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Preface

The past few years have witnessed a tremendous interest in logic-based probabilistic learning as
testified by the number of formalisms and systems and their applications. Logic-based proba-
bilistic learning is a multidisciplinary research area that integrates relational or logic formalisms,
probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-
based probabilistic learning has found its way into many application areas including bioinfor-
matics, diagnosis and troubleshooting, stochastic language processing, information retrieval,
linkage analysis and discovery, robot control, and probabilistic constraint solving.

PRISM (PRogramming In Statistical Modeling) is a logic-based language that integrates
logic programming and probabilistic reasoning including parameter learning. It allows for the
description of independent probabilistic choices and their consequences in general logic pro-
grams. PRISM supports parameter learning, i.e. for a given set of possibly incomplete observed
data, PRISM can estimate the probability distributions to best explain the data. This power is
suitable for applications such as learning parameters of stochastic grammars, training stochastic
models for gene sequence analysis, game record analysis, user modeling, and obtaining prob-
abilistic information for tuning systems performance. PRISM offers incomparable flexibility
compared with specific statistical tools such as hidden Markov models (HMMs) [2, 14], proba-
bilistic context free grammars (PCFGs) [2] and discrete Bayesian networks.

PRISM employs a proof-theoretic approach to learning. It conducts learning in two phases:
the first phase searches for all the explanations for the observed data, and the second phase
estimates the probability distributions by using the EM algorithm. Learning from flat explana-
tions can be exponential in both space and time. To speed up learning, the authors proposed
learning from explanation graphs and using tabling to reduce redundancy in the construction
of explanation graphs. The PRISM programming system is implemented on top of B-Prolog
(http://www.probp.com/), a constraint logic programming system that provides an efficient
tabling system called linear tabling [29]. Tabling shares the same idea as dynamic programming
in that both approaches make full use of intermediate results of computations. Using tabling
in constructing explanation graphs resembles using dynamic programming in the Baum-Welch
algorithm for HMMs and the Inside-Outside algorithm for PCFGs. Thanks to the good effi-
ciency of the tabling system and the EM learner adopted in PRISM, PRISM is comparable in
performance to specific statistical tools on relatively large amounts of data. The theoretical side
of PRISM is comprehensively described in [23]. For an implementational view, please refer to
[30].

This document describes the PRISM language, its programming system, and several pro-
gram examples, targeting version 1.10. It is divided into three parts: the first part (Chap-
ters 1 and 2) describes the language, the second one (Chapters 3 and 4) lists all functionality
of the system, and the rest (Chapter 5) gives several sample program examples of PRISM.

The user is assumed to be familiar with logic programming, the basics of probability the-
ory, and some of popular probabilistic models mentioned above. The programming system is
an extension of the B-Prolog system, and only PRISM-specific built-ins are elaborated in this
document. Please refer to the B-Prolog user’s manual for details about Prolog built-ins.

Contact information

The latest information and resources on PRISM are available at the website below.

http://sato-www.cs.titech.ac.jp/prism/

For any questions, requests and bug-reports, please send an E-mail to:
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prism-query[AT]mi.cs.titech.ac.jp

where[AT] should be replaced with@ .
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Chapter 1

Overview of PRISM

PRISM is a probabilistic extension of Prolog. Syntactically, PRISM is just a Prolog augmented
with a probabilistic built-in predicate and declarations. There is no restriction on the use of
function symbols, predicate symbols or recursion, and PRISM programs are executed in a top-
down left-to-right manner just like Prolog. In this chapter, we pick up three illustrative examples
to overview the major features of PRISM. These examples will also be used in the following
chapters, but for brevity of descriptions, only a part is shown here. For full descriptions of these
examples, please refer to Chapter 5 or the comments in the example programs included in the
released package.

1.1 Building a probabilistic model with random switches

The most characteristic feature of PRISM is that it provides random switches to make proba-
bilistic choices. A random switch has a name, a space of possible outcomes, and a probability
distribution. The first example is a simple program that uses just one random switch:

target(direction/1).
values(coin,[head,tail]).

direction(D):-
msw(coin,Face),
( Face==head -> D=left ; D=right).

The predicatedirection(D) indicates that a person decides the direction to go asD. The deci-
sion is made by tossing a coin:D is bound toleft if the head is shown, and toright if the tail
is shown. In this sense, we can say the predicatedirection/1 is probabilistic. It is allowed
to use OR (;), the cut symbol (!) and if-then (->) statements as far as they work as expected
according to the execution mechanism of the programming system. By combining probabilistic
predicates, the user can build a probabilistic model for the task at hand.

Besides the definitions of probabilistic predicates, we need to make somedeclarations. The
clausevalues(coin,[head,tail]) declares the outcome space of a switch namedcoin, and
the callmsw(coin,Face) makes a probabilistic choice (Face will be bound to the result), just
like a coin-tossing. On the other hand, the clausetarget(direction/1) declares that the
observable event is represented by the predicatedirection/1. This means that we can observe
the direction he/she goes.
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Now let us use this program. If the installation is successful, we can invoke the programming
system just running the command ‘prism’:

% prism

:

Type ’prism_help’ for usage.

| ?-

where ‘%’ is the prompt symbol of some shell (on Linux) or the command prompt (on Windows).
In the following, removing the vertical bar, we use ‘?-’ as the prompt symbol for PRISM.

Now let us assume that the program above is contained in the file named ‘direction.psm’.
Then, we can load the program using a built-inprism/1 as follows:

?- prism(direction).

Some may notice here that the file suffix ‘.psm’ can be omitted. After loading the program, we
can run the program using built-in predicates. For example, we can make a sampling by the
built-in sample/1:

?- sample(direction(D)).
D = left ?

The probability distributions of switches are maintained by the programming system, so they are
not buried directly in the definitions of probabilistic predicates. Since version 1.9, the switches
have uniform distributions by default. So the results obtained by the multiple runs of the query
above should not be biased.

On the other hand, the built-in predicateset_sw/2 and its variations are available for setting
probability distributions manually. For example, to make the coin biased, we may call

?- set_sw(coin,[0.7,0.3]).

which sets the probability of the head being shown to be 0.7. The status of random switches can
be confirmed by:

?- show_sw.
Switch coin: unfixed: head (0.7) tail (0.3)

At this point, the runs withsample/1 will show a different probabilistic behavior from that was
made before:

?- sample(direction(D)).

Finally, we can quit the programming system as follows:

?- halt.

1.2 Basic probabilistic inference and learning

Let us pick up another example that models the inheritance mechanism of human’s ABO blood
type. As is well-known, a human’s blood type (phenotype) is determined by his/her genotype,
which is a pair of two genes (A, B or O) inherited from the father and mother.1 For example,

1In this example, we take a view of classical population genetics, where a gene is considered as an abstract genetic
factor proposed by Mendel.
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when one’s genotype is AA or AO (OA), his/her phenotype will be type A. In a probabilis-
tic context, on the other hand, we consider a pool of genes, and letpa, pb and po denote the
frequencies of gene A, B and O in the pool, respectively (pa + pb + po = 1). When random
mating is assumed, the frequencies of phenotypes, namely,PA, PB, PO andPAB, are computed
by Hardy-Weinberg’s law [6]:PA = p2

a + 2papo, PB = p2
b + 2pbpo, PO = p2

o, andPAB = 2papb.
To represent a distribution of phenotypes instead of these mathematical formulas, we may write
the following PRISM program:

target(bloodtype/1).
values(gene,[a,b,o]).

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

In this program, we let a switchmsw(gene,X) instantiated withX = a, b, o denotes a random
pick-up of geneX from the pool, and becomes true with probabilitypa, pb andpo, respectively.
Then, with a careful reading of this program, we can say that one ofbloodtype(P) with P =
a, b, o, ab becomes exclusively true with probabilityPA, PB, PO andPAB, respectively (see§2.2
for details). This implies the logical variableP in bloodtype(P) behaves as a random variable
that follows the distribution of phenotypes.2

Here, just like the distribution{PA,PB,PO,PAB} is computed from the basic one{pa, pb, po},
the probability distributions of switches form a basic distribution from which we can construct
the probability distribution represented by the PRISM program. Then we consider eachθi,v, the
probability of aswitch instancemsw(i,v) being true (i andv are ground terms), as aparameter
of the program’s distribution. If we can give appropriate parameters, a variety of probabilistic
inferences are available. For example, as described in the previous section, sampling is done
with the built-in predicatesample/1:

?- sample(bloodtype(X)).

In the above query, the answerX = b will be returned with probabilityPB, the frequency of
blood type B. Also it is possible to compute the probability of aprobabilistic goal:

?- prob(bloodtype(a)).
Probability of bloodtype(a) is: 0.360507016168634

Instead of being set manually, the parameters can be estimated from the observed data. We
call this taskparameter learningor more specifically,maximum likelihood estimation(ML esti-
mation or MLE) — given someobserved data, a bag ofobserved goals, find the parameters that

2From a similar discussion, in the previous example, we can seeD in direction(D) as a random variable in a
probabilistic context. In many cases, it is useful to define a program so that some logical variables behave as random
variables, but it is also worth noting that there is no need to make all logical variables in the program behave as random
variables.
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maximize the probability of the observed data being occurred. In this case, the observed data
should be a bag of instances ofbloodtype(X), which correspond to phenotypes of (randomly
sampled) humans. This is declared in the program by the clausetarget(bloodtype/1). Also
it should be noted here that we are in apartially observing situation, that is, we cannot determin-
istically know which switch instances are true (i.e. which genes are inherited) for some given
instances ofbloodtype(X) (i.e. some phenotypes). For example, if we observed a person of
blood type A, we do not know whether he has inherited two genes A from both parents, or he
inherits gene A from one parent and gene O from the other. For MLE in such a situation, one so-
lution is to use the EM (expectation-maximization) algorithm [8], and the programming system
has a built-in routine of the EM algorithm. By adding a couple of declarations and preparing
some data, we can estimate the parameters from the data.

For example, let us consider that we have observed 40 persons of blood type A, 20 persons
of B, 30 persons of O, and 10 persons of AB. To estimate the parameters from these observed
data, we then invoke the learning command as follows:3

?- learn([count(bloodtype(a),40),count(bloodtype(b),20),
count(bloodtype(o),30),count(bloodtype(ab),10)]).

After parameter learning, we may confirm the estimated parameters:

?- show_sw.
Switch gene: unfixed: a (0.292329558535712) b (0.163020241540856)
o (0.544650199923432)

It can be seen from above and the original meaning given to the program that the frequencies of
genes are estimated as:pa = 0.292, pb = 0.163, po = 0.545. Thus in the context of population
genetics, we can say that, inversely with Hardy-Weinberg’s law, the hidden frequencies of genes
can be estimated from the observed frequencies of phenotypes.

The inheritance model described in this section is considerably simple since we have as-
sumed random mates. However with the expressive power of PRISM, the case of non-random
mates can also be written (for example, as done in [19]).

1.3 Utility programs and advanced probabilistic inferences

The last example in this chapter is a PRISM version of a hidden Markov model (HMM) [2, 14].
HMMs not only dominate in speech recognition but are also well-known as suited for many tasks
such as part-of-speech tagging in natural language processing or biological sequence analysis.
An HMM is a probabilistic finite automaton where the state transitions and the symbol emissions
are all probabilistic.

Let us consider a two-state HMM in Figure 1.1. The HMM has the statess0 ands1, and it
emits a symbola or b at each state. Each of state transitions and symbol emissions is probabilis-
tic, and conditioned only on the current state. It is assumed in HMMs that we can only observe
a string (i.e. a sequence of emitted symbols), not the sequence of state transitions. The program
is described as follows:

3Actually in PRISM, at the query prompt, we cannot make a new line until reaching the end of the query. For
readability, in this manual’s illustrations, the text typed by the user or displayed by the system is sometimes beautified
by the authors.
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s0 s1

Figure 1.1: State transition diagram of a 2-state hidden Markov model.

target(hmm/1). % hmm(L) is observable
values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Please note the comments in the program, each states a procedural reading of the corresponding
predicate call. Then we may find that a top-down execution fromhmm(L), which represents the
distribution for a stringL, simulates a generation process that yieldsL, or in other words, that
we observeL after a chain of probabilistic choices by switches. In this sense, it is possible to
say that the program forms agenerative model. Besides, it may be noticed that we are also in
a partially observing situation for HMMs, since the information about state is hidden from the
stringL in hmm(L).

In this manual, the code shown above is called themodeling partof the program, and on the
other hand, we can also write non-probabilistic clauses (i.e. usual Prolog clauses) as theutility
part. For example, we define the two predicateshmm_learn/1 andset_params/0, where the
former is a batch routine for learning, and the latter is the former’s subroutine that sets some
particular values to parameters at once.

hmm_learn(N):-

set_params,!, % Set parameters manually

get_samples(N,hmm(_),Gs),!, % Get N samples

learn(Gs). % learn with these samples

set_params :-

set_sw(init, [0.9,0.1]),

set_sw(tr(s0), [0.2,0.8]),
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set_sw(tr(s1), [0.8,0.2]),

set_sw(out(s0),[0.5,0.5]),

set_sw(out(s1),[0.6,0.4]).

get_samples/3,4 learn/1 andset_sw/2 are the built-ins provided by the system, which
run the predicates in the modeling part (at meta-level), or change the status of the system includ-
ing parameter values. The built-ins exceptmsw/2 are non-probabilistic, and hence all predicates
in the utility part above are also non-probabilistic. Programming with built-ins in the utility part
allows users to take a variety of ways of experiments according to the application. For exam-
ple, in the HMM program, we may add clauses to carry out tasks such as aligning and scoring
sequences.

In the literature of applications with HMMs, several efficient algorithms are well-known.
One of these algorithms is the Viterbi algorithm [14], which computes the most likely sequence
of (hidden) state transitions given a string. This is done by dynamic programming, and the
computation time is known to be linear in the length of the given string. The programming
system provides a built-in for the Viterbi algorithm, which is a generalization of the one for
HMMs. For example,viterbif/1 writes the most likely sequence to the output:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])

<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])

<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(2,10,s1,[a,a,a,a,b,b,b,b,b])

<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s1),a) & msw(tr(s1),s0)

...omitted...

hmm(10,10,s1,[b])

<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000117528

We then read from here that the most likely sequence is:s0 → s1 → · · · → s1 → s0 (though
the last transition may be redundant).

It is shown that the algorithm implemented as the system’s built-in works as efficient as
the one specialized for HMMs [22]. So we can handle moderately large datasets with PRISM.
The efficiency comes fromlinear tabling [29], a tabling mechanism provided by B-Prolog,
and an EM algorithm called thegraphical EM algorithm. A similar mechanism is adopted for
learning and probability computation mentioned above, which is also a generalization of the
Baum-Welch algorithm(also known as theforward-backward algorithm) and the backward
probability computation for HMMs respectively [11, 22, 23].

1.4 Handling failures in the generation process*

To realize efficient computation described in the previous section, we need to write PRISM pro-
grams which obey some restrictions. The first major one is theexclusiveness condition, in which

4get_samples/3 is provided since version 1.9.get_samples(N,G,Goals) generatesN samples asGoalsby
invokingsample(G) N times.
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all disjunctive paths in a proof tree are required to be probabilistically exclusive. The second one
is theuniqueness condition, in which all observable goal patterns are probabilistically exclusive
to each other and the sum of their probabilities needs to be unity. For parameter learning, this
condition can be relaxed by assuming themissing-at-random (MAR) condition[23], and with
the MAR condition, there is a case that we can handle the PRISM programs in which the sum
of probabilities of observable patterns can exceed unity. On the other hand, the lack of probabil-
ity mass with failure in the generation process (in which the sum of probabilities becomes less
than one) is more serious. The uniqueness condition implies thatfor every observable pattern,
its generation process never fails, and could be a strong restriction in our modeling. Recently,
for a remedy of this, the programming system introduced a new graphical EM algorithm that
takes such failures into account [24, 25, 26]. This algorithm is based both on Cussen’s FAM
(failure-adjusted maximization) algorithm [7] and FOC (First Order Compiler) [17]. With this
new learning framework, we are able to introduce someconstraints(which causes some failures)
to generative models.

1.5 Organization of this manual

It is hard to list all functionalities with full details in this chapter, and so please refer to the
following chapters for the detailed description of the functionality you wish to use. The rest of
this manual is organized as follows:

• Chapter 2 describes the detail of the PRISM language.

• Chapter 3 explains how to use the PRISM programming system.

• Chapter 4 gives the detailed descriptions of the built-in predicates provided by the pro-
gramming system.

• Chapter 5 shows several program examples with detailed illustrations.

To learn PRISM, it would be helpful to see typical usages of PRISM illustrated in this chapter
and Chapter 5 first, and then to run the example programs in the released package. The authors
consider that the sections whose titles are marked with * have a little advanced contents, so the
busy users can skip these sections for the first time. Chapter 2 may also be skipped until the
examples have been explored, but to understand the program’s behavior precisely, the descrip-
tions in this chapter (especially§2.2,§2.3 and§2.4) are essential though they look complicated.
Chapter 3 and 4 are expected to work as a (rough) reference manual of the programming system.
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Chapter 2

PRISM Programs

Generally speaking, a probabilistic model represents some probability distribution which the
probabilistic phenomena in the application domain are assumed to follow, and PRISM is a logic-
based representation language for such probabilistic models. In this chapter, we describe the
detail of PRISM language, and the basic mechanism of the related algorithms provided as built-
in predicates.

2.1 Overall organization

Let us first define that aprobabilistic predicateis a predicate which eventually calls (at non-meta
level) the built-in probabilistic predicatemsw/2, i.e. random switches. Then we roughly classify
the clauses in a PRISM program into the following three parts:

• The modeling part: the definitions of all probabilistic predicates, and of some non-
probabilistic predicates which are called from probabilistic predicates. This part corre-
sponds to the definition of the model.

• The utility part: the remaining definitions of non-probabilistic predicates. This part is a
usual Prolog program that utilizes the model, and that can often be seen as ameta program
of the modeling part.

• Declarations: the clauses of some particular built-in predicates which contain additional
information on the model (of course, they are non-probabilistic).

In the rest of this chapter, we first describe the basic semantics of PRISM programs and the
currently available probabilistic inferences. Then we proceed to describe the details of each
part.

2.2 Basic semantics

PRISM is designed based on the distribution semantics [18, 23], a probabilistic extension of the
least model semantics. In the distribution semantics, all ground atoms are considered as random
variables taking on 1 (true) or 0 (false). With this semantics and the predefined probabilistic
property of random switches, we can give a declarative semantics to programs. However, in the
recent versions including 1.10, to make an efficient implementation of tabling, we use a different
specification from the original one [21, 23] of random switches, in which some procedural notion
is required. Here we describemsw/2 as follows:
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1. For each ground termi in msw(i,v) which is possible to appear in the program, a set of
ground termsVi should be given by the user with multi-valued switch declaration, and
alsov ∈ Vi should hold. Such anmsw(i,v) is hereafter called aswitch instance, wherei is
theswitch name, v theoutcomeor thevalue, andVi theoutcome spaceof i. A collection
of msw(i,·) formsswitch i.

2. For a switchi, whose outcome space isVi = {v1, . . . , vk} (k ≥ 1), one of the ground atoms
msw(i,v1), . . . , msw(i,vk) is exclusively true at the same position of a proof tree, and∑

v∈Vi
θi,v = 1 holds, whereθi,v is the probability ofmsw(i,v) being true and is called a

parameterof the program. Intuitively, a logical variableV in a predicate call ofmsw(i,V)
behaves as a random variable which takes a valuev from Vi with the probabilityθi,v.

3. The truth-values of switch instances at the different position of a proof tree are indepen-
dently assigned. This means that the predicate calls ofmsw/2 behave independently of
each other.

Hereafter, for understanding the third condition, it would be a help to introduce IDs which
identify positions in the proof tree,1 and then to associate each occurrence of switch instance
with the ID of the corresponding position. Then the switches at different positions will be
syntactically different. The third condition is referred to as theindependence condition.

The probabilistic meaning of the modeling part can be understood in a bottom-up manner.2

Now, for illustration, let us pick up again the blood type program:

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

First, one ofmsw(gene,X) instantiated withX = a, b, o (a random pick-up of a geneX from
the pool) becomes exclusively true, according to the probabilistic property of switches described
above. Then we associate the parameters of switches with gene frequencies, i.e.θgene,a = pa,
and so on. Also in view of the independence of switches at different occurrences, the definition
of genotype/2 satisfies the random-mate assumption on genotypes, hence the probability of
each is a product of two gene frequencies. In the body ofbloodtype/1’s definition, one of
genotype(X,Y) with X = a, b, o andY = a, b, o becomes exclusive, and hence the different
instances of the body become exclusively true. We can also see the second conjunct makes a
correct many-to-one mapping from genotypes to phenotypes. Therefore we can say that one of
bloodtype(P) with P = a, b, o, ab becomes exclusively true with probabilityPA, PB, PO, and
PAB, respectively. In addition, from the exclusiveness discussed above, each of logical variables

1In old SICStus Prolog versions, PRISM usesmsw(i,n,v) where the users need to explicitly specifyn, the ID of an
independent choice by the switch. This definition is important to give a declarative semantics to programs, and hence
the theoretical papers on PRISM still usemsw/3.

