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1 Introduction
NBCTK (Naive Bayes Clustering Toolkit) is a C implemen-
tation of several probabilistic inference algorithms related to
naive Bayes clustering — probabilistic clustering based on a
naive Bayes model [2]. NBCTK receives a dataset in a tabular
format with discrete (nominal) and continuous (numeric) val-
ues, and performs the following tasks:

• Clustering via EM learning

– Avoiding undesired local maxima by:

∗ Random restarts
∗ Deterministic annealing EM algorithm
∗ Split-merge EM algorithm (experimental)

– Determining the number of clusters

• Others:
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– Relevance analysis

– Evaluation of obtained clusters

NBCTK is designed to be generic to handle a variety of datasets
including bag-of-words representation (with TF-IDF weight-
ing) of documents [2].

Although NBCTK was much influenced by AutoClass [4, 5],
a popular probabilistic clustering tool in the data mining field,
it has a couple of advantages over AutoClass. First, NBCTK
runs in three statistical frameworks — ML (maximum like-
lihood), MAP (maximum a posteriori) and VB (variational
Bayes) [1, 3]. It is empirically found in recent researches that
the VB approach often shows a better performance than that by
ML/MAP approaches in model selection (e.g. determining the
optimal number of clusters) [3, 15], though ML/MAP is sim-
pler and would be easier to work with. The second advantage
is that NBCTK is augmented with two EM algorithms aiming
to escape from undesired local maxima, called the deterministic
annealing EM (DAEM) algorithm [24] and the split-merge EM
(SMEM) algorithm [25]. Lastly, NBCTK provides a flexible
way of various configurations and fully (i.e. even for multivari-
ate normal distributions) deals with missing values.

The rest of this document is comprised of three parts. First,
in Section 2, we will see a typical usage of NBCTK with an ex-
emplar dataset included in the released package. Section 3 then
gives a (rough) description of the algorithms used in NBCTK.
Section 4 is the third part which describes the detailed usage
of NBCTK. Lastly Section 5 makes some remarks on effective
use of NBCTK. We annotated ‘∗’ to the title of the sections that
relate to the advanced functions of NBCTK, so the readers can
skip these sections unless necessary.

2 Getting started
Let us use NBCTK with an artificial dataset included in the
released package. We suppose here that the installation of
NBCTK (see §4.2 for the procedure) has been successfully
done. Also consider that we are working in the example di-
rectory of the unfolded package. In this section, we just focus
on the look and feel of NBCTK, and do not aim at listing all
functions. We first describe the task of clustering.

2.1 What is clustering?
Given a dataset D of objects,1 clustering [13] is a task to group
similar objects in D into sets called clusters. For example, one
may wish to obtain some groups of Web pages that seem to have
the same topic, or one may group the patients who show similar
medical states. Like association rule mining, clustering requires
no (or less) human annotations, and hence can be utilized as a
first step in knowledge discovery.

1 For a historical reason, in the terminal messages from the programs in
NBCTK, the term ‘case’ is used instead of ‘object.’

Table 1: The descriptions of attributes in ex1_freq.csv.

Formally
Index Type Possible values denoted by

0 ID P0, P1, . . . , P999 —
1 Answer class 0, 1, 2, 3 —
2 Discrete a, b, o, ab A1

3 Continuous (floating-point number) A2

4 Ignored — —
5 Discrete male, female A3

6 Continuous (floating-point number) A4

7 Continuous (floating-point number) A5

8 Discrete high, mid, low A6

9 Ignored — —

Naive Bayes clustering can be seen as unsupervised classi-
fication of objects, based on a naive Bayes model. Hence we
may use the term ‘classes’ instead of clusters. Each object is
classified into one of K anonymous classes. We also consider
each object to be represented by a vector of values of one or
more predefined attributes.

