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Preface

The past few years have witnessed a tremendous interest in logic-based probabilistic learning as
testified by the number of formalisms and systems and their applications. Logic-based proba-
bilistic learning is a multidisciplinary research area that integrates relational or logic formalisms,
probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-
based probabilistic learning has found its way into many application areas including bioinfor-
matics, diagnosis and troubleshooting, stochastic language processing, information retrieval,
linkage analysis and discovery, robot control, and probabilistic constraint solving.

PRISM (PRogramming In Statistical Modeling) is a logic-based language that integrates
logic programming and probabilistic reasoning including parameter learning. It allows for the
description of independent probabilistic choices and their consequences in general logic pro-
grams. PRISM supports parameter learning, i.e. for a given set of possibly incomplete observed
data, PRISM can estimate the probability distributions to best explain the data. This power is
suitable for applications such as learning parameters of stochastic grammars, training stochastic
models for gene sequence analysis, game record analysis, user modeling, and obtaining prob-
abilistic information for tuning systems performance. PRISfiei®s incomparable flexibility
compared with specific statistical tools such as hidden Markov models (HMMs) [2, 14], proba-
bilistic context free grammars (PCFGs) [2] and discrete Bayesian networks.

PRISM employs a proof-theoretic approach to learning. It conducts learning in two phases:
the first phase searches for all the explanations for the observed data, and the second phase
estimates the probability distributions by using the EM algorithm. Learning from flat explana-
tions can be exponential in both space and time. To speed up learning, the authors proposed
learning from explanation graphs and using tabling to reduce redundancy in the construction
of explanation graphs. The PRISM programming system is implemented on top of B-Prolog
(bttp://www.probp.com/), a constraint logic programming system that providesfénient
tabling system called linear tabling [29]. Tabling shares the same idea as dynamic programming
in that both approaches make full use of intermediate results of computations. Using tabling
in constructing explanation graphs resembles using dynamic programming in the Baum-Welch
algorithm for HMMs and the Inside-Outside algorithm for PCFGs. Thanks to the gified e
ciency of the tabling system and the EM learner adopted in PRISM, PRISM is comparable in
performance to specific statistical tools on relatively large amounts of data. The theoretical side
of PRISM is comprehensively described in [23]. For an implementational view, please refer to
[30].

This document describes the PRISM language, its programming system, and several pro-
gram examples, targeting version 1.10. It is divided into three parts: the first part (Chap-
ters 1 and 2) describes the language, the second one (Chapters 3 and 4) lists all functionality
of the system, and the rest (Chapter 5) gives several sample program examples of PRISM.

The user is assumed to be familiar with logic programming, the basics of probability the-
ory, and some of popular probabilistic models mentioned above. The programming system is
an extension of the B-Prolog system, and only PRISM-specific built-ins are elaborated in this
document. Please refer to the B-Prolog user’s manual for details about Prolog built-ins.

Contact information

The latest information and resources on PRISM are available at the website below.
http://sato-www.cs.titech.ac.jp/prism/

For any questions, requests and bug-reports, please send an E-mail to:



prism-query[AT]mi.cs.titech.ac.jp

where[AT] should be replaced witd.
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Chapter 1

Overview of PRISM

PRISM is a probabilistic extension of Prolog. Syntactically, PRISM is just a Prolog augmented
with a probabilistic built-in predicate and declarations. There is no restriction on the use of
function symbols, predicate symbols or recursion, and PRISM programs are executed in a top-
down left-to-right manner just like Prolog. In this chapter, we pick up three illustrative examples
to overview the major features of PRISM. These examples will also be used in the following
chapters, but for brevity of descriptions, only a part is shown here. For full descriptions of these
examples, please refer to Chapter 5 or the comments in the example programs included in the
released package.

1.1 Building a probabilistic model with random switches

The most characteristic feature of PRISM is that it provides random switches to make proba-
bilistic choices. A random switch has a hame, a space of possible outcomes, and a probability
distribution. The first example is a simple program that uses just one random switch:

target(direction/1).
values(coin, [head,tail]).

direction(D) : -
msw(coin,Face),
( Face==head -> D=left ; D=right).

The predicatelirection (D) indicates that a person decides the direction to gn a$ie deci-
sion is made by tossing a coib:is bound toleft if the head is shown, and teight if the tail
is shown. In this sense, we can say the predidatesction/1 is probabilistic. It is allowed
to use OR (), the cut symbol () and if-then ¢>) statements as far as they work as expected
according to the execution mechanism of the programming system. By combining probabilistic
predicates, the user can build a probabilistic model for the task at hand.

Besides the definitions of probabilistic predicates, we need to make dectaations The
clausevalues(coin, [head,tail]) declares the outcome space of a switch namsiah, and
the callmsw(coin,Face) makes a probabilistic choic€4ce will be bound to the result), just
like a coin-tossing. On the other hand, the clatseget (direction/1) declares that the
observable event is represented by the preditatection/1. This means that we can observe
the direction hgshe goes.



Now let us use this program. If the installation is successful, we can invoke the programming
system just running the commangkism'’:

% prism

Type ’prism_help’ for usage.
[ 7=

where %’ is the prompt symbol of some shell (on Linux) or the command prompt (on Windows).
In the following, removing the vertical bar, we use-' as the prompt symbol for PRISM.

Now let us assume that the program above is contained in the file n@mesttion. psm'.
Then, we can load the program using a builpi#ism/1 as follows:

?- prism(direction).

Some may notice here that the filefidx* . psm’ can be omitted. After loading the program, we
can run the program using built-in predicates. For example, we can make a sampling by the
built-in sample/1:

?- sample(direction(D)).
D = left 7

The probability distributions of switches are maintained by the programming system, so they are
not buried directly in the definitions of probabilistic predicates. Since version 1.9, the switches
have uniform distributions by default. So the results obtained by the multiple runs of the query
above should not be biased.

On the other hand, the built-in predicatet _sw/2 and its variations are available for setting
probability distributions manually. For example, to make the coin biased, we may call

?- set_sw(coin, [0.7,0.3]).

which sets the probability of the head being shown to be 0.7. The status of random switches can
be confirmed by:

?- show_sw.
Switch coin: unfixed: head (0.7) tail (0.3)

At this point, the runs witlsample/1 will show a diferent probabilistic behavior from that was
made before:

?7- sample(direction(D)).
Finally, we can quit the programming system as follows:

?- halt.

1.2 Basic probabilistic inference and learning

Let us pick up another example that models the inheritance mechanism of human’s ABO blood
type. As is well-known, a human’s blood type (phenotype) is determined fiyenigenotype,
which is a pair of two genes (A, B or O) inherited from the father and mdtifesr example,

1In this example, we take a view of classical population genetics, where a gene is considered as an abstract genetic
factor proposed by Mendel.



when one’s genotype is AA or AO (OA), Hieer phenotype will be type A. In a probabilis-

tic context, on the other hand, we consider a pool of genes, am,lgt, and p, denote the
frequencies of gene A, B and O in the pool, respectively+« pp + po = 1). When random
mating is assumed, the frequencies of phenotypes, naPgl¥s, Po andPag, are computed

by Hardy-Weinberg's law [6]Pa = P3 + 2PaPo, Ps = P2 + 2PsPo, Po = p3, andPag = 2papb.

To represent a distribution of phenotypes instead of these mathematical formulas, we may write
the following PRISM program:

target (bloodtype/1) .
values(gene, [a,b,0]).

bloodtype(P) :-
genotype (X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=0 -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

In this program, we let a switchsw (gene,X) instantiated wittX = a, b, o denotes a random
pick-up of gene& from the pool, and becomes true with probability p, and p,, respectively.
Then, with a careful reading of this program, we can say that oma @fdtype (P) with P =
a,b, 0, ab becomes exclusively true with probabiliBa, Pg, Po andPag, respectively (seg2.2
for details). This implies the logical varialbein bloodtype (P) behaves as a random variable
that follows the distribution of phenotypés.

Here, just like the distributiofPa, Pg, Po, Pag} is computed from the basic ofpa, po, Po},
the probability distributions of switches form a basic distribution from which we can construct
the probability distribution represented by the PRISM program. Then we conside#,; gaitte
probability of aswitch instancensw (i, Vv) being true (andv are ground terms), aspmrameter
of the program’s distribution. If we can give appropriate parameters, a variety of probabilistic
inferences are available. For example, as described in the previous section, sampling is done
with the built-in predicateample/1:

7- sample(bloodtype (X)) .

In the above query, the answkr= b will be returned with probabilityPg, the frequency of
blood type B. Also it is possible to compute the probability girababilistic goal

?- prob(bloodtype(a)).
Probability of bloodtype(a) is: 0.360507016168634

Instead of being set manually, the parameters can be estimated from the observed data. We
call this taskparameter learningr more specificallymaximum likelihood estimatiqiML esti-
mation or MLE) — given somebserved dataa bag oobserved goaldind the parameters that

2From a similar discussion, in the previous example, we carDseedirection(D) as a random variable in a
probabilistic context. In many cases, it is useful to define a program so that some logical variables behave as random
variables, but it is also worth noting that there is no need to make all logical variables in the program behave as random
variables.



maximize the probability of the observed data being occurred. In this case, the observed data
should be a bag of instancest¥foodtype (X), which correspond to phenotypes of (randomly
sampled) humans. This is declared in the program by the claatgget (bloodtype/1). Also
it should be noted here that we are ipatially observing situationthat is, we cannot determin-
istically know which switch instances are true (i.e. which genes are inherited) for some given
instances obloodtype (X) (i.e. some phenotypes). For example, if we observed a person of
blood type A, we do not know whether he has inherited two genes A from both parents, or he
inherits gene A from one parent and gene O from the other. For MLE in such a situation, one so-
lution is to use the EM (expectation-maximization) algorithm [8], and the programming system
has a built-in routine of the EM algorithm. By adding a couple of declarations and preparing
some data, we can estimate the parameters from the data.

For example, let us consider that we have observed 40 persons of blood type A, 20 persons
of B, 30 persons of O, and 10 persons of AB. To estimate the parameters from these observed
data, we then invoke the learning command as folldws:

?7- learn([count (bloodtype(a),40),count(bloodtype(b),20),
count (bloodtype (o) ,30),count (bloodtype(ab),10)]).

After parameter learning, we may confirm the estimated parameters:

?- show_sw.
Switch gene: unfixed: a (0.292329558535712) b (0.163020241540856)
o (0.544650199923432)

It can be seen from above and the original meaning given to the program that the frequencies of
genes are estimated gs; = 0.292, p, = 0.163, p, = 0.545. Thus in the context of population
genetics, we can say that, inversely with Hardy-Weinberg'’s law, the hidden frequencies of genes
can be estimated from the observed frequencies of phenotypes.

The inheritance model described in this section is considerably simple since we have as-
sumed random mates. However with the expressive power of PRISM, the case of hon-random
mates can also be written (for example, as done in [19]).

1.3 Utility programs and advanced probabilistic inferences

The last example in this chapter is a PRISM version of a hidden Markov model (HMM) [2, 14].
HMMs not only dominate in speech recognition but are also well-known as suited for many tasks
such as part-of-speech tagging in natural language processing or biological sequence analysis.
An HMM is a probabilistic finite automaton where the state transitions and the symbol emissions
are all probabilistic.

Let us consider a two-state HMM in Figure 1.1. The HMM has the ststends1, and it
emits a symbok orb at each state. Each of state transitions and symbol emissions is probabilis-
tic, and conditioned only on the current state. It is assumed in HMMs that we can only observe
a string (i.e. a sequence of emitted symbols), not the sequence of state transitions. The program
is described as follows:

SActually in PRISM, at the query prompt, we cannot make a new line until reaching the end of the query. For
readability, in this manual’s illustrations, the text typed by the user or displayed by the system is sometimes beautified
by the authors.



Figure 1.1: State transition diagram of a 2-state hidden Markov model.

target (hmm/1) . % hmm(L) is observable

values(init, [s0,s1]). % Switch for state initialization

values(out(_), [a,bl). % symbol emission

values (tr(_), [s0,s1]). % state transition

hmm(L) : - % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). %  Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. 9% Stop the loop

hmm(T,N,S, [Ob|Y]) :- % Loop: the state is S at time T
msw(out (S),0b), %  Output Ob at the state S
msw(tr(S),Next), %  Transit from S to Next.

T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Please note the comments in the program, each states a procedural reading of the corresponding
predicate call. Then we may find that a top-down execution fiiam(L), which represents the
distribution for a strind., simulates a generation process that yiéldsr in other words, that
we observe. after a chain of probabilistic choices by switches. In this sense, it is possible to
say that the program formsgenerative modelBesides, it may be noticed that we are also in
a partially observing situation for HMMs, since the information about state is hidden from the
stringL in hmm (L) .

In this manual, the code shown above is calledttoeleling parof the program, and on the
other hand, we can also write non-probabilistic clauses (i.e. usual Prolog clausesyalityhe
part. For example, we define the two predicai@s_learn/1 andset_params/0, where the
former is a batch routine for learning, and the latter is the former’s subroutine that sets some
particular values to parameters at once.

hmm_learn(N):-
set_params, !, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with these samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),



set_sw(tr(s1l), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

get_samples/3,* learn/1 andset_sw/2 are the built-ins provided by the system, which
run the predicates in the modeling part (at meta-level), or change the status of the system includ-
ing parameter values. The built-ins excapir/2 are non-probabilistic, and hence all predicates
in the utility part above are also non-probabilistic. Programming with built-ins in the utility part
allows users to take a variety of ways of experiments according to the application. For exam-
ple, in the HMM program, we may add clauses to carry out tasks such as aligning and scoring
seguences.

In the literature of applications with HMMs, severdlieient algorithms are well-known.
One of these algorithms is the Viterbi algorithm [14], which computes the most likely sequence
of (hidden) state transitions given a string. This is done by dynamic programming, and the
computation time is known to be linear in the length of the given string. The programming
system provides a built-in for the Viterbi algorithm, which is a generalization of the one for
HMMs. For exampleyiterbif/1 writes the most likely sequence to the output:

?- viterbif (hmm([a,a,a,a,a,b,b,b,b,bl)).

hmm([a,a,a,a,a,b,b,b,b,b])

<= hmm(1,10,s0, [a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)
hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])

<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),sl)
hmm(2,10,s1,[a,a,a,a,b,b,b,b,b])

<= hmm(3,10,s0, [a,a,a,b,b,b,b,b]) & msw(out(sl),a) & msw(tr(sl),s0)

...omitted...

hmm(10,10,s1, [b])
<= hmm(11,10,s0,[]) & msw(out(sl),b) & msw(tr(sl),s0)
hmm(11,10,s0, []1)

Viterbi_P = 0.000117528

We then read from here that the most likely sequenceds> s1 — --- — s1 — s0 (though
the last transition may be redundant).

It is shown that the algorithm implemented as the system’s built-in workdhaseat as
the one specialized for HMMs [22]. So we can handle moderately large datasets with PRISM.
The dficiency comes frominear tabling [29], a tabling mechanism provided by B-Prolog,
and an EM algorithm called thgraphical EM algorithm A similar mechanism is adopted for
learning and probability computation mentioned above, which is also a generalization of the
Baum-Welch algorithnfalso known as théorward-backward algorithih and the backward
probability computation for HMMs respectively [11, 22, 23].

1.4 Handling failures in the generation process*

To realize dicient computation described in the previous section, we need to write PRISM pro-
grams which obey some restrictions. The first major one isxiefisiveness conditipim which

4get_samples/3 is provided since version 1.9get_samples(N,G,Goals generatedN samples asoals by
invoking sample (G) Ntimes.



all disjunctive paths in a proof tree are required to be probabilistically exclusive. The second one
is theunigueness conditigrin which all observable goal patterns are probabilistically exclusive

to each other and the sum of their probabilities needs to be unity. For parameter learning, this
condition can be relaxed by assuming thissing-at-random (MAR) conditid23], and with

the MAR condition, there is a case that we can handle the PRISM programs in which the sum
of probabilities of observable patterns can exceed unity. On the other hand, the lack of probabil-
ity mass with failure in the generation process (in which the sum of probabilities becomes less
than one) is more serious. The uniqueness condition implie§ahatery observable pattern,

its generation process never fgiBnd could be a strong restriction in our modeling. Recently,
for a remedy of this, the programming system introduced a new graphical EM algorithm that
takes such failures into account [24, 25, 26]. This algorithm is based both on Cussen’s FAM
(failure-adjusted maximization) algorithm [7] and FOC (First Order Compiler) [17]. With this
new learning framework, we are able to introduce sonmestraintgwhich causes some failures)

to generative models.

1.5 Organization of this manual

It is hard to list all functionalities with full details in this chapter, and so please refer to the
following chapters for the detailed description of the functionality you wish to use. The rest of
this manual is organized as follows:

e Chapter 2 describes the detail of the PRISM language.
e Chapter 3 explains how to use the PRISM programming system.

e Chapter 4 gives the detailed descriptions of the built-in predicates provided by the pro-
gramming system.

e Chapter 5 shows several program examples with detailed illustrations.

To learn PRISM, it would be helpful to see typical usages of PRISM illustrated in this chapter
and Chapter 5 first, and then to run the example programs in the released package. The authors
consider that the sections whose titles are marked with * have a little advanced contents, so the
busy users can skip these sections for the first time. Chapter 2 may also be skipped until the
examples have been explored, but to understand the program’s behavior precisely, the descrip-
tions in this chapter (especial$2.2,§2.3 and§2.4) are essential though they look complicated.
Chapter 3 and 4 are expected to work as a (rough) reference manual of the programming system.



Chapter 2

PRISM Programs

Generally speaking, a probabilistic model represents some probability distribution which the
probabilistic phenomena in the application domain are assumed to follow, and PRISM is a logic-
based representation language for such probabilistic models. In this chapter, we describe the
detail of PRISM language, and the basic mechanism of the related algorithms provided as built-
in predicates.

2.1 Overall organization

Let us first define that probabilistic predicates a predicate which eventually calls (at non-meta
level) the built-in probabilistic predicatesw/2, i.e. random switches. Then we roughly classify
the clauses in a PRISM program into the following three parts:

e The modeling part the definitions of all probabilistic predicates, and of some non-
probabilistic predicates which are called from probabilistic predicates. This part corre-
sponds to the definition of the model.

e The utility part the remaining definitions of non-probabilistic predicates. This part is a
usual Prolog program that utilizes the model, and that can often be seemeda program
of the modeling part.

e Declarations the clauses of some particular built-in predicates which contain additional
information on the model (of course, they are non-probabilistic).

In the rest of this chapter, we first describe the basic semantics of PRISM programs and the
currently available probabilistic inferences. Then we proceed to describe the details of each
part.

2.2 Basic semantics

PRISM is designed based on the distribution semantics [18, 23], a probabilistic extension of the
least model semantics. In the distribution semantics, all ground atoms are considered as random
variables taking on 1 (true) or O (false). With this semantics and the predefined probabilistic
property of random switches, we can give a declarative semantics to programs. However, in the
recent versions including 1.10, to make dihogent implementation of tabling, we use dfdrent
specification from the original one [21, 23] of random switches, in which some procedural notion

is required. Here we describaw/2 as follows:



1. For each ground terinin msw(i,v) which is possible to appear in the program, a set of
ground termsV; should be given by the user with multi-valued switch declaration, and
alsov € V; should hold. Such answ (i, V) is hereafter called switch instancewherei is
the switch namev the outcomeor thevalue andV; the outcome spacefi. A collection
of msw(i,-) formsswitch i

2. For a switch, whose outcome spaceVs = {vi, ..., W} (k > 1), one of the ground atoms
msw(i,vy), ...,msw(i, ) is exclusively true at the same position of a proof tree, and
ey Biv = 1 holds, wherd; , is the probability ofnsw(i,v) being true and is called a
parameterof the program. Intuitively, a logical variablein a predicate call ofisw (i, V)
behaves as a random variable which takes a vafuam V; with the probabilitys, .

3. The truth-values of switch instances at thffedtient position of a proof tree are indepen-
dently assigned. This means that the predicate caliswf2 behave independently of
each other.

Hereafter, for understanding the third condition, it would be a help to introduce IDs which
identify positions in the proof treeand then to associate each occurrence of switch instance
with the ID of the corresponding position. Then the switches fieidint positions will be
syntactically diterent. The third condition is referred to as thdependence condition

The probabilistic meaning of the modeling part can be understood in a bottom-up rhanner.
Now, for illustration, let us pick up again the blood type program:

bloodtype(P) :-
genotype (X,Y),
( X=Y -> P=X

; X=o0 -> P=Y
; Y=o -> P=X
; P=ab

).
genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene, [a,b,0]).

First, one ofusw (gene, X) instantiated withX = a, b, o (a random pick-up of a gertefrom
the pool) becomes exclusively true, according to the probabilistic property of switches described
above. Then we associate the parameters of switches with gene frequenctgs,ci.e= Pa,
and so on. Also in view of the independence of switchesfétmint occurrences, the definition
of genotype/2 satisfies the random-mate assumption on genotypes, hence the probability of
each is a product of two gene frequencies. In the bodylebdtype/1's definition, one of
genotype (X,Y) with X = a,b,0 andY = a,b, o0 becomes exclusive, and hence thfeaient
instances of the body become exclusively true. We can also see the second conjunct makes a
correct many-to-one mapping from genotypes to phenotypes. Therefore we can say that one of
bloodtype (P) with P = a, b, o, ab becomes exclusively true with probabiliBa, Pg, Po, and
Pag, respectively. In addition, from the exclusiveness discussed above, each of logical variables

LIn old SICStus Prolog versions, PRISM usgesi (i,n,v) where the users need to explicitly speaifythe 1D of an
independent choice by the switch. This definition is important to give a declarative semantics to programs, and hence
the theoretical papers on PRISM still us&s/ 3.