2The discussion in this section should be considerably rough. For the readers interested in the formal semantics of
PRISM (calleddistribution semantics), please consult [18, 23].
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X andY in genotype(X,Y) behaves just like a random variable that takes a gene as its value,
whereasP in bloodtype(P) behaves like a random variable that takes a phenotype.

In PRISM, it would be easier, and so is recommended, to make a programming in a top-
down (consequently, a generative) manner. On the other hand, sometimes it is also crucial to
inspect the probabilistic meaning in a bottom-up manner as above.

2.3 Probabilistic inferences

Before stepping into the further detail of the PRISM language, it would be worth listing what
we can do with this language. In the current version of the PRISM programming system, the
following five types of probabilistic inferences are available, where the first one works with
sampling execution, and the rest utilizeexplanation search:

Sampling(§4.2):
Given a goalG of a probabilistic predicate, return the answer substitutionσ with the

probabilityPθ(Gσ), or fail with the probability that∃G is false.

Probability calculation(§4.3):
Given a goalG of a probabilistic predicate, computePθ(G).

Viterbi computation(§4.5):
Given a goalG of a probabilistic predicate, findE∗ = argmaxE∈{E1,...,EK }Pθ(E), where

E1, . . . ,EK are the explanations forG such thatG ⇔ E1 ∨ · · · ∨ EK and eachEk is a
conjunction of switches.

Hindsight computation(§4.6):
Given a goalG of a probabilistic predicate, computePθ(G′) or Pθ(G′|G) for each subgoal
G′ of G.

Parameter learning(§4.7):
Given a bag of observed goals{G1,G2, . . . ,GT} of probabilistic predicates (i.e. training

data), get the parametersθ of switches which maximizes the likelihood
∏

t Pθ(Gt).

wherePθ(·) stands for the probability distribution denoted by the program, under the parameters
θ of switches buried in the program. For more details, please visit the corresponding sections.
These sections will also provide the variations for each inference. The sections§2.4.1 and
§2.4.2 respectively describe sampling execution and explanation search, the underlying execu-
tion mechanisms for the probabilistic inferences listed above.

2.4 Modeling part

We have seen a couple of examples of the modeling part (sections in Chapter 1 and§2.2). One
of the interesting features of PRISM is that we can (or we should) write models asexecutable.
For various probabilistic inferences, there are two underlying execution styles calledsampling
executionandexplanation search. So it is expected for users to write the modeling part so that
it can work in these two execution styles.

In addition, for efficient execution of models, the system assumes that the model follows
several conditions.3 However, it is often difficult for the system to check these conditions,

3For the theoretical details, please see [23].
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and hence it is required to write carefully programs to satisfy the conditions (otherwise some
unexpected behavior arises).

In this section, we first describe two underlying execution styles for these inferences, and
then make some advanced discussions on parameter learning. Finally we summarize the condi-
tions on the model part to be satisfied.

2.4.1 Sampling execution

Sampling execution is the underlying execution style for a sampling task (§2.3, §4.2). In the
literature of Bayesian networks, this style is sometimes calledforward sampling. In the recent
versions including 1.10, sampling execution becomes easier to understand. That is, the system
only makes a top-down execution like Prolog, and determines the valuev of msw(i,v) on the fly
according to the parameters{θi,v}. A sampling execution of probabilistic goal4 G is invoked by:5

?- sample(G).

Internally,msw/2 for sampling execution is essentially defined as follows:6

msw(I,V):-
values(I,Values),!,
$get_probs(I,Probs),
$choose(Values,Probs,V).

In the definition above,values(I,Values) is declared as a multi-value switch declaration by
the user, andI should be agroundterm. ThenValues, a list of groundterms, will be returned
based on the declaration. On the other hand,$get_probs(I,Probs) returnsProbswhich is a
list of switch I ’s parameters, and$choose(Values,Probs,V) returnsV randomly fromValues
according to the probabilitiesProbs. Also note that$get_probs/2 and$choose/3 are not
backtrackable.

One typical trap in sampling execution is the independence among switches. In the previous
papers, the authors often use a blood type program similar to the one below, instead of the one
illustrated in this manual:

bloodtype(a) :- (genotype(a,a) ; genotype(a,o) ; genotype(o,a)).
bloodtype(b) :- (genotype(b,b) ; genotype(b,o) ; genotype(o,b)).
bloodtype(o) :- genotype(o,o).
bloodtype(ab):- (genotype(a,b) ; genotype(b,a)).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

With this program, the following query for sampling execution sometimes fails:

?- sample(bloodtype(X)).

4A probabilistic goal is a goal whose predicate is probabilistic.
5For ease of programming, it is also allowed to runG directly just like Prolog:

?- G.

6Note that they are introduced for illustration — in the actual implementation, they are more complicatedly defined
with different predicate names. On the other hand, as described in§2.6.3,values/2 is just treated as a unit clause
which can work in the other part of the program.

11



This is because there is a case that all predicate callsgenotype(a,a), genotype(a,o), . . . ,
andgenotype(b,a) in thebloodtype/1’s definition independently fail, without sharing the
results of samplingmsw/2. The difference between the program above and the blood type pro-
grams in the previous papers is the use ofmsw/3, which can share the sampling results by
referring to their second arguments. For sampling execution withmsw/2, we need to write a
program in a purely generative manner: once we get a result of a switch sampling, the result
should be passed through the predicate arguments to the predicate which requires it as input.

2.4.2 Explanation search

Explanation search works as an underlying subroutine of built-in predicates for probabilistic
inference such as probability calculation (§4.3), Viterbi computation (§4.5), hindsight compu-
tation (§4.6) and parameter learning (§4.7).7 To simulate only explanation search, we can use
the built-insprobf/1-2 (§4.4). In this section, we describe the explanation search by defining
several terminologies.

First, in PRISM, anexplanationfor probabilistic goalG is a conjunctionE of the ground
switch instances, which occurs in a derivation path of a sampling execution forG. In the blood
type program, for example, one possible explanation of goalbloodtype(a) is:

msw(gene,a) ∧ msw(gene,a).

(if we know a person’s blood type is A, one possibility is that he inherits two genes A from
both parents.) This corresponds to a phenomenon that we will getbloodtype(a) as a solu-
tion of a sampling execution ofbloodtype(X) by havingmsw(gene,a) twice. Each of two
msw(gene,a)s above indicates an individual gene inheritance from one of the parents, so they
should not be suppressed (see the discussion in§2.2).

Basically we can consider that an explanation search finds all possible explanations for a
given goal by afailure-driven loop[28]. Forbloodtype(a), we have three explanations:

msw(gene,a) ∧ msw(gene,a),
msw(gene,a) ∧ msw(gene,o),
msw(gene,o) ∧ msw(gene,a).

Also please note here that the last two explanations correspond to different derivation paths, and
so should not be suppressed. To be more specific, as mentioned in§2.2, this would be understood
that, by associating switches with IDs of the positions in the proof tree, they are probabilistically
exclusive. In PRISM, for the explanationsE1,E2, . . . ,Ek for a goalG, we assume thatk is finite
(thefiniteness condition), and thatG⇔ E1 ∨ E2 ∨ . . . ∨ Ek.

In a probabilistic context, an explanationE is a conjunction of independent switch instances,
and hence the probability ofE is the product of the probabilities of switch instances inE. Also,
if we assume that possible explanations for any goal are all exclusive (i.e. the program satisfies
the exclusive condition, described in§2.4.5), the probability of a probabilistic goalG is the sum
of probabilities of the explanations forG. For some probabilistic inference or learning given a
goalG, the system makes an explanation search forG in advance of numeric computations.

Unfortunately, it is easily seen that in general, the number of explanations for a goal can be
exponentialdepending on the complexity of the model or the given goal (input). To compress
these explanations and make them manageable, the system adoptstabling, or more specifically
linear tabling[29], for explanation search. In tabling, every solution of a predicate call is stored
in thesolution table, and once we have all solutions for the predicate call, the stored solutions

7The summary of these inferences is given in§2.3
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are used for the later calls. After the explanation search by tabling, the stored solutions are con-
verted to a data structure calledexplanation graphs, and then the system performs probabilistic
computation on these graphs.8

For example, let us consider the HMM program in§1.3, with the string length being changed
to 3. In this program, we have the following 16 explanations9 for G = hmm([a,b,b]):

E1 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s0),

E2 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s1),

.

.

.

E16 = msw(init,s1) ∧ msw(out(s1),a) ∧ msw(tr(s1),s1) ∧
msw(out(s1),b) ∧ msw(tr(s1),s1) ∧ msw(out(s1),b) ∧ msw(tr(s1),s1).

Then we haveG⇔ E1∨E2∨· · ·∨E16, and this iff formula can be converted to a conjunction of iff
formulas below, which can be seen as a modified form10 of an instance of Clark’s completion [5]
constructed from the definitions of probabilistic predicates.

hmm([a,b,b]) ⇔ (msw(init,s0) ∧ hmm(1,3,s0,[a,b,b]))

∨ (msw(init,s1) ∧ hmm(1,3,s1,[a,b,b]))

hmm(1,3,s0,[a,b,b]) ⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[b,b]))

hmm(1,3,s1,[a,b,b]) ⇔ (msw(out(s1),a) ∧ msw(tr(s1),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(out(s1),a) ∧ msw(tr(s1),s1) ∧ hmm(2,3,s1,[b,b]))

hmm(2,3,s0,[b,b]) ⇔ (msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ hmm(3,3,s0,[b]))

∨ (msw(out(s0),b) ∧ msw(tr(s0),s1) ∧ hmm(3,3,s1,[b]))
.
.
.

hmm(3,3,s1,[b]) ⇔ (msw(out(s1),b) ∧ msw(tr(s1),s0))

∨ (msw(out(s1),b) ∧ msw(tr(s1),s1))

In this converted iff formula, the ground atoms appearing on the left hand side are calledsub-
goals. Each conjunction on the right hand side of each iff formula whose left hand side isG′ is
called asub-explanationfor G′. It is easy to see that a sub-explanation includes subgoals as well
as switch instances, and thatG′ depends on the subgoals appearing in the sub-explanations for
G′. It should be noticed that, to make an exact probability computation by dynamic program-
ming possible, the system assumes that these dependencies cannot form a cycle. This condition

8From a viewpoint of knowledge representation, explanation graphs can be seen as AND-OR graphs consisting of
ground (i.e. propositional) formulas, and tabling itself can be understood as a kind ofpropositionalizationprocedure
in that it receives first-order expressions (i.e. a PRISM program) and observed goals as input, and generates as output
propositional AND-OR graphs that explain observed goals.

9Our HMM program can be said as redundant since we distinguish the explanations by the last state transition which
do not contribute to the final output. A more optimized one should have only 8 (= 23) explanations.

10The instances of non-probabilistic predicate, which are entailed from the program, are omitted.
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is hereafter called theacyclic condition. Assuming this condition, we treat the converted iff

formulas asordered.
As mentioned above, in explanation search, the system tries to find all possible explanations.

With tabling, each subgoal solved in the search process is stored into a table, together with its
sub-explanation, and after the search terminates, the explanation graphs are constructed from
the stored information. Finally the routines for probabilistic inference including learning works
on the explanation graphs. The structure of explanation graphs are isomorphic to the ordered
iff formula described above. Some may notice that a subgoalhmm(2,3,s0,[b,b]) is found in
both sub-explanations forhmm(1,3,s0,[a,b,b]) andhmm(1,3,s1,[a,b,b]). In this data
structure, a substructure can be shared by the upper substructures to avoid redundant computa-
tions. In other words, we can enjoy the efficiency which comes fromdynamic programming.
The programming system provides the built-inprobf/2 (§4.4) to get an explanation graph as a
Prolog term.

Besides, at a more detailed level, we have a different definition ofmsw/2 for explanation
search:11

msw(I,V):- values(I,Values),!,member(V,Values).

One may find that there are no probabilistic predicates in the body that work at random. This is
because the explanation search only aims to enumerate all possibilities that a given goal holds,
and it requires no probabilistic consideration. Also it is crucial to notice that the blood type
program shown in§2.4.1 (not the one shown in§1.2) can work for explanation search, while
it does not for sampling execution. It would be fine for the modeling part to work both for
sampling execution and explanation search, but if it is difficult or inefficient, we need to write
the modeling part in two styles — one is for sampling execution, and the other for explanation
search. Declarations except the multi-valued switch declarations are made with respect to the
modeling part for explanation search.

2.4.3 Handling failures*

As previously mentioned, a PRISM program basically describes a probabilistic generation pro-
cess of the data at hand. On the other hand, there could be a case where failures may be caused
in the process by some constraints. In a probabilistic context, this implies that some probability
mass is lost, and hence we cannot directly apply a traditional learning algorithm which assumes
thenon-failure condition, i.e. there is no failure in the generation process. However it is some-
times difficult to write a program without failures. In such a case, the difficulty could be resolved
by using a special learning routine.

In usual maximum likelihood (ML) estimation, we try to find the parametersθ that maximize
the likelihood

∏
t Pθ(Gt), the product of probabilities of observed dataGt being generated.12

Instead of this, we exclude the probability mass which is lost by failures, and try to maximize∏
t Pθ(Gt | succ), the product of conditional probabilities of observed data being generated under

the case that no failure arises (indicated bysucc).
To be more specific, let us consider a program which considers the agreement in coin flip-

ping.13 The modeling part is written as follows:

values(coin(_),[head,tail]).

11Note that the predicate name ofmsw/2 is different from the one in the actual implementation.
12We assume here that the propositional random variables corresponding to the data are independent and identically

distributed (i.i.d.).
13This program comes from [26].
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failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

The predicateagree(A) means that two outcomes of flipping two coins meet asA, and that we
fail to observe any result when they differ. So this program violates the non-failure condition.
On the other hand, the predicatesuccess/0 denotes the eventsuccabove since it is equivalent
to ∃X agree(X), i.e. we have some observation. PRISM assumes that all possibilities in which
a failure arises are denoted by a predefined predicatefailure/0. In this program, and probably
in many cases,failure/0 is defined as a negation ofsuccess/0. But in other cases, it is neces-
sary to definefailure/0 explicitly. With this setting, the target of maximization for the system
is rewritten as

∏
t Pθ(Gt | succ) =

∏
t{Pθ(Gt)/Pθ(succ)} = ∏t{Pθ(Gt)/(1− Pθ(fail))}, wherefail

is the event represented byfailure/0, i.e. some failure arises. Thefailure-adjusted maximiza-
tion (FAM) algorithm[7] is an EM algorithm that solves this maximization, by considering the
number of failures as hidden information.

It is important to notice thatnot/1 in thefailure/0’s definition does not meannegation
as failure (NAF).14 We cannot directly simulate this negation, and hence it is eliminated by
First Order Compiler[17] when the program is loaded.15 The program above, excluding the
declarations byvalues/2, will be compiled as:

failure:- closure_success0(f0).
closure_success0(A):- closure_agree0(A).
closure_agree0(_):-
msw(coin(a),A),
msw(coin(b),B),
\+ A=B.

where\+/1 means negation as failure. To enable such a compilation, we use the predicate
prismn/1, not the usual one (i.e.prism/1). Then it is also required to invoke the learning
command with adding a special symbolfailure to the list of observed goals. A detailed
description for the usage is given in§4.9, and a running example can be found in§5.4.

2.4.4 Learning from goals with logical variables*

In parameter learning, the system accepts observed goals with (existentially quantified) logi-
cal variables. However, we need to be aware that it is justified under the condition called the
missing-at-random (MAR) condition, which is firstly addressed by Rubin [15]. The discussion
made in this section can be generalized to some cases where the sum of probabilities of ob-
servable goal patterns exceeds unity, but as a typical case, we will concentrate on the case of
observed goals with logical variables.

First, letG be a set of observable ground atoms, andG+ be a set of atoms inG or atoms
with existentially quantified logical variables, whose ground instances are inG (i.e.G ⊆ G+).

14Please do not confuse it withnot/1 provided by B-Prolog, which simulates negation as failure. From the theoretical
view, it is important to notice that PRISM allowsgeneral clauses, i.e. clauses that may contain negated atoms in the
body.

15More generally, First Order Compiler eliminates universally quantified implications, i.e. goals of the form
∀y(p(x, y)→ q(y, z)))
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Table 2.1: The conditional probability tablePφ(G+|G) for the HMM program which satisfies the
MAR condition. The predicate namehmm is simply abbreviated toh. All logical variables are
existentially quantified.

G+ ∈ G+
G ∈ G h([X,Y]) h([X,X]) h([a,X]) h([b,X]) h([X,a]) h([X,b]) h([a,a]) h([a,b]) h([b,a]) h([b,b])

h([a,a]) p1 p2 p3 0 p5 0 p7 0 0 0
h([a,b]) p1 0 p3 0 0 p6 0 p8 0 0
h([b,a]) p1 0 0 p4 p5 0 0 0 p9 0
h([b,b]) p1 p2 0 p4 0 p6 0 0 0 p10

Also let us consider that the uniqueness condition holds withG (i.e.
∑

G∈G Pθ(G) = 1 for any
θ). Furthermore, for explanatory simplicity, we assume here that every atom inG has a positive
probability. For example, in the HMM program with the string length being 2,hmm([a,b]) is
in G, andhmm([a,X]) in G+. Here, it is easily seen that there is a many-to-many mapping on
ground instantiation fromG toG+, and hence the sum of probabilities of goals inG+ can exceed
unity.

For such a case, logical variables can be seen as a kind of missing values, and sometimes
we assume that there is amissing-data mechanismthat lurks in our observation process where
some part of data turns to be missing. To be more specific, the missing-data mechanism is
modeled asPφ(G+|G), a conditional distribution of final observationsG+ ∈ G+ on eventsG ∈ G,
which are fully informative but hidden from us (φ are the distribution parameters). Trivially,
Pφ(G+|G) = 0 holds whereG is not the instance ofG+. Then we further assume the MAR
condition that comprises the following two sub-conditions:16

• For an actual observationG+ ∈ G+ and someφ, Pφ(G+|G1) = Pφ(G+|G2) holds for any
ground instancesG1,G2 of G.

• φ is distinct fromθ.17

For the HMM program, the conditional probability tablePφ(G+|G) under the MAR condi-
tion is shown in Table 2.1, wherep1, p2, . . . , p10 (which form φ) need to be assigned so that∑

G+ Pφ(G+|G) = 1 holds for eachG ∈ G. For example, we may have:p1 = 1/2, p2 = 0,
p3 = p4 = · · · = p10 = 1/6.

As we have mentioned, in this situation, the logical variables can be seen as the missing part,
and one may find from Table 2.1 that the probability ofG+ ∈ G+ only depends on the observed
part, not on the missing part18 in the case withG+). For example, we have a constant probability
p3 for the different instantiations ofX in hmm([a,X]).

If the MAR condition holds, it is shown that the missing-data mechanism isignorable in
making inferences for the model parametersθ (i.e. learningθ). The programming system blindly
ignores the missing-data mechanism, but under the MAR condition, learningθ based on the

16The first sub-condition implies thatPφ(G+ |G) = Pφ(G+)/
∑

G′: G′ is an instance ofG+ Pθ(G′) for any ground instance
G of G+ [9].

17φ is said to be distinct fromθ if the joint parameter space ofθ andφ is the product ofθ’s parameter space andφ’s
parameter space.

18It should be noted that the original definition of the MAR condition [15] is made on a data matrix which has
missing-data cells. We can make a correspondence between our setting (the many-to-many mapping fromG to G+)
and such a data matrix, by an encoding method briefly described in Section 4.1.1 of [8]. The MAR condition roughly
defined in this section should rather be called thecoarsened-at-random (CAR) condition, a generalization of the MAR
condition. There are several formal definitions on the MAR/CAR condition, so it would be useful for the interested
users to consult the papers in the literature ([9], for example).
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goals fromG+ (goals with logical variables) is justified. Otherwise, the missing-data mechanism
is said to benon-ignorable, and we may need to consider an explicit model of the observation
process. One difficulty with the MAR condition is its test. For example, recent work by Jaeger
tackles with this problem [10].

2.4.5 Summary: modeling assumptions

For all efficient probability computations offered by the system to be realized, we have pointed
out several assumptions on the modeling part. In this section, let us summarize them as follows:

• Independence condition: the sampling results of the different switches are probabilisti-
cally independent, and the sampling results of a switch with different trials (i.e. at different
positions in a proof tree) are also probabilistically independent.

• Finiteness condition: for any observable goalG, both the size of any explanation forG
and the number of explanations forG are finite.

• Exclusiveness condition: with any parameter settings, for any observable goalG, the
explanations forG are probabilistically exclusive to each other, and the sub-explanations
for each subgoal ofG are also probabilistically exclusive to each other.

• Uniqueness condition: with any parameter settings, all observable goals are exclusive to
each other, and the sum of probabilities of all observable goals is equal to unity. For
parameter learning, the following two conditions form a relaxation of the uniqueness con-
dition:

– Missing-at-random (MAR) condition: in the observation process for the data of in-
terest, there is a missing-data mechanism in which the probability of the data being
generated does not depend on its missing part.

