus. The question here is which hypothesis from these two hypotheses on blood
type inheritance (i.e. the ABO gene model and the AaBb gene model) is more plausible. To answer this
question, we consider to use a Bayesian model score called BIC (Bayesian Information Criterion). One
may notice that this is an example of a problem of model selection.

Suppose that bloodABO.psm and bloodAaBb.psm are the program files for the ABO gene model
(given in §1.2) and for the AaBb gene model (given just above), respectively. We also assume that a data
file named bloodtype.dat which contains 38 persons of blood type A, 22 persons of blood type B,
31 persons of blood type O and 9 persons of blood type AB. The ratio of frequencies of blood types in
this data is almost the same as that in Japanese people. Lastly, for simplicity, we consider that either
program has the following data file declaration:

data(’bloodtype.dat’).

Under these settings, we first load bloodABO.psm, and then call a built-in for EM learning. Finally
we can get the BIC value as −132.667082:

?- prism(bloodABO).
:

?- learn.
#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iterations: 0(5) (Converged: -128.061911600)
Statistics on learning:

Graph size: 27
Number of switches: 1
Number of switch instances: 3
Number of iterations: 5
Final log likelihood: -128.061911600
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 5888 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
Switch gene: unfixed_p: a (p: 0.272288804) b (p: 0.169511387) o (p: 0.55
8199809)

:
?- learn_statistics(bic,BIC).
BIC = -132.667081786147037 ?

On the other hand, we repeat the same procedure for bloodAaBb.psm, and get the BIC value as
−135.649847:

?- prism(bloodAaBb).
:

?- learn.
#goals: 0(4)
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Exporting switch information to the EM routine ...
#em-iterations: 0(5) (Converged: -131.044676485)
Statistics on learning:

Graph size: 48
Number of switches: 2
Number of switch instances: 4
Number of iterations: 5
Final log likelihood: -131.044676485
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 7808 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
Switch locus1: unfixed_p: A (p: 0.272006612) a (p: 0.727993388)
Switch locus2: unfixed_p: B (p: 0.169341684) b (p: 0.830658316)

:
?- learn_statistics(bic,BIC).
BIC = -135.649846671234258 ?

As a result, the ABO gene model has a larger BIC value, so we can conclude that the ABO gene model
is more plausible than the AaBb gene model according to the data in bloodtype.dat.

7.4.2 Why not serving second services as hard in tennis?
In tennis games, we observe a common practice, namely, players normally serve second services much
more conservatively than serving first services. Most people accept the practice without asking why. We
write a program to model the statistical relationship between serving and winning in tennis games and
use real statistics of Andy Roddick, one of top players, to answer the question.

In tennis, a player has at most two chances to serve in each point. If the first service is a fault, he has
another chance to serve. If both services are faults, he loses the point. The following program models
this process.

values(serve(_),[in,out]). % switches serve(1) serve(2)
values(result(_),[win,loss]). % switches result(1) result(2)

target(play,1).

play(Res):-
msw(serve(1),S1),
(S1==in ->

msw(result(1),Res);
msw(serve(2),S2),
(S2==in ->

msw(result(2),Res);
Res=loss)).

We use two switches, serve(1) and serve(2), to represent the outcomes of services, and use
another two switches, result(1) and result(2), to represent the results: result(1) gives the
result of the point when the first service is legal and result(2) the result of the point when the second
service is legal. The result is loss if both services are faults.
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The following sets the parameters of the switches based on Andy Roddick’s statistics: his serving
percentages are 61 and 95 at first and second services, respectively, and his percentages of points won at
two services are 81 and 56, respectively.

roddick:-
set_sw(serve(1),[0.61,0.39]),
set_sw(serve(2),[0.95,0.05]),
set_sw(result(1),[0.81,0.19]),
set_sw(result(2),[0.56,0.44]).

From the program and the switch parameters, we know Andy Roddick’s wining probability is 0.70158.

?- prob(play(win),Prob)
Prob = 0.70158

If Andy Roddick served second services like first services, the predicate play should be redefined as
follows:

play(Res):-
msw(serve(1),S1),
(S1==in ->

msw(result(1),Res);
msw(serve(1),S2),
(S2==in ->

msw(result(1),Res);
Res=loss)).

His winning probability would decline to 0.686799. This explains why serious tennis players serve
second services much more conservatively than first services although the percentage of points won at
first services is much higher than that at second services.

7.4.3 Tuning the unification procedure
Given two terms, the unification procedure determines if they are unifiable, and if so finds a substitution
for the variables in the two terms to make them identical. A term is one of the following four types:
variable, atomic, list, and structure. The unification procedure behaves as follows:

unify(t1,t2) {
if (t1 is variable) bind t1 to t2;
else if (t1 is atomic){

if (t2 is variable) bind t2 to t1;
else return t1==t2;

} else if (t1 is a list){
if (t2 is variable) bind t2 to t1;
else if (t2 is a list)

return unify(car(t1),car(t2)) && unify(cdr(t1),cdr(t2));
else return false;

} else if (t1 is a structure){
if (t2 is variable) bind t2 to t1;
else if (t2 is a structure) {

let t1 be f(a1,. . . ,an) and t2 be g(b1,. . . ,bm);

96



if (f != g || m != n) return false;
return unify(a1,b1) && . . . && unify(an,bn);

} else return false;
}

}

Since the order of tests affects the speed of the unification procedure, one question arises: how to tune
the procedure such that it performs fewest tests on a set of sample data.