2.2 Target data
The dataset D is supposed to be in tabular form. To be con-
crete, let us open ex1_freq.csv, an artificial dataset, in the
directory by some text viewer:

P0,0,b,4.74,6.48,female,0.36,1.51,mid,x0
P1,0,a,4.06,1.36,female,-0.38,0.99,mid,x0
P2,0,a,5.04,4.38,male,1.59,1.01,mid,x0

:

Each of 1,000 lines in the file corresponds to an object, and each
of comma-separated values in the line corresponds to a value of
an attribute of the object. Each object has 10 attributes, which
are described in Table 1. The attribute 0 (the indices of attributes
are zero-based) indicates the ID of the corresponding object.
The attribute 1 indicates the answer class to which the object
is known to belong. Actually, in this dataset, all objects were
sampled from a naive Bayes model (formally described in §2.3)
with 4 classes, and the answer classes were determined in the
process of sampling. The attributes 4 and 9 are noisy ones, and
should be ignored. Only the rest of the attributes are used for
clustering, and hereafter called descriptive attributes. In a for-
mal context, we only consider these descriptive attributes, and
T denotes the number of descriptive attributes. For instance,
the first object in ex1_freq.csv is written as x = (b,4.74,
female,0.36,1.51,mid), and T = 6.

On the other hand, there can be a dataset where several ob-
jects have the same attribute values. In NBCTK, unless having
continuous attributes or the ID attribute, these objects will be
regarded as identical since there is no way to distinguish them.
The dataset is then a multiset of objects. In the dataset ex2_
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freq.txt, objects who have the same vector x of attribute
values were suppressed, and instead their count N(x) is added
to the right-most column, which is called the count column:

v1 w1 x1 y1 z1 16
v1 w1 x1 y1 z2 21
v1 w1 x1 y1 z3 8

:

For example, we have N(x) = 21 for x = (v1,w1,x1,y1,
z2). Please note here that the count column is not considered as
an attribute. For the dataset where the count column is omitted,
like ex1_freq.csv, N(x) is considered to be one for every
object x. Also note that NBCTK accepts the tab character as
the delimiter of attribute values for the input files whose file
extension is ‘txt’.

2.3 Naive Bayes models
2.3.1 Overall structure

To build clusters of objects in the dataset D, we attempt to use a
probabilistic model called a naive Bayes model. In naive Bayes
models, we consider that the objects in D were generated in
a causal way depicted as a Bayesian network (Fig. 1), which
has random variables C and Ai (1 ≤ i ≤ T ). C is called the
class variable, and Ai are called the attribute variables. We then
write the vector of A1, A2, . . . , AT as X. In the case of ex1_
freq.csv, the descriptive attributes are referred to by Ai in
the rightmost column of Table 1.

In a naive Bayes model, the class of each object is firstly de-
termined as k under the class distribution p(C=k), and then at-
tribute values x are conditionally determined under the attribute
distribution p(X= x | C=k).

2.3.2 Attribute distribution (in general)

For the attribute distribution p(X= x | C=k), NBCTK assumes
that each attribute Ai is of three types:

• Discrete (and single-dimensional) — Ai follows a categor-
ical distribution.2

• Continuous and single-dimensional — Ai follows a uni-
variate normal distribution.

• Continuous and multidimensional — some attribute vari-
ables including Ai jointly follow a multivariate normal dis-
tribution.

AutoClass also introduces these types. In a usual definition of
naive Bayes models, on the other hand, all attributes are consid-
ered to be single-dimensional. In this sense, such usual naive
Bayes models are a special case of the naive Bayes models con-
sidered in NBCTK (and in AutoClass). Also one may find that
Gaussian mixture models are a special case.

2 The categorical distribution is defined as a generalization of the Bernoulli
distribution to more than 2 categories.

C

A A A1 2 T

Figure 1: Bayesian network representation of a naive Bayes
model, where all attributes are single-dimensional.