– Non-failure condition: for any observable goalG, the generation process forG (i.e.
a sampling execution ofG) never fails.

• Acyclic condition: for any observable goalG, there is no cyclic dependency with respect
to the calling relationship among the subgoals, which are found in a generation process
for G.

It may look difficult to satisfy all the conditions above. But if we keep in mind to write
terminating programs in a generative fashion with care for the exclusiveness among disjunctive
paths, these conditions are likely to be satisfied. It can be seen in Chapter 5 that popular gener-
ative models including hidden Markov model or Bayesian networks are written in this fashion.
If the program violates the non-failure condition, one possible solution is to utilize the system’s
facility described in§2.4.3.

Theoretically speaking, it is sometimes misunderstood and hence is desired to note that the
distribution semantics [18, 23] itself assumes none of the conditions above. We can say PRISM’s
semantics is just a restricted version of the distribution semantics, that is conscious of efficient
probability computation.

2.5 Utility part

As compared to the modeling part, the utility part is quite simple — it is just a usual Prolog
program with the system’s built-ins. It is also possible to write queries, each of which takes the
form “:- Q.” The queries are executed after the program is completely loaded.
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2.6 Declarations

Declarations are made with several predefined predicates to give additional information to the
system — observable probabilistic predicates (target declarations), outcome spaces of switches
(multi-valued switch declarations), the source of observed data (data file declarations), tabled
and non-tabled predicates (table declarations), and some other program files to be included
(inclusion declarations).

2.6.1 Target declarations

A target declaration takes the following form:

target(Pred,Arity).

or

target(Pred/Arity).

A target declaration specifies atarget predicate, i.e. a predicate that is observable. Training
data used in learning must be atoms of observable predicate. The target predicate must be
probabilistic and each program must contain at least one target declaration.

2.6.2 Data file declaration

A data file declaration takes the form:

data(Filename).

whereFilenameis the filename of observed data. As in Prolog, a filename must be an atomic
symbol. If the filename contains a special symbol such as dot (“.”), it should be quoted by “’”.
For example,

data(’bloodtype.dat’).

Data file declarations are optional. If no data declaration is given, then sample data must be
given as an argument oflearn/1 (See§4.7). The format of the data file is described in§4.7.3.

2.6.3 Multi-valued switch declarations

� Basic form

A multi-valued switch declaration takes the following form:

values(I,Values).

where I denotes a switch identifier andValuesis the list of ground terms indicating possible
outcomes (or outcome space) ofI . For example,

values(color,[red,yellow,blue]).

declares that switchcolor has three possible outcomes:red, yellow andblue.
The first argument in a switch declarationI can be an arbitrary Prolog term. All switches

that have matching identifiers will have a declaration list of outcomes. If there are multiple
declarations for a switch, the first matching declaration is used. For instance, consider the
declarations:
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values(f(a,a),[1,2,3]).
values(f(X,X),[a,b]).
values(f(_,_),[x,y,z]).

switch f(a,a) has the outcomes1, 2 and3, switch f(b,b) has the outcomesa andb, and
switchf(a,b) has the outcomesx, y andz.

� On-demand specification of the outcome space

A value declaration can have a body that dynamically generates a list of outcomes for the corre-
sponding switch. For instance, in the following declaration,

values(s,Vals):-
findall([X,Y],(member(X,[1,2,3]),member(Y,[a,b])),Vals).

switchs has as outcomes the pairs of terms in which one from{1, 2, 3} and another from{a, b}.
From a view point of efficiency, however, please remember that the body of a value declaration
is evaluated at each time the correspondingmsw/2 is called.19 Furthermore,values/2 is just
treated as a unit clause which can work in the other part of the program (i.e. both the modeling
part and the utility part). For example, we can run ‘?- values(coin,X).’ directly.

There is a case where some switches have outcome spaces thatdynamically change. Let us
consider a part of a program as follows:

:- dynamic s2_vals/1.

values(s2,Vs):- s2_vals(Vs). % Value declaration

s2_vals([a,b,c]).

change_values(Vs):- retract(s2_vals(_)), assert(s2_vals(Vs)).

In this program fragment, the outcome space of a switchs2 is specified bys2_vals/1, a user-
defined non-probabilistic predicate. Also it is easy to see that the outcome space ofs2 are
(indirectly) modified by callingchange_values(Vs), whereVs is a list of new outcomes. For
such a case, the probability distributions (or parameters) ofs2 maintained by the programming
system can be inconsistent, and should be problematic in many cases. By default, when some
modification in the outcome space of a switch is detected, the system automatically sets the
default distribution to the switch (byset_sw/1; §4.1.2), before invoking the routines that refer
to the distributions of switches (e.g. sampling, probability computations,get_sw/2 and so on).
If you wish to disable such automatic configuration, set the ‘dynamic_default_sw’ flag to
‘off’ (§4.12), and if necessary, call suitableset_sw predicates before calling the routines that
refer to the switch distributions.

� Extended form

Since version 1.9,values_x/2-3 are introduced as a syntactic sugar forvalues/2. With
values_x/2, we can rewrite the value declaration above as:

19If you wish to avoid the repetitive evaluation of the body, one way is to specifyvalues/2 as a tabled predicate (see
B-Prolog’s manual for details):

:- table values/2.

However it should be noted that this declaration could lead to a trouble when the evaluation result dynamically changes
(e.g. by some randomness, or a dynamic modification of the program with assert/retract predicates).
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values_x(s,[1-10]).

We can specify two or more ranges in a list, and it is also possible to specify the skip numberN
in the form@N suffixed to the range element. For example,

values_x(foo,[3,8,0-3@2,7-20@5]).

is the same asvalues(foo,[3,8,0,2,7,12,17]).20 Internally,values_x/2-3 will be trans-
lated tovalues/2 with the corresponding expanded values.21 To be more specific, the clauses
values_x(Sw,Values) and “values_x(Sw,Values):- Body” will be translated respectively
to:

values(Sw,Values1):- expand_values(Values,Values1).
values(Sw,Values1):- Body, expand_values(Values,Values1).

The built-inexpand_values/2 will make an expansion of values like above. Thus we can have
parameterizedvalue declarations:

num_class(20).
values_x(class,[1-X]):- num_class(X).

In addition, usingvalues_x/3, we can set/fix parameters of switches with ground names
after loading the program.22 For the detail of handling switches, please visit§4.1. Now let us
consider the examples:

values_x(foo(0),[1,2,3],fix@[0.2,0.7,0.1]).
values_x(bar,[1,2,3],set@[0.2,0.7,0.1]).
values_x(baz(a,b),[1,2,3],[0.2,0.7,0.1]).
values_x(u_sw,[1,2,3],uniform).

In the first case, we declare a switchfoo(0) whose values are1, 2, and3 and whose parameters
are fixed to 0.2, 0.7, and 0.1 respectively. In the second case, we declare a switchbar, only
setting parameters, not fixing parameters. In the third case in whichset@ or fix@ prefixes are
omitted, the parameters will not be fixed (i.e. the default isset@). As in the last case, we can
set/fix the parameters in a distribution form.

Inside the system, to set/fix parameters,set_sw/2 or fix_sw/2 will be invoked after load-
ing without evaluating the body ofvalues_x/3. So no parameters will be set for the declara-
tions withvalues_x/3 whose third argument includes logical variables. Also it should be noted
that, for each of the declarations withvalues_x/3, set_sw/2 or fix_sw/2 is calledonly once
after loading — not every time the specified switch is called. So for the switches whose outcome
spaces are dynamically changed,values_x/3 may not work as expected.

2.6.4 Table declarations

In PRISM, all probabilistic predicates are tabled by default. On the other hand, the user can
declare what predicates are to be tabled. The statement,

:- p_table p/n.

20Currently, the system does not consider sorting or deletion of duplicate values on the expanded values.
21This also implies that we cannot executevalues_x/2-3 directly.
22For the declarations of switches with non-ground names, the parameters can neither be set nor fixed.
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declares that the probabilistic predicatep/n is tabled, wherep is the predicate name andn is the
arity. In this case, please note here that all other probabilistic predicates that are not declared
will not be tabled.

The user can also declare predicates that need not be tabled by using the statement

:- p_not_table p/n.

The declarationp_table andp_not_table cannot co-exist in a program. Once a program
contains ap_not_table declaration, all the probabilistic predicates that do not occur in any
p_not_table declaration are assumed to be tabled.

For non-probabilistic predicates, B-Prolog’s table declaration is available (see B-Prolog’s
manual for details):

:- table p/n.

2.6.5 Inclusion declarations

If probabilistic predicates are stored in several files, then all these files must be included by using
the directive:- include(File) in the main file.

21



Chapter 3

PRISM Programming System

3.1 Installing PRISM

PRISM is implemented on top of B-Prolog. The release package contains all standard function-
alities of B-Prolog, and therefore it is unnecessary to install B-Prolog separately.

3.1.1 Windows

To install PRISM on Windows, you need to make the following steps:

1. Download the packageprism110_win.zip.

2. Unzip the downloaded package underC:\.

3. AppendC:\prism\bin to the environment variablePATH so PRISM can be started at
every working folder.

Note that if PRISM is installed in a folder other thanC:\, then you have to change the batch file
prism.bat in thebin folder and the pathC:\prism\bin accordingly.

3.1.2 Linux

In version 1.10, a single united packageprism110_linux.tar.gz is provided for x86-based
Linux systems. We have build and tested the package on glibc-2.3 systems. Typical steps for
installation are as follows:

1. Download the packageprism110_linux.tar.gz into your home directory.

2. Unpack the downloaded package using thetar command.

3. Append$HOME/prism/bin to the environment variablePATH so PRISM can be started
at every working directory.

Note that if PRISM is installed in a directory other than your home directory, then you should
change the path$HOME/prism/bin accordingly.

Internally, the package contains three sorts of binaries: for 32-bit systems with 2.4.x kernels,
for 32-bit with 2.6.x kernels, and for 64-bit with 2.4.x/2.6.x kernels. The start-up commands
(prism andupprism) automatically choose the binary suitable for your environment.
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3.2 Entering and quitting PRISM

You need to open a command terminal first before entering PRISM. To do so on Windows, select
[Start]→ [Run] and then runcmd, or select

[Start]→ [Programs]→ [Accessories]→ [Command Prompt].

To enter PRISM, type

prism

at the command prompt. Once the system is started, it responds with the prompt ‘| ?-’ (in this
manual, we simple write ‘?-’ instead) and is ready to accept Prolog queries.

To quit the system, use the query:

?- halt.

or simply enter̂ D (Control-D) when the cursor is located at an empty line.

3.3 Loading PRISM programs

The commandprism(File) compiles the program inFile and loads the binary code into the
system. For example, suppose ‘coin.psm’ stores a PRISM program, then the command

?- prism(coin).

compiles the program into a binary code program ‘coin.psm.out’ and loads the program into
the system.

A program may be stored in multiple files, but only the main file may be loaded. In the main
file, all the files in the program that contain probabilistic predicates must be included by using
the directive ‘:- include(FileName)’ (§2.6.5). In this way, the system’s compiler will have
access to all the probabilistic predicates when the program is loaded. Standard Prolog program
files that do not contain probabilistic predicates can be compiled and loaded separately by using
compile/1 andload/1 commands of B-Prolog.

The commandprism(Options,File) loads the PRISM program stored inFile into the sys-
tem under the control of the options given in a listOptions. If the file has the extension name
‘.psm’, then only the main file name needs to be given. The following options are allowed:

• compile. Load the program after it is compiled (default).

• consult. Load the program without compilation. This option must be specified if the
program is to be debugged.

• load. Load the (compiled) binary code program with the suffix .psm.out . This op-
tion allows us to save the compilation time. To load a program containing probabilistic
predicates, it is highly recommended to use this option rather than direct use ofload/1
(B-Prolog’s built-in), though it was described in the manuals of the previous versions.1

• v. Monitor the learning process.

• nv. Do not monitor the learning process (default).

1Despite that, we can load the compiled binary code of a usual (i.e. non-probabilistic) Prolog program byload/1.
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In addition, we can specify the values of execution flags (§4.12) as options, each takes the form
‘Flagname=Value’. For example, if we want to set a valueon to thelog_viterbi flag, add
log_viterbi=on to Options. The above optionsv andnv can also be specified by ‘verb=on’
and ‘verb=off’, respectively. The commandprism(File) described above is the same as
prism([],File), which means that the program is loaded with the default options and the
default flag values.

3.4 Configuring the sizes of memory areas*

B-Prolog, the fundamental system of the PRISM programming system, has four memory areas:
program area, control stack+ heap, trail stack and table area. Since version 1.10, these areas are
automaticallyexpanded on demand, so there is no need to specify the sizes of memory areas by
manual.

If you already know the memory sizes used by your program, as did in version 1.9 or earlier,
you can specify the sizes ofinitial memory areas by modifying the corresponding values in the
start-up commandsprism (a shell script on Linux) andprism.bat (a batch file on Windows),
or by specifying command line options-s (control stack+ heap),-b (trail stack),-t (table area)
and-p (program area). For example,

prism -s 8000000

starts the programming system with 8 megawords (32 megabytes on 32-bit environments, 64
megabytes on 64-bit environments) allocated to the control stack+ heap. B-Prolog’s built-in
statistics/0 will show the allocated sizes of these memory areas.

3.5 Running PRISM programs

The commandprism_help/0 displays the usage of the major built-ins in the programming
system (Figure 3.1). The details of these built-ins are described in Chapter 4.

As mentioned above, the modeling part of a PRISM program can be executed in two dif-
ferent styles, namelysampling execution(§2.4.1), andexplanation search(§2.4.2). The system
is in sampling execution if it is given a probabilistic goal orsample(Goal) (§4.2). In sample
execution, a goal may give different results depending on the outcomes of the switches. On
the other hand, an explanation search will be invoked in advance of numeric computations in
learning (withlearn/0 or learn/1; §4.7), probability calculation (withprob/2 and so on;
§4.3), Viterbi computation (withviterbif/3 and so on;§4.5), and hindsight computation
(with hindsight/3 and so on;§4.6). probf/2 or its variation (§4.4) only makes an explana-
tion search and outputs explanation graphs, the intermediate data structure used in the numeric
computations above.

In addition, there are miscellaneous built-in predicates, which handle switch parameters
(set_sw/2 and so on;§4.1) or the flags for various settings of the system (set_prism_flags/2
andget_prism_flags/2; §4.12).

3.6 Debugging PRISM programs

Programs can be executed in the debugging mode. The command

trace
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prism(File) -- Load a program in File.

prism(Opts,File) -- Load a program in File under control of Opts.

msw(I,V) -- Switch I randomly outputs the value V.

learn(Facts) -- Learn the parameters of the switches using Facts.

learn -- Learn the parameters of the switches using

facts stored in the file declared by data(File).

sample(Goal) -- The same as call(Goal) but Goal must be probabilistic.

prob(Goal,P) -- P is the probability of Goal.

probf(Goal,F) -- F is the explanation graph of Goal.

viterbi(Goal,P) -- P is the Viterbi probability of Goal.

viterbif(Goal,P,F) -- F is the Viterbi explanation of Goal, and P is

the probability of F (the Viterbi probability of Goal).

hindsight(G,G1,Ps) -- Ps are the hindsight probs of G’s subgoals matching

with G1.

set_sw(S,Dist) -- Set the probability distribution of the switch S.

get_sw(S,Info) -- Info contains the information about the switch S.

set_prism_flag(F,V) -- Set the value V to the execution flag F.

get_prism_flag(F,V) -- Get the current value V of the execution flag F.

Figure 3.1: The output ofprism_help/0.

switches the execution mode to the debugging mode, and the command

notrace

switches the execution mode back to the usual mode. In debugging mode, the execution steps
of programs loaded with the optionconsult (§3.3) can be traced. To trace part of the execution
of a program, usespy to set spy points:

spy(Atom/Arity).

The spy points can be removed by:

nospy.

To remove only one spy point, use:

nospy(Atom/Arity).

In sampling, the trace of a program looks the same as that of a normal Prolog program
except that for the built-inmsw(I,V) the probability of the outcomeV is shown. For example,
the following trace steps show that the outcome of the trial of the switch is ‘head’, which has
probability 0.5.

Call: (7) msw(coin,_580ebc):_580ff8 ?
Exit: (7) msw(coin,head):0.5 ?

In explanation search, a trace displays the steps that lead to the findings of explanation paths.
Each explanation path consists of a subgoal to be explained, a list of explaining subgoals and a
list of switch instances. For instance, in the following path
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Add: (12) path(direction(left),[],[msw(coin,head)])

the subgoaldirection(left) is explained by the outcome ‘head’ of the switch ‘coin’.

3.7 Batch execution*

Since version 1.9, the package provides additional commands for batch execution. To enable
batch execution, we need the following two steps:

• Add a query we attempt to run as a batch execution to the program.

• Run the commandupprism at the shell prompt (Linux) or the command prompt (Win-
dows), instead ofprism.

The query for batch execution is specified in the body ofprism_main/0-1. For example,
for a simple learning session, we may add the following definition ofprism_main/0 to the
programfoo.psm:

prism_main:-
set_seed(5893421),
get_data_from_somewhere(Gs), % user-defined predicate
learn(Gs).

Then we runupprism specifying the program name:

upprism foo

at the shell prompt (Linux) or the command prompt (Windows). If we want to pass arguments
to upprism, it is needed to defineprism_main/1 instead ofprism_main/0. For example, let
us introduce two arguments, where the first is a seed for random numbers and the second is the
data size. The corresponding batch clause could be as follows:

prism_main([Arg1,Arg2]):-
parse_atom(Arg1,Seed), % parse_atom/2 is provided by B-Prolog
parse_atom(Arg2,N),
set_seed(Seed),
get_data_from_somewhere(N,Gs), % assume that we’ll get N data
learn(Gs). % as Gs here

The command arguments will be passed toprism_main/1 as a list of atoms. Hence it is im-
portant to note that to pass integers, we need to parse the corresponding atoms in advance,
that is, we need to get an integer5893421 from an atom’5893421’. The parsing is done by
parse_atom/2, a built-in provided by B-Prolog. After this setting, we can conduct a batch
execution as follows:

upprism foo 5893421 1000

If both prism_main/0 andprism_main/1 co-exist in one program,upprism will try to run
only prism_main/1. For such a program, if we invokeupprism with no command-line argu-
ments,prism_main([]) will be called, and so an unexpected behavior is likely to be caused.

Furthermore,upprism provides some variations in the file specification:2

2Some users may want to use ‘-g’ option introduced since B-Prolog 6.9. That is, we can run “prism foo.psm.out

-g ’go’” to load the binary code ‘foo.psm.out’ and then to execute a query “go”.
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• upprism prism:foo
This is the same as “upprism foo”, that is, the system will read a usual program file
foo.psm (which has no definition of the predicatefailure/0).

• upprism prismn:foo
The system will read a failure program filefoo.psm (which has a definition offailure/0;
see§4.9). This is a replacement for the commandupprismn, which is introduced in
version 1.9.

• upprism load:foo
The system will read a (compiled) binary code filefoo.psm.out . By this, we would save
the compilation time.

3.8 Error handling

In the current implementation, when the system met an error, the current query is immediately
halted byabort/0 (B-Prolog’s built-in). In such a case, to avoid being affected by the remain-
ing side-effects, it is recommended to quit the system byhalt/0 and then to start the system
again. If the error message you meet includes “internal error”, the problem should not have
been caused by the user program, but the system. In such a case, please make a contact to the
development team (see page i).
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Chapter 4

PRISM Built-in Utilities

4.1 Random switches

4.1.1 Making probabilistic choices

The built-in msw(I,V) succeeds if a trial of a random switchI gives an outcomeV. To use
a switchI , there must be a multi-valued switch declaration (§2.6.3) for I in the program. As
previously mentioned, switches have different behaviors for sampling execution (§2.4.1) and
explanation search (§2.4.2). In the former case, the probability distribution must also have been
set by usingset_sw/2 (§4.1.2) or by parameter learning (§4.7).

4.1.2 Setting parameters of switches

The built-inset_sw(I,Probs) sets the parameters of outcomes of a switchI to Probswhere
Probsis a list of numbers[p1,p2,...,pK] (recommended) or a term of the formp1+p2+· · ·+pK

that sums up to unity (i.e.
∑

k pk = 1). Please note that the switch nameI must be ground. For
example, to make a biased coin,

?- set_sw(coin,[0.8,0.2]).

will set 0.8 to the parameter of the first value of switchcoin, and set 0.2 to the parameter of the
second value, where the order of values follows the multi-valued switch declaration (§2.6.3).