The following shows a PRISM program written for this purpose:

target(prob_unify/3).
values(s1,[var,atom,list,struct]).
values(s2(_),[var,atom,list,struct]). %switches: s2(var),s2(atom),...

data(’unification.dat’).

prob_unify(T1,T2,Res):-
get_type(T1,Type1),
msw(s1,Type1),
get_type(T2,Type2),
msw(s2(Type1),Type2),
unify(T1,T2,Res).

unify(T1,T2,Res):-var(T1),!,T1=T2,Res=true.
unify(T1,T2,Res):-var(T2),!,T1=T2,Res=true.
unify(T1,T2,Res):-atomic(T1),!,(T1==T2->Res=true;Res=false).
unify([H1|T1],[H2|T2],Res):-!,

prob_unify(H1,H2,Res1),
(Res1=true->prob_unify(T1,T2,Res);Res=false).

unify(T1,T2,Res):-
functor(T1,F1,N1),
functor(T2,F2,N2),!,
((F1\=F2;N1\=N2)->Res=false;
unify(T1,T2,1,N1,Res)).

unify(T1,T2,N0,N,Res):-N0>N,!,Res=true.
unify(T1,T2,N0,N,Res):-

arg(N0,T1,A1),
arg(N0,T2,A2),
prob_unify(A1,A2,Res1),
N1 is N0+1,
(Res1=true->unify(T1,T2,N1,N,Res);Res=false).

get_type(T,var):-var(T),!.
get_type(T,atom):-atomic(T),!.
get_type(T,list):-nonvar(T),T=[_|_],!.
get_type(T,struct):-nonvar(T),functor(T,F,N),N>0.

In learning mode, this program basically counts the occurrences of each type encountered in execution.
The switch s1 gives the probability distribution of the types of the first argument, and for each type of
the first argument T the switch s2(T) gives the probability distribution of the second argument.

For the following sample data stored in ’unification.dat’

prob_unify(f(A,B,1,C),f(0,0,0,1),false).
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prob_unify(A,def,true).
prob_unify(g(A,B),g(A,fin),true).

we can conduct learning and see the results of learning as follows:

?- learn.

#goals: 0(3)
Exporting switch information to the EM routine ...
#em-iterations: 0(2) (Converged: -9.704060528)
Statistics on learning:

Graph size: 35
Number of switches: 4
Number of switch instances: 16
Number of iterations: 2
Final log likelihood: -9.704060528
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 12688 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.

Switch s1: unfixed_p: var (p: 0.625000000) atom (p: 0.125000000) list
(p: 0.000000000) struct (p: 0.250000000)
Switch s2(atom): unfixed_p: var (p: 0.000000000) atom (p: 1.000000000)
list (p: 0.000000000) struct (p: 0.000000000)
Switch s2(struct): unfixed_p: var (p: 0.000000000) atom (p: 0.00000000
0) list (p: 0.000000000) struct (p: 1.000000000)
Switch s2(var): unfixed_p: var (p: 0.200000000) atom (p: 0.800000000)
list (p: 0.000000000) struct (p: 0.000000000)

From this result, we know how to order the tests of types so that the unification procedure performs the
best on the samples.

7.5 Dieting professor*
The last example is a program that deals with failures in the generation process. Let us consider a scenario
as follows. There is a professor who takes a lunch everyday at one of two restaurants ‘s0’ and ‘s1’, and
he changes the restaurant to visit probabilistically. Also as he is on a diet, he needs to satisfy a constraint
that the total calories for lunch in a week are less than 4K calories. He probabilistically orders pizza
(which is denoted by ‘p’ and has 900 calories) or sandwich (‘s’; 400 calories) at the restaurant ‘s0’, and
hamburger (‘h’; 400 calories) or sandwich (‘s’; 500 calories) at the restaurant ‘s1’. He records what
he has eaten like [p,s,s,p,h,s,h] in a week and he preserves the record if and only if he succeeds
in keeping the constraint. For example, we have a list of preserved records, and attempt to estimate the
probability that he violates the constraint.

First of all, let us introduce a two-state hidden Markov model (HMM), shown in Figure 7.5, as a
basic model that captures the professor’s probabilistic behavior. We then try to write a PRISM program
which represents this basic model with the additional constraint on the total calories. Hereafter we call
the model a constrained HMM. Let us proceed to describe the program. From Figure 7.5, we can see that
four switches are required as follows:
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s0 s1

pizza(p)
or sandwitch(s)

hamberger(h)
or sandwitch(s)

Figure 7.5: State transition diagram of the dieting professor.

values(tr(s0),[s0,s1]).
values(tr(s1),[s1,s0]).
values(lunch(s0),[p,s]). % pizza:900, sandwich:400
values(lunch(s1),[h,s]). % hanburger:400, sandwich:500

where the switches named tr(·) choose the next restaurant, and those named lunch(·) select the
menu of lunch at the chosen restaurant.