2The discussion in this section should be considerably rough. For the readers interested in the formal semantics of
PRISM (calleddistribution semantigs please consult [18, 23].



X andY in genotype (X,Y) behaves just like a random variable that takes a gene as its value,
wherea® in bloodtype (P) behaves like a random variable that takes a phenotype.

In PRISM, it would be easier, and so is recommended, to make a programming in a top-
down (consequently, a generative) manner. On the other hand, sometimes it is also crucial to
inspect the probabilistic meaning in a bottom-up manner as above.

2.3 Probabilistic inferences

Before stepping into the further detail of the PRISM language, it would be worth listing what
we can do with this language. In the current version of the PRISM programming system, the
following five types of probabilistic inferences are available, where the first one works with
sampling executigrand the rest utilizexplanation search

Sampling(§4.2):
Given a goalG of a probabilistic predicate, return the answer substituttowith the
probability Py(Go), or fail with the probability thaHG is false.

Probability calculation(§4.3):
Given a goals of a probabilistic predicate, compuig(G).

Viterbi computation(§4.5):
Ei,..., Ex are the explanations f&g such thatG & E; v --- Vv E.{ménd eachEy is a
conjunction of switches.

Hindsight computatioii§4.6):
Given a goals of a probabilistic predicate, compuBg(G’) or P4(G’|G) for each subgoal
G’ of G.

Parameter learnind§4.7):
Given a bag of observed godlS,, Gy, ..., Gt} of probabilistic predicates (i.e. training
data), get the parametetr®f switches which maximizes the likelihodd, Py(Gy).

wherePy(-) stands for the probability distribution denoted by the program, under the parameters
6 of switches buried in the program. For more details, please visit the corresponding sections.
These sections will also provide the variations for each inference. The se§fflohd and

§2.4.2 respectively describe sampling execution and explanation search, the underlying execu-
tion mechanisms for the probabilistic inferences listed above.

2.4 Modeling part

We have seen a couple of examples of the modeling part (sections in Chapte§4.2ndne
of the interesting features of PRISM is that we can (or we should) write modebscasitable
For various probabilistic inferences, there are two underlying execution styles satigaling
executiorandexplanation searchSo it is expected for users to write the modeling part so that
it can work in these two execution styles.

In addition, for éficient execution of models, the system assumes that the model follows
several condition. However, it is often diicult for the system to check these conditions,

3For the theoretical details, please see [23].
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and hence it is required to write carefully programs to satisfy the conditions (otherwise some
unexpected behavior arises).

In this section, we first describe two underlying execution styles for these inferences, and
then make some advanced discussions on parameter learning. Finally we summarize the condi-
tions on the model part to be satisfied.

2.4.1 Sampling execution

Sampling execution is the underlying execution style for a sampling t58,§4.2). In the
literature of Bayesian networks, this style is sometimes cdtledard sampling In the recent
versions including 1.10, sampling execution becomes easier to understand. That is, the system
only makes a top-down execution like Prolog, and determines the valesw (i,v) on the fly
according to the paramete, }. A sampling execution of probabilistic gda is invoked by®

7- sample(G).
Internally,msw/2 for sampling execution is essentially defined as foll§ws:

msw(I,V):-
values(I,Values),!,
$get_probs(I,Probs),
$choose(Values,Probs,V).

In the definition aboveyalues (I, Values is declared as a multi-value switch declaration by
the user, and should be agroundterm. ThenValues a list of groundterms, will be returned
based on the declaration. On the other hanp@t_probs(l,Probs returnsProbswhich is a
list of switch|’s parameters, anglchoose (Values Probs,V) returnsV randomly fromValues
according to the probabilitieBrobs Also note that$get_probs/2 and $choose/3 are not
backtrackable.

One typical trap in sampling execution is the independence among switches. In the previous
papers, the authors often use a blood type program similar to the one below, instead of the one
illustrated in this manual:

bloodtype(a) :- (genotype(a,a) ; genotype(a,o) ; genotype(o,a)).
bloodtype(b) :- (genotype(b,b) ; genotype(b,0) ; genotype(o,b)).
bloodtype(o) :- genotype(o,0).

bloodtype(ab):- (genotype(a,b) ; genotype(b,a)).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene, [a,b,0]).
With this program, the following query for sampling execution sometimes fails:

7- sample(bloodtype (X)) .

“4A probabilistic goal is a goal whose predicate is probabilistic.
5For ease of programming, it is also allowed to Giirectly just like Prolog:

7- G.
5Note that they are introduced for illustration — in the actual implementation, they are more complicatedly defined

with different predicate names. On the other hand, as describgi6r8, values/2 is just treated as a unit clause
which can work in the other part of the program.
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This is because there is a case that all predicate gallstype(a,a), genotype(a,o), ...,
andgenotype(b,a) in thebloodtype/1's definition independently fail, without sharing the
results of samplingisw/2. The diference between the program above and the blood type pro-
grams in the previous papers is the usens#i/3, which can share the sampling results by
referring to their second arguments. For sampling execution mgitly2, we need to write a
program in a purely generative manner: once we get a result of a switch sampling, the result
should be passed through the predicate arguments to the predicate which requires it as input.

2.4.2 Explanation search

Explanation search works as an underlying subroutine of built-in predicates for probabilistic
inference such as probability calculatio§®(3), Viterbi computation§4.5), hindsight compu-
tation (§4.6) and parameter learning4(7).” To simulate only explanation search, we can use
the built-insprobf/1-2 (§4.4). In this section, we describe the explanation search by defining
several terminologies.

First, in PRISM, arexplanationfor probabilistic goalG is a conjunctiorE of the ground
switch instances, which occurs in a derivation path of a sampling executi@h florthe blood
type program, for example, one possible explanation of gbabdtype (a) is:

msw(gene,a) Amsw(gene,a).

(if we know a person’s blood type is A, one possibility is that he inherits two genes A from
both parents.) This corresponds to a phenomenon that we willgeidtype (a) as a solu-
tion of a sampling execution afloodtype (X) by havingmsw(gene,a) twice. Each of two
msw(gene,a)s above indicates an individual gene inheritance from one of the parents, so they
should not be suppressed (see the discussi§a.R).

Basically we can consider that an explanation search finds all possible explanations for a
given goal by dailure-driven loop[28]. Forbloodtype (a), we have three explanations:

msw(gene,a) Amsw(gene,a),
msw(gene,a) Amsw(gene,o),
msw(gene,o0) Amsw(gene,a).

Also please note here that the last two explanations corresponfiigcedi derivation paths, and
so should not be suppressed. To be more specific, as mentio§ia@ jithis would be understood
that, by associating switches with IDs of the positions in the proof tree, they are probabilistically
exclusive. In PRISM, for the explanatiofs, E,, .. ., Ex for a goalG, we assume thétis finite
(thefiniteness conditionand thaG & E; VE, v... V Ex.
In a probabilistic context, an explanati@ris a conjunction of independent switch instances,
and hence the probability & is the product of the probabilities of switch instanceg&inAlso,
if we assume that possible explanations for any goal are all exclusive (i.e. the program satisfies
the exclusive condition, described§@.4.5), the probability of a probabilistic go@lis the sum
of probabilities of the explanations f@. For some probabilistic inference or learning given a
goalG, the system makes an explanation searcl@&for advance of numeric computations.
Unfortunately, it is easily seen that in general, the number of explanations for a goal can be
exponentiadepending on the complexity of the model or the given goal (input). To compress
these explanations and make them manageable, the system tadbdipty or more specifically
linear tabling[29], for explanation search. In tabling, every solution of a predicate call is stored
in the solution table and once we have all solutions for the predicate call, the stored solutions

"The summary of these inferences is giverg i3
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are used for the later calls. After the explanation search by tabling, the stored solutions are con-
verted to a data structure callegplanation graphsand then the system performs probabilistic
computation on these graphs.

For example, let us consider the HMM prograngin3, with the string length being changed
to 3. In this program, we have the following 16 explanatfoies G = hmm([a,b,b]):

E;, = msw(init,s0) Amsw(out(s0),a) Amsw(tr(s0),s0) A
msw(out (s0),b) Amsw(tr(s0),s0) Amsw(out(s0),b) Amsw(tr(s0),s0),

E; = msw(init,s0) Amsw(out(s0),a) Amsw(tr(s0),s0) A
msw(out (s0),b) Amsw(tr(s0),s0) Amsw(out(s0),b) Amsw(tr(s0),sl),

Eis = msw(init,s1l) Amsw(out(sl),a) Amsw(tr(sl),si) A
msw(out(s1),b) Amsw(tr(sl),sl1) Amsw(out(sl),b) Amsw(tr(sl),sl).

Thenwe hav& < E;VE,V- - -V E;sg, and thisff formula can be converted to a conjunctionfof i
formulas below, which can be seen as a modified f§iwhan instance of Clark’s completion [5]
constructed from the definitions of probabilistic predicates.

hmm([a,b,b]) < (msw(init,s0) Ahmm(1,3,s0,[a,b,b]))

V  (msw(init,s1) Ahmm(1,3,s1,[a,b,b]))
hmm(1,3,s0,[a,b,b]) & (msw(out(s0),a) Amsw(tr(s0),s0) Ahmm(2,3,s0,[b,b]))

vV  (msw(tr(s0),s1) Amsw(out(s0),a) Ahmm(2,3,s1,[b,bl))
hmm(1,3,s1,[a,b,b]) & (msw(out(sl),a) Amsw(tr(sl),s0) Ahmm(2,3,s0,[b,b]))

vV  (msw(out(sl),a) Amsw(tr(sl),sl) Ahmm(2,3,s1,[b,b]l))

hmm(2,3,s0,[b,b]) & (msw(tr(s0),s0) Amsw(out(s0),b) Ahmm(3,3,s0,[b]l))
vV  (msw(out(s0),b) Amsw(tr(s0),s1) Ahmm(3,3,s1, [bl))

hmm(3,3,s1,[b]) & (msw(out(sl),b) Amsw(tr(sl),s0))
vV (msw(out(s1),b) Amsw(tr(sl),sl))

In this convertedft formula, the ground atoms appearing on the left hand side are calked

goals Each conjunction on the right hand side of eatfidrmula whose left hand side @&’ is

called asub-explanatioffior G’. It is easy to see that a sub-explanation includes subgoals as well

as switch instances, and that depends on the subgoals appearing in the sub-explanations for
G’. It should be noticed that, to make an exact probability computation by dynamic program-
ming possible, the system assumes that these dependencies cannot form a cycle. This condition

8From a viewpoint of knowledge representation, explanation graphs can be seen as AND-OR graphs consisting of
ground (i.e. propositional) formulas, and tabling itself can be understood as a kprdpafsitionalizationprocedure
in that it receives first-order expressions (i.e. a PRISM program) and observed goals as input, and generates as output
propositional AND-OR graphs that explain observed goals.

90ur HMM program can be said as redundant since we distinguish the explanations by the last state transition which
do not contribute to the final output. A more optimized one should have orty28)(explanations.

10The instances of non-probabilistic predicate, which are entailed from the program, are omitted.
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is hereafter called thacyclic condition Assuming this condition, we treat the convertéd i
formulas ardered

As mentioned above, in explanation search, the system tries to find all possible explanations.
With tabling, each subgoal solved in the search process is stored into a table, together with its
sub-explanation, and after the search terminates, the explanation graphs are constructed from
the stored information. Finally the routines for probabilistic inference including learning works
on the explanation graphs. The structure of explanation graphs are isomorphic to the ordered
iff formula described above. Some may notice that a subgeael2, 3,s0, [b,b]) is found in
both sub-explanations fatmm(1,3,s0, [a,b,b]) andhmm(1,3,s1, [a,b,b]). In this data
structure, a substructure can be shared by the upper substructures to avoid redundant computa-
tions. In other words, we can enjoy th&ieiency which comes frondynamic programming
The programming system provides the builpirobf /2 (§4.4) to get an explanation graph as a
Prolog term.

Besides, at a more detailed level, we have féedint definition ofnsw/2 for explanation
searcht!

msw(I,V):- values(I,Values),!,member(V,Values).

One may find that there are no probabilistic predicates in the body that work at random. This is
because the explanation search only aims to enumerate all possibilities that a given goal holds,
and it requires no probabilistic consideration. Also it is crucial to notice that the blood type
program shown ir§2.4.1 (not the one shown i§il.2) can work for explanation search, while

it does not for sampling execution. It would be fine for the modeling part to work both for
sampling execution and explanation search, but if it fBadilt or ineficient, we need to write

the modeling part in two styles — one is for sampling execution, and the other for explanation
search. Declarations except the multi-valued switch declarations are made with respect to the
modeling part for explanation search.

2.4.3 Handling failures*

As previously mentioned, a PRISM program basically describes a probabilistic generation pro-
cess of the data at hand. On the other hand, there could be a case where failures may be caused
in the process by some constraints. In a probabilistic context, this implies that some probability
mass is lost, and hence we cannot directly apply a traditional learning algorithm which assumes
the non-failure conditioni.e. there is no failure in the generation process. However it is some-
times dificult to write a program without failures. In such a case, tffigadilty could be resolved
by using a special learning routine.

In usual maximum likelihood (ML) estimation, we try to find the paramei¢hait maximize
the likelihood ], Py(Gy), the product of probabilities of observed d&abeing generatet?
Instead of this, we exclude the probability mass which is lost by failures, and try to maximize
[T: Po(Gt | sucq, the product of conditional probabilities of observed data being generated under
the case that no failure arises (indicatedsigg.

To be more specific, let us consider a program which considers the agreement in coin flip-
ping 2 The modeling part is written as follows:

values(coin(_), [head,tail]).

1INote that the predicate namemdw/2 is different from the one in the actual implementation.

12\e assume here that the propositional random variables corresponding to the data are independent and identically
distributed (i.i.d.).

13This program comes from [26].
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failure :- not(success).
success :- agree(_).

agree(A) :-
msw(coin(a),A),
msw(coin(b),B),
A=B.

The predicategree (A) means that two outcomes of flipping two coins meek,sand that we
fail to observe any result when theyfidir. So this program violates the non-failure condition.
On the other hand, the predicateccess/0 denotes the evestccabove since it is equivalent
to 3X agree (X), i.e. we have some observation. PRISM assumes that all possibilities in which
a failure arises are denoted by a predefined predfesateure/0. In this program, and probably
in many case<ailure/0 is defined as a negation sficcess/0. But in other cases, itis neces-
sary to defingailure/0 explicitly. With this setting, the target of maximization for the system
is rewritten ag]; Py(Gt | sucq = [1{Pa(Gt)/Ps(suc} = [1{Pa(Gt)/(1 — Py(fail))}, wherefail
is the event represented byilure/0, i.e. some failure arises. Thailure-adjusted maximiza-
tion (FAM) algorithm[7] is an EM algorithm that solves this maximization, by considering the
number of failures as hidden information.

It is important to notice thatiot/1 in the failure/0’s definition does not meanegation
as failure (NAF).2* We cannot directly simulate this negation, and hence it is eliminated by
First Order Compiler[17] when the program is loadéd. The program above, excluding the
declarations byalues/2, will be compiled as:

failure:- closure_success0(£0).
closure_success0(A) :- closure_agreeO(4).
closure_agree0O(_) :-

msw(coin(a),A),

msw(coin(b),B),

\+ A=B.

where \+/1 means negation as failure. To enable such a compilation, we use the predicate
prismn/1, not the usual one (i.prism/1). Then it is also required to invoke the learning
command with adding a special symhtdilure to the list of observed goals. A detailed
description for the usage is given§Aa.9, and a running example can be foung@s¥.

2.4.4 Learning from goals with logical variables*

In parameter learning, the system accepts observed goals with (existentially quantified) logi-
cal variables. However, we need to be aware that it is justified under the condition called the
missing-at-random (MAR) conditipmwhich is firstly addressed by Rubin [15]. The discussion
made in this section can be generalized to some cases where the sum of probabilities of ob-
servable goal patterns exceeds unity, but as a typical case, we will concentrate on the case of
observed goals with logical variables.

First, letG be a set of observable ground atoms, giidbe a set of atoms iy or atoms
with existentially quantified logical variables, whose ground instances age(ie. G € G*).

14please do not confuse it withot /1 provided by B-Prolog, which simulates negation as failure. From the theoretical
view, it is important to notice that PRISM allovggeneral clausesi.e. clauses that may contain negated atoms in the
body.

15More generally, First Order Compiler eliminates universally quantified implications, i.e. goals of the form
Yy(p(x.y) = q(y, 2))
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Table 2.1: The conditional probability talis,(G*|G) for the HMM program which satisfies the
MAR condition. The predicate namem is simply abbreviated ta. All logical variables are

existentially quantified.

G+ €g+
GeG |[|h([X,Y])|h([X,X])|h([a,X])|h([b,X])|h([X,a])|h([X,b])|h([a,a]l)|h([a,b])|h([b,al) | h([b,b])
h([a,al) P1 P2 p3 0 ps 0 p7 0 0 0
h([a,bl) p1 0 p3 0 0 Ps 0 Ps 0 0
h([b,al) p1 0 0 pa pPs 0 0 0 Po 0
h([b,bl) p1 P2 0 pa 0 Ps 0 0 0 P10

Also let us consider that the uniqueness condition holds @ithe. >c.g Ps(G) = 1 for any

). Furthermore, for explanatory simplicity, we assume here that every atghhas a positive
probability. For example, in the HMM program with the string length beintn#,( [a,b]) is

in G, andhmm ([a,X]) in G*. Here, it is easily seen that there is a many-to-many mapping on
ground instantiation frong to G*, and hence the sum of probabilities of goalgincan exceed
unity.

For such a case, logical variables can be seen as a kind of missing values, and sometimes
we assume that there isngissing-data mechanisthat lurks in our observation process where
some part of data turns to be missing. To be more specific, the missing-data mechanism is
modeled a®,(G*|G), a conditional distribution of final observatio@s € G* on eventss € G,
which are fully informative but hidden from ug @re the distribution parameters). Trivially,
P4+(G*IG) = 0 holds whereG is not the instance o&*. Then we further assume the MAR
condition that comprises the following two sub-conditidfs:

e For an actual observaticB* € G* and somep, P4;(G*|G1) = P,(G*|G,) holds for any
ground instance&;, G, of G.

e ¢ is distinct frome.%’

For the HMM program, the conditional probability tabRy(G*|G) under the MAR condi-
tion is shown in Table 2.1, whengy, p», ..., pio (Which form ¢) need to be assigned so that
Ya+ Ps(G*IG) = 1 holds for eaclG € G. For example, we may havey = 1/2, p, = 0,
P3=pPs=---=p1o=1/6.

As we have mentioned, in this situation, the logical variables can be seen as the missing part,
and one may find from Table 2.1 that the probabilityadf e G* only depends on the observed
part, not on the missing paftin the case witlg*). For example, we have a constant probability
ps for the diferent instantiations af in hmm([a,X]).

If the MAR condition holds, it is shown that the missing-data mechanisignisrablein
making inferences for the model parametefse. learning). The programming system blindly
ignores the missing-data mechanism, but under the MAR condition, leafriyaged on the

16The first sub-condition implies th& (G*IG) = P4(G*)/ X&': & is an instance o+ Pe(G’) for any ground instance
G of G* [9].

174 is said to be distinct from if the joint parameter space 6fand¢ is the product of's parameter space amds
parameter space.

181t should be noted that the original definition of the MAR condition [15] is made on a data matrix which has
missing-data cells. We can make a correspondence between our setting (the many-to-many mapght g
and such a data matrix, by an encoding method briefly described in Section 4.1.1 of [8]. The MAR condition roughly
defined in this section should rather be called¢barsened-at-random (CAR) conditiangeneralization of the MAR
condition. There are several formal definitions on the MBRR condition, so it would be useful for the interested
users to consult the papers in the literature ([9], for example).
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goals fromg* (goals with logical variables) is justified. Otherwise, the missing-data mechanism
is said to benon-ignorable and we may need to consider an explicit model of the observation
process. One eficulty with the MAR condition is its test. For example, recent work by Jaeger

tackles with this problem [10].

2.4.5 Summary: modeling assumptions

For all dficient probability computationsfiered by the system to be realized, we have pointed
out several assumptions on the modeling part. In this section, let us summarize them as follows:

¢ Independence conditiorthe sampling results of thefiierent switches are probabilisti-
cally independent, and the sampling results of a switch witledint trials (i.e. at dierent
positions in a proof tree) are also probabilistically independent.