Since version 1.9, it is also allowed to set parameters in a distribution form:1

• set_sw(I) is the same asset_sw(I,default)

• set_sw(I,default) sets a distribution specified by the ‘default_sw’ flag

• set_sw(I,uniform) sets a uniform distribution

• set_sw(I,f_geometric) is the same asset_sw(I,f_geometric(2,desc))

• set_sw(I,f_geometric(Base)) is the same asset_sw(I,f_geometric(Base,desc))

• set_sw(I,f_geometric(Base,Type)) sets a finite geometric distribution, whereBase
is its base (an integer greater than 1) andTypeis asc or desc; for finite geometric distri-
butions, see the description on the ‘default_sw’ flag in §4.12.

1The introduction of finite geometric distributions is inspired by [1].
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We need to add an explanation for the first two cases. In the versions earlier than 1.9, parameters
should be set explicitly by manual if we do not have learning data. On the other hand, since 1.9,
we can specify the default parameters in a distribution form. For example,

?- set_prism_flag(default_sw,uniform).

makes the default parameters to be uniform (see§4.12 for handling execution flags). Then, if
we attempt a sampling, or a probability computation, the parameters of switches that has not
been used yet will be set to be uniform on the fly.

Since the default value of the ‘default_sw’ flag is ‘uniform’, we can use switches which
follow a uniform distribution from the beginning. The other available values for the flag are
‘none’, ‘ f_geometric(Base)’ (Baseis the base, an integer greater than 1), and so on. The
first one means that we have no default parameters, as in the previous versions. The second one
stands for a finite geometric distribution.

Also, the following predicates set the parameters to one or more switches that are used so
far, or specified invalues/2 with ground names.

• set_sw_all(Patt) sets a default distribution to all switches matching withPatt

• set_sw_all(Patt,D) sets a distributionD to all switches matching withPatt

• set_sw_all (with no args) is the same asset_sw_all(_).

4.1.3 Fixing parameters of switches

Sometimes we need constant parameters which are not updated during learning. For example,
letting g be a gene of interest, we may want the probability ofg being selected from one parent
to be constant at 1/2.

The built-in predicatefix_sw(I) fixes all switches whose names unify withI . The param-
eters of fixed switches cannot be updated and will be kept unchanged during learning. Also
fix_sw(I,Params) sets parametersParamsto a switchI , as done inset_sw/2, and then
fixes the parameters. Please note thatI in fix_sw(I,Params) should be ground, whileI in
fix_sw(I) does not need to be ground. On the other hand,unfix_sw(I) is used to make the
parameters of all switches whose names unify withI changeable.

4.1.4 Displaying switch information

The built-in show_sw/0 displays information associated with all switches used so far.2 For
example, in the direction program,

?- show_sw.
Switch coin: head (0.8) tail (0.2)

The built-inshow_sw(I) displays information about switches whose names match withI. For
example:

?- show_sw(coin).
Switch coin: head (0.8) tail (0.2)

2This does not mean that all potential switches will be shown — in many programs, the system does not know all
ground instances ofmsw/2 in advance.
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4.1.5 Getting switch information

The built-in get_sw(I,Info) binds Info to a term in the form[Status,Values,Params] that
contains information about a switchI, whereStatusis eitherfixed or unfixed, Valuesis a list
of possible outcomes of the switch, andParamsis a list of the parameters of the outcomes. For
example:

?- get_sw(coin,Info)
Info = [unfixed,[head,tail],[0.8,0.2]]

The built-in predicateget_sw(SwInfo) binds SwInfo to a term in the form ofswitch(Id,
Status,Values,Params) where Id is the identifier,Statusis eitherfixed or unfixed, Val-
ues is a list of possible outcomes, andParams is a list of the parameters. On backtrack-
ing, SwInfo is bound to the next switch.get_sw(I,Status, Values,Params) is the same as
get_sw(I,[Status,Values,Params]).

Since version 1.10,get_sw(Id,Status,Values,Params,Cs) is available after learning. This
built-in additionally returns the expected countsCsof a switch namedId, which are computed
in learning (§4.7). These expected counts are used in computing Cheeseman-Stutz score (§4.8),
and might be used to judge whether we need to apply so-calledbackoff smoothing.3

The following is a note for the users who also used version 1.9: In version 1.9, if some
default distribution (e.g.uniform) is specified, a new switch’s distribution will be dynamically
assigned as a side-effect when callingget_sw/2. For example, we have:

?- get_sw(foobar,Sw).
Sw = [unfixed,[a,b],[0.5,0.5]] ?

wherefoobar is a new switch. Since version 1.10, on the other hand,get_sw/2 is changed so
that it only tries to get switch information, with no side-effect. So for a new switchfoobar, we
will see:

?- get_sw(foobar,Sw).
no

Please note that a similar change is done forshow_sw/1.

4.1.6 Saving switch information

The built-insave_sw(File) saves all switch information into the fileFile. File can be omitted
(i.e. save_sw/0 is available besidessave_sw/1), in which case the information will be stored
into a file named ‘Saved_SW’. On the other hand, the saved information can be restored by
restore_sw(File) from the fileFile. If File is omitted, the programming system will try to
restore the information from the file named ‘Saved_SW’.

4.2 Sampling

An execution withsample(Goal) (or a direct execution ofGoal) simulates a sampling execu-
tion. A more detailed description of sampling execution is found in§2.4.1. For example, for the
program in§1.1, we may have a result of sampling execution such as:

?- sample(direction(D)).
D = left ?

3If the observed data is complete (§4.7.1),Cs is just a list of numbers of occurrences ofmsw(Id,·) in the data.
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Of course, the result is at random, and follows the distribution specified by the program.
Besides, there are some built-ins to get two or more samples.get_samples(N, G,Gs)

returns a listGswhich contains the results of samplingG for N times. For example:

?- get_samples(10,direction(D),Gs).
Gs = [direction(right),direction(left),direction(right),

direction(left),direction(right),direction(right),
direction(right),direction(right),direction(left),
direction(right)] ?

Inside the system, on each trial of sampling, a copyG′ of the target goalG is created and called
by sample(G′). Please note that if one ofN trials ends in failure, this predicate totally fails.

On the other hand,get_samples_c(N,G,C,Gs) tries to make samplingG under the con-
straintC for N times, and returns a listGswhich only contains the successful results of sampling.
Note here that this predicate never fails by sampling, and if some trial ends in failure, nothing
is added toGs (thus the size ofGscan be less thanN). Internally, this predicate first creates a
copy[G′,C′] of [G,C], and then executessample(G′) andcall(C′) in this order. In addi-
tion, get_samples_c/4 writes the numbers of successful and failed trials to the current output
stream. For example,

?- get_samples_c(10,pcfg(Ws),(length(Ws,L),L<5),Gs).

will return toGs a list of sampledpcfg(Ws) where the length ofWs is less than 5. Besides, the
last two of the following queries show the same behavior, but the first query may fail due to the
failure at some trial of sampling:

?- get_samples(100,hmm([a|_]),Gs).
?- get_samples_c(100,hmm([a|_]),true,Gs).
?- get_samples_c(100,hmm(Xs),Xs=[a|_],Gs).

The built-in predicateget_samples_c(N,G,C,Gs,[SN,FN]) behaves similarly to
get_samples_c(N,G,C,Gs), except returning the numbers of successful and failed trials to
SNandFN, respectively.

Since version 1.10, the programming system additionally provides a couple of variations on
arguments forget_samples_c/4-5. If we specify the first argument in the form of[N,M], the
predicates will try to make sampling forN times at maximum to getM samples. If we specify
[inf,M], then the system tries to getM samples with no limit on the number of trials. For
example, we can always get 100 samples with the following query:

?- get_samples_c([inf,100],pcfg(Ws),(length(Ws,L),L<5),Gs).

However it should be noticed here that there is a risk of entering an infinite loop in the use of
‘inf’ if the goalG (or G under the constraintC) is unlikely to succeed.

As discussed in§2.4.1 and§2.4.2, sometimes we need to write models in two different styles
for sampling and explanation search with different sets of predicates. For example, we may use a
predicatepcfg_s/1 for sampling, and usepcfg/1 for explanation search. To get training data
for pcfg/1 by samplingpcfg_s/1 in an artificial experiment, we may replace the predicate
name of sampled goals by modifying the second argument as follows:

?- get_samples_c(100,[pcfg_s(Ws),pcfg(Ws)],true,Gs).
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4.3 Probability calculation

The built-inprob(Goal,Prob) calculates the probabilityProb with which Goal becomes true.
Under the independence and exclusiveness conditions (see§2.4.5), the probability of a con-
junction (A,B) is computed as the product of the probabilities ofA andB (because they are
assumed to be independent), and the probability of a disjunction(A;B) is computed as the sum
of the probabilities ofA andB (because they are assumed to be exclusive). For a switch instance
msw(I,V), the probability is 1.0 ifV is a variable, and the probability assigned to the outcome
V if V is one of outcomes of switchI. For example, for the program in§1.1, we have:

?- prob(direction(left),P).
P = 0.5

The built-inprob(Goal) is the same asprob(Goal,Prob) except that the computed probability
Prob is sent to the current output stream.

4.4 Explanation graphs

The built-inprobf(Goal,EGraph) returns an explanation graphEGraphfor Goal as a Prolog
term, whereGoalmust be a subgoal of the target predicate. An explanation graph is represented
as a list of nodes, each corresponds to one of the ordered iff-formulas in§2.4.2. Each node takes
the formnode(G′,Paths) whereG′ is a subgoal ofG andPathsis a list of paths that explainG′.
With the terminology in§2.4.2, one of these paths corresponds to a sub-explanationE′ for G′.
Each path takes the formpath(Nodes,Switches) whereNodesis a list of subgoals found inE′,
andSwitchesis a list of switch instances also found inE′. If we have subgoals which include
logical variables, all of these variables will be treated as the distinct ones, for implementational
reasons.

For example, in the HMM program with string length being 2, the explanation graph for
hmm([a,b]) is obtained as follows:

?- probf(hmm([a,b]),EGraph).

EGraph =

[node(hmm([a,b]),

[path([hmm(1,2,s0,[a,b])],[msw(init,s0)]),

path([hmm(1,2,s1,[a,b])],[msw(init,s1)])]),

node(hmm(1,2,s0,[a,b]),

[path([hmm(2,2,s,[b])],[msw(out(s0),a),msw(tr(s0),s0)]),

path([hmm(2,2,s1,[b])],[msw(out(s0),a),msw(tr(s0),s1)])]),

node(hmm(1,2,s1,[a,b]),

[path([hmm(2,2,s0,[b])],[msw(out(s1),a),msw(tr(s1),s0)]),

path([hmm(2,2,s1,[b])],[msw(out(s1),a),msw(tr(s1),s1)])]),

node(hmm(2,2,s0,[b]),

[path([hmm(3,2,s0,[])],[msw(out(s0),b),msw(tr(s0),s0)]),

path([hmm(3,2,s1,[])],[msw(out(s0),b),msw(tr(s0),s1)])]),

node(hmm(2,2,s1,[b]),

[path([hmm(3,2,s0,[])],[msw(out(s1),b),msw(tr(s1),s0)]),

path([hmm(3,2,s1,[])],[msw(out(s1),b),msw(tr(s1),s1)])]),

node(hmm(3,2,s0,[]),[]),

node(hmm(3,2,s1,[]),[])] ?

Be warned that the result is manually beautified by the authors for making the data structure
clear. Usually, the results byprobf/2 are appropriate to be handled by the program, but too
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complicated for humans to understand. The built-inprobf(Goal) finds and displays the expla-
nation graph forGoal in a human-readable form. For the same goal as above, we have:

?- probf(hmm([a,b])).

hmm([a,b])

<=> hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)

hmm(1,2,s0,[a,b])

<=> hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)

v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])

<=> hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)

hmm(2,2,s0,[b])

<=> hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)

v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])

<=> hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(3,2,s0,[])

hmm(3,2,s1,[])

We may notice that this output corresponds to the ordered iff-formula described in§2.4.2. The
last two formulas say that subgoalshmm(3,2,s0,[]) andhmm(3,2,s1,[]) are always true.

The built-in predicateprobef(Goal) is the same asprobf(Goal) except that all sub-
goals and switches in explanations are encoded. Alsoprobef(Goal,EGraph) is the same as
probf(Goal,EGraph) except that all the subgoals and switches in the graph are encoded. In
these predicates, each subgoal has a unique number and so does each switch instance (i.e. they
areencoded) . The subgoal table stores the relation between subgoals and their numbers, and
the switch table stores the relation between switch instances and their numbers. The following
built-ins are provided to get the tables:

• get_subgoal_hashtable(Table) gets the subgoal hashtable which can be used to de-
code encoded subgoals in explanation graphs.

• get_switch_hashtable(Table) gets the switch hashtable which can be used to decode
encoded switches in explanation graphs.

Some pretty-printing routines used internally inprobf/1 are also available as built-ins.
print_graph(Graph) prints an explanation graphGraph(as a Prolog term with functorsnode
andpath, as illustrated above) to the current output stream.print_graph(Graph,Options)
is the same asprint_graph(Graph) except it replaces connectives with the ones specified
in Options. Optionscan containand(C1), or(C2) andlr(C3), which indicates the AND-
connectives will be replaced withC1, the OR-connectives withC2, and the primary connectives
with C3, respectively. For example, we can have:

?- probf(hmm([a,b]),EGraph),print_graph(EGraph,[lr(’iff’)]).

hmm([a,b])

iff hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)

hmm(1,2,s0,[a,b])

iff hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
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v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])

iff hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)

hmm(2,2,s0,[b])

iff hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)

v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])

iff hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(3,2,s0,[])

hmm(3,2,s1,[])

print_graph(Stream,Graph,Options) is the same asprint_graph(Graph,Options) except
the output is set toStream.

4.5 Viterbi computation

By theViterbi computation, we mean to get the most likely explanationE∗ for a given goalG,
that is,E∗ = arg maxE∈ψ(G) P(E), whereψ(G) is a set of explanations forG. Also the probability
of E∗ can be obtained. Here we call them respectively theViterbi explanationand theViterbi
probabilityof G.

• viterbi(G) displays the Viterbi probability ofG.

• viterbi(G,P) returns the Viterbi probability ofG to P.

• viterbif(G) displays the Viterbi probability and the Viterbi explanation ofG.

• viterbif(G,P,Expl) returns the Viterbi probability ofG to P, and a Prolog-term rep-
resentation of the Viterbi explanationE∗ of G to Expl.

• viterbig(G) is the same asviterbi(G) except thatG is unified with its instantiation
found in the most likely path whenG is non-ground.

• viterbig(G,P) is the same asviterbi(G,P) except thatG is unified with its instan-
tiation found in the most likely path whenG is non-ground.

• viterbig(G,P,Expl) is the same asviterbif(G,P,Expl) except thatG is unified
with its instantiation found in the most likely path whenG is non-ground.

If there is no explanation forG, the call of the predicates above will fail. A Prolog-term repre-
sentation of an explanation takes the same form as an explanation graph except that a node has
exactly one path. That is, it takes the following form:

[node(G′1,[path(GL1,SL1)]),..., node(G′n,[path(GLn,SLn)])]

whereG′i is a subgoal in the explanation path forG, andG′i is directly explained by subgoals
GLi and switchesSLi . According to the purpose, we may extract the list of subgoalsG′1,. . . ,G′n,
or the list of switches (by concatenatingSL1,. . . ,SLn) from this Viterbi explanation. Also this
Prolog term can be printed in a human-readable form by usingprint_graph/1-2 (see§4.4).

In a practical situation, we often suffer from the problem of underflow for a very long Viterbi
explanation. Setting ‘on’ to the ‘log_viterbi’ flag enables log-valued Viterbi computation in
which all probabilities are contained as log-valued (see§4.12 for details), and so the problem of
underflow will be cleared.
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4.6 Hindsight computation*

A hindsight probabilityis Pθ(G′), the probability of a subgoalG′ for a given top-goalG.4 Inside
the system, the hindsight probability of a subgoalG′ is computed as a product of the inside
probability and the outside probability ofG′. For illustration, let us consider the HMM program
(§1.3) with string length being 4. In an HMM given some sequence, we may want to compute
the probability distribution on states for every time step. The programming system computes
such a probability distribution as hindsight probabilities. That is, we get the distribution at time
step 2 as follows:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_)).

hindsight probabilities:

hmm(2,4,s0,[b,a,b]): 0.013880247702822

hmm(2,4,s1,[b,a,b]): 0.054497179729564

We read from above that, given a string[a,b,a,b], the probability of the hidden state being
s0 at time step 2 is about 0.0139, whereas the probability of the hidden state beings1 is about
0.0545. Generally speaking,hindsight(G,GPatt) writes the hindsight probabilities ofG’s
subgoals that match withGPattto the current output. In a similar way,hindsight(G,GPatt,Ps)
returns the list of pairs of subgoal and its hindsight probability toPs:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_),Ps).

Ps = [[hmm(2,4,s0,[b,a,b]),0.013880247702822],

[hmm(2,4,s1,[b,a,b]),0.054497179729564]] ?

When omitting the matching patternGPatt, hindsight(G) writes the hindsight probabilities
for all subgoals ofG to the current output.

?- hindsight(hmm([a,b,a,b])).

hindsight probabilities:

hmm(1,4,s0,[a,b,a,b]): 0.058058181772934

hmm(1,4,s1,[a,b,a,b]): 0.010319245659452

hmm(2,4,s0,[b,a,b]): 0.013880247702822

hmm(2,4,s1,[b,a,b]): 0.054497179729564

hmm(3,4,s0,[a,b]): 0.062748214275926

hmm(3,4,s1,[a,b]): 0.005629213156460

hmm(4,4,s0,[b]): 0.015964697775827

hmm(4,4,s1,[b]): 0.052412729656559

hmm(5,4,s0,[]): 0.047234593867704

hmm(5,4,s1,[]): 0.021142833564682

It should be noted that, if you want the list of all pairs of subgoal and its hindsight probability,
we need to runhindsight(G,_,Ps) (nothindsight(G,Ps), in whichPswill be interpreted
as the matching pattern).

Furthermore, sometimes it is required to compute the sum of hindsight probabilities of
several particular subgoals. Although this procedure may be implemented by the user with

4The name of ‘hindsight’ comes from an inference task with temporal models such as dynamic Bayesian net-
works [16].
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hindsight/1-3 and additional Prolog routines, for ease of programming, the system provides
a built-in utility of such summation (marginalization).

To illustrate this utility, let us consider another example that describes an extended hidden
Markov model, in which there are two state variables, only one depends on another:

values(init,[s0,s1,s2]).

values(out(_),[a,b]).

values(tr(_),[s0,s1,s2]).

values(tr(_,_),[s0,s1,s2]).

hmm(L):-

str_length(N),

msw(init,S1),

msw(init,S2),

hmm(1,N,S1,S2,L).

hmm(T,N,S1,S2,[]) :-T>N,!.

hmm(T,N,S1,S2,[Ob|Y]) :-

msw(out(S2),Ob),

msw(tr(S1),Next1), % Transition in S1 depends on S1 itself

msw(tr(S1,S2),Next2), % Transition in S2 depends both on S1 and S2 itself

T1 is T+1,

hmm(T1,N,Next1,Next2,Y).

str_length(4).

Each state variable takes on 3 states (s0, s1 ands2), and hence we can say that the number of
possible states is (3× 3 =) 9. Under some parameter configuration (e.g. after learning), we can
compute the hindsight probabilities for all subgoals.

?- hindsight(hmm([a,b,b,a])).

hindsight probabilities:

hmm(1,4,s0,s0,[a,b,b,a]): 0.003117125538065

hmm(1,4,s0,s1,[a,b,b,a]): 0.000119071852861

hmm(1,4,s0,s2,[a,b,b,a]): 0.002529688812405

:

hmm(5,4,s2,s0,[]): 0.000594140868831

hmm(5,4,s2,s1,[]): 0.002737517626889

hmm(5,4,s2,s2,[]): 0.001108525263899

Now let us suppose that we want to marginalize the second state variable (i.e. the 4th argument).
It is achieved by runninghindsight_agg/2 as follows:

?- hindsight_agg(hmm([a,b,b,a]),hmm(integer,_,query,_,_)).

hindsight probabilities:

hmm(1,*,s0,*,*): 0.005765886203332

hmm(1,*,s1,*,*): 0.063400618136553

hmm(1,*,s2,*,*): 0.011350757707280

hmm(2,*,s0,*,*): 0.059382025259221

hmm(2,*,s1,*,*): 0.004143958471003

:
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hmm(5,*,s0,*,*): 0.033166672736384

hmm(5,*,s1,*,*): 0.042910405551161

hmm(5,*,s2,*,*): 0.004440183759620

In the above,hmm(integer,_,query,_,_) is a control statement that means “group subgoals
according to the 1st (integer) argument, and then, within each group, sum up the hindsight prob-
abilities among the subgoals that has the same pattern in the argument specified byquery (i.e.
the 3rd argument).” In general,query is a reserved constant symbol that specifies an argument
of interest, and the arguments specified by unbound variables are ineffective in grouping and
then bundled up in summation.