The central part of the model is chmm/4, which is defined as follows:

chmm(L,S,C,N):- N>0,
msw(tr(S),S2),
msw(lunch(S),D),
( S == s0,

( D = p, C2 is C+900
; D = s, C2 is C+400 )

; S == s1,
( D = h, C2 is C+400
; D = s, C2 is C+500 )

),
L=[D|L2],
N2 is N-1,
chmm(L2,S2,C2,N2).

chmm([],_,C,0):- C < 4000.

This predicate behaves similarly to hmm/3 (§7.1), a recursive routine, except that chmm/4 has an addi-
tional argument that accumulates the total calories in a week. It is important to notice here that, when the
recursion terminates, the total calories will be checked in the second clause, and if the total calories vio-
late the constraint, the predicate chmm/4 totally fails. This corresponds to the scenario that the professor
only preserves the record if and only if he succeeds to keep the constraint.

To learn the parameters from his records, or to know the probability that he fails to keep the constraint,
we need to make further settings. For example, we may define the four predicates as follows:

failure:- not(success).
success:- success(_).
success(L):- chmm(L,s0,0,7).
failure(L):- not(success(L)).

From the definition of chmm/4, success(L) says that the professor succeeds to keep the constraint
with the menus L. So success/0 indicates the fact that he succeeds to keep the constraint. failure/0
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is the negation of success/0 and therefore means that he fails to satisfy the constraint. failure(L)
is optional here but says that he fails to keep the constraint due to the menus L. Then we made the rest of
declarations:

target(success,1).
target(failure,0).
data(user).

We consider the predicates success/1 and failure/0 as observable predicates, and we use learn/1
as a learning command.

The experiment we attempt is artificial, similarly to those with HMMs (§7.1) and discrete Bayesian
networks (§7.3) — we first generate samples under the predefined parameters, and then learn the pa-
rameters from the generated samples. For this experiment, we define a predicate in the utility part, that
specifies some predefined parameters:

set_params:-
set_sw(tr(s0),[0.7,0.3]),
set_sw(tr(s1),[0.7,0.3]),
set_sw(lunch(s0),[0.4,0.6]),
set_sw(lunch(s1),[0.5,0.5]).

Now we are in a position to start the experiment. We first load the program with the built-in
prismn/1 (please note ‘n’ at the last of the predicate name):

?- prismn(chmm).

step1.
step2.
step3.
Compilation done by FOC

compiled in 12 milliseconds
loading::temp.out

yes

Let us recall that the definition clauses of failure/0 and failure/1 have negation not/1 in
their bodies. This is not negation as failure (NAF), and we need a special treatment for such negation.
prismn/1 calls an implementation of First Order Compiler (FOC) [29] to eliminate negation not/1.
In the messages above, the messages from “step1” to “Compilation done by FOC” are pro-
duced by the FOC routine, and we may notice that the predicates whose names start with ‘closure_’
are newly created by the FOC routine and registered as table predicates (because they are probabilistic).

After loading, we set the parameters by set_params/0, and confirm the specified parameters:

?- set_params,show_sw.

Switch lunch(s0): unfixed_p: p (p: 0.400000000) s (p: 0.600000000)
Switch lunch(s1): unfixed_p: h (p: 0.500000000) s (p: 0.500000000)
Switch tr(s0): unfixed_p: s0 (p: 0.700000000) s1 (p: 0.300000000)
Switch tr(s1): unfixed_p: s1 (p: 0.700000000) s0 (p: 0.300000000)

We can compute the probability that the professor fails to keep the constraint under the parameters above:
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?- prob(failure).
Probability of failure is: 0.348592596784000

From this, we can say that the professor skips preserving the record once in three weeks.
To make it sure that the program correctly represents our model (in particular, the definition of the

failure predicate), we may give a couple of queries. For example, the following query confirms
whether the sum of the probability that the professor satisfy the constraint and the probability that he
does not becomes unity:8

?- prob(success,Ps),prob(failure,Pf),X is Ps+Pf.

Pf = 0.348592596784
Ps = 0.651407403215999
X = 0.999999999999998 ?

Or we have a similar query which is limited to some specific menu (obtained as L by sampling):

?- sample(success(L)),
prob(success(L),Ps),prob(failure(L),Pf),
X is Ps+Pf.

Pf = 0.9999321868
Ps = 0.0000678132
L = [s,p,h,s,h,p,h]
X = 1.0 ?