¢ Finiteness conditionfor any observable go#&, both the size of any explanation f&r
and the number of explanations f@rare finite.

e Exclusiveness conditionwith any parameter settings, for any observable ggathe
explanations fofs are probabilistically exclusive to each other, and the sub-explanations
for each subgoal db are also probabilistically exclusive to each other.

e Uniqueness conditiorwith any parameter settings, all observable goals are exclusive to
each other, and the sum of probabilities of all observable goals is equal to unity. For
parameter learning, the following two conditions form a relaxation of the uniqueness con-
dition:

— Missing-at-random (MAR) conditiorin the observation process for the data of in-
terest, there is a missing-data mechanism in which the probability of the data being
generated does not depend on its missing part.

— Non-failure condition for any observable go&, the generation process f@r(i.e.
a sampling execution @) never fails.

e Acyclic condition for any observable go&, there is no cyclic dependency with respect
to the calling relationship among the subgoals, which are found in a generation process
for G.

It may look dfficult to satisfy all the conditions above. But if we keep in mind to write
terminating programs in a generative fashion with care for the exclusiveness among disjunctive
paths, these conditions are likely to be satisfied. It can be seen in Chapter 5 that popular gener-
ative models including hidden Markov model or Bayesian networks are written in this fashion.

If the program violates the non-failure condition, one possible solution is to utilize the system'’s
facility described ir§2.4.3.

Theoretically speaking, it is sometimes misunderstood and hence is desired to note that the
distribution semantics [18, 23] itself assumes none of the conditions above. We can say PRISM’s
semantics is just a restricted version of the distribution semantics, that is conscidlisiefie
probability computation.

2.5 Utility part

As compared to the modeling part, the utility part is quite simple — it is just a usual Prolog
program with the system’s built-ins. It is also possible to write queries, each of which takes the
form “:- Q.” The queries are executed after the program is completely loaded.
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2.6 Declarations

Declarations are made with several predefined predicates to give additional information to the
system — observable probabilistic predicatasget declaration} outcome spaces of switches
(multi-valued switch declaratiofsthe source of observed datafa file declaration) tabled

and non-tabled predicatetalble declarationy and some other program files to be included
(inclusion declarations

2.6.1 Target declarations
A target declaration takes the following form:
target (Pred, Arity) .
or
target (Pred/Arity) .

A target declaration specifiestarget predicatei.e. a predicate that is observable. Training
data used in learning must be atoms of observable predicate. The target predicate must be
probabilistic and each program must contain at least one target declaration.

2.6.2 Data file declaration
A data file declaration takes the form:
data(Filename .

whereFilenameis the filename of observed data. As in Prolog, a filename must be an atomic
symbol. If the filename contains a special symbol such as dby, (t should be quoted by *".
For example,

data(’bloodtype.dat’).

Data file declarations are optional. If no data declaration is given, then sample data must be
given as an argument @karn/1 (See§4.7). The format of the data file is describedsh7.3.

2.6.3 Multi-valued switch declarations

o Basic form

A multi-valued switch declaration takes the following form:
values(l,Values .

wherel denotes a switch identifier andaluesis the list of ground terms indicating possible
outcomes (or outcome space)lof~or example,

values(color, [red,yellow,bluel).

declares that switcholor has three possible outcomesd, yellow andblue.

The first argument in a switch declaratibrtan be an arbitrary Prolog term. All switches
that have matching identifiers will have a declaration list of outcomes. If there are multiple
declarations for a switch, the first matching declaration is used. For instance, consider the
declarations:
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values(f(a,a),[1,2,3]).
values (f (X,X), [a,b]).
values(f(_, ), [x,y,z]).

switch £ (a,a) has the outcomes, 2 and 3, switch f (b,b) has the outcomes andb, and
switchf (a,b) has the outcomes, y andz.

©» On-demand specification of the outcome space

A value declaration can have a body that dynamically generates a list of outcomes for the corre-
sponding switch. For instance, in the following declaration,

values(s,Vals):—
findall([X,Y], (member(X,[1,2,3]) ,member(Y, [a,b])),Vals).

switchs has as outcomes the pairs of terms in which one ffpra, 3} and another fronfa, b}.
From a view point of &ciency, however, please remember that the body of a value declaration
is evaluated at each time the correspondieg/2 is called!® Furthermoreyalues/2 is just
treated as a unit clause which can work in the other part of the program (i.e. both the modeling
part and the utility part). For example, we can r@n ‘values (coin,X) .’ directly.

There is a case where some switches have outcome spacdgrhatically changel et us
consider a part of a program as follows:

:— dynamic s2_vals/1.
values(s2,Vs) :- s2_vals(Vs). % Value declaration
s2_vals([a,b,c]).

change_values(Vs):- retract(s2_vals(_)), assert(s2_vals(Vs)).

In this program fragment, the outcome space of a swittls specified by2_vals/1, a user-
defined non-probabilistic predicate. Also it is easy to see that the outcome spageand
(indirectly) modified by callingchange _values(Vs), whereVsis a list of new outcomes. For

such a case, the probability distributions (or parametersahaintained by the programming
system can be inconsistent, and should be problematic in many cases. By default, when some
modification in the outcome space of a switch is detected, the system automatically sets the
default distribution to the switch (byet_sw/1; §4.1.2), before invoking the routines that refer

to the distributions of switches (e.g. sampling, probability computatigsis, sw/2 and so on).

If you wish to disable such automatic configuration, set thynamic_default_sw’ flag to

‘off’ (§4.12), and if necessary, call suitaklet_sw predicates before calling the routines that
refer to the switch distributions.

o Extended form

Since version 1.9yalues_x/2-3 are introduced as a syntactic sugar ferlues/2. With
values_x/2, we can rewrite the value declaration above as:

191f you wish to avoid the repetitive evaluation of the body, one way is to spesifyies/2 as a tabled predicate (see
B-Prolog’s manual for details):

:- table values/2.

However it should be noted that this declaration could lead to a trouble when the evaluation result dynamically changes
(e.g. by some randomness, or a dynamic modification of the program with/eetsact predicates).
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values_x(s, [1-10]).

We can specify two or more ranges in a list, and it is also possible to specify the skip nimber
in the formeN sufixed to the range element. For example,

values_x(foo, [3,8,0-302,7-2005]) .

is the same asalues (foo, [3,8,0,2,7,12,171).2° Internally,values_x/2-3 will be trans-
lated tovalues/2 with the corresponding expanded valdésio be more specific, the clauses
values_x(Sw,Values and “values_x(Sw,Values :- Body will be translated respectively
to:

values(Sw,Valuesl) : - expand_values(ValuesValuesl).
values(Sw,Valuesl) :- Body, expand_values(ValuesValuesl).

The built-inexpand_values/2 will make an expansion of values like above. Thus we can have
parameterizedalue declarations:

num_class(20).
values_x(class, [1-X]) :- num_class(X).

In addition, usingvalues_x/3, we can s¢fix parameters of switches with ground names
after loading the prograrf?. For the detail of handling switches, please vigit1. Now let us
consider the examples:

values_x(foo(0),[1,2,3],fix@[0.2,0.7,0.1]).
values_x(bar,[1,2,3],set@[0.2,0.7,0.1]).
values_x(baz(a,b),[1,2,3],[0.2,0.7,0.1]).
values_x(u_sw, [1,2,3] ,uniform).

In the first case, we declare a swittbo (0) whose values arg, 2, and3 and whose parameters
are fixed to 0.2, 0.7, and 0.1 respectively. In the second case, we declare atswitanly
setting parameters, not fixing parameters. In the third case in vekich or fix@ prefixes are
omitted, the parameters will not be fixed (i.e. the defauli€és@). As in the last case, we can
seffix the parameters in a distribution form.

Inside the system, to gék parametersset_sw/2 or f£ix_sw/2 will be invoked after load-
ing without evaluating the body afalues_x/3. So no parameters will be set for the declara-
tions withvalues_x/3 whose third argument includes logical variables. Also it should be noted
that, for each of the declarations withlues_x/3, set_sw/2 or fix_sw/2 is calledonly once
after loading — not every time the specified switch is called. So for the switches whose outcome
spaces are dynamically changedlues_x/3 may not work as expected.

2.6.4 Table declarations

In PRISM, all probabilistic predicates are tabled by default. On the other hand, the user can
declare what predicates are to be tabled. The statement,

:— p_table p/n.

20Currently, the system does not consider sorting or deletion of duplicate values on the expanded values.
21This also implies that we cannot executdlues_x/2-3 directly.
22For the declarations of switches with non-ground names, the parameters can neither be set nor fixed.
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declares that the probabilistic predicaién is tabled, where is the predicate name ands the
arity. In this case, please note here that all other probabilistic predicates that are not declared
will not be tabled.

The user can also declare predicates that need not be tabled by using the statement

:- p_not_table p/n.

The declaratiorp_table andp_not_table cannot co-exist in a program. Once a program
contains a_not_table declaration, all the probabilistic predicates that do not occur in any
p_not_table declaration are assumed to be tabled.

For non-probabilistic predicates, B-Prolog’s table declaration is available (see B-Prolog's
manual for details):

:— table p/n.

2.6.5 Inclusion declarations

If probabilistic predicates are stored in several files, then all these files must be included by using
the directive: - include (File) in the main file.
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Chapter 3

PRISM Programming System

3.1 Installing PRISM

PRISM is implemented on top of B-Prolog. The release package contains all standard function-
alities of B-Prolog, and therefore it is unnecessary to install B-Prolog separately.

3.1.1 Windows
To install PRISM on Windows, you need to make the following steps:
1. Download the packagerism110_win.zip.

2. Unzip the downloaded package undek.

3. AppendC:\prism\bin to the environment variablPATH so PRISM can be started at
every working folder.

Note that if PRISM is installed in a folder other than\, then you have to change the batch file
prism.bat in thebin folder and the patl: \prism\bin accordingly.

3.1.2 Linux

In version 1.10, a single united packageism110_linux.tar.gz is provided for x86-based
Linux systems. We have build and tested the package on glibc-2.3 systems. Typical steps for
installation are as follows:

1. Download the packagerism110_linux.tar.gz into your home directory.
2. Unpack the downloaded package usingtthe command.

3. Append$HOME/prism/bin to the environment variabPATH so PRISM can be started
at every working directory.

Note that if PRISM is installed in a directory other than your home directory, then you should
change the pathHOME/prism/bin accordingly.

Internally, the package contains three sorts of binaries: for 32-bit systems with 2.4.x kernels,
for 32-bit with 2.6.x kernels, and for 64-bit with 2.42¢6.x kernels. The start-up commands
(prism andupprism) automatically choose the binary suitable for your environment.
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3.2 Entering and quitting PRISM

You need to open a command terminal first before entering PRISM. To do so on Windows, select
[Start] — [Run] and then rurmd, or select

[Start] — [Programs}- [Accessories}» [Command Prompt].
To enter PRISM, type
prism

at the command prompt. Once the system is started, it responds with the ptompt(in this
manual, we simple write?-’ instead) and is ready to accept Prolog queries.
To quit the system, use the query:

?- halt.

or simply enterD (Control-D) when the cursor is located at an empty line.

3.3 Loading PRISM programs

The commandrism(File) compiles the program ifile and loads the binary code into the
system. For example, suppos®in.psm’ stores a PRISM program, then the command

?- prism(coin).

compiles the program into a binary code programiin.psm.out’ and loads the program into
the system.

A program may be stored in multiple files, but only the main file may be loaded. In the main
file, all the files in the program that contain probabilistic predicates must be included by using
the directive - include (FileName’ (§2.6.5). In this way, the system’s compiler will have
access to all the probabilistic predicates when the program is loaded. Standard Prolog program
files that do not contain probabilistic predicates can be compiled and loaded separately by using
compile/1 andload/1 commands of B-Prolog.

The commangrism(Options, File) loads the PRISM program storedkile into the sys-
tem under the control of the options given in a [Bptions If the file has the extension name
‘.psm’, then only the main file name needs to be given. The following options are allowed:

e compile. Load the program after it is compiled (default).

e consult. Load the program without compilation. This option must be specified if the
program is to be debugged.

e load. Load the (compiled) binary code program with thdfisu. psm.out . This op-
tion allows us to save the compilation time. To load a program containing probabilistic
predicates, it is highly recommended to use this option rather than direct Gsedf1
(B-Prolog’s built-in), though it was described in the manuals of the previous versions.

¢ v. Monitor the learning process.

¢ nv. Do not monitor the learning process (default).

1Despite that, we can load the compiled binary code of a usual (i.e. non-probabilistic) Prolog prograsiy.
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In addition, we can specify the values of execution fldgsX2) as options, each takes the form
‘FlagnameValué. For example, if we want to set a valua to thelog_viterbi flag, add
log_viterbi=on to Options The above optiong andnv can also be specified byérb=on’

and ‘verb=off’, respectively. The commanprism(File) described above is the same as
prism([],File), which means that the program is loaded with the default options and the
default flag values.

3.4 Configuring the sizes of memory areas*

B-Prolog, the fundamental system of the PRISM programming system, has four memory areas:
program area, control staekheap, trail stack and table area. Since version 1.10, these areas are
automaticallyexpanded on demand, so there is no need to specify the sizes of memory areas by
manual.

If you already know the memory sizes used by your program, as did in version 1.9 or earlier,
you can specify the sizes ofitial memory areas by modifying the corresponding values in the
start-up commandgrism (a shell script on Linux) angrism.bat (a batch file on Windows),
or by specifying command line optiors (control stack+ heap)-b (trail stack),-t (table area)
and-p (program area). For example,

prism -s 8000000

starts the programming system with 8 megawords (32 megabytes on 32-bit environments, 64
megabytes on 64-bit environments) allocated to the control stdo&ap. B-Prolog’s built-in
statistics/0 will show the allocated sizes of these memory areas.

3.5 Running PRISM programs

The commandrism_help/0 displays the usage of the major built-ins in the programming
system (Figure 3.1). The details of these built-ins are described in Chapter 4.

As mentioned above, the modeling part of a PRISM program can be executed in two dif-
ferent styles, namelgampling executio(§2.4.1), andexplanation searc§2.4.2). The system
is in sampling execution if it is given a probabilistic goalwmple (Goal) (§4.2). In sample
execution, a goal may give fiierent results depending on the outcomes of the switches. On
the other hand, an explanation search will be invoked in advance of numeric computations in
learning (withlearn/0 or learn/1; §4.7), probability calculation (witlprob/2 and so on;
§4.3), Viterbi computation (withviterbif/3 and so on;§4.5), and hindsight computation
(with hindsight/3 and so on§4.6). probf/2 or its variation §4.4) only makes an explana-
tion search and outputs explanation graphs, the intermediate data structure used in the numeric
computations above.

In addition, there are miscellaneous built-in predicates, which handle switch parameters
(set_sw/2 and so on§4.1) or the flags for various settings of the systeet( prism_flags/2
andget_prism_flags/2; §4.12).

3.6 Debugging PRISM programs

Programs can be executed in the debugging mode. The command

trace
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prism(File) -- Load a program in File.

prism(Opts,File) -- Load a program in File under control of Opts.
msw(I,V) -- Switch I randomly outputs the value V.
learn(Facts) -- Learn the parameters of the switches using Facts.
learn -- Learn the parameters of the switches using

facts stored in the file declared by data(File).
sample (Goal) -- The same as call(Goal) but Goal must be probabilistic.
prob(Goal,P) -- P is the probability of Goal.
probf (Goal,F) -- F is the explanation graph of Goal.
viterbi(Goal,P) -- P is the Viterbi probability of Goal.
viterbif (Goal,P,F) -- F is the Viterbi explanation of Goal, and P is

the probability of F (the Viterbi probability of Goal).

hindsight(G,G1,Ps) -- Ps are the hindsight probs of G’s subgoals matching
with G1.

set_sw(S,Dist) -- Set the probability distribution of the switch S.

get_sw(S,Info) —-- Info contains the information about the switch S.

set_prism_flag(F,V) -- Set the value V to the execution flag F.

get_prism_flag(F,V) -- Get the current value V of the execution flag F.

Figure 3.1: The output gfrism_help/0.

switches the execution mode to the debugging mode, and the command
notrace

switches the execution mode back to the usual mode. In debugging mode, the execution steps
of programs loaded with the optiaensult (§3.3) can be traced. To trace part of the execution
of a program, usepy to set spy points:

spy (Atony Arity) .

The spy points can be removed by:
nospy.

To remove only one spy point, use:
nospy (Atonvy Arity) .

In sampling, the trace of a program looks the same as that of a normal Prolog program
except that for the built-imsw (I ,,V) the probability of the outcom¥ is shown. For example,
the following trace steps show that the outcome of the trial of the switdheisd’, which has
probability 0.5.

Call: (7) msw(coin,_580ebc):_580ff8 ?
Exit: (7) msw(coin,head):0.5 7

In explanation search, a trace displays the steps that lead to the findings of explanation paths.
Each explanation path consists of a subgoal to be explained, a list of explaining subgoals and a
list of switch instances. For instance, in the following path
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Add: (12) path(direction(left),[], [msw(coin,head)])

the subgoadlirection(left) is explained by the outcom&éad’ of the switch ‘coin’.

3.7 Batch execution*

Since version 1.9, the package provides additional commands for batch execution. To enable
batch execution, we need the following two steps:

e Add a query we attempt to run as a batch execution to the program.

e Run the commandpprism at the shell prompt (Linux) or the command prompt (Win-
dows), instead Oprism.

The query for batch execution is specified in the bodpfsm_main/0-1. For example,
for a simple learning session, we may add the following definitiopxifsm_main/0 to the
programfoo.psm:

prism_main:-
set_seed(5893421),
get_data_from_somewhere(Gs), J user-defined predicate
learn(Gs).

Then we runupprism specifying the program name:
upprism foo

at the shell prompt (Linux) or the command prompt (Windows). If we want to pass arguments
to upprism, it is needed to defingrism_main/1 instead ofprism_main/0. For example, let

us introduce two arguments, where the first is a seed for random numbers and the second is the
data size. The corresponding batch clause could be as follows:

prism_main([Argl,Arg2]):-
parse_atom(Argl,Seed), ¥ parse_atom/2 is provided by B-Prolog
parse_atom(Arg2,N),
set_seed(Seed),
get_data_from_somewhere(N,Gs), 7% assume that we’ll get N data
learn(Gs). % as Gs here

The command arguments will be passegitasm_main/1 as a list of atoms. Hence it is im-
portant to note that to pass integers, we need to parse the corresponding atoms in advance,
that is, we need to get an integg893421 from an atom’5893421°. The parsing is done by
parse_atom/2, a built-in provided by B-Prolog. After this setting, we can conduct a batch
execution as follows:

upprism foo 5893421 1000

If both prism_main/0 andprism_main/1 co-exist in one programypprism will try to run

onlyprism_main/1. For such a program, if we invokepprism with no command-line argu-

ments,prism_main([]1) will be called, and so an unexpected behavior is likely to be caused.
Furthermoreupprism provides some variations in the file specificatfon:

2Some users may want to usgs' option introduced since B-Prolog 6.9. That is, we can rpni'sm foo.psm.out
-g ’go’”to load the binary codef'oo.psm.out’ and then to execute a quergs”.
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e upprism prism:foo
This is the same asupprism fod’, that is, the system will read a usual program file
foo.psm (which has no definition of the predicateilure/0).

e upprism prismn:foo
The system will read a failure program ffteo. psm (which has a definition afailure/0;
see§4.9). This is a replacement for the commangprismn, which is introduced in
version 1.9.

e upprism load:foo
The system will read a (compiled) binary code f®. psm. out . By this, we would save
the compilation time.

3.8 Error handling

In the current implementation, when the system met an error, the current query is immediately
halted byabort/0 (B-Prolog’s built-in). In such a case, to avoid beirffeated by the remain-

ing side-éfects, it is recommended to quit the systemhayt/0 and then to start the system

again. If the error message you meet includiastérnal error”, the problem should not have

been caused by the user program, but the system. In such a case, please make a contact to the
development team (see page i).
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Chapter 4

PRISM Built-in Utilities

4.1 Random switches

4.1.1 Making probabilistic choices

The built-inmsw (I1,V) succeeds if a trial of a random switthgives an outcom&. To use

a switchl, there must be a multi-valued switch declarati§8.6.3) forl in the program. As
previously mentioned, switches havefdient behaviors for sampling executic§2(4.1) and
explanation searct$®.4.2). In the former case, the probability distribution must also have been
set by usingset_sw/2 (§4.1.2) or by parameter learning4.7).

4.1.2 Setting parameters of switches

The built-inset_sw(l,Probs sets the parameters of outcomes of a switth Probswhere
Probsis a list of numberg ps, p2, - - -, px] (recommended) or a term of the fop+po+- - -+pk
that sums up to unity (i.€2, px = 1). Please note that the switch nahmust be ground. For
example, to make a biased coin,

?- set_sw(coin, [0.8,0.2]).

will set 0.8 to the parameter of the first value of switehin, and set 0.2 to the parameter of the
second value, where the order of values follows the multi-valued switch declarg@dn3).
Since version 1.9, it is also allowed to set parameters in a distribution’form:

e set_sw(l) isthe same aset_sw(l ,default)

e set_sw(l,default) sets a distribution specified by thée'fault_sw’ flag

e set_sw(l,uniform) sets a uniform distribution

o set_sw(l,f_geometric) isthe same aset_sw(l,f_geometric(2,desc))

e set_sw(l,f_geometric(Base) isthesame aset_sw(l,f_geometric(Basedesc))

e set_sw(l,f_geometric(BaseType) sets a finite geometric distribution, wheBase
is its base (an integer greater than 1) dggeis asc or desc; for finite geometric distri-
butions, see the description on tlefault_sw’ flag in §4.12.