For the control of grouping, 6 reserved constant symbols are defined:integer, atom,
compound, length, d_length, depth. The first 3 symbols just mean grouping by exact match-
ing5 for the integer argument, the argument with an atoms, and the argument with a compound
term, respectively. On the other hand,length will make groups according to the length of a
list in the corresponding argument. Similarly,d_length considers the length of a difference list
(which is assumed to take the formD0-D1), anddepth considers the term depth. The last 3
symbols would be useful if we have no appropriate argument for exact matching. For example,
we can make grouping by the list length in the 5th argument, instead of the 1st argument (L-n
means that the length isn):

?- hindsight_agg(hmm([a,b,a,b]),hmm(_,_,query,_,length)).

hindsight probabilities:

hmm(*,*,s0,*,L-0): 0.022812689075136

hmm(*,*,s1,*,L-0): 0.020949331948366

hmm(*,*,s2,*,L-0): 0.014598811876160

:

hmm(*,*,s1,*,L-4): 0.028716685449848

hmm(*,*,s2,*,L-4): 0.012200549420048

The arguments in the control statement, which are neither variable nor reserved constant
symbols, will be used for filtering, that is, they are considered as matching patterns, just as in
hindsight/1-3. For example, to get the distribution at time step 3, we run:

?- hindsight_agg(hmm([a,b,b,a]),hmm(3,_,query,_,_)).

hindsight probabilities:

hmm(3,*,s0,*,*): 0.006164189835510

hmm(3,*,s1,*,*): 0.071139567166696

hmm(3,*,s2,*,*): 0.003213505044959

Besides,hindsight_agg(G,GPatt,Ps) will return toPsa Prolog term representing the above
computed results, where ‘*’ can be handled just as a Prolog’s constant symbol.

By default, each group in the computed result is sorted in the Prolog’s standard order with
respect to the subgoals. When setting ‘by_prob’ to the ‘sort_hindsight’ flag (§4.12), the
group will be sorted by the magnitude of the hindsight probabilities.

Furthermore,chindsight/1-3 andchindsight_agg/2-3 compute the conditional hind-
sight probabilitiesPθ(G′|G) = Pθ(G′)/Pθ(G) instead ofPθ(G′), whereG is a given top-goal and

5The matching is done by==/2, where the variables in the distinct subgoals are considered as different and thus do
not match with each other.
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G′ is its subgoal.6 The usage for them is respectively the same as that of the corresponding
hindsight or hindsight_agg predicate with the same arity. Conditional hindsight probabili-
ties can be seen as a restricted version of conditional probabilities. For instance, in the example
program which represents a Bayesian network (§5.2), we compute conditional probabilities on
the network by using conditional hindsight probabilities.

4.7 Learning

4.7.1 Maximum likelihood estimation and EM learning

The programming system supports parameter learning calledmaximum likelihood estimation
(ML estimation). That is, we can learn the parametersθ of switches buried in a program from
data. More concretely, in ML estimation, the system tries to find the parametersθ that maxi-
mize the likelihood

∏
t Pθ(Gt), the product of probabilities of given observed goals (i.e.training

data).7

If we know that there is just one way to yield each observationGt, ML estimation of the
parametersθ is quite easy. In such a case,Gt has only one explanationEt (a conjunction of
switch instances which used to generateGt; see§2.4.2 for illustrated details of explanations),
and hence it is only required to count upCi,v, the number of occurrences ofmsw(i,v) among all
Et, and then to get the estimateθ̂i,v = Ci,v/

∑
v′ Ci,v′ of the parameters of the switch.

The situation above is frequently seen insupervised learningwhere we say each observation
Gt is acomplete data. In partially observing situation such asunsupervisedor semi-supervised
learning, on the other hand, we can consider two or more ways to yieldGt (i.e. Gt has two or
more explanations). To deal with such partially observed goals (incomplete data) as observa-
tions, the programming system provides the utility ofEM learning.

In the system, EM learning is conducted in two phases: the first phase searches for all
explanations for observed dataGt (i.e. make an explanation search forGt; see§2.4.2), and the
second phase finds an ML estimate ofθ by using the EM algorithm. The EM algorithm is an
iterative algorithm:

Initialization step:
Initialize the parameters asθ(0), and then iterate the next two steps until the likelihood
converges.

Expectation step:
For eachmsw(i,v), computeĈi,v, the guessed counts ofmsw(i,v) under the parameters
θ(m).

Maximization step:
Using the guessed counts, update each parameter byθ̂

(m+1)
i,v = Ĉi,v/

∑
v′ Ĉi,v′ and then in-

crementmby one.

When the likelihood converges, the system stores the estimated parameters to its internal database,
and then we can make further probabilistic inferences based on these parameters. The threshold

6Generally speaking, we need to say what is computed by thechindsight predicates isnot a probability but
Eθ[G′ |G], the expected occurrences ofG′ givenG, which can exceed unity. This is because, in a general case, some
subgoalG′ can appear more than once inG’s proof tree. On the other hand, in typical programs of HMMs, PCFGs (with
neitherε-rule nor chain of unit productions) or Bayesian networks, each of subgoals should appear just once, hence
Eθ[G′ |G] can be considered as a conditional probability, sayPθ(G′ |G). The discussion in this footnote also holds for the
hindsight predicates.

7It should be noted here that each goalGt is assumed to be observed independently.
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ε is used for judging convergence, that is, if the difference between the likelihood under the
updated parameters and one under the original parameters is less thanε (i.e. sufficiently small),
we can think that the likelihood converges. The value ofε can be configured by the ‘epsilon’
flag (see§4.12; the default is 10−4).

4.7.2 Maximum a posteriori estimation

The programming system also supportsmaximum a posteriori estimation(MAP estimation)
for parameter learning, which tries to find parametersθ that maximize,P(θ|G1, . . . ,GT) ∝
P(θ)
∏

t Pθ(Gt), a posteriori probability of the parameters given training data from a Bayesian
point of view.8

In MAP estimation, the system assumes the prior distributionP(θ) follows a Dirichlet distri-
bution, and then in estimating parameters, it introducesδ, a singlepseudo count. That is, in the
complete-data case, each parameter is estimated byθ̂i,v = (Ci,v + δ)/(

∑
v′ Ci,v′ + |Vi |δ), where|Vi |

is the number of switchi’s possible outcomes. Similarly in the incomplete-data case, each pa-
rameter is updated by the EM algorithm withθ̂i,v = (Ĉi,v+ δ)/(

∑
v′ Ĉi,v′ + |Vi |δ), until a posteriori

probability converges.
Practically speaking, even for small training data (compared to the number of parameters to

be estimated), this pseudo count guarantees all estimated parameters to be positive, and hence
we can escape from the problem of so-called data sparseness or zero frequency. If the pseudo
count is zero, the MAP estimation is just an ML estimation, and it is sometimes calledLaplace
smoothingwhen the pseudo count set to be unity. We can set/get this pseudo count via the
‘smooth’ flag (§4.12).

4.7.3 Running learning commands

The built-inlearn(Goals) takesGoals, a list of observed goals, and estimates the parameters
of the switches to maximize the likelihood of the goals. For example, in the direction program
(§1.1), we make the program learn with three observed goals:

?- learn([direction(left),direction(right),direction(left)]).

Then we may receive messages like:

#goals: 0(2)

#graphs: 0(2)

#iterations: 0(Converged: -1.909542505)

Finished learning

Number of tabled subgoals: 2

Number of switches: 1

Number of switch values: 2

Number of iterations: 2

Final log likelihood: -1.909543

Total learning time: 0.010 seconds

All solution search time: 0.010 seconds

Total table space used: 604 bytes

Type show_sw to show the probability distributions.

The line beginning with#goals (resp.#graphs) shows the number ofdistinctgoals whose ex-
planation searches have been done (resp. whose explanation graphs have been constructed).

8In this view, the parameterized probability distributionPθ(G) which we used so far should be considered asP(G|θ),
a conditional probability given the parameters.
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The line beginning with#iterations show the number of EM iterations. Since each of
direction(left) anddirection(right) has just one explanationmsw(coin,head) and
msw(coin,tail) respectively (i.e. they are complete data), EM learning finishes with only two
iterations. After learning, the statistics on learning are displayed. These statistics can also be
obtained as Prolog terms (see§4.7.5). We may confirm the estimated parameters byshow_sw/0
(§4.1.4):

?- show_sw.

Switch coin: unfixed: head (0.666666666666667) tail (0.333333333333333)

This result indicates that the estimated parameters areθ̂coin,head = 2/3 andθ̂coin,tail = 1/3.
It is easily seen that this is because, for the whole training data, we have the explanation
msw(coin,head) for two goals, andmsw(coin,tail) for one goal.

The built-in learn/0 can be used only when the program gives the data file declaration
(§2.6.2) which specifies the file containing observed goals. The built-inlearn (with no argu-
ments) is the same aslearn(Goals) except that the observed goals are read from the file. For
example, assume the file ‘direction.dat’ contains the following two unit clauses:

direction(left).
direction(right).

and the program contains the declaration:

data(’direction.dat’).

Then running the commandlearn/0 is equivalent to:

?- learn([direction(left),direction(right)]).

Furthermore, we can specify the data by goal-count pairs by usingcount/2. That is, the data

count(direction(left),3).
count(direction(right),2).

are equally treated as below:

direction(left).
direction(left).
direction(left).
direction(right).
direction(right).

Such goal-count pairs can also be given tolearn/1:

?- learn([count(direction(left),3),count(direction(right),2)]).

It should be noticed that the default learning method is ML estimation (§4.7.1). On the other
hand, as mentioned above, we can enable MAP estimation (§4.7.2) by setting the pseudo count
δ, which is greater than zero, via the ‘smooth’ flag (§4.12). For example, let us set the pseudo
count as 0.5:

?- set_prism_flag(smooth,0.5).

The learning command is invoked in the same way as that of ML estimation:
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?- learn([direction(left),direction(right),direction(left)]).

#goals: 0(2)

#graphs: 0(2)

#iterations: 0(Converged: -2.646252953)

Finished learning

Number of tabled subgoals: 2

Number of switches: 1

Number of switch values: 2

Number of iterations: 2

Final log of a posteriori prob: -2.646253

Total learning time: 0.010 seconds

All solution search time: 0.010 seconds

Total table space used: 604 bytes

Type show_sw to show the probability distributions.

It may be confusing that ‘log of a posteriori prob’ in the messages above is indeed the
log of unnormalizeda posteriori probability of the observed goals (i.e. the sum of the log-
likelihood and the log-valued prior probability9), which is the substantial target of maximization.
Finally we find the estimated parameters areθ̂coin,head = (2 + 0.5)/(3 + 2 ∗ 0.5) = 0.625 and
θ̂coin,tail = (1+ 0.5)/(3+ 2 ∗ 0.5) = 0.375.

?- show_sw.
Switch coin: unfixed: head (0.625) tail (0.375)

Let us recall that the above example is a program with complete data. When EM learning is
conducted with incomplete data, the procedure is the same as above, but the larger number of
iterations may be required for complex models or large data.

4.7.4 Avoiding bad local maxima

It is only guaranteed by the EM algorithm that each iteration monotonically increases the like-
lihood (or a posteriori probability), and hence we often face the problem of being trapped in
bad local maxima. In the current version, the system provides a quite simple solution. That is,
we can try multiple running of the EM algorithm by restarting with different initializations of
parameters. The final estimates are the ones with the highest likelihood (or a posteriori proba-
bility) among all trials. The number of such trials can be specified by the ‘restart’ flag (see
§4.12).

4.7.5 Getting statistics on learning

After learning (both ML and MAP), the built-inget_log_likelihood(LL) returns the log-
likelihood of the given observed goals. In MAP estimation (§4.7.2), i.e. when some positive
value is given to the ‘smooth’ flag, we can also get the log of unnormalized a posteriori prob-
ability (§4.7.3) of the observed goals byget_log_post(LPost), which is the target of maxi-
mization in MAP estimation.get_lambda(L) returns the log-likelihood after ML estimation,

9To be precise, suppose we have some predefined probabilistic model and letD be the data at hand. Then, from
a Bayesian point of view, a posteriori probability of parameterθ given D is computed byP(θ|D) = P(θ)P(D|θ)/P(D),
whereP(θ) is a prior probability ofθ, andP(D|θ) is the likelihood ofD underθ. As stated in§4.7.2,P(θ) is assumed
to follow a Dirichlet distribution, and the ‘unnormalized’ a posteriori probability is justP(θ|D) ignoring the constant
factors with respect toθ (i.e. the constant factors in the Dirichlet distribution andP(D)). Of course, such an unnormalized
version can be used only for relative comparison such as a judgment of the EM algorithm’s convergence, or selecting
the ‘best’ parameters in multiple running of the EM algorithm (§4.7.4).
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or returns the log of unnormalized a posteriori probability after MAP estimation. Combining
these statistics with the facilities for saving/restoring switch information (§4.1.6), we can write
the extensions of the routine for multiple running of the EM algorithm (§4.7.4).

We can also get the number of occurred switches, occurred switch instances, and free pa-
rameters with respect to the last learning10 via the built-in predicatesget_num_switches/1,
get_num_switch_values/1, andget_num_parameters/1. The observed goals (with their
counts and frequencies) used in the last learning is displayed byshow_goals, and can be ob-
tained as Prolog terms byget_goals/1 andget_goal_counts/1:

?- show_goals.

Goal direction(right) (count=1, freq=33.333%)

Goal direction(left) (count=2, freq=66.667%)

Total_count=3

?- get_goals(Gs).

Gs = [direction(left),direction(right)] ?

?- get_goal_counts(GCs).

GCs = [[direction(left),2,66.666666666666657],

[direction(right),1,33.333333333333329]] ?

get_search_time(Time) andget_learn_time(Time) can be used to get the time (in sec-
onds) consumed for explanation search and for the entire learning procedure, respectively.

Since version 1.10,learn_statistics/2 gives a unified way to get these learning statis-
tics. That is,learn_statistics(Name,Stat) returns asStatthe statistic namedName. Ba-
sically, learn_statistics(Name,Stat) behaves the same as the built-inget_Name(Stat),
described in this section. On the other hand, when callinglearn_statistics(Name,Stat)
with Namebeing unbound, we can get all available statistics one after another by backtracking.
The available statistics are shown in Table 4.1.

4.8 Model scoring*

In many applications, we often face a problem ofmodel selection— that is, we need to select the
model that fits best the data at hand, from possible candidates. In machine learning community,
this problem should have been one of the most intensively explored topics in the last decade.
In PRISM, the programming system just provides two simple Bayesian scores based on ML
(§4.7.1) or MAP (§4.7.2) estimation, called Bayesian Information Criterion (BIC) [27] and
Cheeseman-Stutz (CS) score [3]. Generally speaking, these Bayesian scores are known to be
approximations of logP(D | M) = log

∫
Θ

P(D | θ,M)P(θ | M)dθ, log of themarginal likelihood
of the observed dataD under the modelM, and so in model selection with some Bayesian score
(BIC, for example), we compare the model candidates according to the score (i.e. the model
with the larger score is considered to be better). See [4] for more detailed descriptions about
BIC and CS scores.

In PRISM, the modelM is of course defined in the modeling part (§2.4), and after ML or
MAP learning with some observed goalsD (§4.7.3),get_bic(Score) returnsScoreas the BIC
score of the modelM givenD. Also after MAP learning withD, get_cs(Score) returnsScore
as the CS score ofM given D. Please note here thatget_cs/1 is available only after MAP

10The number of occurred switch instances is just the sum of the numbers of possible outcomes of switches occurred
in all explanations for all observed goals. This means that the switch instances not occurring in any of these explanations
are also taken into account there. The number of free parameters is just computed as the number of occurred switch
values subtracted by the number of occurred switches.
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Table 4.1: Statistics referred to bylearn_statistics(Name, Stat).

Name Stat
log_likelihood Log likelihood
log_post † Log of unnormalized a posteriori probability
lambda Same aslog_likelihood (in ML case)

or log_post (in MAP case)
num_switches Number of occurred switches in the last learning
num_switch_values Number of occurred switch values in the last learning
num_parameters Number of parameters in the last learning
goals List of goals used in the last learning
goal_counts List of goal-count pairs used in the last learning
bic Bayesian Information Criterion score (see§4.8)
cs † Cheeseman-Stutz score (see§4.8)
search_time † Time consumed for the solution search (in seconds)
learn_time † Time consumed for the entire learning procedure (in seconds)
†Only available after MAP estimation.

learning where the ‘smooth’ flag (§4.12) is set as positive. Instead of usingget_bic(Score)
or get_cs(Score), we can uselearn_statistics(bic,Score) or learn_statistics(cs,
Score), respectively.

4.9 Handling failures*

The programming system provides a facility of dealing with failure in generative models. The
background and general descriptions are given in§1.4 and§2.4.3, and so in this section, we will
concentrate on the usage of this facility.

For example, let us consider again the program which takes into account the agreement
in the results of coin-tossings, and suppose that the program is contained in the file named
‘agree.psm’:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

See§2.4.3 for a detailed reading of this program. Like the program above, for the model that
may cause failures, we need to define the predicatefailure/0 which describes all generation
processes leading to failure. In a probabilistic context, the sum of probabilities of successful
generation processes and the probability thatfailure/0 holds should always sum to unity. Of
course it is possible to definefailure/0 in a usual manner of PRISM programming, but the
definition should be much simpler if we can appropriately use the negationnot/1 as above.

When some negationnot/1 occurs in a program, the system first attempts to eliminate
it from the program by applying a certain type of program transformation (called First Order
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Compiler [17]) to produce an ordinary PRISM program. If this transformation is successful,
PRISM then loads the transformed program into memory.prismn(File) carries out this two-
staged process automatically (please note that ‘n’ is added to the last).File must include a
definition of thefailure/0 predicate described above.

By default, the transformed program is stored into the file ‘temp’ in the current working
directory. If you prefer another file, sayTempFile, prismn(File,TempFile) should be used
instead. For example, for the agreement program above,

?- prismn(agree).

loads ‘agree.psm’ into memory. The user can check the result of the transformation by looking
at ‘temp’. To estimate the parameters of switches for this program, include a special symbol
failure as data:

?-learn([failure,agree(heads),agree(heads),agree(tails)]).

For batch execution (§3.7) of the program that deals with failure, we need to runupprismn (also
note that ‘n’ is added), instead ofupprism.

foc/2 is the built-in predicate internally invoked byprismn/1-2. That is, foc(File,
TempFile) eliminates negation (or more generally universally quantified implications) and gen-
erates executable code intoTempFile. For example, we can find the program ‘max’ in the ‘foc’
directory obtained by extracting the package. With the following query, we transform ‘max’ into
‘temp’, and load the translated program:

?- foc(max,temp),[temp].

Allowing negation in the clause body is equivalent to allowing arbitrary first-order formulas as
goals which are obviously impossible to solve in general. Sofoc/2 may fail depending on
the source program. Users are advised to look into the examples offoc/2 usage in the ‘foc’
directory.

4.10 Avoiding underflow*

4.10.1 Background

For large data, such as very long sequential data, we often suffer from the problem that the
probability of some explanation goes into underflow. For Viterbi computation (§2.3 or§4.5),
since no summations of probabilities arise in the computation, we have an easy solution —
keeping probabilities as log-valued.

For the probabilistic inferences other than Viterbi computation, on the other hand, scaling is
one way to deal with quite small numeric values which often lead to underflow. In the context of
probabilistic modeling, for instance, hidden Markov models (HMMs) or other temporal models
could have a very small probability for a long sequence, and so standard HMM-related systems
employ some model-specific scaling methods. Another solution is to compute log-valued prob-
abilities (as done in log-valued Viterbi computation), which is done by alternately calling the
logarithmic function and the exponential function.

For the probabilistic inferences other than Viterbi computation, the programming system
supports two scaling methods below as well as the method for computing log-valued probabili-
ties.
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• Constant scaling:

In this scaling, each time we multiply a parameter ofmsw/2 to the probability of some
explanation, we also multiply a constant number (greater than one) to avoid underflow.
Hereafter this number is called ascaling factor. It is assumed that the users can give the
appropriate constant number as the scaling factor.

• Layered scaling:

In this scaling, promising scaling factors are automatically determined (thus the users
need not to specify it), but the applicable programs are limited. That is, we can apply
the method only to the program in which tabled subgoals can be partitioned into several
groups calledlayers, which follow the conditions:

1. The layers are acyclic with respect to the calling relationship.

2. For any layerL, the number ofL’s occurrences is constant in every (unfolded) ex-
planation.

Fortunately however, it is confirmed that temporal models including HMMs, dynamic
Bayesian networks (DBNs), and some specific case of probabilistic context-free gram-
mars in Chomsky normal form satisfy the conditions above. Indeed, this scaling method
is just a generalization of the one developed for HMMs. For example, let us consider the
HMM program with the string length being 3. Then, for an observed goalhmm([a,b,a]),
we can consider the layers fromU1 to U5:

U1 = { hmm([a,b,a]) },
U2 = { hmm(3,3,s0,[a,b,a]), hmm(3,3,s1,[a,b,a]) },
U3 = { hmm(2,3,s0,[b,a]), hmm(2,3,s1,[b,a]) },
U4 = { hmm(1,3,s0,[a]), hmm(1,3,s1,[a]) },
U5 = { hmm(0,3,s0,[]), hmm(0,3,s1,[]) }

In layered scaling, an individual scaling factor is automatically determined for each layer.
Only the users need to do is confirming whether, for each layer, the number of the layer’s
occurrences is constant among all search paths for the observed goal. In the above exam-
ple, Ui (i = 1, . . . , 5) (to be more exact, one subgoal fromUi) appears just once in every
search path forhmm([a,b,a]), and so we can say the layered scaling is applicable to this
program.