It is confirmed for each goal appearing in the queries above that the sum of probabilities of the goal and
its negation is always unity, so we can proceed to a learning experiment. To conduct it, we use the built-in
get_samples_c/4 to generate 500 samples (note that we cannot simply use get_samples/3 since
a sampling of success(L) may fail), and invoke the learning command with the samples:

?- get_samples_c([inf,500],success(L),true,Gs),learn([failure|Gs]).

sampling -- #success = 500
sampling -- #failure = 249
#goals: 0.........100.........200......(266)
Exporting switch information to the EM routine ...
#em-iterations: 0........(83) (Converged: -2964.788301553)
Statistics on learning:

Graph size: 9328
Number of switches: 4
Number of switch instances: 8
Number of iterations: 83
Final log likelihood: -2964.788301553
Total learning time: 0.036 seconds
Explanation search time: 0.016 seconds
Total table space used: 1486208 bytes

Type show_sw or show_sw_b to show the probability distributions.
Gs = [success([s,s,s,h,s,h,h]),success([s,p,h,s,h,h,s]),

... omitted ...
success([s,p,h,h,s,p,s]),success([p,s,s,s,h,s,s])] ?

yes

8 Unfortunately, as shown here, the actual result of the sum will not always be unity for precision errors.
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It should be noted that, if a special symbol failure is included to the goals in learn/1, the EM
algorithm considering failure called the failure-adjusted maximization (FAM) algorithm will be invoked.
After learning, we can confirm the learned parameters as usual:

?- show_sw.

Switch lunch(s0): unfixed_p: p (p: 0.380041828) s (p: 0.619958172)
Switch lunch(s1): unfixed_p: h (p: 0.537922906) s (p: 0.462077094)
Switch tr(s0): unfixed_p: s0 (p: 0.714988121) s1 (p: 0.285011879)
Switch tr(s1): unfixed_p: s1 (p: 0.677016948) s0 (p: 0.322983052)
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Concept Index

ε (threshold for convergence), 48

a posteriori distribution, 7–9, 54, 67
a posteriori probability, 7, 48, 51, 54

unnormalized —, 50, 53
acyclicity condition, 16, 22, 59
AND/OR graph, 15
annealing schedule, 52

B-Prolog, 27
backoff smoothing, 37
backward probability computation, 6
batch execution, 9, 31, 56, 72, 79
Baum-Welch algorithm, 6
Bayesian Information Criterion, 53–55, 94
Bayesian network, 22, 55, 66, 82

multiply-connected —, 86, 87
singly-connected —, 83

Bayesian score, 54
belief propagation, 89
BIC, see Bayesian Information Criterion
BN, see Bayesian network

CAR condition, see coarsened-at-random con-
dition

Cheeseman-Stutz score, 37, 53–55
coarsened-at-random condition, 21
combination rule, 89
compilation (of the program), 28
complete data, 37, 47, 48, 51, 65
completion, 16
conditional probability table, 82–84
conditions on the model, see modeling assump-

tion
constant scaling, 56, 57, 61
constrained HMM, 98
constraint, 6, 98, 99
control stack + heap, 29
CPT, see conditional probability table
CS score, see Cheeseman-Stutz score
CSV format, 63, 64
cut symbol, 1, 13

DAEM algorithm, see deterministic annealing
EM algorithm

data file declaration, 22, 23, 49
data parallelism, 9, 71

data sparseness, 7, 48, 65
debugging, 30

printf —, 31
declaration, 1, 11
definite clause grammar, 81
deterministic annealing EM algorithm, 51, 56,

58, 59, 68, 69
difference list, 81, 89
Dirichlet distribution, 7, 33, 48, 50
distributed memory computing, 71
distribution semantics, 11, 12, 22
dynamic load balancing, 71
dynamic programming, 6, 16, 66, 67

EM algorithm, see expectation-maximization al-
gorithm

EM learning, see expectation-maximization al-
gorithm

evidence, 89
exclusiveness condition, 6, 22, 39
executable model, 13
execution flag, 7, 29, 57
expectation-maximization algorithm, 6, 20, 47,

48, 51, 59–61, 71, 102
convergence of —, 48, 50, 59, 60
deterministic annealing —, see determinis-

tic annealing EM algorithm
expectation step of —, 47, 71
initialization step of —, 47
maximization step of —, 48, 71
multiple runs of —, see restart
variational Bayesian —, see variational Bayesian

EM algorithm
expected occurrence, 7, 37, 47, 48, 66, 71
explanation, 15, 22, 47

most probable —, see Viterbi explanation
Viterbi —, see Viterbi explanation

explanation graph, 15, 16, 39, 53, 61
explanation path, 31
explanation search, 13, 15, 17, 29, 31, 33, 39,