1The introduction of finite geometric distributions is inspired by [1].
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We need to add an explanation for the first two cases. In the versions earlier than 1.9, parameters
should be set explicitly by manual if we do not have learning data. On the other hand, since 1.9,
we can specify the default parameters in a distribution form. For example,

?- set_prism_flag(default_sw,uniform).

makes the default parameters to be uniform &&&2 for handling execution flags). Then, if
we attempt a sampling, or a probability computation, the parameters of switches that has not
been used yet will be set to be uniform on the fly.

Since the default value of theéfault_sw’ flag is ‘uniform’, we can use switches which
follow a uniform distribution from the beginning. The other available values for the flag are
‘none’, ‘' f_geometric(Base’ (Baseis the base, an integer greater than 1), and so on. The
first one means that we have no default parameters, as in the previous versions. The second one
stands for a finite geometric distribution.

Also, the following predicates set the parameters to one or more switches that are used so
far, or specified invalues/2 with ground names.

e set_sw_all(Patt) sets a default distribution to all switches matching viatit
e set_sw_all(Patt,D) sets a distributio to all switches matching witRatt

e set_sw_all (with no args) is the same ast_sw_all(_).

4.1.3 Fixing parameters of switches

Sometimes we need constant parameters which are not updated during learning. For example,
letting g be a gene of interest, we may want the probabilitg bking selected from one parent
to be constant at/2.

The built-in predicategix_sw(l) fixes all switches whose names unify withThe param-
eters of fixed switches cannot be updated and will be kept unchanged during learning. Also
fix_sw(l,Param9 sets parameterBaramsto a switchl, as done inset_sw/2, and then
fixes the parameters. Please note that fix_sw(l,Params should be ground, whilé¢ in
fix_sw(l) does not need to be ground. On the other hand;ix_sw(l) is used to make the
parameters of all switches whose names unify withangeable.

4.1.4 Displaying switch information

The built-in show_sw/0 displays information associated with all switches used sé f&or
example, in the direction program,

?- show_sw.
Switch coin: head (0.8) tail (0.2)

The built-in show_sw(l) displays information about switches whose names match lwkor
example:

?- show_sw(coin).
Switch coin: head (0.8) tail (0.2)

2This does not mean that all potential switches will be shown — in many programs, the system does not know all
ground instances afsw/2 in advance.
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4.1.5 Getting switch information

The built-in get_sw(l ,Info) bindsInfo to a term in the form[Status Values Paramg that
contains information about a switthwhereStatuss eitherfixed or unfixed, Valuesis a list

of possible outcomes of the switch, aRdramsis a list of the parameters of the outcomes. For
example:

?- get_sw(coin,Info)
Info = [unfixed, [head,taill,[0.8,0.2]]

The built-in predicatezet _sw(Swinfo binds Swinfoto a term in the form okwitch(ld,
Status Values Params whereld is the identifier, Statusis eitherfixed or unfixed, Val-
uesis a list of possible outcomes, amhramsis a list of the parameters. On backtrack-
ing, Swinfois bound to the next switchget_sw(l,Status ValuesParams is the same as
get_sw(l, [Status Values Paramg).

Since version 1.1@et_sw(ld, Status Values Params Cs) is available after learning. This
built-in additionally returns the expected couftsof a switch namedd, which are computed
in learning §4.7). These expected counts are used in computing Cheeseman-Stut$4®&)jre (
and might be used to judge whether we need to apply so-dadleklf smoothing?

The following is a note for the users who also used version 1.9: In version 1.9, if some
default distribution (e.guniform) is specified, a new switch’s distribution will be dynamically
assigned as a sidéfect when callingget _sw/2. For example, we have:

?- get_sw(foobar,Sw) .
Sw = [unfixed, [a,b],[0.5,0.5]] 7

wherefoobar is a new switch. Since version 1.10, on the other hgad, sw/2 is changed so
that it only tries to get switch information, with no sidéext. So for a new switchioobar, we
will see:

?- get_sw(foobar,Sw) .
no

Please note that a similar change is donestarw_sw/1.

4.1.6 Saving switch information

The built-insave_sw (File) saves all switch information into the filéle. File can be omitted
(i.e. save_sw/0 is available besidesave_sw/1), in which case the information will be stored
into a file named Saved_SW'. On the other hand, the saved information can be restored by
restore_sw(File) from the fileFile. If File is omitted, the programming system will try to
restore the information from the file nameghired_sw'.

4.2 Sampling

An execution withsample (Goal) (or a direct execution dboal) simulates a sampling execu-
tion. A more detailed description of sampling execution is founglis.1. For example, for the
program in§1.1, we may have a result of sampling execution such as:

?7- sample(direction(D)).
D = left 7

3|f the observed data is comple®4(7.1),Csis just a list of numbers of occurrencesmafiw (1d, -) in the data.
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Of course, the result is at random, and follows the distribution specified by the program.
Besides, there are some built-ins to get two or more sampgles. samples(N, G,GS)
returns a lisiGswhich contains the results of sampli@gfor N times. For example:

?7- get_samples(10,direction(D),Gs).

Gs = [direction(right),direction(left),direction(right),
direction(left) ,direction(right),direction(right),
direction(right) ,direction(right) ,direction(left),
direction(right)] 7

Inside the system, on each trial of sampling, a c@pyf the target goat is created and called
by sample (G’). Please note that if one dftrials ends in failure, this predicate totally fails.

On the other hangset_samples_c(N,G,C,Gs) tries to make samplinG under the con-
straintC for N times, and returns a li€swhich only contains the successful results of sampling.
Note here that this predicate never fails by sampling, and if some trial ends in failure, nothing
is added tdGs (thus the size o6Gscan be less thaN). Internally, this predicate first creates a
copy [G’,C’] of [G,C], and then executesample (G’) andcall(C’) in this order. In addi-
tion, get_samples_c/4 writes the numbers of successful and failed trials to the current output
stream. For example,

?7- get_samples_c(10,pcfg(Ws), (length(Ws,L) ,L<5),Gs).

will return to Gs a list of sampledbcfg(Ws) where the length dfs is less than 5. Besides, the
last two of the following queries show the same behavior, but the first query may fail due to the
failure at some trial of sampling:

7- get_samples(100,hmm([al_]),Gs).
?7- get_samples_c(100,hmm([al_]),true,Gs).
?7- get_samples_c(100,hmm(Xs) ,Xs=[al_],Gs).

The built-in predicateget_samples_c(N,G,C,Gs, [SN,FN]) behaves similarly to
get_samples_c(N,G,C,Gs), except returning the numbers of successful and failed trials to
SNandFN, respectively.

Since version 1.10, the programming system additionally provides a couple of variations on
arguments foget_samples_c/4-5. If we specify the first argumentin the form O, M1, the
predicates will try to make sampling fdt times at maximum to ge¥l samples. If we specify
[inf,M], then the system tries to ght samples with no limit on the number of trials. For
example, we can always get 100 samples with the following query:

?7- get_samples_c([inf,100],pcfg(Ws), (length(Ws,L) ,L<5),Gs).

However it should be noticed here that there is a risk of entering an infinite loop in the use of
‘inf’ if the goal G (or G under the constrair) is unlikely to succeed.

As discussed i§2.4.1 and§2.4.2, sometimes we need to write models in twiedent styles
for sampling and explanation search witffeient sets of predicates. For example, we may use a
predicatepcfg_s/1 for sampling, and uspcfg/1 for explanation search. To get training data
for pcfg/1 by samplingpcfg_s/1 in an artificial experiment, we may replace the predicate
name of sampled goals by modifying the second argument as follows:

?7- get_samples_c(100, [pcfg_s(Ws) ,pcfg(Ws)],true,Gs).
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4.3 Probability calculation

The built-inprob (Goal, Prob) calculates the probabilitiProb with which Goal becomes true.
Under the independence and exclusiveness conditions§g&sées), the probability of a con-
junction (A, B) is computed as the product of the probabilitiesAofind B (because they are
assumed to be independent), and the probability of a disjun¢AgB) is computed as the sum

of the probabilities oA andB (because they are assumed to be exclusive). For a switch instance
msw(l,V), the probability is 1.0 iV is a variable, and the probability assigned to the outcome
Vif Vis one of outcomes of switch For example, for the program §1.1, we have:

?7- prob(direction(left),P).
P=20.5

The built-inprob (Goal) is the same asrob (Goal, Prob) except that the computed probability
Probis sent to the current output stream.

4.4 Explanation graphs

The built-inprobf (Goal, EGraph returns an explanation gra@Graphfor Goal as a Prolog
term, wheregsoalmust be a subgoal of the target predicate. An explanation graph is represented
as alist of nodes, each corresponds to one of the ordriminulas in§2.4.2. Each node takes
the formnode (G’ , Pathg whereG’ is a subgoal o5 andPathsis a list of paths that explai@’.
With the terminology in§2.4.2, one of these paths corresponds to a sub-explarttiton G’.
Each path takes the forpath (Nodes Switche$ whereNodess a list of subgoals found i&’,
and Switchess a list of switch instances also found . If we have subgoals which include
logical variables, all of these variables will be treated as the distinct ones, for implementational
reasons.

For example, in the HMM program with string length being 2, the explanation graph for
hmm( [a,b]) is obtained as follows:

?7- probf (hmm([a,b]),EGraph) .

EGraph =

[node (hmm([a,b]),
[path([hmm(1,2,s0, [a,b])], [msw(init,s0)]),
path([hmm(1,2,s1, [a,b])], [msw(init,s1)1)1),

node (hmm(1,2,s0, [a,b]),
[path([hmm(2,2,s, [b])], [msw(out(s0) ,a) ,msw(tr(s0),s0)]1),
path([hmm(2,2,s1, [b])], [msw(out(s0),a) ,msw(tr(s0),s1)1)1),

node (hmm(1,2,s1, [a,b]l),
[path([hmm(2,2,s0, [b])], [msw(out(sl),a) ,msw(tr(sl),s0)]),
path([hmm(2,2,s1, [b])], [msw(out(s1),a) ,msw(tr(sl),s1)1)]1),

node (hmm(2,2,s0, [b]),
[path([hmm(3,2,s0, [1)], [msw(out (s0),b) ,msw(tr(s0),s0)]),
path([hmm(3,2,s1,[1)], [msw(out (s0),b) ,msw(tr(s0),s1)1)1),

node (hmm(2,2,s1, [b]),
[path([hmm(3,2,s0, [1)], [msw(out(s1),b) ,msw(tr(sl),s0)]),
path([hmm(3,2,s1,[1)], [msw(out(sl),b) ,msw(tr(sl),s1)1)]1),

node (hmm(3,2,s0, [1),[1),

node (hmm(3,2,s1,[1),[1)] 7

Be warned that the result is manually beautified by the authors for making the data structure
clear. Usually, the results byrobf/2 are appropriate to be handled by the program, but too
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complicated for humans to understand. The builpsiabf (Goal) finds and displays the expla-
nation graph foGoalin a human-readable form. For the same goal as above, we have:

?- probf (hmm([a,b])).

hmm([a,b])
<=> hmm(1,2,s0,[a,b]) & msw(init,s0)
v hmm(1,2,s1,[a,b]) & msw(init,sl)
hmm(1,2,s0, [a,b])
<=> hmm(2,2,s0, [b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),sl)
hmm(1,2,s1, [a,b])
<=> hmm(2,2,s0, [b]) & msw(out(sl),a) & msw(tr(sl),s0)
v hmm(2,2,s1,[b]) & msw(out(sl),a) & msw(tr(sl),sl)
hmm(2,2,s0, [b])
<=> hmm(3,2,s80,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),sl)
hmm(2,2,s1, [b])
<=> hmm(3,2,s80,[]) & msw(out(sl),b) & msw(tr(sl),s0)
v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(sl),sl)
hmm(3,2,s0, [1)
hmm(3,2,s1, [1)

We may notice that this output corresponds to the ordefddrimula described i§2.4.2. The
last two formulas say that subgoalsn (3,2,s0, [1) andhmm(3,2,s1, [1) are always true.

The built-in predicateprobef (Goal) is the same aprobf (Goal) except that all sub-
goals and switches in explanations are encoded. piswef (Goal,EGraph is the same as
probf (Goal,EGraph except that all the subgoals and switches in the graph are encoded. In
these predicates, each subgoal has a unique number and so does each switch instance (i.e. they
areencodedl. The subgoal table stores the relation between subgoals and their numbers, and
the switch table stores the relation between switch instances and their numbers. The following
built-ins are provided to get the tables:

e get_subgoal_hashtable(Table) gets the subgoal hashtable which can be used to de-
code encoded subgoals in explanation graphs.

e get_switch_hashtable(Table) gets the switch hashtable which can be used to decode
encoded switches in explanation graphs.

Some pretty-printing routines used internally paobf/1 are also available as built-ins.
print_graph(Graph) prints an explanation gragBraph(as a Prolog term with functoesde
andpath, as illustrated above) to the current output streamint_graph (Graph, Option9
is the same aprint_graph(Graph) except it replaces connectives with the ones specified
in Options Optionscan containand (C1), or(Cy) and1lr(Cz), which indicates the AND-
connectives will be replaced with;, the OR-connectives wit@,, and the primary connectives
with C3, respectively. For example, we can have:

?- probf (hmm([a,b]) ,EGraph) ,print_graph(EGraph, [1r(’iff’)]).

hmm( [a,b])
iff hmm(1,2,s0,[a,b]) & msw(init,sO)
v hmm(1,2,s1,[a,b]) & msw(init,sl)
hmm(1,2,s0, [a,b])
iff hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
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v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),sl)
hmm(1,2,s1, [a,b])
iff hmm(2,2,s0,[b]) & msw(out(sl),a) & msw(tr(sl),sO)
v hmm(2,2,s1,[b]) & msw(out(sl),a) & msw(tr(sl),sl)
hmm(2,2,s0, [b]l)
iff hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),sl)
hmm(2,2,s1, [b])
iff hmm(3,2,s0,[]) & msw(out(sl),b) & msw(tr(sl),s0)
v hmm(3,2,s1,[]) & msw(out(sl),b) & msw(tr(sl),sl)
hmm(3,2,s0, [1)
hmm(3,2,s1, [1)

print_graph (Stream Graph, Options is the same asrint_graph (Graph, Option9 except
the output is set t&tream

4.5 Viterbi computation

By the Viterbi computationwe mean to get the most likely explanatibh for a given goalG,
that is,E* = arg maxe, ) P(E), wherey(G) is a set of explanations f@. Also the probability
of E* can be obtained. Here we call them respectivelyMiterbi explanation and theViterbi
probability of G.

e viterbi(G) displays the Viterbi probability oB.
e viterbi(G,P) returns the Viterbi probability of to P.
e viterbif (G) displays the Viterbi probability and the Viterbi explanatiorGf

e viterbif (G, P,ExpD returns the Viterbi probability o6 to P, and a Prolog-term rep-
resentation of the Viterbi explanatidi of G to Expl.

e viterbig(G) is the same asiterbi(G) except thaG is unified with its instantiation
found in the most likely path whe@ is non-ground.

e viterbig(G,P) is the same agiterbi (G, P) except thaG is unified with its instan-
tiation found in the most likely path whea is non-ground.

e viterbig(G,P,ExpD is the same asiterbif (G,P,Expl) except thaiG is unified
with its instantiation found in the most likely path whé&nis non-ground.

If there is no explanation fdB, the call of the predicates above will fail. A Prolog-term repre-
sentation of an explanation takes the same form as an explanation graph except that a node has
exactly one path. That is, it takes the following form:

[node (G}, [path(GL1,SL1)1), ..., node(Gy, [path(GLy,SL)1)]

whereG/ is a subgoal in the explanation path fér andG; is directly explained by subgoals
GL; and switchesL;. According to the purpose, we may extract the list of subgGéls. . G},
or the list of switches (by concatenati®d.. . . SL,) from this Viterbi explanation. Also this
Prolog term can be printed in a human-readable form by ysiigt_graph/1-2 (see§4.4).

In a practical situation, we often iar from the problem of underflow for a very long Viterbi
explanation. Settingon’ to the ‘1log_viterbi’ flag enables log-valued Viterbi computation in
which all probabilities are contained as log-valued &&42 for details), and so the problem of
underflow will be cleared.
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4.6 Hindsight computation*

A hindsight probabilityis Py(G’), the probability of a subgo&@’ for a given top-goaB.* Inside

the system, the hindsight probability of a subg@alis computed as a product of the inside
probability and the outside probability &. For illustration, let us consider the HMM program
(8§1.3) with string length being 4. In an HMM given some sequence, we may want to compute
the probability distribution on states for every time step. The programming system computes
such a probability distribution as hindsight probabilities. That is, we get the distribution at time
step 2 as follows:

?- hindsight (hmm([a,b,a,b]) ,hmm(2,_,_,_)).

hindsight probabilities:
hmm(2,4,s0, [b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]l): 0.054497179729564

We read from above that, given a strifig,b,a,b], the probability of the hidden state being
s0 at time step 2 is about 0.0139, whereas the probability of the hidden statedieimgbout
0.0545. Generally speakingindsight (G,GPatt) writes the hindsight probabilities db’'s
subgoals that match witBPattto the current output. In a similar wayindsight (G, GPatt, Ps)
returns the list of pairs of subgoal and its hindsight probabiliti? $o

?- hindsight (hmm([a,b,a,b]) ,hmm(2,_,_,_),Ps).

Ps = [[hmm(2,4,s0,[b,a,b]),0.013880247702822],
[hmm(2,4,s1, [b,a,b]),0.054497179729564]] 7

When omitting the matching pattePatt hindsight (G) writes the hindsight probabilities
for all subgoals of5 to the current output.

?- hindsight (hmm([a,b,a,b])).

hindsight probabilities:
hmm(1,4,s0,[a,b,a,b]): 0.058058181772934
hmm(1,4,s1,[a,b,a,b]): 0.010319245659452
hmm(2,4,s0, [b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564
hmm(3,4,s0, [a,b]): 0.062748214275926
hmm(3,4,s1,[a,b]): 0.005629213156460
hmm(4,4,s0,[b]): 0.015964697775827
hmm(4,4,s1, [b]): 0.052412729656559
hmm(5,4,s0,[]): 0.047234593867704
hmm(5,4,s1,[]): 0.021142833564682

It should be noted that, if you want the list of all pairs of subgoal and its hindsight probability,
we need to rumindsight (G, _,Ps) (nothindsight (G,Ps), in which Pswill be interpreted
as the matching pattern).

Furthermore, sometimes it is required to compute the sum of hindsight probabilities of
several particular subgoals. Although this procedure may be implemented by the user with

4The name of ‘hindsight’ comes from an inference task with temporal models such as dynamic Bayesian net-
works [16].
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hindsight/1-3 and additional Prolog routines, for ease of programming, the system provides
a built-in utility of such summation (marginalization).

To illustrate this utility, let us consider another example that describes an extended hidden
Markov model, in which there are two state variables, only one depends on another:

values(init, [s0,s1,s2]).
values(out(_), [a,b]).
values(tr(_), [s0,s1,s2]).
values(tr(_,_),[s0,s1,s2]).

hmm (L) : -
str_length(N),
msw(init,S1),
msw(init,S2),
hmm(1,N,S1,82,L).

hmm(T,N,S1,82,[1) :-T>N,!.
hmm(T,N,S1,S2, [0b|Y]) :-
msw (out (S2),0b),

msw(tr(S1),Next1), % Transition in S1 depends on S1 itself
msw(tr(S1,S2) ,Next2), % Transition in S2 depends both on S1 and S2 itself
T1 is T+1,

hmm(T1,N,Next1,Next2,Y).

str_length(4).

Each state variable takes on 3 state® €1 ands2), and hence we can say that the number of
possible states is (83 =) 9. Under some parameter configuration (e.g. after learning), we can
compute the hindsight probabilities for all subgoals.

?- hindsight (hmm([a,b,b,al)).

hindsight probabilities:
hmm(1,4,s0,s0, [a,b,b,a]): 0.003117125538065
hmm(1,4,s0,s1, [a,b,b,al): 0.000119071852861
hmm(1,4,s0,s2,[a,b,b,a]): 0.002529688812405

hmm(5,4,s2,s0,[]1): 0.000594140868831
hmm(5,4,s2,s1,[]1): 0.002737517626889
hmm(5,4,s2,s2,[]): 0.001108525263899

Now let us suppose that we want to marginalize the second state variable (i.e. the 4th argument).
Itis achieved by runningindsight_agg/2 as follows:

?- hindsight_agg(hmm([a,b,b,al) ,hmm(integer,_,query,_,_)).

hindsight probabilities:
hmm(1,*,s0,%,%): 0.005765886203332
hmm(1,*,s1,%,%): 0.063400618136553
hmm(1,%,s2,%,%): 0.011350757707280
hmm(2,*,s0,%,%): 0.059382025259221
hmm(2,*,s1,%,%): 0.004143958471003
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hmm(5,%,s0,*,*): 0.033166672736384
hmm(5,*,s1,*,*): 0.042910405551161
hmm (5, *,s2,*,*%): 0.004440183759620

In the abovehmm (integer, _,query,_,_) is a control statement that means “group subgoals
according to the 1st (integer) argument, and then, within each group, sum up the hindsight prob-
abilities among the subgoals that has the same pattern in the argument specified pYi.e.

the 3rd argument).” In generaluery is a reserved constant symbol that specifies an argument
of interest, and the arguments specified by unbound variables dfecinee in grouping and

then bundled up in summation.