2.3.3 Attribute distribution (in detail)

We let Xdisc be a set of discrete attributes, Xcont-u be a set of
continuous and single-dimensional attributes, and Xcont-m be
a set of vectors each of which is comprised of the continu-
ous attributes jointly following a certain multivariate normal
distribution. We define X def

= Xdisc ∪ Xcont-u ∪ Xcont-m and
let X = {X1, . . . , X j, . . . , XJ}. Note that J ≤ T obviously
holds, and that X j ∈ X is a vector (Ai1 , Ai2 , . . . , Ain ) of at-
tributes. In the case of ex1_freq.csv, we may have J = 4,
X1 = (A1), X2 = (A2, A4, A5), X3 = (A3) and X4 = (A6),
where X1, X3, X4 ∈ Xdisc and X2 ∈ Xcont-m (see also Table 1).
Also it is possible to have J = 5, X1 = (A1), X2 = (A2, A5),
X3 = (A3), X4 = (A4) and X5 = (A6), where X1, X3, X5 ∈ Xdisc,
X2 ∈ Xcont-m and X4 ∈ Xcont-u.

For simplicity, in the context where we know X j (often) con-
tains only a single attribute, we write X j and its value with non-
bold letters (i.e. X j and x j, respectively). Furthermore, we refer
to all nominal values by integers. That is, for an attribute X j that
can have V j values, we number them from 1 to V j. For instance,
for A1 in Table 1, the values a, b, o and ab are referred to by 1,
2, 3 and 4, respectively.

Now, the joint probability, i.e. the probability that an object
with attribute values x = (a1, a2, . . . , aT ) belongs to the class k,
is simply computed as:

p(C=k, A1=a1, A2=a2, . . . , AT =aT )

= p(C=k)
J∏

j=1

p(X j= x j | C=k). (1)

According to the type of X j, p(X j= x j | C= k) is predefined as
follows:

• When X j ∈ Xdisc, p(X j | C = k) follows a categorical dis-

tribution. We consider θ j,k,x j

def
= p(X j = x j | C = k) as a

parameter of the distribution. V j stands for the number of
its possible values, and we have 1 ≤ x j ≤ V j.

• When X j ∈ Xcont-u, p(X j | C = k) follows a univariate
normal distribution. That is, p(X j= x j | C=k) is:

N(x j | µ j,k, σ
2
j,k) =

1√
2πσ2

j,k

exp

− (x j − µ j,k)2

2σ2
j,k

 ,
(2)
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where µ j,k and σ2
j,k are the mean and the variance, respec-

tively.

• When X j ∈ Xcont-m, p(X j | C = k) follows a multivariate
normal distribution. That is, p(X j= x j | C=k) is:

N(x j | µ j,k,Σ j,k)·

=
1√

(2π)n j |Σ j,k |
exp

(
−1

2
(x j − µ j,k)TΣ−1

j,k(x j − µ j,k)
)
,

(3)

where n j is the dimension of X j, and µ j,k and Σ j,k are the
mean vector and the covariance matrix, respectively.

The class variable C, on the other hand, is discrete and fol-
lows a categorical distribution, whose parameters are θk

def
=

p(C = k) (1 ≤ k ≤ K). We use θ for a vector of all parameters
above. Eq. 1 is then simplified and written in a parameterized
form as:

p(k, x | θ) = p(k | θ)
J∏

j=1

p(x j | k, θ), (4)

where p(C = k, . . .) and p(X j = x j, . . .) are abbreviated as
p(k, . . .) and p(x j, . . .), respectively.

2.4 Running NBCTK
2.4.1 Basic usage

Now try NBCTK with the dataset contained in ex1_freq.
csv. Let us assume here that the true number of classes is
known as 4. Then, to get the clusters of objects in ex1_freq.
csv, we invoke an executable named nbc with several option
flags:

nbc -f ex1 -k 4 -x 10 -I 0 -E 1 -y 4,9 -u 3,6,7

The option ‘-f ex1’ specifies the names of input/output files
including ex1_freq.csv. Besides, the options ‘-k 4’ and
‘-x 10’ indicate that the number of clusters is 4 (K = 4), and
that the number of attributes is 10, respectively. The rest of
option flags specify the attribute types. The options ‘-I 0’,
‘-E 1’ and ‘-y 4,9’ respectively say that the attribute 0 is
the ID attribute, the attribute 1 is the answer class attribute, and
the attributes 4 and 9 should be ignored (see also Table 1). The
option ‘-u 3,6,7’ says the attributes 3, 6 and 7 jointly fol-
low a multivariate normal distribution. It should be noted that
the attributes that are not explicitly specified are considered as
discrete attributes. After running the program, we may see the
terminal messages below:

Reading cases from ex1_freq.csv...done
#classes = 4:
#iters 0 (Converged: 19 iters)
L=-5747.688373
BIC = -5923.836132

In advance of clustering, the program runs the EM (expectation-
maximization) algorithm (§3.1.1) to estimate the parameters
of the naive Bayes model. The EM algorithm is an iterative,
hill-climbing algorithm for parameter estimation. The mes-
sages above report the progress of the EM algorithm, i.e. we
made 19 EM iterations, the log-likelihood was converged to
−5747.688373, and so on.

One may notice it possible to have a different setting for con-
tinuous attributes. For example, we may specify3 that attribute 3
and 7 jointly follow a bivariate normal distribution and attribute
6 follows a univariate normal distribution:4

nbc -f ex1 -k 4 -x 10 -I 0 -E 1 -y 4,9 \
-u 3,7 -u 6

As mentioned before, the count column is not considered as
an attribute, so for a dataset having the count column, the num-
ber of attributes, which is specified by -x option, should be the
number of columns minus one. Specifically, for ex2_freq.
txt, we may run:

nbc -f ex2 -k 4 -x 5

2.4.2 Output files

After the run with ex1_freq.csv, three files named ex1_
{param,cluster,eval,log}.csv should have been
created. The first file, ex1_param.csv, contains the param-
eters estimated by the EM algorithm:

#### ID:PARAM-CLASS
#### Class k, Class parameter P(k)
####
0,0.299999927172
1,0.200000072828
2,0.400000024986
3,0.0999999750144
#### ID:PARAM-CAT2
#### Attr. ID, Class k, Attr. value x2, Attr. par
ameter P(x2|k)
####
2,0,a,0.0933333559908
2,0,ab,0.196666862475

:
#### ID:PARAM-GAUSS-MEAN0
#### Gauss ID, Class k, Attr. ID, Mean
####
0,0,3,0.999999808665
0,0,6,5.00016666618

:

We see from above that the class parameters were estimated
as 0.299, 0.200, . . . , and so on. In general, each output file
contains several data matrices, each of which has header lines
beginning with ‘#’.

The second file, ex1_cluster.csv, contains the data ma-
trices on a mapping from objects to clusters:

3 ‘\’ means a continuation of the command line (as used in popular shell
programs in UNIX/Linux), and is used here just for space limitation.

4 The question of which is better is a problem of model selection, and as will
be mentioned later, we may decide it by a Bayesian score provided by NBCTK.
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#### ID:CLUSTER-CASE-BY-CASE
#### Case ID, Answer class, Cluster k, Attribute
values x, Membership prob. P(k|x)
####
P0,0,3,b,4.74,female,0.36,1.51,mid,1
P1,0,3,a,4.06,female,-0.38,0.99,mid,1
P2,0,3,a,5.04,male,1.59,1.01,mid,0.999999999999

:

We see that the object named P0, x = (b,4.74,female,
0.36,1.51,mid), belongs to the cluster 3, and so on. One may
also notice that the rows in the data matrix named ‘CLUSTER-
CASE-BY-CASE’ are ordered by the indices of objects. On
the other hand, in the data matrix ‘CLUSTER-CASE-BY-
CLUSTER’, the rows are ordered by the indices of clusters:

#### ID:CLUSTER-CASE-BY-CLUSTER
#### Cluster k, Answer class, Case ID, Attribute
values x, Membership prob. P(k|x)
####
0,2,P300,a,-0.2,female,5.25,5.08,low,1
0,2,P301,ab,0.58,male,5.03,5.9,low,1
0,2,P302,a,1.74,male,4.12,4.45,low,1

:

The above tell us that the cluster 0 includes the objects P300,
P301, and so on.