47, 57, 58, 61, 71, 76

failure (in the generation process), 6, 19, 55, 98,
102

failure probability, 55, 56
failure-adjusted maximization algorithm, 6, 20,
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failure-driven loop, 15
FAM algorithm, see failure-adjusted maximiza-

tion algorithm
file IO, 62
finite geometric distribution, 34, 58
finiteness condition, 15, 22
First Order Compiler, 6, 20, 55, 100
FOC, see First Order Compiler
forward probability computation, 6
forward sampling, 14, 31
forward-backward algorithm, see Baum-Welch

algorithm
free energy

— in statistical mechanics, 51, 68
variational —, see variational free energy

general clause, 20
generation process, 5, 6, 19, 55, 76, 90, 98
generative manner in programming, 5, 12, 22
generative model, 5, 6, 22, 55
goal, see probabilistic goal
goal-count pair, 49, 53, 54

hidden Markov model, 4, 6, 22, 66, 71, 75, 98
Mealy-type —, 18
Moore-type —, 18

hindsight computation, 13, 15, 43, 61
hindsight probability, 43, 61

conditional —, 46, 86
HMM, see hidden Markov model
hyperparameter, 7, 33, 35, 38, 59, 66–69

if-then statement (->), 1, 13
(ordered) iff-formula, 16, 39
inclusion declaration, 22, 26, 91
incomplete data, 47, 48, 51, 65
independence condition, 12, 21, 39
independent and identically distributed (i.i.d.),

19, 71
inside probability, 43
installation, 27
inter-goal sharing, 74
inverse temperature, 52, 56, 59, 68

increasing rate of —, 52
initial value of —, 52

junction tree, 86, 88
junction-tree algorithm, 86

Laplace smoothing, 48
likelihood, 19, 47, 51, 53, 54

linear tabling, 6, 15
loading (the program), 22, 25, 28, 55
local maximum, 51, 52, 60, 77
log-valued probability, 60

— computation, 56, 57, 60
logical variable, 3, 12, 20

MAP estimation, see maximum a posteriori es-
timation

MAR condition, see missing-at-random condi-
tion

marginal likelihood, 54, 55, 65
approximation of —, 66

master process, 71–73
master-slave model, 71
maximum a posteriori estimation, 7, 48, 50, 59,

60, 78
maximum likelihood estimation, 3, 7, 19, 47,

48, 59, 60
memory area, 29

automatic expansion of —, 29
Mersenne Twister, 61
missing-at-random condition, 6, 20, 22
missing-data mechanism, 20

ignorable —, 21
non-ignorable —, 21

ML estimation, see maximum likelihood esti-
mation

MLE, see maximum likelihood estimation
model selection, 7, 54, 65, 94
modeling assumption, 13, 21
modeling part, 5, 11, 13, 54, 75, 99
MPI (message passing interface), 71
MPICH, 72
multi-valued switch declaration, 22, 23, 33, 34,

62

negation, 56
negation as failure, 20, 100
negative binomial distribution, 56
no-failure condition, 19, 22
noisy OR, 89

inhibition probability in —, 89, 90
non-probabilistic predicate, 5, 11
non-tabled predicate, 25

observation process, 20, 22
observed data, 3, 23
observed goal, 3, 47, 48, 54, 71, 75, 84
outside probability, 43
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parallel EM learning, 9
parameter, 3, 7, 12, 19, 24, 33–37, 47, 48, 59,

69
fixed —, 35, 51
mean value of a —, 60, 67–69
point-estimated —, 7, 67, 69

parameter distinctness condition, 21
parameter learning, 3, 6, 13, 15, 20, 22, 33, 47,

48, 77, 84, 100
partially observing situation, 3, 5, 47
PCFG, see probabilistic context-free grammar
prior distribution, 7, 33, 48, 54

uninformative —, 66
prior probability, 53
probabilistic choice, 1
probabilistic context-free grammar, 22, 66, 71,

80
probabilistic goal, 3, 14
probabilistic inference, 13
probabilistic model, 11
probabilistic parsing, 82
probabilistic predicate, 1, 11, 28
probability calculation, 13, 15, 39
processor-farm approach, 71
program area, 29
program transformation, 55
propositionalization, 15
pseudo count, 7, 25, 33, 35, 37, 38, 48, 50, 58–

60, 66, 78

query, 22, 79

random number generator, 61
random switch, see switch, 11
reranking, 60, 67, 69
restart, 50, 51, 54, 60, 78

sampling, 3, 13, 14, 31, 39
sampling execution, 13–15, 17, 29, 33, 38, 76
scaling, 60
scaling factor, 56, 57, 61
slave process, 71–73
solution table, 15, 57

automatic cleaning of —, 57, 58
spy point, 30
statistics on probabilistic inferences, 53, 55
sub-explanation, 16, 39
subgoal, 16

encoded —, 41
supervised learning, 47

switch, 1, 12, 33–37
default distribution of a —, 24, 34, 58, 59
default pseudo count of a —, 59
default pseudo counts of a —, 35, 58
hyperparameter of a —, see hyperparame-

ter
name of a —, 12, 33
outcome of a —, 12, 33
outcome space of a —, 1, 12, 23, 36, 37,