For the control of grouping, 6 reserved constant symbols are defihetkger, atom,
compound, length, d_length, depth. The first 3 symbols just mean grouping by exact match-
ing® for the integer argument, the argument with an atoms, and the argument with a compound
term, respectively. On the other hanédngth will make groups according to the length of a
list in the corresponding argument. Similady,length considers the length of aftitrence list
(which is assumed to take the forDy-D;), anddepth considers the term depth. The last 3
symbols would be useful if we have no appropriate argument for exact matching. For example,
we can make grouping by the list length in the 5th argument, instead of the 1st argument (
means that the length ij:

7- hindsight_agg(hmm([a,b,a,b]) ,hmm(_,_,query,_,length)).

hindsight probabilities:
hmm (*,*,s0,%,L-0) : 0.022812689075136
hmm (*,*,s1,%,L-0) : 0.020949331948366
hmm (*,*,s2,%,L-0) : 0.014598811876160

hmm(*,*,s1,%,L-4) : 0.028716685449848
hmm (*,*,s2,%,L-4) : 0.012200549420048

The arguments in the control statement, which are neither variable nor reserved constant
symbols, will be used for filtering, that is, they are considered as matching patterns, just as in
hindsight/1-3. For example, to get the distribution at time step 3, we run:

?7- hindsight_agg(hmm([a,b,b,al) ,hmm(3,_,query,_,_)).

hindsight probabilities:
hmm(3,%,s0,%,%): 0.006164189835510
hmm (3, *,s1,*,%): 0.071139567166696
hmm (3, *,s2,*,*): 0.003213505044959

Besideshindsight_agg (G, GPatt, Ps) will return to Psa Prolog term representing the above
computed results, where’can be handled just as a Prolog’s constant symbol.

By default, each group in the computed result is sorted in the Prolog’s standard order with
respect to the subgoals. When settibg_‘prob’ to the ‘sort_hindsight’ flag (§4.12), the
group will be sorted by the magnitude of the hindsight probabilities.

Furthermorechindsight/1-3 andchindsight_agg/2-3 compute the conditional hind-
sight probabilitied,(G'|G) = Py(G’)/Py(G) instead ofPy(G’), whereG is a given top-goal and

5The matching is done by=/2, where the variables in the distinct subgoals are consideredragedit and thus do
not match with each other.
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G’ is its subgoaf. The usage for them is respectively the same as that of the corresponding
hindsight orhindsight_agg predicate with the same arity. Conditional hindsight probabili-

ties can be seen as a restricted version of conditional probabilities. For instance, in the example
program which represents a Bayesian netw§tkZ), we compute conditional probabilities on

the network by using conditional hindsight probabilities.

4.7 Learning

4.7.1 Maximum likelihood estimation and EM learning

The programming system supports parameter learning calledmum likelihood estimation
(ML estimation). That is, we can learn the parameteos switches buried in a program from
data. More concretely, in ML estimation, the system tries to find the paranteteas maxi-
mize the likelihood[]; P4(Gt), the product of probabilities of given observed goals (ianing
data).”

If we know that there is just one way to yield each observa@ignML estimation of the
parameter® is quite easy. In such a cagg, has only one explanatioB; (a conjunction of
switch instances which used to gener@ie see§2.4.2 for illustrated details of explanations),
and hence it is only required to count Gp,, the number of occurrencesmdw (i ,v) among all
E;, and then to get the estimeﬁ@, = Cjv/ Xv Civ of the parameters of the switch.

The situation above is frequently seersipervised learningvhere we say each observation
Gt is acomplete dataln partially observing situation such aasupervise@r semi-supervised
learning, on the other hand, we can consider two or more ways to @iglde. G; has two or
more explanations). To deal with such partially observed gdat®plete dathas observa-
tions, the programming system provides the utilitygdfl learning

In the system, EM learning is conducted in two phases: the first phase searches for all
explanations for observed daa (i.e. make an explanation search @&y; see§2.4.2), and the
second phase finds an ML estimategdfy using the EM algorithm. The EM algorithm is an
iterative algorithm:

Initialization step
Initialize the parameters &, and then iterate the next two steps until the likelihood
converges.

Expectation step

For eachnsw (i, V), computeC;,, the guessed counts mfw (i,v) under the parameters
oM.

Maximization step A A A
Using the guessed counts, update each parametéﬂ’ﬁfl = Civ/ Xv Civ and then in-
crementm by one.

When the likelihood converges, the system stores the estimated parameters to its internal database,
and then we can make further probabilistic inferences based on these parameters. The threshold

5Generally speaking, we need to say what is computed bytiedsight predicates isot a probability but
Ey[G’|G], the expected occurrences @f givenG, which can exceed unity. This is because, in a general case, some
subgoalG’ can appear more than onceGrs proof tree. On the other hand, in typical programs of HMMs, PCFGs (with
neithere-rule nor chain of unit productions) or Bayesian networks, each of subgoals should appear just once, hence
Ey[G’|G] can be considered as a conditional probability, Bg§a’|G). The discussion in this footnote also holds for the
hindsight predicates.

71t should be noted here that each gGalis assumed to be observed independently.
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¢ is used for judging convergence, that is, if thé&elence between the likelihood under the
updated parameters and one under the original parameters is lesqileasuficiently small),
we can think that the likelihood converges. The value o&n be configured by thepsilon’
flag (see§4.12; the default is 10).

4.7.2 Maximum a posteriori estimation

The programming system also suppamsximum a posteriori estimatiofMAP estimation)

for parameter learning, which tries to find parameteéthat maximize,P(0|Gy,...,Gt) «

P(9) [1; P¢(Gy), a posteriori probability of the parameters given training data from a Bayesian
point of view?

In MAP estimation, the system assumes the prior distribUudi@h follows a Dirichlet distri-
bution, and then in estimating parameters, it introdusessinglepseudo countThat is, in the
complete-data case, each parameter is estimatég, By(Ciy +9)/(Xv Civ + [Vil6), where|Vi|
is the number of switclis possible outcomes. Similarly in the incomplete-data case, each pa-
rameter is updated by the EM algorithm with = (Ci, +6)/(Z Civ +Vil6), until a posteriori
probability converges.

Practically speaking, even for small training data (compared to the number of parameters to
be estimated), this pseudo count guarantees all estimated parameters to be positive, and hence
we can escape from the problem of so-called data sparseness or zero frequency. If the pseudo
count is zero, the MAP estimation is just an ML estimation, and it is sometimes ¢alf#dce
smoothingwhen the pseudo count set to be unity. We caygseéthis pseudo count via the
‘smooth’ flag (§4.12).

4.7.3 Running learning commands

The built-inlearn (Goal9 takesGoals a list of observed goals, and estimates the parameters
of the switches to maximize the likelihood of the goals. For example, in the direction program
(§1.1), we make the program learn with three observed goals:

?7- learn([direction(left),direction(right) ,direction(left)]).
Then we may receive messages like:

#goals: 0(2)
#graphs: 0(2)
#iterations: 0(Converged: -1.909542505)
Finished learning
Number of tabled subgoals: 2
Number of switches: 1
Number of switch values: 2
Number of iteratioms: 2
Final log likelihood: -1.909543
Total learning time: 0.010 seconds
All solution search time: 0.010 seconds
Total table space used: 604 bytes
Type show_sw to show the probability distributions.

The line beginning withtgoals (resp.#graphs) shows the number afistinctgoals whose ex-
planation searches have been done (resp. whose explanation graphs have been constructed).

8In this view, the parameterized probability distributiBs(G) which we used so far should be considere®@3|6),
a conditional probability given the parameters.
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The line beginning with#iterations show the number of EM iterations. Since each of
direction(left) anddirection(right) has just one explanatiamsw(coin,head) and
msw(coin,tail) respectively (i.e. they are complete data), EM learning finishes with only two
iterations. After learning, the statistics on learning are displayed. These statistics can also be
obtained as Prolog terms (s&&7.5). We may confirm the estimated parameterstaw_sw/0
(§4.1.4):

?- show_sw.
Switch coin: unfixed: head (0.666666666666667) tail (0.333333333333333)

This result indicates that the estimated parameters@c‘a{ghead = 2/3 andécoin,tail = 1/3.
It is easily seen that this is because, for the whole training data, we have the explanation
msw(coin,head) for two goals, anehsw(coin,tail) for one goal.

The built-in learn/0 can be used only when the program gives the data file declaration
(§2.6.2) which specifies the file containing observed goals. The builedtn (with no argu-
ments) is the same dagarn(Goals) except that the observed goals are read from the file. For
example, assume the fileirection.dat’ contains the following two unit clauses:

direction(left).
direction(right).

and the program contains the declaration:
data(’direction.dat’).
Then running the commarickarn/0 is equivalent to:
?- learn([direction(left),direction(right)]).
Furthermore, we can specify the data by goal-count pairs by usimgt /2. That is, the data

count (direction(left),3).
count (direction(right),2) .

are equally treated as below:

direction(left).
direction(left).
direction(left).
direction(right).
direction(right).

Such goal-count pairs can also be givenéarn/1:
?- learn([count(direction(left),3),count(direction(right),2)]).

It should be noticed that the default learning method is ML estimagidrv(1). On the other
hand, as mentioned above, we can enable MAP estimgii.@) by setting the pseudo count
8, which is greater than zero, via thenooth’ flag (§4.12). For example, let us set the pseudo
countas 0.5:

?- set_prism_flag(smooth,0.5).

The learning command is invoked in the same way as that of ML estimation:
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?7- learn([direction(left),direction(right),direction(left)]).

#goals: 0(2)
#graphs: 0(2)
#iterations: 0(Converged: -2.646252953)
Finished learning
Number of tabled subgoals: 2
Number of switches: 1
Number of switch values: 2
Number of iteratiomns: 2
Final log of a posteriori prob: -2.646253
Total learning time: 0.010 seconds
All solution search time: 0.010 seconds
Total table space used: 604 bytes
Type show_sw to show the probability distributions.

It may be confusing thatlog of a posteriori prob’inthe messages above is indeed the
log of unnormalizeda posteriori probability of the observed goals (i.e. the sum of the log-
likelihood and the log-valued prior probabilfy which is the substantial target of maximization.
Finally we find the estimated parameters é&gn,head = (2+05)/(3+2=05) = 0.625 and

gcoin,‘tail = (1 + 05)/(3 + 2% 05) = 0.375.

?- show_sw.
Switch coin: unfixed: head (0.625) tail (0.375)

Let us recall that the above example is a program with complete data. When EM learning is
conducted with incomplete data, the procedure is the same as above, but the larger number of
iterations may be required for complex models or large data.

4.7.4 Avoiding bad local maxima

It is only guaranteed by the EM algorithm that each iteration monotonically increases the like-
lihood (or a posteriori probability), and hence we often face the problem of being trapped in
bad local maxima. In the current version, the system provides a quite simple solution. That is,
we can try multiple running of the EM algorithm by restarting witlffelient initializations of
parameters. The final estimates are the ones with the highest likelihood (or a posteriori proba-
bility) among all trials. The number of such trials can be specified by#thetart’ flag (see
§4.12).

4.7.5 Getting statistics on learning

After learning (both ML and MAP), the built-iget_log_likelihood(LL) returns the log-
likelihood of the given observed goals. In MAP estimati§d.¢.2), i.e. when some positive
value is given to thesmooth’ flag, we can also get the log of unnormalized a posteriori prob-
ability (§4.7.3) of the observed goals lggt_log_post (LPos), which is the target of maxi-
mization in MAP estimationget_lambda(L) returns the log-likelihood after ML estimation,

9To be precise, suppose we have some predefined probabilistic model dnhddethe data at hand. Then, from
a Bayesian point of view, a posteriori probability of parameétgiven D is computed byP(9|D) = P(6)P(D|9)/P(D),
whereP(6) is a prior probability ofg, andP(D|0) is the likelihood ofD underd. As stated in§4.7.2,P(6) is assumed
to follow a Dirichlet distribution, and the ‘unnormalized’ a posteriori probability is j8&lD) ignoring the constant
factors with respect té (i.e. the constant factors in the Dirichlet distribution @&{@®)). Of course, such an unnormalized
version can be used only for relative comparison such as a judgment of the EM algorithm’s convergence, or selecting
the ‘best’ parameters in multiple running of the EM algorith§d.7.4).
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or returns the log of unnormalized a posteriori probability after MAP estimation. Combining
these statistics with the facilities for savingstoring switch information§é.1.6), we can write
the extensions of the routine for multiple running of the EM algoriti§zh7.4).

We can also get the number of occurred switches, occurred switch instances, and free pa-
rameters with respect to the last learrtfhgia the built-in predicateget_num_switches/1,
get_num_switch_values/1, andget_num_parameters/1. The observed goals (with their
counts and frequencies) used in the last learning is displayetidy_goals, and can be ob-
tained as Prolog terms Iget_goals/1 andget_goal_counts/1:

?- show_goals.
Goal direction(right) (count=1, freq=33.333%)
Goal direction(left) (count=2, freq=66.667%)
Total_count=3

?7- get_goals(Gs).
Gs = [direction(left),direction(right)] 7

?- get_goal_counts(GCs) .
GCs = [[direction(left),2,66.666666666666657],
[direction(right),1,33.333333333333329]] 7

get_search_time(Time) andget_learn_time(Time) can be used to get the time (in sec-
onds) consumed for explanation search and for the entire learning procedure, respectively.
Since version 1.1Q,earn_statistics/2 gives a unified way to get these learning statis-
tics. That is,learn_statistics(Name Stad returns asStatthe statistic nametlame Ba-
sically, learn_statistics(Name Stad behaves the same as the builtgiot _NamgStad,
described in this section. On the other hand, when callissyrn_statistics(Name Stad
with Namebeing unbound, we can get all available statistics one after another by backtracking.
The available statistics are shown in Table 4.1.

4.8 Model scoring*

In many applications, we often face a problermaidel selectior—that is, we need to select the
model that fits best the data at hand, from possible candidates. In machine learning community,
this problem should have been one of the most intensively explored topics in the last decade.
In PRISM, the programming system just provides two simple Bayesian scores based on ML
(84.7.1) or MAP §4.7.2) estimation, called Bayesian Information Criterion (BIC) [27] and
Cheeseman-Stutz (CS) score [3]. Generally speaking, these Bayesian scores are known to be
approximations of lo@(D | M) = Iogf® P(D | 8, M)P(6 | M)dg, log of themarginal likelihood
of the observed data under the modeM, and so in model selection with some Bayesian score
(BIC, for example), we compare the model candidates according to the score (i.e. the model
with the larger score is considered to be better). See [4] for more detailed descriptions about
BIC and CS scores.

In PRISM, the modeM is of course defined in the modeling pa§2(4), and after ML or
MAP learning with some observed go&lg§4.7.3),get _bic(Score returnsScoreas the BIC
score of the modeM givenD. Also after MAP learning wittD, get_cs (Score returnsScore
as the CS score d¥l given D. Please note here thgét_cs/1 is available only after MAP

10The number of occurred switch instances is just the sum of the numbers of possible outcomes of switches occurred
in all explanations for all observed goals. This means that the switch instances not occurring in any of these explanations
are also taken into account there. The number of free parameters is just computed as the nhumber of occurred switch
values subtracted by the number of occurred switches.
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Table 4.1: Statistics referred to Rgarn_statistics(Nameg Staf.

Name Stat
log_likelihood Log likelihood
log_post T Log of unnormalized a posteriori probability
lambda Same adog_likelihood (in ML case)

or log_post (in MAP case)

num_switches Number of occurred switches in the last learning
num_switch_values | Number of occurred switch values in the last learning
num_parameters Number of parameters in the last learning
goals List of goals used in the last learning
goal_counts List of goal-count pairs used in the last learning
bic Bayesian Information Criterion score (s&&8)
cs T Cheeseman-Stutz score ($€e8)
search_time } Time consumed for the solution search (in seconds)
learn_time ¥ Time consumed for the entire learning procedure (in seconds)

+Only available after MAP estimation.

learning where thesmooth’ flag (§4.12) is set as positive. Instead of usiget_bic (Score
orget_cs(Score, we can uséearn_statistics(bic,Score orlearn_statistics(cs,
Score, respectively.

4.9 Handling failures*

The programming system provides a facility of dealing with failure in generative models. The
background and general descriptions are giveflid and§2.4.3, and so in this section, we will
concentrate on the usage of this facility.

For example, let us consider again the program which takes into account the agreement
in the results of coin-tossings, and suppose that the program is contained in the file named
‘agree.psm’

values(coin(_), [head,tail]).

failure :- not(success).
success :- agree(_).
agree(A) :-

msw(coin(a),A),
msw(coin(b),B),
A=B.

See§2.4.3 for a detailed reading of this program. Like the program above, for the model that
may cause failures, we need to define the preditai@ure/0 which describes all generation
processes leading to failure. In a probabilistic context, the sum of probabilities of successful
generation processes and the probability thdatiure/0 holds should always sum to unity. Of
course it is possible to defifrilure/0 in a usual manner of PRISM programming, but the
definition should be much simpler if we can appropriately use the negadiofi as above.

When some negationot/1 occurs in a program, the system first attempts to eliminate
it from the program by applying a certain type of program transformation (called First Order
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Compiler [17]) to produce an ordinary PRISM program. If this transformation is successful,
PRISM then loads the transformed program into memenismn (File) carries out this two-
staged process automatically (please note thiais'added to the last).File must include a
definition of thefailure/0 predicate described above.

By default, the transformed program is stored into the filenp’ in the current working
directory. If you prefer another file, safempFile prismn (File, TempFil® should be used
instead. For example, for the agreement program above,

?- prismn(agree).

loads agree.psm’ into memory. The user can check the result of the transformation by looking
at ‘temp’. To estimate the parameters of switches for this program, include a special symbol
failure as data:

?-learn([failure,agree(heads) ,agree(heads) ,agree(tails)]).

For batch executior§@.7) of the program that deals with failure, we need toupiprismn (also
note thatn’ is added), instead aipprism.

foc/2 is the built-in predicate internally invoked byrismn/1-2. That is, foc(File,
TempFil® eliminates negation (or more generally universally quantified implications) and gen-
erates executable code intempFile For example, we can find the programak’ in the ‘foc’
directory obtained by extracting the package. With the following query, we transiaxhihto
‘temp’, and load the translated program:

?- foc(max,temp), [temp].

Allowing negation in the clause body is equivalent to allowing arbitrary first-order formulas as
goals which are obviously impossible to solve in general. £&¢/2 may fail depending on

the source program. Users are advised to look into the examplisc@® usage in thefoc’
directory.

4.10 Avoiding underflow*
4.10.1 Background

For large data, such as very long sequential data, we oftéardmom the problem that the
probability of some explanation goes into underflow. For Viterbi computagj@arB(or §4.5),

since no summations of probabilities arise in the computation, we have an easy solution —
keeping probabilities as log-valued.

For the probabilistic inferences other than Viterbi computation, on the other hand, scaling is
one way to deal with quite small numeric values which often lead to underflow. In the context of
probabilistic modeling, for instance, hidden Markov models (HMMs) or other temporal models
could have a very small probability for a long sequence, and so standard HMM-related systems
employ some model-specific scaling methods. Another solution is to compute log-valued prob-
abilities (as done in log-valued Viterbi computation), which is done by alternately calling the
logarithmic function and the exponential function.

For the probabilistic inferences other than Viterbi computation, the programming system
supports two scaling methods below as well as the method for computing log-valued probabili-
ties.
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e Constant scaling

In this scaling, each time we multiply a parametetmef:/2 to the probability of some
explanation, we also multiply a constant number (greater than one) to avoid underflow.
Hereafter this number is calledsaaling factor It is assumed that the users can give the
appropriate constant number as the scaling factor.

e Layered scaling

In this scaling, promising scaling factors are automatically determined (thus the users
need not to specify it), but the applicable programs are limited. That is, we can apply
the method only to the program in which tabled subgoals can be partitioned into several
groups calledayers which follow the conditions:

1. The layers are acyclic with respect to the calling relationship.

2. For any layelL, the number oL’s occurrences is constant in every (unfolded) ex-
planation.

Fortunately however, it is confirmed that temporal models including HMMs, dynamic
Bayesian networks (DBNs), and some specific case of probabilistic context-free gram-
mars in Chomsky normal form satisfy the conditions above. Indeed, this scaling method
is just a generalization of the one developed for HMMs. For example, let us consider the
HMM program with the string length being 3. Then, for an observedyaa{ [a,b,a]),

we can consider the layers frodh to Us:

U; = {hmm([a,b,al) },

U, = {hmm(3,3,s0,[a,b,a]), hmm(3,3,s1,[a,b,al) },
Us = {hmm(2,3,s0,[b,al),hmm(2,3,s1, [b,al) },

U = {hmm(1,3,s0,[al),hmm(1,3,s1,[al) },

Us = {hmm(0,3,s0,[]),hmm(0,3,s1,[]1) }

In layered scaling, an individual scaling factor is automatically determined for each layer.
Only the users need to do is confirming whether, for each layer, the number of the layer’s
occurrences is constant among all search paths for the observed goal. In the above exam-
ple,U; (i = 1,...,5) (to be more exact, one subgoal frawy) appears just once in every
search path faimm ( [a,b,a] ), and so we can say the layered scaling is applicable to this
program.