4.10.2 Using methods for avoiding underflow

For Viterbi computation, setting ‘on’ to the ‘log_viterbi’ flag enables the log-valued Viterbi
computation. See§4.12 for handling execution flags. The returned probability is log-valued.

For the other probabilistic inferences, the methods described in the previous section (§4.10.1)
are specified by the ‘scaling’ flag. This flag takes onnone, const, layer, andlog_exp. The
valuenone (default) means we perform no scaling.const andlayer mean doing the constant
scaling and the layered scaling, respectively. By specifyinglog_exp, we make probability com-
putations based on log-valued probabilities. For example, the following query enables constant
scaling:

:- set_prism_flag(scaling,const).
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Keep in mind that, when using any scaling method, the probabilities returned by built-ins that
computes probabilities (§4.3 and§4.6) will be log-valued.

To enable a scaling methodexceptlog_exp, we need to make extra settings:

• Constant scaling:

We need to tell the scaling factor to the system, by setting thescaling_factor flag. For
example, the following specifies it to be 2.0 as follows (the default is 8.0):

:- set_prism_flag(scaling_factor,2.0).

• Layered scaling:

To specify the layers, we introduce the predicatelayered/4. For example, in the HMM
program above, the following declarations will group the subgoals into the layersU1. . .U5:

layered(hmm,4,1,integer).

The meaning of this declaration is that, among the subgoals ofhmm/3, ones that have the
same integer value in the first argument will belong to the same layer. Moreover, for the
case that we have non-ground observed goals, we need to add the following declaration:

layered(hmm,1,1,length).

This declaration means that among the subgoals ofhmm/1, ones that have a list of the same
length in the first argument will belong to the same layer. After adding this declaration,
we can consider a non-ground goalhmm([a,b,X]) and the following layers:

U′1 = {hmm([a,b,X])},
U′2 = {hmm([a,b,a]), hmm([a,b,b])},
U′3 = {hmm(3,3,s0,[a,b,a]), hmm(3,3,s1,[a,b,a]),

hmm(3,3,s0,[a,b,b]), hmm(3,3,s1,[a,b,b])},
U′4 = {hmm(2,3,s0,[b,a]), hmm(2,3,s1,[b,a]),

hmm(2,3,s0,[b,b]), hmm(2,3,s1,[b,b])},
U′5 = {hmm(1,3,s0,[a]), hmm(1,3,s1,[a]), hmm(1,3,s0,[b]), hmm(1,3,s1,[b])},
U′6 = {hmm(0,3,s0,[]), hmm(0,3,s1,[])}

For each subgoalG′ that does not match the declarations will form a layer whose only
member isG′. So, if we know in advance that there are no non-ground observations, we
can omit the declaration with respect tohmm/1.

The matching pattern (the 4th argument) inlayered/4 is shown in Table 4.2. If we want
to make a matching with more than one argument, it is allowed to use the list form. To
show the example of this specification, we can modify the second argument as follows
(though is redundant in this example):

layered(hmm,4,[1,4],[integer,length]).
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Table 4.2: Matching pattern used inlayered/4.

integer integer
atom atom
compound compound term
length list length
d_length the length of the list represented by the d-list

(the functor of d-list is assumed to be’-’/2)
depth term depth

4.10.3 Efficiency

It is desired to understand that the methods for avoiding underflow bring loss of computation
time. For the probabilistic inferences other than Viterbi computation, constant scaling (speci-
fied by ‘const’) should be fastest since we only need to multiply a constant number for each
occurrence of switch instances. On the other hand, the method specified by ‘log_exp’ requires
additional computation time for calls of the logarithmic and exponential functions. In param-
eter learning with layered scaling (specified by ‘layer’), probability computation can be slow
sinceinter-goal sharing[12], a simple optimization to make explanation graphs compact, is not
allowed to be applied. This comes from the fact that, in layered scaling, we need a different
scaling factor for each goal.

4.11 Keeping the solution table*

In version 1.10, the ‘clean_table’ flag is introduced for a (partial) control of the solution table.
If this flag is set to ‘on’, which is the default, the programming system will automatically clean
up all past results of explanation search (say, solutions) in the solution table11 when invoking a
routine that executes the explanation search (i.e. learning (§4.7) and probability computations
(§4.3,§4.5,§4.6)). On the other hand, if the flag is set to ‘off’ (see§4.12), the programming
system does not clean up the solutions at all. Keeping and reusing the past solutions can be
significantly useful when we only attempt to compute the probabilities of some specific goal
repeatedly with different parameter settings. Of course, the efficiency is gained at the price of
memory space, so we need to care about the size of memory (i.e. the table area).

4.12 Execution flags

4.12.1 Handling execution flags

Since version 1.9, the system provides more than a dozen of execution flags to change its be-
havior. The below is the usage of these execution flags:

• Setting flags:

Flags are set by the commandset_prism_flag(FlagName,Value). When writing the
query “:- set_prism_flag(FlagName,Value).” in a program, the flag will be set

11Internally, the system calls bothinitialize_table/0 (B-Prolog’s built-in) and the routine that erases the ID
tables of PRISM’s own. So it is not guaranteed for the system to work when you call onlyinitialize_table/0 at an
arbitraty timing.

47



when the program is loaded. Also, flags can be specified by the commandprism/2
(§3.3), that is, by running:

?- prism([FlagName=Value],Filename).

• Printing flags:

show_flags/0 will print the current values of flags.

• Getting flag values:

By get_prism_flag(FlagName,X), you can get the value ofFlagNameasX. If we call
this with FlagNamebeing unbound, all available flags and their values are retrieved one
after another by backtracking.

• Running built-ins based on flags:

For example, to enable the log-valued version of Viterbi routine (§4.10), we need to
run set_prism_flag(log_viterbi,on) beforehand. Also we may run as a query
set_prism_flag(smooth,C) in advance to makesmoothing(i.e. MAP estimation) with
the pseudo countC.

4.12.2 Available execution flags

Here we list the available execution flags:

• verb (possible values:on andoff; default:off) — flag for enabling or disabling verbose
mode.

• warn (possible values:on andoff; default:off) — flag for enabling or disabling warning
messages.

• clean_table (possible values:on andoff; default:on) — flag for automatic cleaning
of the solution table (see§4.11 for details). If this flag is set to ‘on’, the programming
system will automatically clean up all past solutions in the solution table when invoking
any routine that executes the explanation search. On the other hand, with this flag turned
‘off’, we can keep the past solutions.

• epsilon (possible value: non-negative float; default:1.0e-4) — thresholdε for conver-
gence in the EM algorithm (see§4.7.1).

• smooth (possible value: non-negative float; default:0) — pseudo count for MAP estima-
tion (§4.7.2). If this flag is set to 0, the system will conduct ML estimation.

• init (possible values:none, random andnoisy_u; default: random) — initialization
method in the EM algorithm (§4.7.1). none means no initialization,random means that
the parameters are initialized considerably at random, andnoisy_u means that the pa-
rameters are initialized to be uniform with (small) Gaussian noises.

• std_ratio (possible value: non-negative float; default:0.1) — when we initialize the
parameters in the EM algorithm (§4.7.1) with ak-valued switch according to a uniform
distribution with Gaussian noises, where the noises are generated according toN(1/k,
(std_ratio ∗ (1/k))2). The parameters will be normalized at the end of initialization.
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• restart (possible value: positive integer; default:1) — number of restarts. Generally
speaking, the EM algorithm (§4.7.1) only finds a local ML/MAP estimate, so we often
restart the EM algorithm for several times with different initial parameters, and get the
best parameters (i.e. with the highest log-likelihood or log of a posteriori probability)
among these restarts.

• max_iterate (possible value: non-negative integer; default:0) — maximum number
of EM iterations. In the EM algorithm (§4.7.1), sometimes we need a large number of
iterations until convergence. For such a case, we can stop the EM algorithm before con-
vergence by this flag.

• log_viterbi (possible values:on andoff; default: off) — flag for enabling or dis-
abling the log-valued version of Viterbi computation (§4.10). For large data, we often
suffer from the problem that the probability of some explanation goes into underflow.
Specifically to the Viterbi computation however, we can avoid this problem by changing
the multiplication of probabilities to summation of log-valued probabilities. Please note
that the value of this flag does not make any influence on the scaling methods (§4.10). If
you wish to use some scaling method, use thescaling flag.

• scaling (possible values:none, const, layer andlog_exp; default:none) — scaling
methods.none means no scaling,const means doing the constant scaling,layer means
doing the layered scaling, andlog_exp means forcing log-valued computation of proba-
bilities. log_exp is the most general and applicable to any programs, but is preferred to
be used with MAP estimation (§4.7.2) in parameter learning (this is because all relevant
parameters should be non-zero to uselog_exp). See§4.10 for a general description and
the detailed usage on these scaling methods. If any value other thannone is specified, the
computed probabilities are obtained as log-valued. Please note that the value of this flag
does not make any influence on the use of the log-valued version of Viterbi computation
(§4.10 or§4.5). If you wish to enable/disable the log-valued Viterbi computation, use the
log_viterbi flag.

• scaling_factor (possible value: float (> 1); default:8.0) — scaling factor for constant
scaling.

• default_sw (possible values:none, uniform, f_geometric, f_geometric(Base),
f_geometric(Base,Type); default:uniform) — default distribution for parameters. If
none is set, we have no default distribution for parameters, and hence as in the versions
earlier than 1.9, we cannot make sampling or probability computation without an explicit
parameter setting (viaset_sw/2, and so on) or learning.uniform means that the default
distribution for each switch is a uniform distribution.f_geometric(Base,Type) means
the default distribution for each switch is a finite geometric distribution whereBaseis its
base (an integer greater than 1) andTypeis asc (ascending order) ordesc (descending or-
der). For example, when the flag is set tof_geometric(2,asc), the parameters of some
3-valued switch are set to 0.142· · · (= 20/(20+21+22)), 0.285· · · (= 21/(20+21+22)), and
0.574· · · (= 22/(20+21+22)), according to the order of values specified in the correspond-
ing value declaration.f_geometric(Base) is the same asf_geometric(Base,desc),
andf_geometric is the same asf_geometric(2,desc).

• dynamic_default_sw (possible values:on andoff; default: on) — flag for the mode
on automatic setting of the default distributions to the switches whose outcome spaces are
dynamically changed (see§2.6.3 for a typical case). If this flag is set to ‘on’, the program-
ming system automatically sets the default distribution to such switches before invoking
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the routines that refers to the switch distributions (e.g. sampling, probability computa-
tions,get_sw/2, and so on). The default distribution is given by the ‘default_sw’ flag
(see above).

• fix_init_order (possible values:on andoff; default:on) — flag for fixing the order
of parameter initialization among switches. For an implementational reason, in the EM
algorithm (§4.7.1), the order of parameter initialization among switches can vary accord-
ing to the platform, and hence we may have different learning results among the various
platforms. Turning this flag ‘on’ fixes the initialization order in some manner, and will
yield the same learning result.

• sort_hindsight (possible values:by_goal andby_prob; default: by_goal) — flag
for the mode on sorting the results of hindsight computation (§4.6). Withby_goal, the
result will be sorted in the Prolog’s standard order with respect to the subgoals. With
by_prob, the result will be ordered by the magnitude of the hindsight probability.

• search_progress (possible values: non-negative integer; default:10) — the frequency
of printing the progress message (i.e. the dot symbol) in explanation search and in con-
structing explanation graphs. If this flag is set to0, the message is suppressed.

• em_progress (possible values: non-negative integer; default:10) — the frequency of
printing the progress message (i.e. the dot symbol) in the EM algorithm (§4.7.1). If this
flag is set to0, the message is suppressed.

• reduce_copy (possible values:on andoff; default:off) — flag for automatic copying
of the Prolog terms returned by several built-ins (probf/2, viterbif/3, and so on; See
§4.16). If this flag is set to ‘off’, the programming system will automatically make a
copy of the Prolog term returned by these built-ins. On the other hand, with this flag
turned ‘on’, the copying will be skipped.

4.13 Random number generator

The following built-ins are provided to set information or retrieve information of the random
number generator.12 For sampling utilities based on discrete values, see§4.14.

• random_float(Max,R): Generates a random numberR in the range of0...Max.

• get_seed(Seed): The seed used in the random generator isSeed.

• set_seed(Seed): Seedis set to be the new seed used in the random number generator.

• set_seed_time: The current time is set to be the seed used in the random number gen-
erator.

• set_seed_time(T): The current time is set to bothT and the seed used in the random
number generator. This is equivalent to a sequential execution ofset_seed_time/0 and
get_seed(T).

12As a random number generator, the programming system usesMersenne Twister, by incorporating the implemen-
tation of its authors’ own available athttp://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html . The
development team is deeply grateful to the authors.
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4.14 Sampling on temporary distributions

By sampling, random switches (msw/2) can generate random outputs, but sometimes it is tedious
to assign their parameters in advance of sampling.dice/2-3 are sampling utilities that work
independently of the model, based on the probabilitiestemporarilyassigned. These built-ins are
implemented on the random number generator described in§4.13.

dice(Values,Probs,V) choosesV randomly fromValuesaccording to the distributionProbs,
anddice(Values,V) choosesV randomly fromValuesaccording to the uniform distribution.
For example, we may sample the phenotypes of blood type according to the distributionPA =

0.4, PB = 0.2, PO = 0.3, PAB = 0.1:

?- dice([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = a ?

?- dice([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = o ?

?- dice([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = b ?

These runs would be useful for generating synthetic samples without specifying a distribution
of genes.

Moreover, we can specify some extended form of a set of integer values. Namely, each
element of the listValuescan take the form ‘Nmin-Nmax@Nskip’ or ‘ Nmin-Nmax’, whereNmin (resp.
Nmax) is the minimum (resp. the maximum) value of some range, andNskip is the skip number.
For example, the following choose a value from[1,3,5,10,15,20].

?- dice([1-5@2,10-20@5],X).

At the implementation level, the conversion from such an extended form to the basic one is
done byexpand_values/2, which is also used internally forvalues_x/2-3, the extended
multi-valued switch declarations (see§2.6.3).

4.15 File IO

Basically, all B-Prolog’s built-ins for file IO are also available for PRISM. In addition, since
version 1.10, the programming system provides utilities for loading/saving clauses. The built-
in load_clauses(File,Clauses) reads all clauses as a listClausesfrom a file File, while
save_clauses(File,Clauses) writes each element inClausesas a clause intoFile. If you
are only interested in some part of clauses, the following predicates would be useful:

• load_clauses(File,Clauses,M,N) readsN clauses inFile asClauses, starting at the
M-th line, where the lines are numbered from zero.

• save_clauses(File,Clauses,M,N) writesN clauses inClausesinto File, starting at the
M-th element, where the elements are numbered from zero.
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4.16 Accessing to Prolog terms returned from the built-ins*

(This section is targeted at the users who are already familiar with PRISM.)

There are several built-in predicates that return Prolog terms consisting of subgoals or switch
instances: probf/2, viterbif/3, viterbig/1-2, hindsight/3, hindsight_agg/3,
chindsight/3, andchindsight_agg/3. Now let us consider a situation where we are setting
the ‘clean_table’ flag to ‘on’ (i.e. the system cleans up the solution table at each call of the
built-ins), and where a predicatep, one from the built-ins above, is called repeatedly in a query.
Then, after a call ofp has finished, the references to the Prolog terms returned by the previous
calls of p would be lost, and thus it is possible that a memory fault is arisen if we try to follow
these references. It would cause no problem if we can finish the task before the next call ofp, but
to make things safer, the predicates above are implemented to return the copies by default. One
drawback of this implementation, on the other hand, is that the term copying requires memory
in the heap area, and could lead to running out of memory when we deal with quite large Prolog
terms.

To adapt to various situations, we introduce another flag named ‘reduce_copy’, as a tem-
porary treatment. If the ‘reduce_copy’ flag is ‘on’ (resp. ‘off’), the term copying described
above will be disabled (resp. enabled). Three typical cases can be considered in the possible
flag settings:

• clean_table = on andreduce_copy = off:
This is the default. The memory is consumed by copying but the solution table is always
cleaned up.

• clean_table = on andreduce_copy = on:
This case is least memory consuming but has a risk of the memory fault as described
above. Fortunately, it can be safe if we are able to finish accessing to the terms before the
next call ofviterbif/3.

• clean_table = off with any value forreduce_copy:
In this case, the solution table will not be cleaned up, so it should be always safe except
the risk of memory exhaustion.

In typical programs, there seems to be no need to care about the issue described in this section
since the default setting is safe, and sufficiently efficient in most cases. Also as mentioned above,
the mechanism introduced here is considered as a temporary treatment, and could be changed in
the future version.
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Chapter 5

Examples

PRISM is suited for building complex systems that involve both symbolic and probabilistic el-
ements such as discrete hidden Markov models , stochastic string/graph grammars, game anal-
ysis, data mining, performance tuning and bio-sequence analysis. In this chapter, we describe
several program examples including the ones that can be found at the directories named ‘exs’
or ‘exs_fail’ in the released package.

5.1 Hidden Markov models

The HMM (hidden Markov model) program has been fragmentarily picked up throughout this
manual. In this section, on the other hand, we attempt to collect the previous descriptions as a
single session of an artificial experiment.

As described in§1.3, the HMM we consider has only two states ‘s0’ and ‘s1’, and two
emission symbols ‘a’ and ‘b’. In top-down writing such an HMM, we make several declarations
first:

target(hmm,1).
data(user).

values(init,[s0,s1]). % state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

The first declaration means observed goals take the formhmm(L) whereL is an output string,
i.e. a list of emitted symbols. The last three declarations declare three types of switches: switch
init chooses ‘s0’ or ‘ s1’ as an initial state to start with, the symbol emission switchesout(·)
chooses ‘a’ or ‘ b’ as an emitted symbol at each state, and the state transition switchestr(·)
chooses the next state ‘s0’ or ‘ s1’.

We then proceed to the modeling part. The model part is described only with four clauses:

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
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hmm(T,N,S,[Ob|Y]) :- % Loop: The state is S at time T
msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

As described in the comments, the modeling part expresses a probabilistic generation process
for an output string in the HMM. If possible, we recommend such a purely generative fashion
in writing the modeling part. One of its benefits here is that the modeling part works both in
sampling execution and explanation search.1

Optionally we can add the utility part. In the utility part, we can write an arbitrary Prolog
program which may use built-ins of the programming system. Here, we conduct a simple and
artificial learning experiment. In this experiment, we first give some predefined parameters to
the HMM, and generate 100 strings under the parameters. Then we learn the parameters from
such sampled strings. Instead of running each step interactively, we write the following utility
part that makes a batch execution of the learning procedure:

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with the samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

hmm_learn(N) is a batch predicate for the experiment, whereN is the number of samples used
for learning. set_params/0 specifies the parameters of each switch manually. Sincehmm/1
works in sampling execution, we can use a PRISM’s built-inget_samples/3 (§4.2) that calls
hmm/1 for N times.

Let us run the program. We first load the program:

% prism
:

?- prism(hmm).
table hmm/1

1Since version 1.9, if we wish, we can confirm even at this point whether it is possible to run sampling or the
explanation search. To be more concrete, let us include only the declarations and the modeling part to the file named
‘hmm.psm’, and load the program:

% prism

:

?- prism(hmm).

Then, for example, we may run the following to sample a goal with a stringX and get the explanations for it:

?- sample(hmm(X)),probf(hmm(X)).

It should be noted thatsample/1 andprobf/1 simulate sampling execution and explanation search, respectively. Also
one may notice that, since we have no specific parameter settings for switches here, the sampling is made under the
(default) uniform parameters.

54



table hmm/4
loading....hmm.psm.out

Then we run the batch predicate to generate 100 samples and to learn the parameters from them:

?- hmm_learn(100).

#goals: 0.........(97)

#graphs: 0.........(97)

#iterations: 0.........100.......(Converged: -689.116232627)

Finished learning

Number of tabled subgoals: 1021

Number of switches: 5

Number of switch values: 10

Number of iterations: 177

Final log likelihood: -689.116233

Total learning time: 0.210 seconds

All solution search time: 0.060 seconds

Total table space used: 402768 bytes

Type show_sw to show the probability distributions.

We can confirm the learned parameters by the built-inshow_sw/0 (§4.1.4):2

?- show_sw.

Switch init: unfixed: s0 (0.657062303207705) s1 (0.342937696792295)

Switch out(s0): unfixed: a (0.3257277231937) b (0.6742722768063)

Switch out(s1): unfixed: a (0.704817441866976) b (0.295182558133024)

Switch tr(s0): unfixed: s0 (0.284427965371372) s1 (0.715572034628628)

Switch tr(s1): unfixed: s0 (0.570367890086842) s1 (0.429632109913158)

Here we can make some probabilistic inferences based on the parameters estimated as above.
To compute the most likely explanation (the Viterbi explanation) and its probability (the Viterbi
probability) for a given observation, we can use the built-inviterbif/1 (§4.5).