59
— that dynamically changes, 24

parameter of a —, see parameter
pseudo count of a —, see pseudo count
registration of a —, 7, 33, 34, 36

switch information, 36–38
switch instance, 3, 7, 12, 15, 39

encoded —, 41

table area, 29, 57
table declaration, 22, 25
tabled predicate, 25
tabling, 11, 15, 16
target declaration, 22
target predicate, 23
trace mode, 17, 30
trail stack, 29
training data, 47

underflow problem, 42, 56, 60
uniform distribution, 2, 34, 58
uniqueness condition, 6, 22
utility part, 5, 11, 22, 76, 84, 100

variational Bayesian EM algorithm, 66, 68
expectation step of —, 66
initialization step of —, 66
maximization step of —, 66

variational Bayesian learning, 7, 59, 60
repeated runs of —, 60

variational free energy, 53, 54, 65, 66, 68
VB learning, see variational Bayesian learning
VB-EM algorithm, see variational Bayesian EM

algorithm
Viterbi computation, 7, 9, 13, 15, 41, 56, 60, 65

log-valued —, 56, 60
N- —, see top-N Viterbi computation
top-N —, 42, 69

Viterbi explanation, 41, 42, 69, 77
top-N —, 42, 67

Viterbi probability, 41, 77
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top-N —, 42

warning message, 61
work pool, 71
work-pool approach, 71, 73
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Programming Index

.out (file suffix), 28, 29

.psm (file suffix), 28

abort/0 (B-Prolog built-in), 32
avg_shared (statistic), 53

bic (statistic), 53

chindsight/1, 46
chindsight/2, 46
chindsight/3, 46, 64
chindsight_agg/2, 46, 86, 88, 89
chindsight_agg/3, 46, 64
clean_table (execution flag), 57, 58, 64
compile (prism/2 option), 28
compile/1 (B-Prolog built-in), 28
consult (prism/2 option), 18, 28, 30
count/2, 49
cs (statistic), 53

daem (execution flag), 52, 58
data/1, 23, 49, 75, 84, 94, 97, 100
default_sw (execution flag), 34, 58
default_sw_h (execution flag), 7, 35, 50, 58
dice/2, 62
dice/3, 62
dynamic_default_sw (execution flag), 59
dynamic_default_sw_h (execution flag),

59

em_progress (execution flag), 59
em_time (statistic), 53
epsilon (execution flag), 48, 59
error_on_cycle (execution flag), 59
expand_values/2, 25, 62

f_geometric (built-in distribution form), 34
failure (constant for learn/1), 20, 56, 102
failure/0, 19, 20, 32, 55, 99, 100
failure/1, 100
fix_init_order (execution flag), 59
fix_sw/1, 35, 84
fix_sw/2, 25, 35
fix_sw_h/1, 35
fix_sw_h/2, 25, 35
foc/2, 56
free_energy (statistic), 53

get_goal_counts/1, 54
get_goals/1, 54
get_prism_flag/2, 58
get_prism_flags/2, 29
get_samples/3, 5, 38, 76, 84, 101
get_samples_c/4, 38, 39, 101
get_samples_c/5, 39
get_subgoal_hashtable/1, 41
get_sw/1, 36
get_sw/2, 36
get_sw/4, 36, 37
get_sw/5, 37
get_sw_b/1, 37
get_sw_b/2, 37
get_sw_b/5, 37
get_sw_b/6, 37
get_sw_h/1, 37
get_sw_h/2, 37
get_switch_hashtable/1, 41
goal_counts (statistic), 53
goals (statistic), 53
graph_statistics/0, 53
graph_statistics/2, 53

halt/0, 28
halt/0 (B-Prolog built-in), 32
hindsight/1, 44, 45, 78
hindsight/2, 43, 44, 46, 47
hindsight/3, 29, 43, 44, 64
hindsight_agg/2, 45, 46
hindsight_agg/3, 46, 64

include/1, 26, 28
infer_calc_time (statistic), 53
infer_search_time (statistic), 53
infer_statistics/0, 53
infer_statistics/2, 53
infer_time (statistic), 53
init (execution flag), 59, 61
initialize_table/0 (B-Prolog built-in),

57
itemp_init (execution flag), 52, 59
itemp_rate (execution flag), 52, 59

lambda (statistic), 53
learn/0, 29, 49, 69, 94, 98
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learn/1, 4, 5, 8, 23, 29, 31, 32, 48–50, 56,
68, 69, 76, 84, 101

learn_b/0, 69
learn_b/1, 69
learn_h/0, 68
learn_h/1, 68
learn_mode, 69
learn_mode (execution flag), 8, 59, 68, 69
learn_p/0, 69
learn_p/1, 69
learn_search_time (statistic), 53
learn_statistics/0, 53
learn_statistics/2, 53, 55, 94
learn_time (statistic), 53
load (prism/2 option), 29
load/1 (B-Prolog built-in), 28, 29
load_clauses/2, 62
load_clauses/3, 62
load_clauses/4, 62
load_csv/2, 63, 64
load_csv/3, 63, 64
log_likelihood (statistic), 53
log_post (statistic), 53
log_prior (statistic), 53
log_prob/1, 39
log_prob/2, 39
log_viterbi (execution flag), 42, 56, 60