4.10.2 Using methods for avoiding underflow

For Viterbi computation, settingh’ to the ‘Log_viterbi’ flag enables the log-valued Viterbi
computation. Seg4.12 for handling execution flags. The returned probability is log-valued.

For the other probabilistic inferences, the methods described in the previous s&¢tidhl)

are specified by thescaling’ flag. This flag takes onone, const, layer, andlog_exp. The
valuenone (default) means we perform no scalinghnst andlayer mean doing the constant
scaling and the layered scaling, respectively. By specifyu) exp, we make probability com-
putations based on log-valued probabilities. For example, the following query enables constant
scaling:

:- set_prism_flag(scaling,const).
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Keep in mind that, when using any scaling method, the probabilities returned by built-ins that
computes probabilitieg4.3 and§4.6) will be log-valued.
To enable a scaling meth@xceptlog_exp, we need to make extra settings:
e Constant scaling
We need to tell the scaling factor to the system, by settingthag@ing_factor flag. For
example, the following specifies it to be 2.0 as follows (the default is 8.0):

:— set_prism_flag(scaling_factor,2.0).

e Layered scaling

To specify the layers, we introduce the predickigered/4. For example, in the HMM
program above, the following declarations will group the subgoals into the lalyersUs:

layered(hmm,4,1,integer) .

The meaning of this declaration is that, among the subgoa&mf3, ones that have the
same integer value in the first argument will belong to the same layer. Moreover, for the
case that we have non-ground observed goals, we need to add the following declaration:

layered (hmm,1,1,length).
This declaration means that among the subgodismef 1, ones that have a list of the same

length in the first argument will belong to the same layer. After adding this declaration,
we can consider a non-ground gaah ([a,b,X]) and the following layers:

U; = {hmm([a,b,X])},
U, = {hmm([a,b,al),hmm([a,b,b]l)},
U; = {hmm(3,3,s0,[a,b,al),hmm(3,3,s1, [a,b,al),
hmm(3,3,s0, [a,b,b]),hmm(3,3,s1, [a,b,b])},
U, = {hmm(2,3,s0,[b,a]),hmm(2,3,s1,[b,al),
hmm(2,3,s0, [b,b]),hmm(2,3,s1, [b,b])},
U; = {hmm(1,3,s0,[al),hmm(1,3,s1,[a]),hmm(1,3,s0, [b]),hmm(1,3,s1, [b])},
Ui = {hmm(0,3,s0,[]),hmm(0,3,s1,[1)}

For each subgodb’ that does not match the declarations will form a layer whose only
member ig5’. So, if we know in advance that there are no non-ground observations, we
can omit the declaration with respectiom/ 1.

The matching pattern (the 4th argument)liyered/4 is shown in Table 4.2. If we want

to make a matching with more than one argument, it is allowed to use the list form. To
show the example of this specification, we can modify the second argument as follows
(though is redundant in this example):

layered(hmm,4, [1,4], [integer,length]).
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Table 4.2: Matching pattern usedliayered/4.

integer | integer

atom atom
compound | compound term
length list length

d_length | the length of the list represented by the d-list
(the functor of d-list is assumed to be’/2)
depth term depth

4.10.3 Hficiency

It is desired to understand that the methods for avoiding underflow bring loss of computation
time. For the probabilistic inferences other than Viterbi computation, constant scaling (speci-
fied by ‘const’) should be fastest since we only need to multiply a constant number for each
occurrence of switch instances. On the other hand, the method specifiedighgxp’ requires
additional computation time for calls of the logarithmic and exponential functions. In param-
eter learning with layered scaling (specified hygyer’), probability computation can be slow
sinceinter-goal sharing12], a simple optimization to make explanation graphs compact, is not
allowed to be applied. This comes from the fact that, in layered scaling, we ned e i
scaling factor for each goal.

4.11 Keeping the solution table*

Inversion 1.10, theclean_table’ flagis introduced for a (partial) control of the solution table.

If this flag is set to én’, which is the default, the programming system will automatically clean

up all past results of explanation search (say, solutions) in the solutiof'tafiien invoking a

routine that executes the explanation search (i.e. leargihg) and probability computations
(84.3,§4.5,§4.6)). On the other hand, if the flag is set tff’ (see§4.12), the programming
system does not clean up the solutions at all. Keeping and reusing the past solutions can be
significantly useful when we only attempt to compute the probabilities of some specific goal
repeatedly with dferent parameter settings. Of course, thiency is gained at the price of
memory space, so we need to care about the size of memory (i.e. the table area).

4.12 Execution flags

4.12.1 Handling execution flags

Since version 1.9, the system provides more than a dozen of execution flags to change its be-
havior. The below is the usage of these execution flags:
e Setting flags

Flags are set by the commandt_prism_flag(FlagNameValue). When writing the
query “:- set_prism_flag(FlagNameValue) .” in a program, the flag will be set

Yinternally, the system calls botmitialize_table/0 (B-Prolog’s built-in) and the routine that erases the 1D
tables of PRISM's own. So it is not guaranteed for the system to work when you callnitygalize_table/0 at an
arbitraty timing.
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when the program is loaded. Also, flags can be specified by the compaarsd/2
(83.3), that is, by running:

7- prism([FlagNameValu€l , Filename .

e Printing flags
show_flags/0 will print the current values of flags.

e Getting flag values

By get_prism_flag(FlagNamegX), you can get the value éflagNameasX. If we call
this with FlagNamebeing unbound, all available flags and their values are retrieved one
after another by backtracking.

e Running built-ins based on flags

For example, to enable the log-valued version of Viterbi routi$ 10), we need to
run set_prism_flag(log_viterbi,on) beforehand. Also we may run as a query
set_prism_flag(smooth,C) in advance to makemoothindi.e. MAP estimation) with
the pseudo courg.

4.12.2 Available execution flags

Here we list the available execution flags:

e verb (possible valueson andof f; default:of £) — flag for enabling or disabling verbose
mode.

e warn (possible valueson andof £; default: of £) — flag for enabling or disabling warning
messages.

e clean_table (possible valueson andoff; default: on) — flag for automatic cleaning
of the solution table (se#4.11 for details). If this flag is set t@h’, the programming
system will automatically clean up all past solutions in the solution table when invoking
any routine that executes the explanation search. On the other hand, with this flag turned
‘off’, we can keep the past solutions.

e epsilon (possible value: non-negative float; default0e-4) — thresholds for conver-
gence in the EM algorithm (s€&.7.1).

e smooth (possible value: non-negative float; default— pseudo count for MAP estima-
tion (§4.7.2). If this flag is set to 0, the system will conduct ML estimation.

e init (possible valuesnone, random andnoisy_u; default: random) — initialization
method in the EM algorithm§é.7.1). none means no initializationrandom means that
the parameters are initialized considerably at random,naidy_u means that the pa-
rameters are initialized to be uniform with (small) Gaussian noises.

e std_ratio (possible value: non-negative float; default:1) — when we initialize the
parameters in the EM algorithn§4.7.1) with ak-valued switch according to a uniform
distribution with Gaussian noises, where the noises are generated accordiity ko
(std_ratio * (1/k))?). The parameters will be normalized at the end of initialization.
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restart (possible value: positive integer; defaulfy — number of restarts. Generally
speaking, the EM algorithn§4.7.1) only finds a local MIMAP estimate, so we often
restart the EM algorithm for several times withfdrent initial parameters, and get the
best parameters (i.e. with the highest log-likelihood or log of a posteriori probability)
among these restarts.

max_iterate (possible value: non-negative integer; defaudly:— maximum number

of EM iterations. In the EM algorithm§@.7.1), sometimes we need a large number of
iterations until convergence. For such a case, we can stop the EM algorithm before con-
vergence by this flag.

log_viterbi (possible valueson andoff; default: off) — flag for enabling or dis-
abling the log-valued version of Viterbi computatio§#(10). For large data, we often
sufer from the problem that the probability of some explanation goes into underflow.
Specifically to the Viterbi computation however, we can avoid this problem by changing
the multiplication of probabilities to summation of log-valued probabilities. Please note
that the value of this flag does not make any influence on the scaling meg#d6)( If

you wish to use some scaling method, usesbel ing flag.

scaling (possible valuesione, const, layer andlog_exp; default:none) — scaling
methodsnone means no scaling,onst means doing the constant scalilgyer means
doing the layered scaling, andg_exp means forcing log-valued computation of proba-
bilities. 1og_exp is the most general and applicable to any programs, but is preferred to
be used with MAP estimatior§4.7.2) in parameter learning (this is because all relevant
parameters should be non-zero to Usg_exp). See§4.10 for a general description and
the detailed usage on these scaling methods. If any value othetdhaiis specified, the
computed probabilities are obtained as log-valued. Please note that the value of this flag
does not make any influence on the use of the log-valued version of Viterbi computation
(84.10 or§4.5). If you wish to enabjeisable the log-valued Viterbi computation, use the
log_viterbi flag.

scaling_factor (possible value: float{ 1); default:8.0) — scaling factor for constant
scaling.

default_sw (possible valuesnone, uniform, f_geometric, f_geometric(Base,
f_geometric(Base Type; default: uniform) — default distribution for parameters. If
none is set, we have no default distribution for parameters, and hence as in the versions
earlier than 1.9, we cannot make sampling or probability computation without an explicit
parameter setting (viget_sw/2, and so on) or learninginiform means that the default
distribution for each switch is a uniform distributiof. geometric (Base Typ® means

the default distribution for each switch is a finite geometric distribution wBaiseis its

base (an integer greater than 1) diygeis asc (ascending order) atesc (descending or-
der). For example, when the flag is seft@eometric(2,asc), the parameters of some
3-valued switch are setto 0.142(= 2°/(2°+ 21+ 22)), 0.285 - - (= 21/(2°+ 21 +2?)), and
0.574-- (= 22/(2°+2'+2?)), according to the order of values specified in the correspond-
ing value declarationf _geometric(Base is the same as_geometric(Basedesc),
andf_geometric is the same as_geometric(2,desc).

dynamic_default_sw (possible valueson andoff; default: on) — flag for the mode

on automatic setting of the default distributions to the switches whose outcome spaces are
dynamically changed (s€R.6.3 for a typical case). If this flag is set tm’, the program-

ming system automatically sets the default distribution to such switches before invoking
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the routines that refers to the switch distributions (e.g. sampling, probability computa-
tions,get_sw/2, and so on). The default distribution is given by tdefault_sw’ flag
(see above).

fix_init_order (possible valueson andoff; default: on) — flag for fixing the order

of parameter initialization among switches. For an implementational reason, in the EM
algorithm §4.7.1), the order of parameter initialization among switches can vary accord-
ing to the platform, and hence we may havfatient learning results among the various
platforms. Turning this flagon’ fixes the initialization order in some manner, and will
yield the same learning result.

sort_hindsight (possible valuesby_goal andby_prob; default: by_goal) — flag

for the mode on sorting the results of hindsight computatfghg). Withby_goal, the
result will be sorted in the Prolog’s standard order with respect to the subgoals. With
by_prob, the result will be ordered by the magnitude of the hindsight probability.

search_progress (possible values: non-negative integer; defatuly — the frequency
of printing the progress message (i.e. the dot symbol) in explanation search and in con-
structing explanation graphs. If this flag is seb{dhe message is suppressed.

em_progress (possible values: non-negative integer; default) — the frequency of
printing the progress message (i.e. the dot symbol) in the EM algori§htid._L). If this
flag is set ta0, the message is suppressed.

reduce_copy (possible valueson andoff; default: of £) — flag for automatic copying

of the Prolog terms returned by several built-ipsdbf /2, viterbif/3, and so on; See
§4.16). If this flag is set tocff’, the programming system will automatically make a
copy of the Prolog term returned by these built-ins. On the other hand, with this flag
turned on’, the copying will be skipped.

4.13 Random number generator

The following built-ins are provided to set information or retrieve information of the random
number generatdf For sampling utilities based on discrete values,ge&4.

random_float (Max,R): Generates a random numbein the range ob. . . Max
get_seed(Seed: The seed used in the random generat@ded
set_seed(Seed: Seeds set to be the new seed used in the random number generator.

set_seed_time: The current time is set to be the seed used in the random number gen-
erator.

set_seed_time(T): The current time is set to bofhiand the seed used in the random
number generator. This is equivalent to a sequential executisatofseed_time/0 and
get_seed(T).

12As a random number generator, the programming systemMieesenne Twistelby incorporating the implemen-
tation of its authors’ own available attp://www.math.sci.hiroshima-u.ac.jp/ " m-mat/MT/emt.html . The
development team is deeply grateful to the authors.
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4.14 Sampling on temporary distributions

By sampling, random switchesgw/2) can generate random outputs, but sometimes it is tedious
to assign their parameters in advance of samplihigze/2-3 are sampling utilities that work
independently of the model, based on the probabiltBegporarilyassigned. These built-ins are
implemented on the random number generator describg4l ir8.

dice(Values Probs,V) choosed randomly fromValuesaccording to the distributioRrobs
anddice(ValuesV) chooses/ randomly fromValuesaccording to the uniform distribution.
For example, we may sample the phenotypes of blood type according to the distriBntion
0.4, PB = 0.2, Po = 0.3, PAB =0.1:

?- dice([a,b,0,ab],[0.4,0.2,0.3,0.1],X).
X=a?

?- dice([a,b,0,ab],[0.4,0.2,0.3,0.1],X).
X=07

?- dice([a,b,0,ab],[0.4,0.2,0.3,0.1],X).
X=b 7

These runs would be useful for generating synthetic samples without specifying a distribution
of genes.

Moreover, we can specify some extended form of a set of integer values. Namely, each
element of the lisWaluescan take the formNmin—Nmax@Nskip' OF * Nmin—Nmax , where Nmi, (resp.
Nmax) iS the minimum (resp. the maximum) value of some range,Nyag is the skip number.
For example, the following choose a value frdm, 3,5,10,15,20].

?- dice([1-502,10-2005],X).

At the implementation level, the conversion from such an extended form to the basic one is
done byexpand_values/2, which is also used internally foralues_x/2-3, the extended
multi-valued switch declarations (s€2.6.3).

4.15 FilelO

Basically, all B-Prolog’s built-ins for file 10 are also available for PRISM. In addition, since
version 1.10, the programming system provides utilities for logdangng clauses. The built-

in load_clauses (File,Clause$ reads all clauses as a li€lausesfrom a file File, while
save_clauses (File,Clause$ writes each element i€lausesas a clause intéile. If you

are only interested in some part of clauses, the following predicates would be useful:

e load_clauses (File,ClausesM,N) readsN clauses irFile asClauses starting at the
M-th line, where the lines are numbered from zero.

e save_clauses (File,ClausesM, N) writesN clauses irClausednto File, starting at the
M-th element, where the elements are numbered from zero.
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4.16 Accessing to Prolog terms returned from the built-ins*
(This section is targeted at the users who are already familiar with PRISM.)

There are several built-in predicates that return Prolog terms consisting of subgoals or switch
instances: probf/2, viterbif/3, viterbig/1-2, hindsight/3, hindsight_agg/3,
chindsight/3, andchindsight_agg/3. Now let us consider a situation where we are setting
the ‘clean_table’ flag to ‘on’ (i.e. the system cleans up the solution table at each call of the
built-ins), and where a predicapg one from the built-ins above, is called repeatedly in a query.
Then, after a call op has finished, the references to the Prolog terms returned by the previous
calls of p would be lost, and thus it is possible that a memory fault is arisen if we try to follow
these references. It would cause no problem if we can finish the task before the nexpghiltof
to make things safer, the predicates above are implemented to return the copies by default. One
drawback of this implementation, on the other hand, is that the term copying requires memory
in the heap area, and could lead to running out of memory when we deal with quite large Prolog
terms.

To adapt to various situations, we introduce another flag namethte_copy’, as a tem-
porary treatment. If thereduce_copy’ flag is ‘on’ (resp. ‘of£f’), the term copying described
above will be disabled (resp. enabled). Three typical cases can be considered in the possible
flag settings:

e clean_table = on andreduce_copy = off:
This is the default. The memory is consumed by copying but the solution table is always
cleaned up.

e clean_table = on andreduce_copy = on!
This case is least memory consuming but has a risk of the memory fault as described
above. Fortunately, it can be safe if we are able to finish accessing to the terms before the
next call ofviterbif/3.

e clean_table = off with any value forreduce_copy:
In this case, the solution table will not be cleaned up, so it should be always safe except
the risk of memory exhaustion.

In typical programs, there seems to be no need to care about the issue described in this section
since the default setting is safe, andf®iently dficient in most cases. Also as mentioned above,

the mechanism introduced here is considered as a temporary treatment, and could be changed in
the future version.
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Chapter 5

Examples

PRISM is suited for building complex systems that involve both symbolic and probabilistic el-
ements such as discrete hidden Markov models , stochastic/gtapf grammars, game anal-

ysis, data mining, performance tuning and bio-sequence analysis. In this chapter, we describe
several program examples including the ones that can be found at the directories aamed

or ‘exs_fail’in the released package.

5.1 Hidden Markov models

The HMM (hidden Markov model) program has been fragmentarily picked up throughout this
manual. In this section, on the other hand, we attempt to collect the previous descriptions as a
single session of an artificial experiment.

As described ir§1.3, the HMM we consider has only two state®™ and ‘s1’, and two
emission symbolsa” and ‘b’. In top-down writing such an HMM, we make several declarations
first:

target (hmm, 1) .

data(user) .
values(init, [s0,s1]). % state initialization
values (out(_), [a,b]). % symbol emission

values(tr(_),[s0,s1]). % state transition

The first declaration means observed goals take the famm{L) whereL is an output string,
i.e. a list of emitted symbols. The last three declarations declare three types of switches: switch
init choosess0’ or ‘s1’ as an initial state to start with, the symbol emission switches(-)
choosesa’ or ‘b’ as an emitted symbol at each state, and the state transition switelies
chooses the next stated” or ‘s1’.

We then proceed to the modeling part. The model part is described only with four clauses:

hmm(L) : - % To observe a string L:
str_length(N), %  Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). %  Start stochastic transition (loop)

hmm(T,N,_,[1):- T>N,!. % Stop the loop
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hmm(T,N,S, [Ob|Y]) :- % Loop: The state is S at time T

msw(out (S) ,0b), %  Output Ob at the state S
msw(tr(S),Next), %  Transit from S to Next.
T1 is T+1, %  Count up time
hmm(T1,N,Next,Y). %  Go next (recursion)
str_length(10). % String length is 10

As described in the comments, the modeling part expresses a probabilistic generation process
for an output string in the HMM. If possible, we recommend such a purely generative fashion
in writing the modeling part. One of its benefits here is that the modeling part works both in
sampling execution and explanation sedrch.

Optionally we can add the utility part. In the utility part, we can write an arbitrary Prolog
program which may use built-ins of the programming system. Here, we conduct a simple and
artificial learning experiment. In this experiment, we first give some predefined parameters to
the HMM, and generate 100 strings under the parameters. Then we learn the parameters from
such sampled strings. Instead of running each step interactively, we write the following utility
part that makes a batch execution of the learning procedure:

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with the samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1l), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

hmm_learn(N) is a batch predicate for the experiment, whidris the number of samples used
for learning. set_params/0 specifies the parameters of each switch manually. Sine¢1
works in sampling execution, we can use a PRISM’s buidn_samples/3 (§4.2) that calls
hmm/1 for N times.

Let us run the program. We first load the program:

% prism
?- prism(hmm) .

table hmm/1

1Since version 1.9, if we wish, we can confirm even at this point whether it is possible to run sampling or the
explanation search. To be more concrete, let us include only the declarations and the modeling part to the file named
‘hmm. psm’, and load the program:

% prism

?- prism(hmm) .
Then, for example, we may run the following to sample a goal with a skiagd get the explanations for it:
?7- sample (hmm(X)) ,probf (hmm (X)) .

It should be noted thatample/1 andprobf/1 simulate sampling execution and explanation search, respectively. Also
one may notice that, since we have no specific parameter settings for switches here, the sampling is made under the
(default) uniform parameters.
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table hmm/4
loading....hmm.psm.out

Then we run the batch predicate to generate 100 samples and to learn the parameters from them:

?- hmm_learn(100).

#goals: O......... 97
#graphs: O......... 97)
#iterations: O0......... 100....... (Converged: -689.116232627)

Finished learning
Number of tabled subgoals: 1021
Number of switches: 5
Number of switch values: 10
Number of iterations: 177
Final log likelihood: -689.116233
Total learning time: 0.210 seconds
All solution search time: 0.060 seconds
Total table space used: 402768 bytes
Type show_sw to show the probability distributions.

We can confirm the learned parameters by the buidthion_sw/0 (§4.1.4)2

?- show_sw.