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])

<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])

<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(2,10,s1,[a,a,a,a,b,b,b,b,b])

<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s1),a) & msw(tr(s1),s0)

hmm(3,10,s0,[a,a,a,b,b,b,b,b])

<= hmm(4,10,s1,[a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(4,10,s1,[a,a,b,b,b,b,b])

<= hmm(5,10,s0,[a,b,b,b,b,b]) & msw(out(s1),a) & msw(tr(s1),s0)

...omitted...

hmm(8,10,s1,[b,b,b])

<= hmm(9,10,s0,[b,b]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(9,10,s0,[b,b])

2At least there are many local maxima for ML estimation, so it is not guaranteed that we can restore the parameters
that have been set byset_params/0.
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<= hmm(10,10,s1,[b]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(10,10,s1,[b])

<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000117528

On the other hand, to compute the hindsight probabilities (§4.6) of subgoals for a goalhmm([a,
a,a,a,a,b,b,b,b,b]), we may run:

?- hindsight(hmm([a,a,a,a,a,b,b,b,b,b])).

hindsight probabilities:

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]): 0.000329700087289

hmm(1,10,s1,[a,a,a,a,a,b,b,b,b,b]): 0.000316868405859

hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]): 0.000191994479969

hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]): 0.000454574013179

hmm(3,10,s0,[a,a,a,b,b,b,b,b]): 0.000222026685023

hmm(3,10,s1,[a,a,a,b,b,b,b,b]): 0.000424541808125

...omitted...

hmm(8,10,s0,[b,b,b]): 0.000366678621664

hmm(8,10,s1,[b,b,b]): 0.000279889871484

hmm(9,10,s0,[b,b]): 0.000350254883354

hmm(9,10,s1,[b,b]): 0.000296313609794

hmm(10,10,s0,[b]): 0.000389511170922

hmm(10,10,s1,[b]): 0.000257057322226

hmm(11,10,s0,[]): 0.000257405112344

hmm(11,10,s1,[]): 0.000389163380804

According to the purpose, the queries above can be included to the batch predicate in the utility
part.

By specifying the execution flags (§4.12), we can add some variations to learning or the other
probabilistic inferences. For example, we may conduct an MAP estimation with the pseudo
count being 0.5, and try 10 runs of the EM algorithm. To do this, we first set the related flags as
follows:

?- set_prism_flag(restart,10),set_prism_flag(smooth,0.5).

Then, the batch predicate and the routines for later probabilistic inferences can be run in the
same way as above:

?- hmm_learn(100).

#goals: 0.........(94)

#graphs: 0.........(94)

[0]#iterations: 0.........100........(Converged: -686.955199159)

[1]#iterations: 0.........100.........200.....(Converged: -686.959803476)

[2]#iterations: 0.........100......(Converged: -686.955218214)

[3]#iterations: 0.........100.........(Converged: -686.955374352)

[4]#iterations: 0.........100.........200......(Converged: -686.958903786)

[5]#iterations: 0.........100.........200.....(Converged: -686.958217725)

[6]#iterations: 0.........100.........(Converged: -686.956113248)

[7]#iterations: 0.........100.......(Converged: -686.955115855)
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[8]#iterations: 0.........100.........200(Converged: -686.955300503)

[9]#iterations: 0.........100.........200.......(Converged: -686.960238496)

Finished learning

Number of tabled subgoals: 1000

Number of switches: 5

Number of switch values: 10

Number of iterations: 179

Final log of a posteriori prob: -686.955116

Total learning time: 1.131 seconds

All solution search time: 0.060 seconds

Total table space used: 394476 bytes

Type show_sw to show the probability distributions.

If we always use the above flag values, it should be useful to include the following queries into
the utility part:

:- set_prism_flag(restart,10).
:- set_prism_flag(smooth,0.5).

Furthermore, let us conduct a batch execution of learning at the shell (or command prompt)
level. As a preparation, we define a clause withprism_main/1 (see§3.7) as follows:

prism_main([Arg]):-
parse_atom(Arg,N),
hmm_learn(N).

With this definition, the system receives one argumentArg from the shell an atomic symbol (for
example,’100’) and then converts such a symbol to the dataN which can be numerically han-
dled (i.e. as an integer), and finally the batch predicate used above is invoked with the argument
N. So if we run the commandupprism at the shell prompt with specifying the filename of the
program and the argument to be passed toprism_main/1 above:

% upprism hmm 50

then a learning with 50 samples will be conducted:

% upprism hmm 50

:

#goals: 0....(49)

#graphs: 0....(49)

[0]#iterations: 0.........100........(Converged: -347.352030044)

[1]#iterations: 0.........100...(Converged: -347.347902763)

[2]#iterations: 0.........(Converged: -347.353010697)

[3]#iterations: 0.........100.....(Converged: -347.352436731)

[4]#iterations: 0.........100.........200...(Converged: -347.353537932)

[5]#iterations: 0.........100.........200......(Converged: -347.285900532)

[6]#iterations: 0.........100.......(Converged: -347.352426257)

[7]#iterations: 0.........100.........200..(Converged: -347.351954980)

[8]#iterations: 0......(Converged: -347.345817648)

[9]#iterations: 0.........100.........200.........300....(Converged: -347.2

87105601)

Finished learning

Number of tabled subgoals: 585

Number of switches: 5

57



Number of switch values: 10

Number of iterations: 264

Final log of a posteriori prob: -347.285901

Total learning time: 0.511 seconds

All solution search time: 0.030 seconds

Total table space used: 230896 bytes

Type show_sw to show the probability distributions.

yes

%

It is worth noting that the control is returned back to the shell after the execution, so we can
make more flexible experiments by combining the other facilities in a shell script.

5.2 Discrete Bayesian networks

Bayesian networks have become a popular representation for encoding and reasoning about un-
certainty in various applications. A Bayesian network is a directed acyclic graph whose nodes
are considered as random variables and whose arcs indicate conditional independences among
such variables. Conditional probability tables (CPTs) in a Bayesian network can be represented
by switches withcomplexnames in PRISM. To be more specific, letB andC be two random
variables, and assumeB (resp.C) has thek (resp.n) possible values. Then a conditional distri-
butionP(B|C) can be represented byn switches:msw(b(ci),·) (i = 1, . . . , n), each of which has
k outcomes:vi, j ( j = 1, . . . , k).3 Then it is easily seen that each switch parameter corresponds to
one entry of the CPT.

For illustration, let us consider an example from [13], shown in Figure 5.1. In this network,
we assume that all random variables take onyesor no (i.e. they are binary), and also assume
that only two nodes,SmokeandReport, are observable. This Bayesian network defines a joint
distribution:

p(Fire,Tampering,Smoke,Alarm,Leaving,Report).

From the conditional independences indicated by the graph structure, this joint distribution is
reduced to a computationally feasible form:

p(Fire,Tampering,Smoke,Alarm,Leaving,Report)

= p(Fire)p(Tampering)p(Smoke| Fire) ·
p(Alarm | Fire,Tampering)p(Leaving| Alarm)p(Report| Leaving).

(5.1)

The factored probabilities in the RHS will be stored in CPTs, whereP(Fire) andP(Tampering)
are seen as conditional probabilities with an empty condition. On the other hand, the observable
distribution onSmokeandReportis computed by marginalizing the joint distribution:

p(Smoke,Report)

=
∑

Fire, Tampering, Alarm, Leaving

p(Fire,Tampering,Smoke,Alarm,Leaving,Report).

(5.2)

3In other words, we have (n× k) switch instances:msw(b(ci),vi, j) (i = 1, . . . , n and j = 1, . . . , k).
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Fire Tampering

Alarm

Leaving

Smoke

Report

Figure 5.1: Example of a discrete Bayesian network.

It is easy to notice that the marginalization above takes an exponential time with respect to
the number of variable to marginalize. In the literature of research on Bayesian networks, effi-
cient algorithms are known to compute such marginalization, but in this section, we concentrate
on how we represent Bayesian networks in PRISM. Indeed, for a certain class called singly-
connected Bayesian networks, it is shown in [23] that we can write a PRISM program that can
simulate the Pearl’s propagation algorithm.

Now we start to describe the Bayesian network in Figure 5.1. Also for this case, a generative
way of thinking should be useful in writing the modeling part. For example, we first get the
value ofFire by flipping a coin (i.e. sampling) according toP(Fire). We then proceed to flip a
coin for Smokeaccording toP(Smoke| Fire), and so on. Here we represent such a coin flipping
by msw(I,V), and define the joint distribution (Eq. 5.1) with a predicateworld/6:

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

This clause indicates that we flip the coins in the order ofFire, Tampering, Smoke, Alarm,
LeavingandReport. As is declared later, the switches above are assumed here to outputyes
or no. The switch namedfi corresponds to the coin flipping forFire, and switchsm(Fi)
corresponds to the coin flipping forSmoke, given the value ofFire asFi. Recall here that each
parameter of these switches corresponds to one entry of the CPTs in the target Bayesian network.
For instance, the parameterθsm(yes),no, the probability of a switch instancemsw(sm(yes),no)
being true corresponds to the conditional probabilityP(Smoke= no | Fire = yes).

The observable distribution is defined byworld/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

The probability ofworld(yes,no) corresponds toP(Smoke= yes,Report= no). We can find
that, forworld(yes,no), all instantiations of the body are probabilistically exclusive to each
other, so we can compute the probability ofworld(yes,no) by summing up the probabilities
of these instantiations. This fact correspond to Eq. 5.2, so we can say the model is valid. The
model part of our Bayesian network program consists of the two clauses above.

We add some declarations as follows:
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target(world,2).
data(user).
values(_,[yes,no]).

The first clause meansworld/2 is observable, and from the second clause, we can use the built-
in learn/1 for learning, by passing a list of observed goals to its arguments. The third clause
specifies all switches have outcomesyes andno.

Now let us make a similar experiment to that with the HMM program (§5.1). Namely,
we first generate goals by sampling as training data under some predefined parameters, and then
learn the parameters from such training data. The difference is that we attempt tofix (or preserve)
one parameter in learning. Such a parameter can be considered as a constant parameter in the
model. The utility part may contain the following batch predicate for the experiment:

alarm_learn(N) :-
unfix_sw(_), % Make all parameters changeable
set_params, % Set parameters as you specified
get_samples(N,world(_,_),Gs), % Get N samples
fix_sw(fi), % Preserve the parameter values
learn(Gs). % for {msw(fi,yes), msw(fi,no)}

The experimental steps are written as comments. In this predicate,set_params/0 (which spec-
ifies the parameters of all switches;§4.1.2),get_samples/3 (which generate training data;
§4.2), andlearn/1 (§4.7.3) are used similarly to those in the batch routine for the experiments
with HMMs (§5.1).set_params/0 is a user-defined predicate:

set_params :-

set_sw(fi,[0.1,0.9]),

set_sw(ta,[0.15,0.85]),

set_sw(sm(yes),[0.95,0.05]),

set_sw(sm(no),[0.05,0.95]),

set_sw(al(yes,yes),[0.50,0.50]),

set_sw(al(yes,no),[0.90,0.10]),

set_sw(al(no,yes),[0.85,0.15]),

set_sw(al(no,no),[0.05,0.95]),

set_sw(le(yes),[0.88,0.12]),

set_sw(le(no),[0.01,0.99]),

set_sw(re(yes),[0.75,0.25]),

set_sw(re(no),[0.10,0.90]).

As described above, the additional functionality is that we do not learn (i.e. fix or preserve)
the parameters for switchfi. This is done by using the built-insunfix_sw/1 andfix_sw/1
(§4.1.3).

Now our PRISM program has been completed, and we are ready to run the program. Let
us assume that the program is contained in the file ‘alarm.psm’, then load the program by the
commandprism(alarm):

?- prism(alarm).

We conduct learning with 500 samples byalarm_learn/1 which is previously defined:

?- alarm_learn(500).

#goals: 0(4)

#graphs: 0(4)
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#iterations: 0(Converged: -101.272680727)

Finished learning

Number of tabled subgoals: 68

Number of switches: 12

Number of switch values: 24

Number of iterations: 2

Final log likelihood: -101.272681

Total learning time: 0.020 seconds

All solution search time: 0.010 seconds

Total table space used: 24752 bytes

Type show_sw to show the probability distributions.

We can confirm the learned parameters as follows:

?- show_sw.

Switch fi: fixed: yes (0.1) no (0.9)

Switch ta: unfixed: yes (0.519399313310633) no (0.480600686689367)

Switch le(no): unfixed: yes (0.384721321533468) no (0.615278678466532)

Switch le(yes): unfixed: yes (0.404738457815134) no (0.595261542184866)

Switch re(no): unfixed: yes (0.289857819297058) no (0.710142180702942)

Switch re(yes): unfixed: yes (0.21427119569658) no (0.78572880430342)

Switch sm(no): unfixed: yes (0.159674369834434) no (0.840325630165566)

Switch sm(yes): unfixed: yes (0.162930671951014) no (0.837069328048986)

Switch al(no,no): unfixed: yes (0.518638757519486) no (0.481361242480514)

Switch al(no,yes): unfixed: yes (0.50764550015705) no (0.49235449984295)

Switch al(yes,no): unfixed: yes (0.491645541377827) no (0.508354458622173)

Switch al(yes,yes): unfixed: yes (0.557537160970952) no (0.442462839029048)

It is also possible to get the frequencies of the sampled goals:

?- show_goals.

Goal world(no,no) (count=67, freq=67.000%)

Goal world(yes,yes) (count=9, freq=9.000%)

Goal world(yes,no) (count=7, freq=7.000%)

Goal world(no,yes) (count=17, freq=17.000%)

Total_count=100

Furthermore, for the Bayesian network program described in this section, conditional prob-
abilities can be computed as conditional hindsight probabilities (§4.6). Let us recall that a con-
ditional hindsight probability is denoted asPθ(G′|G) = Pθ(G′)/Pθ(G), whereG is a given top
goal andG′ is one of its subgoals. For instance, let us consider to compute the conditional
probability p(Alarm | Smoke= yes,Report= no) by using conditional hindsight probabilities.
Since the target conditional probabilityp(Alarm = x | Smoke= yes,Report= no) can be com-
puted asp(Alarm = x,Smoke= yes,Report= no)/p(Smoke= yes,Report= no), if we let G =
world(_,_,_,yes,_,no) andG′ = world(_,_,x,yes,_,no), it can be seen thatPθ(G′|G)
is equal to the target conditional probability. To get the conditional distribution onAlarm, we
run chindsight_agg/2 with specifying the 3rd argument inworld/6 (which corresponds to
Alarm) as a query argument:4

?- chindsight_agg(world(_,_,_,yes,_,no),world(_,_,query,yes,_,no)).

4In this computation, it is assumed that the parameters are set byset_params/0 in advance.
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conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463

world(*,*,yes,yes,*,no): 0.379226972504537

Of course, from the definition ofworld/2, we can make the same computation withworld/2:

?- chindsight_agg(world(yes,no),world(_,_,query,yes,_,no)).

conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463

world(*,*,yes,yes,*,no): 0.379226972504537

As mentioned before, the definition ofworld/6 is computationally naive, so we need to write
a different representation (like the one proposed in [20]) of Bayesian networks which takes
into account the computational effort for conditional hindsight probabilities, compared to the
sophisticated algorithms for Bayesian networks proposed so far.

5.3 Statistical analysis

PRISM is a suitable tool for analyzing statistical data. In this section, we present two examples.
The first example attempts to find a probabilistic justification for a common practice seen in
tennis games: players serve second services more conservatively than first services. We write
a program to demonstrate that the percentage of points won would normally decline should
a player serve second services as hard as first ones. The second example attempts to obtain
statistics that can be used to tune the unification procedure.

5.3.1 Why not serving second services as hard in tennis?

In tennis games, we observe a common practice, namely, players normally serve second services
much more conservatively than serving first services. Most people accept the practice without
asking why. We write a program to model the statistical relationship between serving and wining
in tennis games and use real statistics of Andy Roddick, one of top players, to answer the
question.

In tennis, a player has at most two chances to serve in each point. If the first service is a
fault, he has another chance to serve. If both services are faults, he loses the point. The following
program models this process.

values(serve(_),[in,out]). % switches serve(1) serve(2)
values(result(_),[win,loss]). % switches result(1) result(2)

target(play,1).

play(Res):-
msw(serve(1),S1),
(S1==in ->

msw(result(1),Res);
msw(serve(2),S2),
(S2==in ->

msw(result(2),Res);
Res=loss)).
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We use two switches,serve(1) andserve(2), to represent the outcomes of services, and
use another two switches,result(1) andresult(2), to represent the results:result(1)
gives the result of the point when the first service is legal andresult(2) the result of the point
when the second service is legal. The result is loss if both services are faults.

The following sets the parameters of the switches based on Andy Roddick’s statistics: his
serving percentages are 61 and 95 at first and second services, respectively, and his percentages
of points won at two services are 81 and 56, respectively.

roddick:-
set_sw(serve(1),[0.61,0.39]),
set_sw(serve(2),[0.95,0.05]),
set_sw(result(1),[0.81,0.19]),
set_sw(result(2),[0.56,0.44]).

From the program and the switch parameters, we know Andy Roddick’s wining probability
is 0.70158.

?- prob(play(win),Prob)
Prob = 0.70158

If Andy Roddick served second services like first services, the predicateplay should be
redefined as follows:

play(Res):-
msw(serve(1),S1),
(S1==in ->

msw(result(1),Res);
msw(serve(1),S2),
(S2==in ->

msw(result(1),Res);
Res=loss)).

His winning probability would decline to 0.686799. This explains why serious tennis players
serve second services much more conservatively than first services although the percentage of
points won at first services is much higher than that at second services.

5.3.2 Tuning the unification procedure

Given two terms, the unification procedure determines if they are unifiable, and if so finds a
substitution for the variables in the two terms to make them identical. A term is one of the
following four types:variable, atomic, list, andstructure. The unification procedure behaves as
follows:

unify(t1,t2){
if ( t1 is variable) bindt1 to t2;
else if (t1 is atomic){

if ( t2 is variable) bindt2 to t1;
else returnt1==t2;

} else if (t1 is a list){
if ( t2 is variable) bindt2 to t1;
else if (t2 is a list)
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return unify(car(t1),car(t2)) && unify(cdr( t1),cdr(t2));
else return false;

} else if (t1 is a structure){
if ( t2 is variable) bindt2 to t1;
else if (t2 is a structure){

let t1 be f(a1,. . . ,an) andt2 be g(b1,. . . ,bm);
if (f ! = g ||m != n) return false;
return unify(a1,b1) && . . . && unify( an,bn);

} else return false;
}

}

Since the order of tests affects the speed of the unification procedure, one question arises: how
to tune the procedure such that it performs fewest tests on a set of sample data.

The following shows a PRISM program written for this purpose:

target(prob_unify/3).

values(s1,[var,atom,list,struct]).

values(s2(_),[var,atom,list,struct]). %switches: s2(var),s2(atom),...

data(’unification.dat’).

prob_unify(T1,T2,Res):-

get_type(T1,Type1),

msw(s1,Type1),

get_type(T2,Type2),

msw(s2(Type1),Type2),

unify(T1,T2,Res).

unify(T1,T2,Res):-var(T1),!,T1=T2,Res=true.

unify(T1,T2,Res):-var(T2),!,T1=T2,Res=true.

unify(T1,T2,Res):-atomic(T1),!,(T1==T2->Res=true;Res=false).

unify([H1|T1],[H2|T2],Res):-!,

prob_unify(H1,H2,Res1),

(Res1=true->prob_unify(T1,T2,Res);Res=false).

unify(T1,T2,Res):-

functor(T1,F1,N1),

functor(T2,F2,N2),!,

((F1\=F2;N1\=N2)->Res=false;

unify(T1,T2,1,N1,Res)).

unify(T1,T2,N0,N,Res):-N0>N,!,Res=true.

unify(T1,T2,N0,N,Res):-

arg(N0,T1,A1),

arg(N0,T2,A2),

prob_unify(A1,A2,Res1),

N1 is N0+1,

(Res1=true->unify(T1,T2,N1,N,Res);Res=false).

get_type(T,var):-var(T),!.

get_type(T,atom):-atomic(T),!.

get_type(T,list):-nonvar(T),T=[_|_],!.

get_type(T,struct):-nonvar(T),functor(T,F,N),N>0.
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In learning mode, this program basically counts the occurrences of each type encountered in
execution. The switchs1 gives the probability distribution of the types of the first argument,
and for each type of the first argumentT the switchs2(T) gives the probability distribution of
the second argument.

For the following sample data stored in’unification.dat’

prob_unify(f(A,B,1,C),f(0,0,0,1),false).
prob_unify(A,def,true).
prob_unify(g(A,B),g(A,fin),true).

we can conduct learning and see the results of learning as follows:

?- learn.