max_iterate (execution flag), 60
mpprism (system command/file), 9, 27, 72
msw/2, 1, 11, 12, 14, 17, 31, 33, 39, 62, 75

n_viterbi/2, 42
n_viterbi/3, 42
n_viterbif/2, 42, 69, 82
n_viterbif/3, 42
n_viterbig/2, 42
n_viterbig/3, 42, 43
nospy/0 (B-Prolog built-in), 30
nospy/1 (B-Prolog built-in), 30
not/1, 20, 55, 100
not/1 (B-Prolog built-in), 20
notrace/0, 30
NPROCS (environment variable), 72
num_goal_nodes (statistic), 53
num_iterations (statistic), 53
num_nodes (statistic), 53
num_parameters (statistic), 53
num_subgraphs (statistic), 53
num_switch_nodes (statistic), 53

num_switch_values (statistic), 53
num_switches (statistic), 53
nv (prism/2 option), 29

p_not_table, 25, 31, 80, 91
p_table, 25
params_after_vbem (execution flag), 60, 69,

70
parse_atom/2 (B-Prolog built-in), 32
print_graph/1, 41, 42
print_graph/2, 41, 42
print_graph/3, 41
prism (system command/file), 1, 27–29, 31,

76
prism.bat (system command/file), 29
prism/1, 2, 20, 28, 29, 76, 85
prism/2, 28
prism_help/0, 29, 30
prism_main/0, 9, 31, 73
prism_main/1, 9, 32, 73, 79
PRISM_MPIRUN_OPTS (environment variable),

72
prism_statistics/2, 53, 54
prismn/1, 20, 55, 56, 100
prismn/2, 56
prob/1, 3, 39, 81, 92, 100
prob/2, 29, 39, 96, 101
probef/1, 40
probef/2, 40
probf/1, 15, 30, 40, 41, 76, 92
probf/2, 15, 16, 26, 29, 30, 39, 60, 64

random_float/2, 61
random_int/2, 61
reduce_copy (execution flag), 60, 64
rerank (execution flag), 60, 69
reset_hparams (execution flag), 60
restart (execution flag), 51, 60
restore_sw/0, 38
restore_sw/1, 38
restore_sw_h/0, 38
restore_sw_h/1, 38

sample/1, 2, 3, 14, 29, 38, 76, 100, 101
save_clauses/2, 63
save_clauses/3, 63
save_clauses/4, 63
save_sw/0, 37, 73
save_sw/1, 37, 73
save_sw_h/0, 38
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save_sw_h/1, 38
Saved_SW (system command/file), 37, 38
Saved_SW_H (system command/file), 38
scaling (execution flag), 56, 57, 60
scaling_factor (execution flag), 57, 61
search_progress (execution flag), 61
set_prism_flag/2, 7, 34, 50, 57, 78
set_prism_flags/2, 29
set_seed/1, 31, 32, 61
set_seed_time/0, 61
set_seed_time/1, 62
set_sw/1, 34
set_sw/2, 2, 5, 25, 29, 33, 34, 76, 81, 84, 96,

100
set_sw_all/0, 35
set_sw_all/1, 34
set_sw_all/2, 34
set_sw_all_h/0, 35, 61
set_sw_all_h/1, 35, 61
set_sw_all_h/2, 35, 50, 61, 78
set_sw_h/1, 35
set_sw_h/2, 25, 33, 35
show_flags/0, 58
show_goals/0, 54, 85
show_prob_preds/0, 33
show_sw, 36
show_sw/0, 2, 4, 49, 50, 77, 85, 100, 102
show_sw/1, 36
show_sw_b/0, 8, 36
show_sw_b/1, 36
show_sw_h/0, 36
show_sw_h/1, 36
show_tabled_preds/0, 33
show_values/0, 33
smooth (execution flag), 58, 61
sort_hindsight (execution flag), 46, 47, 61
spy/1, 30
statistics/0 (B-Prolog built-in), 29
std_ratio (execution flag), 59, 61

table (B-Prolog built-in), 24, 26
target/1, 1, 3, 22, 80, 97
target/2, 22, 75, 84, 95, 100
temp (system command/file), 56
trace/0, 18, 26, 30

unfix_sw/1, 35, 84
unfix_sw_h/1, 35
uniform (built-in distribution form), 34

upprism (system command/file), 9, 27, 31, 32,
56, 79

upprismn (system command/file), 32

v (prism/2 option), 29
values/2, 1, 14, 23, 24, 75, 80, 84, 95, 97, 98
values_x/2, 24, 25, 62
values_x/3, 24, 25, 62
verb (execution flag), 61, 74
viterbi/1, 41
viterbi/2, 41
viterbi_mode (execution flag), 9, 61, 69
viterbi_subgoals/2, 43
viterbi_switches/2, 43
viterbif/1, 6, 41, 43, 69, 77, 82
viterbif/3, 26, 29, 42, 60, 64
viterbif_h/1, 70
viterbif_p/1, 70
viterbig/1, 42, 64
viterbig/2, 42, 64
viterbig/3, 42

warn (execution flag), 61
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Example Index