Switch init: unfixed: sO (0.657062303207705) sl (0.342937696792295)
Switch out(s0): unfixed: a (0.3257277231937) b (0.6742722768063)
Switch out(sl): unfixed: a (0.704817441866976) b (0.295182558133024)
Switch tr(s0): unfixed: sO (0.284427965371372) s1 (0.715572034628628)
Switch tr(s1): unfixed: sO (0.570367890086842) s1 (0.429632109913158)

Here we can make some probabilistic inferences based on the parameters estimated as above.
To compute the most likely explanation (the Viterbi explanation) and its probability (the Viterbi
probability) for a given observation, we can use the buil<iterbif/1 (§4.5).

?- viterbif (hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])

<= hmm(1,10,s0, [a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)
hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])

<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),sl)
hmm(2,10,s1, [a,a,a,a,b,b,b,b,b])

<= hmm(3,10,s0, [a,a,a,b,b,b,b,b]) & msw(out(sl),a) & msw(tr(sl),s0)
hmm(3,10,s0, [a,a,a,b,b,b,b,b])

<= hmm(4,10,s1,[a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),sl)
hmm(4,10,s1, [a,a,b,b,b,b,b])

<= hmm(5,10,s0, [a,b,b,b,b,b]) & msw(out(sl),a) & msw(tr(sl),s0)

...omitted...
hmm(8,10,s1, [b,b,b])

<= hmm(9,10,s0,[b,b]) & msw(out(sl),b) & msw(tr(sl),sO)
hmm (9,10,s0, [b,b])

2At least there are many local maxima for ML estimation, so it is not guaranteed that we can restore the parameters
that have been set lyet_params/0.
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<= hmm(10,10,s1,[b]) & msw(out(s0),b) & msw(tr(s0),sl)
hmm(10,10,s1, [b])

<= hmm(11,10,s0,[]) & msw(out(sl),b) & msw(tr(sl),s0)
hmm(11,10,s0, []1)

Viterbi_P = 0.000117528

On the other hand, to compute the hindsight probabili§dsd) of subgoals for a goahm([a,
a,a,a,a,b,b,b,b,b]), we may run;

?- hindsight (hmm([a,a,a,a,a,b,b,b,b,b])).

hindsight probabilities:
hmm(1,10,s0, [a,a,a,a,a,b,b,b,b,b]): 0.000329700087289
hmm(1,10,s1,[a,a,a,a,a,b,b,b,b,b]): 0.000316868405859
hmm(2,10,s0, [a,a,a,a,b,b,b,b,b]): 0.000191994479969
hmm(2,10,s1, [a,a,a,a,b,b,b,b,b]): 0.000454574013179
hmm(3,10,s0, [a,a,a,b,b,b,b,b]): 0.000222026685023
hmm(3,10,s1, [a,a,a,b,b,b,b,b]): 0.000424541808125

...omitted...

hmm(8,10,s0, [b,b,b]): 0.000366678621664
hmm(8,10,s1, [b,b,b]): 0.000279889871484
hmm(9,10,s0, [b,b]): 0.000350254883354
hmm(9,10,s1, [b,b]): 0.000296313609794
hmm(10,10,s0, [b]): 0.000389511170922
hmm(10,10,s1, [b]): 0.000257057322226
hmm(11,10,s0,[1): 0.000257405112344
hmm(11,10,s1,[]1): 0.000389163380804

According to the purpose, the queries above can be included to the batch predicate in the utility
part.

By specifying the execution flag§4.12), we can add some variations to learning or the other
probabilistic inferences. For example, we may conduct an MAP estimation with the pseudo
count being 0.5, and try 10 runs of the EM algorithm. To do this, we first set the related flags as
follows:

?- set_prism_flag(restart,10),set_prism_flag(smooth,0.5).

Then, the batch predicate and the routines for later probabilistic inferences can be run in the
same way as above:

?- hmm_learn(100).

#goals: O......... (94)

#graphs: 0......... (94)

[0]#iterations: O......... 100........ (Converged: -686.955199159)
[1]#iterations: O......... 100......... 200..... (Converged: -686.959803476)
[2]#iterations: O......... 100...... (Converged: -686.955218214)
[3]#iterations: O......... 100......... (Converged: -686.955374352)
[4]#iterations: O......... 100......... 200...... (Converged: -686.958903786)
[6]#iterations: O......... 100......... 200..... (Converged: -686.958217725)
[6]#iterations: O......... 100......... (Converged: -686.956113248)
[7]#iterations: O......... 100....... (Converged: -686.955115855)
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[8]#iterations: O......... 100......... 200 (Converged: -686.955300503)
[9]l#iterations: O......... 100......... 200....... (Converged: -686.960238496)
Finished learning

Number of tabled subgoals: 1000

Number of switches: 5

Number of switch values: 10

Number of iterations: 179

Final log of a posteriori prob: -686.955116

Total learning time: 1.131 seconds

All solution search time: 0.060 seconds

Total table space used: 394476 bytes
Type show_sw to show the probability distributions.

If we always use the above flag values, it should be useful to include the following queries into
the utility part:

:- set_prism_flag(restart,10).
:- set_prism_flag(smooth,0.5).

Furthermore, let us conduct a batch execution of learning at the shell (or command prompt)
level. As a preparation, we define a clause withsm_main/1 (see§3.7) as follows:

prism_main([Arg]):-
parse_atom(Arg,N),
hmm_learn(N).

With this definition, the system receives one arguneftfrom the shell an atomic symbol (for
example,” 100’) and then converts such a symbol to the datghich can be numerically han-

dled (i.e. as an integer), and finally the batch predicate used above is invoked with the argument
N. So if we run the commandpprism at the shell prompt with specifying the filename of the
program and the argument to be passepltosm_main/1 above:

% upprism hmm 50
then a learning with 50 samples will be conducted:
% upprism hmm 50

#goals: 0....(49)
#graphs: 0....(49)

[0]#iterations: O......... 100........ (Converged: -347.352030044)
[1]#iterations: O......... 100. .. (Converged: -347.347902763)
[2]#iterations: O......... (Converged: -347.353010697)

[3]#iterations: O......... 100..... (Converged: -347.352436731)
[4]#iterations: O......... 100......... 200. .. (Converged: -347.353537932)
[6]#iterations: O......... 100......... 200...... (Converged: -347.285900532)
[6]#iterations: O......... 100....... (Converged: -347.352426257)
[7]#iterations: O......... 100......... 200. . (Converged: -347.351954980)
[8]#iterations: O...... (Converged: -347.345817648)

[9]#iterations: O......... 100......... 200......... 300....(Converged: -347.2
87105601)

Finished learning
Number of tabled subgoals: 585
Number of switches: 5
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Number of switch values: 10
Number of iterations: 264
Final log of a posteriori prob: -347.285901
Total learning time: 0.511 seconds
All solution search time: 0.030 seconds
Total table space used: 230896 bytes

Type show_sw to show the probability distributions.

yes
h

It is worth noting that the control is returned back to the shell after the execution, so we can
make more flexible experiments by combining the other facilities in a shell script.

5.2 Discrete Bayesian networks

Bayesian networks have become a popular representation for encoding and reasoning about un-
certainty in various applications. A Bayesian network is a directed acyclic graph whose nodes
are considered as random variables and whose arcs indicate conditional independences among
such variables. Conditional probability tables (CPTs) in a Bayesian network can be represented
by switches withcomplexnames in PRISM. To be more specific, BandC be two random
variables, and assuni(resp.C) has thek (resp.n) possible values. Then a conditional distri-
bution P(B|C) can be represented Imswitchesmsw (b (c) ,-) (i = 1,...,n), each of which has
koutcomesv;j (j = 1,...,K).2 Then itis easily seen that each switch parameter corresponds to
one entry of the CPT.

For illustration, let us consider an example from [13], shown in Figure 5.1. In this network,
we assume that all random variables takeyeror no (i.e. they are binary), and also assume
that only two nodesSmokeandReport are observable. This Bayesian network defines a joint
distribution:

p(Fire, TamperingSmokeAlarm, Leaving Repor).

From the conditional independences indicated by the graph structure, this joint distribution is
reduced to a computationally feasible form:

p(Fire, TamperingSmokeAlarm, Leaving Repor)
= p(Fire) p(Tamperingp(Smoke Fire) -
p(Alarm | Fire, Tamperingp(Leaving| Alarm)p(Report| Leaving.
(5.1)

The factored probabilities in the RHS will be stored in CPTs, wiFére) and P(Tampering
are seen as conditional probabilities with an empty condition. On the other hand, the observable
distribution onSmokeandReportis computed by marginalizing the joint distribution:

p(SmokeRepon)
= Z p(Fire, TamperingSmokeAlarm, Leaving Repor).

Fire, Tampering Alarm, Leaving

(5.2)

3In other words, we haven(x k) switch instancesnsw (b (c;) Vi (=1, nandj=1,..., k).
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Figure 5.1: Example of a discrete Bayesian network.

It is easy to notice that the marginalization above takes an exponential time with respect to
the number of variable to marginalize. In the literature of research on Bayesian netwbrks, e
cient algorithms are known to compute such marginalization, but in this section, we concentrate
on how we represent Bayesian networks in PRISM. Indeed, for a certain class called singly-
connected Bayesian networks, it is shown in [23] that we can write a PRISM program that can
simulate the Pearl’s propagation algorithm.

Now we start to describe the Bayesian network in Figure 5.1. Also for this case, a generative
way of thinking should be useful in writing the modeling part. For example, we first get the
value ofFire by flipping a coin (i.e. sampling) according RfFire). We then proceed to flip a
coin for Smokeaccording taP(Smoke Fire), and so on. Here we represent such a coin flipping
bymsw(l,V), and define the joint distribution (Eq. 5.1) with a predicase1d/6:

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le) ,Re) .

This clause indicates that we flip the coins in the ordeFioé, Tampering Smoke Alarm,
LeavingandReport As is declared later, the switches above are assumed here to gagput
or no. The switch namedi corresponds to the coin flipping fdtire, and switchsm (Fi)
corresponds to the coin flipping f@&mokegiven the value ofire asFi. Recall here that each
parameter of these switches corresponds to one entry of the CPTs in the target Bayesian network.
For instance, the paramet&y, (yes) o+ the probability of a switch instaneesw (sm(yes) ,no)
being true corresponds to the conditional probabHR{$moke= no| Fire = yes.

The observable distribution is defined tyr1d/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

The probability ofworld (yes,no) corresponds t®(Smoke= yesReport= no). We can find
that, forworld(yes,no), all instantiations of the body are probabilistically exclusive to each
other, so we can compute the probabilitywefr1d (yes,no) by summing up the probabilities
of these instantiations. This fact correspond to Eg. 5.2, so we can say the model is valid. The
model part of our Bayesian network program consists of the two clauses above.

We add some declarations as follows:
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target (world,2) .
data(user) .
values(_, [yes,nol).

The first clause mean®r1d/2 is observable, and from the second clause, we can use the built-
in learn/1 for learning, by passing a list of observed goals to its arguments. The third clause
specifies all switches have outcomess andno.

Now let us make a similar experiment to that with the HMM progra®.1). Namely,
we first generate goals by sampling as training data under some predefined parameters, and then
learn the parameters from such training data. THeuwdince is that we attemptfi& (or preserve)
one parameter in learning. Such a parameter can be considered as a constant parameter in the
model. The utility part may contain the following batch predicate for the experiment:

alarm_learn(N) :-

unfix_sw(_), % Make all parameters changeable
set_params, % Set parameters as you specified
get_samples(N,world(_,_),Gs), % Get N samples

fix_sw(fi), % Preserve the parameter values
learn(Gs). %  for {msw(fi,yes), msw(fi,no)}

The experimental steps are written as comments. In this predieateparams/0 (which spec-

ifies the parameters of all switche$4.1.2), get_samples/3 (which generate training data;
§4.2), andlearn/1 (§4.7.3) are used similarly to those in the batch routine for the experiments
with HMMs (§5.1). set_params/0 is a user-defined predicate:

set_params :-
set_sw(fi, [0.1,0.9]),
set_sw(ta,[0.15,0.85]),
set_sw(sm(yes),[0.95,0.05]),
set_sw(sm(no), [0.05,0.95]),
set_sw(al(yes,yes), [0.50,0.50]),
set_sw(al(yes,no), [0.90,0.10]),
set_sw(al(no,yes), [0.85,0.15]),
set_sw(al(no,no),[0.05,0.95]),
set_sw(le(yes),[0.88,0.12]),
set_sw(le(no),[0.01,0.99]),
set_sw(re(yes),[0.75,0.25]),
set_sw(re(no),[0.10,0.90]).

As described above, the additional functionality is that we do not learn (i.e. fix or preserve)
the parameters for switchi. This is done by using the built-insmfix_sw/1 andfix_sw/1
(§4.1.3).

Now our PRISM program has been completed, and we are ready to run the program. Let
us assume that the program is contained in the dilerm. psm’, then load the program by the
commancprism(alarm):

?- prism(alarm).

We conduct learning with 500 samples &yarm_learn/1 which is previously defined:
?- alarm_learn(500).
#goals: 0(4)

#graphs: 0(4)
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#iterations: 0(Converged: -101.272680727)
Finished learning

Number of tabled subgoals: 68

Number of switches: 12

Number of switch values: 24

Number of iterations: 2

Final log likelihood: -101.272681

Total learning time: 0.020 seconds

All solution search time: 0.010 seconds
Total table space used: 24752 bytes

Type show_sw to show the probability distributions.

We can confirm the learned parameters as follows:

?- show_sw.

Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch

fi: fixed: yes (0.1) no (0.9)

ta: unfixed: yes (0.519399313310633) no (0.480600686689367)

le(no): unfixed: yes (0.384721321533468) no (0.615278678466532)
le(yes): unfixed: yes (0.404738457815134) no (0.595261542184866)
re(no): unfixed: yes (0.289857819297058) no (0.710142180702942)
re(yes): unfixed: yes (0.21427119569658) no (0.78572880430342)
sm(no) : unfixed: yes (0.159674369834434) no (0.840325630165566)
sm(yes): unfixed: yes (0.162930671951014) no (0.837069328048986)
al(no,no): unfixed: yes (0.518638757519486) no (0.481361242480514)
al(no,yes): unfixed: yes (0.50764550015705) no (0.49235449984295)
al(yes,no): unfixed: yes (0.491645541377827) no (0.508354458622173)
al(yes,yes): unfixed: yes (0.557537160970952) no (0.442462839029048)

It is also possible to get the frequencies of the sampled goals:

7- show_goals.

Goal world(no,no) (count=67, freq=67.000%)
Goal world(yes,yes) (count=9, freq=9.000%)
Goal world(yes,no) (count=7, freq=7.000%)
Goal world(no,yes) (count=17, freq=17.000%)
Total_count=100

Furthermore, for the Bayesian network program described in this section, conditional prob-
abilities can be computed as conditional hindsight probabili§éss). Let us recall that a con-
ditional hindsight probability is denoted &(G’'|G) = Py(G’)/Py(G), whereG is a given top
goal andG’ is one of its subgoals. For instance, let us consider to compute the conditional
probability p(Alarm | Smoke= yesReport= nag) by using conditional hindsight probabilities.
Since the target conditional probabilipfAlarm = x | Smoke= yes Report= no) can be com-
puted asp(Alarm = x, Smoke= yes Report= no)/p(Smoke= yes Report= no), if we letG =
world(_,_,_,yes,_,no) andG’ = world(_,_,X,yes,_,no), it can be seen tha,(G’|G)
is equal to the target conditional probability. To get the conditional distributioAlarm, we
run chindsight_agg/2 with specifying the 3rd argument imorld/6 (which corresponds to
Alarm) as a query argumefit:

?- chindsight_agg(world(_,_,_,yes,_,no),world(_,_,query,yes,_,no)).

“4In this computation, it is assumed that the parameters are saithyparams/0 in advance.

61



conditional hindsight probabilities:
world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

Of course, from the definition afor1d/2, we can make the same computation withr1d/2:
?- chindsight_agg(world(yes,no) ,world(_,_,query,yes,_,no)).

conditional hindsight probabilities:
world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

As mentioned before, the definition @ér1d/6 is computationally naive, so we need to write

a different representation (like the one proposed in [20]) of Bayesian networks which takes
into account the computationaffert for conditional hindsight probabilities, compared to the
sophisticated algorithms for Bayesian networks proposed so far.

5.3 Statistical analysis

PRISM is a suitable tool for analyzing statistical data. In this section, we present two examples.
The first example attempts to find a probabilistic justification for a common practice seen in
tennis games: players serve second services more conservatively than first services. We write
a program to demonstrate that the percentage of points won would normally decline should

a player serve second services as hard as first ones. The second example attempts to obtain
statistics that can be used to tune the unification procedure.

5.3.1 Why not serving second services as hard in tennis?

In tennis games, we observe a common practice, namely, players normally serve second services
much more conservatively than serving first services. Most people accept the practice without
asking why. We write a program to model the statistical relationship between serving and wining
in tennis games and use real statistics of Andy Roddick, one of top players, to answer the
guestion.

In tennis, a player has at most two chances to serve in each point. If the first service is a
fault, he has another chance to serve. If both services are faults, he loses the point. The following
program models this process.

values (serve(_), [in,out]). % switches serve(l) serve(2)
values (result(_), [win,loss]). % switches result(1l) result(2)

target (play,1).

play(Res):-
msw(serve(1),S1),
(S1==in —>

msw(result (1) ,Res);

msw(serve(2),82),

(S2==in ->
msw(result(2),Res);
Res=loss)).
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We use two switcheserve (1) andserve (2), to represent the outcomes of services, and
use another two switchesesult (1) andresult(2), to represent the resultsesult (1)
gives the result of the point when the first service is legalssxch1t (2) the result of the point
when the second service is legal. The result is loss if both services are faults.

The following sets the parameters of the switches based on Andy Roddick’s statistics: his
serving percentages are 61 and 95 at first and second services, respectively, and his percentages
of points won at two services are 81 and 56, respectively.

roddick:-
set_sw(serve(1),[0.61,0.39]1),
set_sw(serve(2),[0.95,0.05]),
set_sw(result(1),[0.81,0.19]),
set_sw(result(2),[0.56,0.44]).

From the program and the switch parameters, we know Andy Roddick’s wining probability
is 0.70158.

?- prob(play(win) ,Prob)
Prob = 0.70158

If Andy Roddick served second services like first services, the preddate should be
redefined as follows:

play(Res) :-
msw(serve(1),S1),
(S1==in ->

msw(result(1),Res);

msw(serve(1),S2),

(S2==in ->
msw(result(1),Res);
Res=loss)).

His winning probability would decline to 0.686799. This explains why serious tennis players
serve second services much more conservatively than first services although the percentage of
points won at first services is much higher than that at second services.

5.3.2 Tuning the unification procedure

Given two terms, the unification procedure determines if they are unifiable, and if so finds a
substitution for the variables in the two terms to make them identical. A term is one of the
following four types:variable, atomig list, andstructure The unification procedure behaves as
follows:

unify(ty,t2){

if (t1 is variable) bind; to ty;

else if ¢; is atomic)
if (t2 is variable) bind; to ty;
else returrt;==ty;

} else if ¢, is a list)
if (5 is variable) bind; to ty;
else if ¢ is a list)
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return unify(car(y),cart;)) && unify(cdr(ty),cdr(y));
else return false;
} else if ¢, is a structurd)
if (t2 is variable) bind; to ty;
else if ¢, is a structure}
lett; be f(ay,. .. a,) andt, be gs,. .. by);
if (f!'=g| m!=n) return false;
return unify@y,b;) && ... && unify( an,by);
} else return false;

}

Since the order of testdfacts the speed of the unification procedure, one question arises: how
to tune the procedure such that it performs fewest tests on a set of sample data.
The following shows a PRISM program written for this purpose:

target (prob_unify/3).
values(sl, [var,atom,list,struct]).
values(s2(_), [var,atom,list,struct]). Y%switches: s2(var),s2(atom),...

data(’unification.dat’).

prob_unify(T1,T2,Res): -
get_type(T1,Typel),
msw(s1,Typel),
get_type(T2,Type2),
msw(s2(Typel) ,Type2),
unify(T1,T2,Res).

unify(T1,T2,Res) :-var(T1),!,T1=T2,Res=true.
unify(T1,T2,Res) :-var(T2),!,T1=T2,Res=true.
unify(T1,T2,Res) :—atomic(T1),!, (T1==T2->Res=true;Res=false).
unify ([H1|T1], [H2|T2],Res):-!,
prob_unify(H1,H2,Res1),
(Resl=true->prob_unify(T1,T2,Res) ;Res=false).
unify(T1,T2,Res): -
functor(T1,F1,N1),
functor(T2,F2,N2),!,
((F1\=F2;N1\=N2) ->Res=false;
unify(T1,T2,1,N1,Res)).

unify(T1,T2,NO,N,Res) :-NO>N, ! ,Res=true.
unify(T1,T2,NO,N,Res) : -

arg(NO,T1,A1),

arg(N0O,T2,A2),

prob_unify(A1,A2,Resl),

N1 is NO+1,

(Resl=true->unify(T1,T2,N1,N,Res) ;Res=false).

get_type(T,var):-var(T),!.

get_type(T,atom) :—atomic(T),!.

get_type(T,1list) :-nonvar(T),T=[_|_],!.
get_type(T,struct) : -nonvar (T) ,functor(T,F,N) ,N>0.
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In learning mode, this program basically counts the occurrences of each type encountered in
execution. The switcls1 gives the probability distribution of the types of the first argument,
and for each type of the first argumenthe switchs2(T) gives the probability distribution of
the second argument.