In recent versions, a file containing the results of cluster eval-
uation, like the third file, ex1_eval.csv, will be generated
when objects have the answer class attribute, which has been
specified by -E option. From the contents, we can see that pu-
rity (see §3.3) is 0.9, and Rand index (§3.3) is about 0.96:

#### ID:EVAL-PURITY
#### Evaluation measure, Value
#### -- Weight in F-measure of Purity = 1
####
Purity,0.9
Inverse Purity,1
F-Purity,0.947368421053
#### ID:EVAL-RAND
#### Evaluation measure, Value
#### -- Weight in F-measure of Wallance’s measu
res = 1
####
Rand index,0.95995995996
Wallance’s measure I,0.882005899705
:

#### ID:CLUSTER-MATCH-BY-PREDICTED
#### Cluster k [predicted], Answer class, Num.
of matched cases
####
0,0,100
0,1,200
0,2,0
0,3,0
1,0,0
1,1,0
1,2,0
1,3,400
2,0,0
2,1,0
2,2,0
2,3,0
3,0,0

3,1,0
3,2,300
3,3,0

:

Also from CLUSTER-MATCH-BY-PREDICTED, we can find
that the cluster 0 made (predicted) by nbc contains the object
that originally belong to the answer classes 0 and 1 (i.e. the
cluster 0 is too large).

Lastly, the fourth file, ex1_log.csv, contains additional
information on the (last) execution. It is desirable for users to
look into the log file to check if the execution has been done as
intended.

2.4.3 Various execution options

NBCTK provides many options for the EM algorithm. For ex-
ample, since the EM algorithm is a hill-climbing algorithm, and
is known to be often trapped in undesirable local maxima, we
sometimes wish to restart the EM algorithm with several differ-
ent initial settings. In NBCTK, this method is enabled by giving
the number of restarts to -n option:5

% nbc -f ex1 -k 4 -x 10 -I 0 -E 1 -y 4,9 \
-u 3,6,7 -n 10

Reading cases from ex1_freq.csv...done
#classes = 4:
[0] #iters 0 (Converged: 18 iters) L=-5747.688373
[1] #iters 0 (Converged: 16 iters) L=-5747.688373
[2] #iters 0 (Converged: 14 iters) L=-5747.688373
[3] #iters 0. (Converged: 23 iters) L=-5747.688373
[4] #iters 0. (Converged: 22 iters) L=-5747.688373
[5] #iters 0 (Converged: 16 iters) L=-5747.688373
[6] #iters 0. (Converged: 24 iters) L=-5747.688373
[7] #iters 0. (Converged: 24 iters) L=-5747.688373
[8] #iters 0 (Converged: 15 iters) L=-5747.688373
[9] #iters 0 (Converged: 14 iters) L=-5747.688373
<<Resumed best parameter set #5>>
[5] #iters (Converged: 17 iters) L=-5747.688373
BIC = -5923.836132

We can find from above the sixth initial setting provides the best
estimate of parameters (though the differences were subtle).

To be precise, the parameter estimation method we have run
is called ‘maximum likelihood (ML) estimation.’ On the other
hand, maximum a posteriori (MAP) estimation is said to be
more robust against the problem of data sparseness, which often
arises with a small data. In MAP estimation, we should tell the
pseudo counts or hyperparameters to the program. In NBCTK,
it is possible to specify pseudo counts or hyperparameters in a
flexible form, and we can make similar settings to AutoClass
with -A option as well:

% nbc -f ex1 -k 4 -x 10 -I 0 -E 1 -y 4,9 -u 3,6,7 -A

Reading cases from ex1_freq.csv...done
#classes = 4:
#iters 0. (Converged: 31 iters) L=-5907.149381
Cheeseman-Stutz score = -6024.130102

5 ‘%’ is the prompt symbol.
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% vnbc -f ex1 -k 2:10:1 -x 10 -I 0 -E 1 -y 4,9 -u 3,6,7
Reading cases from ex1_freq.csv...done
|Classes| = 2:
#iters 0 (Converged: 9 iters) F=-7485.127335
Variational Free Energy = -7485.127335 (temporarily optimal)