AaBb gene model, 93
ABO gene model, 93
agree/1, 19, 20, 55, 56
agreement program, 19, 55, 56
alarm network program, 82–86

— using noisy OR, 90
alarm_learn/1, 85
Asia network program

junction-tree version of —, 88–89
naive version of —, 86–88

Bayesian network program, 82–93
blood type, 2
blood type program, 2, 7–9, 12, 14, 15, 23, 46,

47
AaBb —, 93–95

bloodtype/1, 2, 12, 14, 15, 93

choose_noisy_or/4, 90
choose_noisy_or/6, 90
cpt/4, 88, 89
cpt_al/3, 90

dieting professor program, 98–102
direction program, 1, 31, 36, 38, 39, 48–50, 54
direction/1, 1, 2, 31, 38, 39, 48, 50

failure/1, 99

genotype, 2
genotype/2, 2, 12, 14
genotype/3, 93

Hardy-Weinberg’s law, 2
HMM program, 4–6, 9, 15, 17, 38–41, 43, 44,

46, 52, 75–80
— with two state variables, 44
Mealy-type —, 19
Moore-type —, 17

hmm/1, 4–6, 15, 16, 39–41, 43, 44, 75
hmm/4, 4, 16, 39–41 , 43, 44, 75
hmm_learn/1, 5, 9, 76, 77

incl_or/3, 87

msg_i_ j predicates, 88, 89

node_i predicates, 88, 89

noisy_or/3, 90
nonterminal/1, 80

PCFG program, 73, 80–82
pcfg/1, 80, 81
pcfg/2, 80, 81
phenotype, 2
proj/2, 80

random mating, 2, 4

set_params/0, 5, 76, 87
success/0, 19, 20, 99
success/1, 99

tennis program, 95–96

unification program, 96–98

world/1, 88
world/2, 67, 84, 86, 90
world/4, 87
world/6, 67, 83, 86, 87, 90

113


	Overview of PRISM
	Building a probabilistic model with random switches
	Basic probabilistic inference and parameter learning
	Utility programs and advanced probabilistic inferences
	Handling failures in the generation process*
	Bayesian approaches in PRISM*
	Parallel EM learning*

	PRISM Programs
	Overall organization
	Basic semantics
	Probabilistic inferences
	Modeling part
	Sampling execution
	Explanation search
	Additional notes on writing the modeling part
	Handling failures*
	Learning from goals with logical variables*
	Summary: modeling assumptions

	Utility part
	Declarations
	Target declarations
	Data file declaration
	Multi-valued switch declarations
	Table declarations
	Inclusion declarations
	Mode declarations


	PRISM Programming System
	Installing PRISM
	Windows
	Linux
	Mac OS X

	Entering and quitting PRISM
	Loading PRISM programs
	Configuring the sizes of memory areas*
	Running PRISM programs
	Debugging PRISM programs
	Batch execution*
	Error handling

	PRISM Built-in Utilities
	Program information
	Random switches
	Making probabilistic choices
	Registration of switches
	Setting the parameters/hyperparameters of switches
	Fixing the parameters/hyperparameters of switches
	Displaying the switch information
	Getting the switch information
	Saving the switch information

	Sampling
	Probability calculation
	Explanation graphs
	Viterbi computation
	Basic usage
	Top-N Viterbi computation
	Post-processing

	Hindsight computation*
	Basic usage
	Summing up hindsight probabilities
	Computing goal probabilities all at once

	Parameter learning
	Maximum likelihood estimation and EM learning
	Maximum a posteriori estimation
	Running learning commands
	Avoiding undesirable local maxima

	Getting statistics on probabilistic inferences
	Model scoring*
	Handling failures*
	Avoiding underflow*
	Background
	Using methods for avoiding underflow
	Efficiency

	Keeping the solution table*
	Execution flags
	Handling execution flags
	Available execution flags

	Random number generator
	Sampling on temporary distributions
	File IO
	Accessing Prolog terms returned from the built-ins*

	Variational Bayesian learning*
	Background
	VB-EM learning
	Viterbi computation
	Other probabilistic inferences
	Deterministic annealing EM for VB learning

	Built-in utilities for variational Bayesian learning
	VB-EM learning
	Viterbi computation


	Parallel EM learning*
	Background
	Requirements
	Usage
	Running the utility
	Writing programs for parallel learning
	Some remarks for effective use

	Limitations

	Examples
	Hidden Markov models
	Probabilistic context-free grammars
	Discrete Bayesian networks
	Representing Bayesian networks
	Computing conditional probabilities
	Bayesian networks in a junction-tree form
	Using noisy OR

	Statistical analysis
	Another hypothesis on blood type inheritance
	Why not serving second services as hard in tennis?
	Tuning the unification procedure

	Dieting professor*

	Bibliography
	Indexes
	Concept Index
	Programming Index
	Example Index