For the following sample data storedinnification.dat’

prob_unify(£(A,B,1,C),£(0,0,0,1),false).
prob_unify(A,def,true).
prob_unify(g(A,B),g(A,fin) ,true).

we can conduct learning and see the results of learning as follows:

?- learn.

#goals: 0(3)
#graphs: 0(3)
#iterations: 0(Converged: -9.704060528)
Finished learning
Number of tabled subgoals: 23
Number of switches: 4
Number of switch values: 16
Number of iteratiomns: 2
Final log likelihood: -9.704061
Total learning time: 0.030 seconds
All solution search time: 0.030 seconds
Total table space used: 6860 bytes
Type show_sw to show the probability distributions.

yes
?- show_sw.

Switch si: unfixed: var (0.625) atom (0.125) list (0.0) struct (0.25)
Switch s2(atom): unfixed: var (0.0) atom (1.0) list (0.0) struct (0.0)
Switch s2(struct): unfixed: var (0.0) atom (0.0) list (0.0) struct (1.0)
Switch s2(var): unfixed: var (0.2) atom (0.8) list (0.0) struct (0.0)

From this result, we know how to order the tests of types so that the unification procedure
performs the best on the samples.

5.4 Dieting professor*

The last example is a program that deals with failures in the generation process. Let us consider
a scenario as follows. There is a professor who takes lunch everyday at one of two restaurants
‘s0’ and ‘s1’, and he changes the restaurant to visit probabilistically. Also as he is on a diet, he
needs to satisfy eonstraintthat the total calories for lunch in a week are less than 4K calories.
He probabilistically orders pizza (which is denoted Yy and has 900 calories) or sandwich
(‘s’; 400 calories) at the restaurard0’, and hamburger @’; 400 calories) or sandwich £';
500 calories) at the restaurastt’. He records what he has eaten likg,s,s,p,h,s,h] in
a week and he preserves the recifrdnd only if he succeeds in keeping the constraint. For
example, we have a list of preserved records, and attempt to estimate the probability that he
violates the constraint.

First of all, let us introduce a two-state hidden Markov model (HMM), shown in Figure 5.2,
as a basic model that captures the professor’s probabilistic behavior. We then try to write a
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pizza(p) hamberger (h)
or sandwitch (s) or sandwitch (s)

Figure 5.2: State transition diagram of the dieting professor.

PRISM program which represents this basic model with the additional constraint on the total
calories. Hereafter we call the modetanstrained HMM Let us proceed to describe the pro-
gram. From Figure 5.2, we can see that four switches are required as follows:

values (tr(s0), [s0,s1]).

values (tr(s1), [s1,s0]).

values(lunch(s0), [p,s]). % pizza:900, sandwich:400
values(lunch(s1l), [h,s]). 7% hanburger:400, sandwich:500

where the switches named (-) determine the next restaurant, and those namecth (-)
determine the menu of lunch at the corresponding restaurant.
The central part of the model &hmm/4, which is defined as follows:

chmm(L,S,C,N) : - N>0,
msw(tr(8),S2),
msw(lunch(S),D),
(S == s0,
(D=p, C2is C+900
; D=s, C2 is C+400 )
5 == si1,
(D =nh, C2 is C+400
; D=1s, C2 is C+500 )
),
L=[D|L2],
N2 is N-1,
chmm(L2,S82,C2,N2) .
chmm([],_,C,0):- C < 4000.

This predicate behaves similarlytiam/3 (§5.1), a recursive routine, except thaimm/4 has an
additional argument that accumulates the total calories in a week. It is important to notice here
that, when the recursion terminates, the total calories will be checked in the second clause, and
if the total calories violate the constraint, the predicaten/4 totally fails. This corresponds to
the scenario that the professor only preserves the record if and only if he succeeds to keep the
constraint.

To learn the parameters from his records, or to know the probability that he fails to keep the
constraint, we need to make further settings. For example, we may define the four predicates as
follows:

failure:- not(success).
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success:— success(_).
success (L) :- chmm(L,s0,0,7).
failure(L) :- not(success(L)).

From the definition okhmm/4, success(L) says that the professor succeeds to keep the con-
straint with the menu&. Sosuccess/0 indicates the fact that he succeeds to keep the con-
straint. failure/0 is the negation ofuccess/0 and therefore means that he fails to satisfy
the constraintfailure (L) is optional here but says that he fails to keep the constraint due to
the menud.. Then we made the rest of declarations:

target (success,1).
target (failure,0).
data(user) .

We consider the predicatesiccess/1 andfailure/0 as observable predicates, and we use
learn/1 as a learning command.

The experiment we attempt is artificial, similarly to those with HMN5.() and discrete
Bayesian networks6.2) — we first generate samples under the predefined parameters, and then
learn the parameters from the generated samples. For this experiment, we define a predicate in
the utility part, that specifies some predefined parameters:

set_params:-
set_sw(tr(s0),[0.7,0.3]),
set_sw(tr(s1),[0.7,0.3]),
set_sw(lunch(s0),[0.4,0.6]),
set_sw(lunch(s1),[0.5,0.5]).

Now we are in a position to start the experiment. We first load the program with the built-in
prismn/1 (please noten’ at the last of the predicate name):

7- prismn(chmm) .

stepl.
step2.
step3.
Compilation done by FOC

table failure/0

table failure/1

table success/0

table success/1

table closure_success0/1
table closure_chmm0/5
table closure_success0/2
table closure_successl/1
table closure_chmml/4
table chmm/4

compiled in 90 milliseconds
loading....temp.out

Let us recall that the definition clausesfafilure/0 andfailure/1 have negatiomot/1 in
their bodies. This is not negation as failure (NAF), and we need a special treatment for such
negation.prismn/1 calls an implementation of First Order Compiler (FOC) [17] to eliminate
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negatiomot/1. In the messages above, the messages firap1” to “Compilation done
by FOC” are produced by the FOC routine, and we may notice that the predicates whose names
start with ‘closure_’ are newly created by the FOC routine and registered as table predicates
(because they are probabilistic).

After loading, we set the parameters syt _params/0, and confirm the specified parame-
ters:

?- set_params,show_sw.

Switch lunch(sO): unfixed: p (0.4) s (0.6)
Switch lunch(sl): unfixed: h (0.5) s (0.5)
Switch tr(s0): unfixed: sO (0.7) s1 (0.3)
Switch tr(s1): unfixed: s1 (0.7) sO (0.3)

We can compute the probability that the professor fails to keep the constraint under the parame-
ters above:

?- prob(failure).
Probability of failure is: 0.348592596784000

From this, we can say that the professor skips preserving the record once in three weeks.

To make it sure that the program correctly represents our model (in particular, the definition
of thefailure predicate), we may give a couple of queries. For example, the following query
confirms whether the sum of the probability that the professor satisfy the constraint and the
probability that he does not becomes unity:

?- prob(success,Ps) ,prob(failure,Pf),X is Ps+Pf.

Pf = 0.348592596784
Ps = 0.651407403216
X=1.07

Or we have a similar query which is limited to some specific menu (obtainedbpsampling):

?- sample(success(L)),
prob(success(L),Ps) ,prob(failure(L),Pf),

X is Ps + Pf.
Pf = 0.99862357726
Ps = 0.00137642274
L = [s,s,s,h,h,s,p]
X=1.07

It is confirmed for each goal appearing in the queries above that the sum of probabilities of the
goal and its negation is always unity, so we can proceed to a learning experiment. To conduct it,
we use the built-iget _samples_c/4 to generate 500 samples (note that we cannot simply use
get_samples/3 since a sampling aduccess (L) may fail), and invoke the learning command
with the samples:

?7- get_samples_c([inf,500],success(L),true,Gs),learn([failure|Gs]).

#goals: 0......... 100......... 200...... (261)
#graphs: O......... 100......... 200...... (261)



#iterations: O0..... (Converged: -2964.779121734)
Finished learning
Number of tabled subgoals: 2275
Number of switches: 4
Number of switch values: 8
Number of iterations: 55
Final log likelihood: -2964.779122
Total learning time: 0.220 seconds
All solution search time: 0.090 seconds
Total table space used: 778384 bytes
Type show_sw to show the probability distributions.
Gs = [success([s,h,s,s,s,h,s]),success([s,p,h,h,s,s,s]),
. omitted ...
success([s,p,s,s,s,s,s]),success([s,h,h,h,h,p,s]1)] ?

It should be noted that, if a special symhalilure is included to the goals ihearn/1, the EM
algorithm considering failure called the failure-adjusted maximization (FAM) algorithm will be
invoked. After learning, we can confirm the learned parameters as usual:

7- show_sw.
Switch lunch(s0): unfixed: p (0.417373118524406) s (0.582626881475594)
Switch lunch(s1): unfixed: h (0.492000452846571) s (0.507999547153429)

Switch tr(s0): unfixed: sO (0.705730869553732) s1 (0.294269130446268)
Switch tr(sl): unfixed: sl (0.710909192666213) sO (0.289090807333787)
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Concept Index

¢ (threshold for convergence), 39

a posteriori probability, 39, 41
unnormalized —, 41
acyclic condition, 14, 17

B-Prolog, 22

backdf smoothing, 30

backward probability computation, 6

batch execution, 26, 44, 57

Baum-Welch algorithm, 6

Bayesian Information Criterion, 42

Bayesian network, 17, 58
singly-connected —, 59

Bayesian score, 42

BIC, seeBayesian Information Criterion

blood type, 2

CAR condition,seecoarsened-at-random con-
dition

Cheeseman-Stutz score, 30, 42

coarsened-at-random condition, 16

compilation, 23

complete data, 30, 38, 39

completion, 13

conditional probability table, 58, 59

conditions on the modekeemodeling as-
sumption

constant scaling, 45, 46, 49

constrained HMM, 66

constraint, 7, 65

control stack+ heap, 24

convergence, 39

CPT,seeconditional probability table

CS scoreseeCheeseman-Stutz score

cut symbol, 1

data file declaration, 18, 40
debugging, 24

— mode, 24
declaration, 1, 8
Dirichlet distribution, 39, 41
distribution semantics, 8, 9
dynamic Bayesian networks, 45
dynamic programming, 14

EM algorithm,seeexpectation- maximiza-
tion algorithm
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EM learning, 38, 41
exclusiveness condition, 6, 17, 32
executable model, 10
execution flag, 24, 47
expectation-maximization algorithm, 7, 15,
38, 39, 41, 48-50, 69
explanation, 12, 17, 38
most likely —, 34, 55
Viterbi —, seeViterbi explanation
explanation graph, 13, 14, 32, 50
explanation path, 25
explanation search, 10, 12, 14, 24, 25, 28,
31, 38, 47, 48, 50, 54

failure, 6, 14, 43, 65, 69

failure-adjusted maximization algorithm, 7,
15, 69

failure-driven loop, 12

FAM algorithm, seefailure-adjusted maxi-
mization algorithm

file 10, 51

finite geometric distribution, 28, 29, 49

finiteness condition, 12, 17

First Order Compiler, 7, 15, 44, 67

forward probability computation, 6

forward sampling, 11

forward-backward algorithngeeBaum-Welch
algorithm

general clause, 15

generation process, 5, 7, 14, 54, 65
generative manner in programming, 5, 10
generative model, 5, 7, 17, 43

genotype, 3

goal-count pair, 40, 43

hidden Markov model, 4, 6, 17, 44, 53

hindsight computation, 10, 12, 35, 50

hindsight probability, 35, 50
conditional —, 38, 61

HMM, seehidden Markov model

if-then statement->), 1

inclusion declaration, 18, 21
incomplete data, 38, 39, 41
independence condition, 9, 17, 32



independent and identically distributed (i.i.d.),
14

inside probability, 35

installation, 22

inter-goal sharing, 47

Laplace smoothing, 39
layer, 45, 46

layered scaling, 45, 46
learning, 10, 38

likelihood, 14, 38, 41

linear tabling, 6, 12

loading, 17, 20, 23, 44

local maximum, 41, 49, 55
log-valued probability, 44, 49
logical variable, 3, 9, 15

MAP estimationseemaximum a posteriori
estimation
MAR condition,seemissing-at-random con-
dition
marginal likelihood, 42
maximum a posteriori estimation, 39-41, 48,
56
maximum likelihood estimation, 3, 14, 38,
42,48
memory area, 24
automatic expansion of —, 24
Mersenne Twister, 50
missing-at-random condition, 7, 15, 17
missing-data mechanism, 16
ignorable —, 16
non-ignorable —, 17
ML estimation seemaximum likelihood es-
timation
MLE, seemaximum likelihood estimation
model selection, 42
modeling assumption, 10, 17
modeling part, 5, 8, 10, 53, 66
multi-valued switch declaration, 18, 28, 51

negation, 44

negation as failure, 15, 67
non-failure condition, 14, 17
non-tabling predicate, 21

observation process, 16, 17
observed data, 3, 18, 39

observed goal, 3, 38, 39, 42, 53, 60
option, 23
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ordered ff formula, 14, 32
outside probability, 35

parameter, 3, 9, 14, 19, 28-30, 38, 39, 42

parameter learning, 3, 7, 10, 12, 15, 17, 28,
38, 39, 55, 60, 67

partially observing situation, 4, 5, 38

phenotype, 2

probabilistic choice, 1

probabilistic goal, 3, 11

probabilistic inference, 10

probabilistic model, 8

probabilistic predicate, 1, 8, 23

probability calculation, 10, 12, 32

program area, 24

program transformation, 43

pseudo count, 39, 40, 48, 56

query, 17, 57

random number generator, 50
random switchseeswitch
restart, 41, 49, 56

sampling, 10, 11, 25, 31
sampling execution, 10-12, 24, 28, 30, 54
sampling utility, 51
scaling, 44, 49
scaling factor, 45, 49
smoothing, 48
solution table, 12, 48
automatic cleaning of —, 48
clean up —, 47
spy point, 25
statistics on learning, 41
sub-explanation, 13, 32
subgoal, 13
encoded —, 33
supervised learning, 38
switch, 1, 9, 28
default distribution of a —, 19, 29, 30,
49
name ofa—, 9, 28
outcome ofa—, 9, 28
outcome space ofa—, 1, 9, 18, 30, 49
— that dynamically changes, 19
parameter of a —seeparameter
switch information, 29, 30
switch instance, 3, 9, 12, 32
encoded —, 33



table area, 24, 47

table declaration, 18, 20
tabling, 8, 12

tabling predicate, 20
target declaration, 18
target predicate, 18

trail stack, 24

training data, 38

underflow problem, 34, 44
uniform distribution, 2, 28, 29, 49
uniqueness condition, 7, 17
utility part, 5, 8, 17, 54, 60, 67

Viterbi computation, 10, 12, 34, 44, 49
log-valued —, 44, 45, 49

Viterbi explanation, 34, 55

Viterbi probability, 34, 55
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Programming Index

.out (file sufix), 23
.psn (file sufix), 2, 23

abort/0 (B-Prolog built-in), 27
bic (statistic on learning), 43

chindsight/3, 52
chindsight_agg/2, 37, 61, 62
chindsight_agg/3, 37, 52
clean_table (execution flag), 47, 48, 52
compile (prism/2 option), 23
compile/1 (B-Prolog built-in), 23
consult (prism/2 option), 23, 25
count/2, 40

cs (statistic on learning), 43

data/1, 18, 40, 53, 59, 64, 67
default_sw (execution flag), 28, 29, 49
dice/2, 51

dice/3, 51

dynamic_default_sw (execution flag), 49

em_progress (execution flag), 50
epsilon (execution flag), 39, 48
expand_values/2, 20, 51

f_geometric (built-in distribution form),
28

failure (constant forlearn/1), 15, 69

failure/0, 14, 15, 27, 43, 44, 66, 67

fix_init_order (execution flag), 50

fix_sw/1, 60

fix_sw/1-2, 29

fix_sw/2, 20

foc/2, 44

get_bic/1,42
get_goal_counts/1, 42
get_goals/1, 42
get_lambda/1, 41
get_learn_time/1, 42
get_log_likelihood/1, 41
get_log_post/1,41
get_num_parameters/1, 42
get_num_switch_values/1, 42
get_num_switches/1, 42
get_prism_flag/2, 48
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get_prism_flags/2, 24
get_samples/3, 5, 6, 31, 54, 60, 68
get_samples_c/4, 31, 68
get_samples_c/5, 31
get_search_time/1, 42
get_seed/1, 50
get_subgoal_hashtable/1, 33
get_sw/1, 30

get_sw/2, 30

get_sw/4, 30

get_sw/5, 30
get_switch_hashtable/1, 33
goal_counts (statistic on learning), 43
goals (statistic on learning), 43

halt/0, 2, 23
hindsight/1, 35, 36
hindsight/2, 35
hindsight/3, 24, 35, 52
hindsight_agg/2, 36, 37
hindsight_agg/3, 37, 52

include/1, 21, 23

init (execution flag), 48

initialize_table/0 (B-Prolog built-in),
a7

lambda (Statistic on learning), 43

layered/4, 46

learn/0, 24, 40, 65

learn/1, 4, 5, 18, 24, 26, 39, 40, 44, 54,
60, 68

learn_statistics/2, 42,43

learn_time (Statistic on learning), 43

load (prism/2 option), 23

load/1 (B-Prolog built-in), 23

load_clauses/2, 51

load_clauses/4, 51

log_likelihood (statistic on learning), 43

log_post (statistic on learning), 43

log_viterbi (execution flag), 45, 49

max_iterate (execution flag), 49
msw/2, 8,9, 11, 14, 25, 28, 32, 51, 53

nospy/0, 25
nospy/1, 25



not/1, 15, 43, 67

not/1 (B-Prolog built-in), 15

notrace/0, 25

num_parameters (Statistic on learning), 43

num_switch_values (Statistic on learning),
43

num_switches (statistic on learning), 43

nv (prism/2 option), 23

p_not_table, 21

p_table, 20

parse_atom/2 (B-Prolog built-in), 26

print_graph/1, 33, 34

print_graph/2, 34

prism (system commaritile), 22-24, 26,
54

prism.bat (System commarjtile), 24

prism/1, 2, 15, 23, 24, 54, 60

prism/2, 23

prism_help/0, 24, 25

prism_main/0, 26

prism_main/1, 26, 57

prismn/1, 15, 44, 67

prismn/2, 44

prob/1, 3, 32, 68

prob/2, 24, 32, 63, 68

probef/1, 33

probef/2, 33

probf/1, 12, 33, 54

probf/2, 12,14, 24, 32, 50, 52

random_float/2, 50

reduce_copy (execution flag), 50, 52
restart (execution flag), 41, 49
restore_sw/0-1, 30

sample/1, 2, 3, 24, 30, 54, 67, 68
save_clauses/2, 51
save_clauses/4, 51

save_sw/0-1, 30

Saved_SW (system commarnftile), 30
scaling (execution flag), 45, 49
scaling_factor (execution flag), 46, 49
search_progress (execution flag), 50
search_time (statistic on learning), 43
set_prism_flag/2, 29, 40, 45-47, 56
set_prism_flags/2, 24
set_seed/1, 26, 50
set_seed_time/0, 50
set_seed_time/1, 50
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set_sw/1, 28

set_sw/2, 2,5, 20, 24, 28, 54, 60, 63, 67
set_sw_all/0, 29

set_sw_all/1, 29

set_sw_all/2, 29

show_flags/0, 48
show_goals/0, 42, 61
show_sw/0, 2, 4, 29, 40, 41, 55, 61, 68, 69
show_sw/1, 29

smooth (execution flag), 39-41, 48
sort_hindsight (execution flag), 37, 50
spy/1, 25

statistics/0 (B-Prolog built-in), 24
std_ratio (execution flag), 48

table (B-Prolog built-in), 19, 21
target/1, 18, 64
target/2, 18, 53, 59, 62, 67
trace/0, 24

unfix_sw/1, 29, 60

uniform (built-in distribution form), 28
upprism (system commanfile), 26, 57
upprismn (System commarnftile), 27, 44

v (prism/2 option), 23
values/2, 1,11, 18,19, 29, 53,59, 62, 64,
66
values_x/2, 19, 51
values_x/3, 19, 20,51
verb (execution flag), 48
viterbi/1, 34
viterbi/2, 34
viterbif/1, 6, 34,55
viterbif/3, 24, 34, 50, 52
viterbig/1, 34, 52
viterbig/2, 34, 52
viterbig/3, 34

warn (execution flag), 48



Example Index

agree/1, 14,43, 44
agreement program, 14, 43, 44

Bayesian network program, 58—62
blood type program, 3, 9, 11, 12, 18
bloodtype/1, 3,9, 11, 12

dieting professor program, 65-69
direction program, 1, 25, 29-32, 39, 40, 42
direction/1, 1, 2, 25, 30-32, 39, 40

extended HMM program, 36
failure/1, 66
genotype/2, 3,9, 11

HMM program, 4-6, 13, 31-33, 35, 45, 46,
53-58

hmm/1, 4-6, 13, 32, 33, 35, 45, 46, 53

hmm/4, 4, 13, 14, 32, 33, 35, 45, 46, 53

hmm_learn/1, 5, 54

set_params/0, 5, 54
success/0, 14, 66
success/1, 66

tennis program, 62—63

unification program, 63-65

world/2, 59, 62
world/6, 59, 61, 62
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