#goals: 0(3)

#graphs: 0(3)

#iterations: 0(Converged: -9.704060528)

Finished learning

Number of tabled subgoals: 23

Number of switches: 4

Number of switch values: 16

Number of iterations: 2

Final log likelihood: -9.704061

Total learning time: 0.030 seconds

All solution search time: 0.030 seconds

Total table space used: 6860 bytes

Type show_sw to show the probability distributions.

yes

?- show_sw.

Switch s1: unfixed: var (0.625) atom (0.125) list (0.0) struct (0.25)

Switch s2(atom): unfixed: var (0.0) atom (1.0) list (0.0) struct (0.0)

Switch s2(struct): unfixed: var (0.0) atom (0.0) list (0.0) struct (1.0)

Switch s2(var): unfixed: var (0.2) atom (0.8) list (0.0) struct (0.0)

From this result, we know how to order the tests of types so that the unification procedure
performs the best on the samples.

5.4 Dieting professor*

The last example is a program that deals with failures in the generation process. Let us consider
a scenario as follows. There is a professor who takes lunch everyday at one of two restaurants
‘s0’ and ‘s1’, and he changes the restaurant to visit probabilistically. Also as he is on a diet, he
needs to satisfy aconstraintthat the total calories for lunch in a week are less than 4K calories.
He probabilistically orders pizza (which is denoted by ‘p’ and has 900 calories) or sandwich
(‘s’; 400 calories) at the restaurant ‘s0’, and hamburger (‘h’; 400 calories) or sandwich (‘s’;
500 calories) at the restaurant ‘s1’. He records what he has eaten like[p,s,s,p,h,s,h] in
a week and he preserves the recordif and only if he succeeds in keeping the constraint. For
example, we have a list of preserved records, and attempt to estimate the probability that he
violates the constraint.

First of all, let us introduce a two-state hidden Markov model (HMM), shown in Figure 5.2,
as a basic model that captures the professor’s probabilistic behavior. We then try to write a
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s0 s1

pizza(p)
or sandwitch(s)

hamberger(h)
or sandwitch(s)

Figure 5.2: State transition diagram of the dieting professor.

PRISM program which represents this basic model with the additional constraint on the total
calories. Hereafter we call the model aconstrained HMM. Let us proceed to describe the pro-
gram. From Figure 5.2, we can see that four switches are required as follows:

values(tr(s0),[s0,s1]).
values(tr(s1),[s1,s0]).
values(lunch(s0),[p,s]). % pizza:900, sandwich:400
values(lunch(s1),[h,s]). % hanburger:400, sandwich:500

where the switches namedtr(·) determine the next restaurant, and those namedlunch(·)
determine the menu of lunch at the corresponding restaurant.

The central part of the model ischmm/4, which is defined as follows:

chmm(L,S,C,N):- N>0,
msw(tr(S),S2),
msw(lunch(S),D),
( S == s0,

( D = p, C2 is C+900
; D = s, C2 is C+400 )

; S == s1,
( D = h, C2 is C+400
; D = s, C2 is C+500 )

),
L=[D|L2],
N2 is N-1,
chmm(L2,S2,C2,N2).

chmm([],_,C,0):- C < 4000.

This predicate behaves similarly tohmm/3 (§5.1), a recursive routine, except thatchmm/4 has an
additional argument that accumulates the total calories in a week. It is important to notice here
that, when the recursion terminates, the total calories will be checked in the second clause, and
if the total calories violate the constraint, the predicatechmm/4 totally fails. This corresponds to
the scenario that the professor only preserves the record if and only if he succeeds to keep the
constraint.

To learn the parameters from his records, or to know the probability that he fails to keep the
constraint, we need to make further settings. For example, we may define the four predicates as
follows:

failure:- not(success).
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success:- success(_).
success(L):- chmm(L,s0,0,7).
failure(L):- not(success(L)).

From the definition ofchmm/4, success(L) says that the professor succeeds to keep the con-
straint with the menusL. Sosuccess/0 indicates the fact that he succeeds to keep the con-
straint. failure/0 is the negation ofsuccess/0 and therefore means that he fails to satisfy
the constraint.failure(L) is optional here but says that he fails to keep the constraint due to
the menusL. Then we made the rest of declarations:

target(success,1).
target(failure,0).
data(user).

We consider the predicatessuccess/1 andfailure/0 as observable predicates, and we use
learn/1 as a learning command.

The experiment we attempt is artificial, similarly to those with HMMs (§5.1) and discrete
Bayesian networks (§5.2) — we first generate samples under the predefined parameters, and then
learn the parameters from the generated samples. For this experiment, we define a predicate in
the utility part, that specifies some predefined parameters:

set_params:-
set_sw(tr(s0),[0.7,0.3]),
set_sw(tr(s1),[0.7,0.3]),
set_sw(lunch(s0),[0.4,0.6]),
set_sw(lunch(s1),[0.5,0.5]).

Now we are in a position to start the experiment. We first load the program with the built-in
prismn/1 (please note ‘n’ at the last of the predicate name):

?- prismn(chmm).

step1.

step2.

step3.

Compilation done by FOC

table failure/0

table failure/1

table success/0

table success/1

table closure_success0/1

table closure_chmm0/5

table closure_success0/2

table closure_success1/1

table closure_chmm1/4

table chmm/4

compiled in 90 milliseconds

loading....temp.out

Let us recall that the definition clauses offailure/0 andfailure/1 have negationnot/1 in
their bodies. This is not negation as failure (NAF), and we need a special treatment for such
negation.prismn/1 calls an implementation of First Order Compiler (FOC) [17] to eliminate
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negationnot/1. In the messages above, the messages from “step1” to “ Compilation done
by FOC” are produced by the FOC routine, and we may notice that the predicates whose names
start with ‘closure_’ are newly created by the FOC routine and registered as table predicates
(because they are probabilistic).

After loading, we set the parameters byset_params/0, and confirm the specified parame-
ters:

?- set_params,show_sw.
Switch lunch(s0): unfixed: p (0.4) s (0.6)
Switch lunch(s1): unfixed: h (0.5) s (0.5)
Switch tr(s0): unfixed: s0 (0.7) s1 (0.3)
Switch tr(s1): unfixed: s1 (0.7) s0 (0.3)

We can compute the probability that the professor fails to keep the constraint under the parame-
ters above:

?- prob(failure).
Probability of failure is: 0.348592596784000

From this, we can say that the professor skips preserving the record once in three weeks.
To make it sure that the program correctly represents our model (in particular, the definition

of thefailure predicate), we may give a couple of queries. For example, the following query
confirms whether the sum of the probability that the professor satisfy the constraint and the
probability that he does not becomes unity:

?- prob(success,Ps),prob(failure,Pf),X is Ps+Pf.

Pf = 0.348592596784
Ps = 0.651407403216
X = 1.0 ?

Or we have a similar query which is limited to some specific menu (obtained asL by sampling):

?- sample(success(L)),
prob(success(L),Ps),prob(failure(L),Pf),
X is Ps + Pf.

Pf = 0.99862357726
Ps = 0.00137642274
L = [s,s,s,h,h,s,p]
X = 1.0 ?

It is confirmed for each goal appearing in the queries above that the sum of probabilities of the
goal and its negation is always unity, so we can proceed to a learning experiment. To conduct it,
we use the built-inget_samples_c/4 to generate 500 samples (note that we cannot simply use
get_samples/3 since a sampling ofsuccess(L) may fail), and invoke the learning command
with the samples:

?- get_samples_c([inf,500],success(L),true,Gs),learn([failure|Gs]).

#goals: 0.........100.........200......(261)

#graphs: 0.........100.........200......(261)
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#iterations: 0.....(Converged: -2964.779121734)

Finished learning

Number of tabled subgoals: 2275

Number of switches: 4

Number of switch values: 8

Number of iterations: 55

Final log likelihood: -2964.779122

Total learning time: 0.220 seconds

All solution search time: 0.090 seconds

Total table space used: 778384 bytes

Type show_sw to show the probability distributions.

Gs = [success([s,h,s,s,s,h,s]),success([s,p,h,h,s,s,s]),

... omitted ...

success([s,p,s,s,s,s,s]),success([s,h,h,h,h,p,s])] ?

It should be noted that, if a special symbolfailure is included to the goals inlearn/1, the EM
algorithm considering failure called the failure-adjusted maximization (FAM) algorithm will be
invoked. After learning, we can confirm the learned parameters as usual:

?- show_sw.

Switch lunch(s0): unfixed: p (0.417373118524406) s (0.582626881475594)

Switch lunch(s1): unfixed: h (0.492000452846571) s (0.507999547153429)

Switch tr(s0): unfixed: s0 (0.705730869553732) s1 (0.294269130446268)

Switch tr(s1): unfixed: s1 (0.710909192666213) s0 (0.289090807333787)
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Concept Index

ε (threshold for convergence), 39

a posteriori probability, 39, 41
unnormalized —, 41

acyclic condition, 14, 17

B-Prolog, 22
backoff smoothing, 30
backward probability computation, 6
batch execution, 26, 44, 57
Baum-Welch algorithm, 6
Bayesian Information Criterion, 42
Bayesian network, 17, 58

singly-connected —, 59
Bayesian score, 42
BIC, seeBayesian Information Criterion
blood type, 2

CAR condition,seecoarsened-at-random con-
dition

Cheeseman-Stutz score, 30, 42
coarsened-at-random condition, 16
compilation, 23
complete data, 30, 38, 39
completion, 13
conditional probability table, 58, 59
conditions on the model,seemodeling as-

sumption
constant scaling, 45, 46, 49
constrained HMM, 66
constraint, 7, 65
control stack+ heap, 24
convergence, 39
CPT,seeconditional probability table
CS score,seeCheeseman-Stutz score
cut symbol, 1

data file declaration, 18, 40
debugging, 24

— mode, 24
declaration, 1, 8
Dirichlet distribution, 39, 41
distribution semantics, 8, 9
dynamic Bayesian networks, 45
dynamic programming, 14

EM algorithm,seeexpectation- maximiza-
tion algorithm

EM learning, 38, 41
exclusiveness condition, 6, 17, 32
executable model, 10
execution flag, 24, 47
expectation-maximization algorithm, 7, 15,

38, 39, 41, 48–50, 69
explanation, 12, 17, 38

most likely —, 34, 55
Viterbi —, seeViterbi explanation

explanation graph, 13, 14, 32, 50
explanation path, 25
explanation search, 10, 12, 14, 24, 25, 28,

31, 38, 47, 48, 50, 54

failure, 6, 14, 43, 65, 69
failure-adjusted maximization algorithm, 7,

15, 69
failure-driven loop, 12
FAM algorithm,seefailure-adjusted maxi-

mization algorithm
file IO, 51
finite geometric distribution, 28, 29, 49
finiteness condition, 12, 17
First Order Compiler, 7, 15, 44, 67
forward probability computation, 6
forward sampling, 11
forward-backward algorithm,seeBaum-Welch

algorithm

general clause, 15
generation process, 5, 7, 14, 54, 65
generative manner in programming, 5, 10
generative model, 5, 7, 17, 43
genotype, 3
goal-count pair, 40, 43

hidden Markov model, 4, 6, 17, 44, 53
hindsight computation, 10, 12, 35, 50
hindsight probability, 35, 50

conditional —, 38, 61
HMM, seehidden Markov model

if-then statement (->), 1
inclusion declaration, 18, 21
incomplete data, 38, 39, 41
independence condition, 9, 17, 32
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independent and identically distributed (i.i.d.),
14

inside probability, 35
installation, 22
inter-goal sharing, 47

Laplace smoothing, 39
layer, 45, 46
layered scaling, 45, 46
learning, 10, 38
likelihood, 14, 38, 41
linear tabling, 6, 12
loading, 17, 20, 23, 44
local maximum, 41, 49, 55
log-valued probability, 44, 49
logical variable, 3, 9, 15

MAP estimation,seemaximum a posteriori
estimation

MAR condition,seemissing-at-random con-
dition

marginal likelihood, 42
maximum a posteriori estimation, 39–41, 48,

56
maximum likelihood estimation, 3, 14, 38,

42, 48
memory area, 24

automatic expansion of —, 24
Mersenne Twister, 50
missing-at-random condition, 7, 15, 17
missing-data mechanism, 16

ignorable —, 16
non-ignorable —, 17

ML estimation,seemaximum likelihood es-
timation

MLE, seemaximum likelihood estimation
model selection, 42
modeling assumption, 10, 17
modeling part, 5, 8, 10, 53, 66
multi-valued switch declaration, 18, 28, 51

negation, 44
negation as failure, 15, 67
non-failure condition, 14, 17
non-tabling predicate, 21

observation process, 16, 17
observed data, 3, 18, 39
observed goal, 3, 38, 39, 42, 53, 60
option, 23

ordered iff formula, 14, 32
outside probability, 35

parameter, 3, 9, 14, 19, 28–30, 38, 39, 42
parameter learning, 3, 7, 10, 12, 15, 17, 28,

38, 39, 55, 60, 67
partially observing situation, 4, 5, 38
phenotype, 2
probabilistic choice, 1
probabilistic goal, 3, 11
probabilistic inference, 10
probabilistic model, 8
probabilistic predicate, 1, 8, 23
probability calculation, 10, 12, 32
program area, 24
program transformation, 43
pseudo count, 39, 40, 48, 56

query, 17, 57

random number generator, 50
random switch,seeswitch
restart, 41, 49, 56

sampling, 10, 11, 25, 31
sampling execution, 10–12, 24, 28, 30, 54
sampling utility, 51
scaling, 44, 49
scaling factor, 45, 49
smoothing, 48
solution table, 12, 48

automatic cleaning of —, 48
clean up —, 47

spy point, 25
statistics on learning, 41
sub-explanation, 13, 32
subgoal, 13

encoded —, 33
supervised learning, 38
switch, 1, 9, 28

default distribution of a —, 19, 29, 30,
49

name of a —, 9, 28
outcome of a —, 9, 28
outcome space of a —, 1, 9, 18, 30, 49

— that dynamically changes, 19
parameter of a —,seeparameter

switch information, 29, 30
switch instance, 3, 9, 12, 32

encoded —, 33
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table area, 24, 47
table declaration, 18, 20
tabling, 8, 12
tabling predicate, 20
target declaration, 18
target predicate, 18
trail stack, 24
training data, 38

underflow problem, 34, 44
uniform distribution, 2, 28, 29, 49
uniqueness condition, 7, 17
utility part, 5, 8, 17, 54, 60, 67

Viterbi computation, 10, 12, 34, 44, 49
log-valued —, 44, 45, 49

Viterbi explanation, 34, 55
Viterbi probability, 34, 55
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Programming Index

.out (file suffix), 23

.psm (file suffix), 2, 23

abort/0 (B-Prolog built-in), 27

bic (statistic on learning), 43

chindsight/3, 52
chindsight_agg/2, 37, 61, 62
chindsight_agg/3, 37, 52
clean_table (execution flag), 47, 48, 52
compile (prism/2 option), 23
compile/1 (B-Prolog built-in), 23
consult (prism/2 option), 23, 25
count/2, 40
cs (statistic on learning), 43

data/1, 18, 40, 53, 59, 64, 67
default_sw (execution flag), 28, 29, 49
dice/2, 51
dice/3, 51
dynamic_default_sw (execution flag), 49

em_progress (execution flag), 50
epsilon (execution flag), 39, 48
expand_values/2, 20, 51

f_geometric (built-in distribution form),
28

failure (constant forlearn/1), 15, 69
failure/0, 14, 15, 27, 43, 44, 66, 67
fix_init_order (execution flag), 50
fix_sw/1, 60
fix_sw/1-2, 29
fix_sw/2, 20
foc/2, 44

get_bic/1, 42
get_goal_counts/1, 42
get_goals/1, 42
get_lambda/1, 41
get_learn_time/1, 42
get_log_likelihood/1, 41
get_log_post/1, 41
get_num_parameters/1, 42
get_num_switch_values/1, 42
get_num_switches/1, 42
get_prism_flag/2, 48

get_prism_flags/2, 24
get_samples/3, 5, 6, 31, 54, 60, 68
get_samples_c/4, 31, 68
get_samples_c/5, 31
get_search_time/1, 42
get_seed/1, 50
get_subgoal_hashtable/1, 33
get_sw/1, 30
get_sw/2, 30
get_sw/4, 30
get_sw/5, 30
get_switch_hashtable/1, 33
goal_counts (statistic on learning), 43
goals (statistic on learning), 43

halt/0, 2, 23
hindsight/1, 35, 36
hindsight/2, 35
hindsight/3, 24, 35, 52
hindsight_agg/2, 36, 37
hindsight_agg/3, 37, 52

include/1, 21, 23
init (execution flag), 48
initialize_table/0 (B-Prolog built-in),

47

lambda (statistic on learning), 43
layered/4, 46
learn/0, 24, 40, 65
learn/1, 4, 5, 18, 24, 26, 39, 40, 44, 54,

60, 68
learn_statistics/2, 42, 43
learn_time (statistic on learning), 43
load (prism/2 option), 23
load/1 (B-Prolog built-in), 23
load_clauses/2, 51
load_clauses/4, 51
log_likelihood (statistic on learning), 43
log_post (statistic on learning), 43
log_viterbi (execution flag), 45, 49

max_iterate (execution flag), 49
msw/2, 8, 9, 11, 14, 25, 28, 32, 51, 53

nospy/0, 25
nospy/1, 25
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not/1, 15, 43, 67
not/1 (B-Prolog built-in), 15
notrace/0, 25
num_parameters (statistic on learning), 43
num_switch_values (statistic on learning),

43
num_switches (statistic on learning), 43
nv (prism/2 option), 23

p_not_table, 21
p_table, 20
parse_atom/2 (B-Prolog built-in), 26
print_graph/1, 33, 34
print_graph/2, 34
prism (system command/file), 22–24, 26,

54
prism.bat (system command/file), 24
prism/1, 2, 15, 23, 24, 54, 60
prism/2, 23
prism_help/0, 24, 25
prism_main/0, 26
prism_main/1, 26, 57
prismn/1, 15, 44, 67
prismn/2, 44
prob/1, 3, 32, 68
prob/2, 24, 32, 63, 68
probef/1, 33
probef/2, 33
probf/1, 12, 33, 54
probf/2, 12, 14, 24, 32, 50, 52

random_float/2, 50
reduce_copy (execution flag), 50, 52
restart (execution flag), 41, 49
restore_sw/0-1, 30

sample/1, 2, 3, 24, 30, 54, 67, 68
save_clauses/2, 51
save_clauses/4, 51
save_sw/0-1, 30
Saved_SW (system command/file), 30
scaling (execution flag), 45, 49
scaling_factor (execution flag), 46, 49
search_progress (execution flag), 50
search_time (statistic on learning), 43
set_prism_flag/2, 29, 40, 45–47, 56
set_prism_flags/2, 24
set_seed/1, 26, 50
set_seed_time/0, 50
set_seed_time/1, 50

set_sw/1, 28
set_sw/2, 2, 5, 20, 24, 28, 54, 60, 63, 67
set_sw_all/0, 29
set_sw_all/1, 29
set_sw_all/2, 29
show_flags/0, 48
show_goals/0, 42, 61
show_sw/0, 2, 4, 29, 40, 41, 55, 61, 68, 69
show_sw/1, 29
smooth (execution flag), 39–41, 48
sort_hindsight (execution flag), 37, 50
spy/1, 25
statistics/0 (B-Prolog built-in), 24
std_ratio (execution flag), 48

table (B-Prolog built-in), 19, 21
target/1, 18, 64
target/2, 18, 53, 59, 62, 67
trace/0, 24

unfix_sw/1, 29, 60
uniform (built-in distribution form), 28
upprism (system command/file), 26, 57
upprismn (system command/file), 27, 44

v (prism/2 option), 23
values/2, 1, 11, 18, 19, 29, 53, 59, 62, 64,

66
values_x/2, 19, 51
values_x/3, 19, 20, 51
verb (execution flag), 48
viterbi/1, 34
viterbi/2, 34
viterbif/1, 6, 34, 55
viterbif/3, 24, 34, 50, 52
viterbig/1, 34, 52
viterbig/2, 34, 52
viterbig/3, 34

warn (execution flag), 48
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Example Index

agree/1, 14, 43, 44
agreement program, 14, 43, 44

Bayesian network program, 58–62
blood type program, 3, 9, 11, 12, 18
bloodtype/1, 3, 9, 11, 12

dieting professor program, 65–69
direction program, 1, 25, 29–32, 39, 40, 42
direction/1, 1, 2, 25, 30–32, 39, 40

extended HMM program, 36

failure/1, 66

genotype/2, 3, 9, 11

HMM program, 4–6, 13, 31–33, 35, 45, 46,
53–58

hmm/1, 4–6, 13, 32, 33, 35, 45, 46, 53
hmm/4, 4, 13, 14, 32, 33, 35, 45, 46, 53
hmm_learn/1, 5, 54

set_params/0, 5, 54
success/0, 14, 66
success/1, 66

tennis program, 62–63

unification program, 63–65

world/2, 59, 62
world/6, 59, 61, 62
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