:
|Classes| = 4:
#iters 0 (Converged: 16 iters) F=-6014.731751
Variational Free Energy = -6014.731751 (temporarily optimal)

|Classes| = 5:
#iters 0. (Converged: 30 iters) F=-6017.392785
Variational Free Energy = -6017.392785

:
|Classes| = 10:
#iters 0. (Converged: 28 iters) F=-6027.032856
Variational Free Energy = -6027.032856

Optimal |Classes| = 4

Figure 2: Terminal messages from vnbc in the ‘model selection’ mode.

We have assumed so far that the true number K of clusters
is known in advance, but in practical situations, it is often un-
known. Consequently finding the optimal number of clusters
(based on the dataset) is a key issue in clustering. Again, this
can be seen a kind of model selection problem. NBCTK pro-
vides a facility that computes the scores on K based on the
marginal likelihood P(D | K), the plausibility of D given the
number K of clusters.

Although the scores on K are provided for the frameworks of
ML and MAP estimation, we here use variational free energy
instead as a score on K in a variational Bayesian (VB) approach.
In VB, we use another executable named vnbc. The terminal
messages from vnbc are shown in Fig. 2, where the number of
clusters to be examined ranges from 2 to 10. If we specify ‘-k
Kmin:Kmax:Kstep’, NBCTK will be switched into the ‘model
selection’ mode. In this example, we fortunately recovered the
true number of clusters as 4.

2.4.4 Auxiliary tool for post-processing

Lastly, we mention nbcsep, an auxiliary tool for post-
processing the outputs from nbc and vnbc. As seen before,
each output file contains several data matrices, each having an
identifier. Typically, nbcsep extracts these data matrices, and
puts each of them into an individual file. The name of a new
file includes the identifier of the corresponding data matrix. For
example, let us apply nbcsep to ex1_param.csv:

% nbcsep -f foo ex1_param.csv
Output: foo_PARAM-CLASS.csv
Output: foo_PARAM-CAT2.csv
Output: foo_PARAM-CAT5.csv
Output: foo_PARAM-CAT8.csv
Output: foo_PARAM-GAUSS-MEAN0.csv
Output: foo_PARAM-GAUSS-COVAR0.csv

Here, the common prefix of the names of newly created files
was given by -f option.

3 Clustering algorithms

This section gives a detailed description on the clustering algo-
rithms and the other related algorithms provided in NBCTK.

3.1 ML/MAP based clustering

3.1.1 Parameter estimation based on ML

In advance of clustering and the other probabilistic inferences
based on the joint distribution p(k, x | θ), we need to esti-
mate the parameters θ from the dataset D. Let us recall that
we are given a set D of objects where N(x) is the number of
occurrences of objects that have the attribute value x. We de-
fine N as the number of total occurrences of objects, that is,
N =

∑
x N(x). Since in clustering, we do not know the class to

which each object belongs, the dataset D contains no informa-
tion about k. In this sense, D is often called incomplete data.
In maximum likelihood (ML) estimation, we try to find the pa-
rameters θ that maximize the likelihood p(D | θ). That is, we
have:

θ̂ML = argmax
θ

p(D | θ) = argmax
θ

log p(D | θ)

= argmax
θ

∑
x

N(x) log p(x | θ)

= argmax
θ

∑
x

N(x) log
K∑

k=1

p(k, x | θ). (5)

Due to the lack of the information on the cluster (k), it is not
easy to analytically maximize p(D | θ) or log p(D | θ). Instead,
we use the EM (expectation-maximization) algorithm [9]. Fig. 3
is the EM algorithm derived for naive Bayes models.6
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1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and θ j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following until the log-likelihood log p(D | θ) con-
verges:

p(k | x, θ) ∝ p(k, x | θ) = p(k | θ)
J∏

j=1

p(x j | k, θ) (6)

E[k] :=
∑

x

N(x)p(k | x, θ) (7)

θk ∝ E[k] (8)

X j ∈ Xdisc :

θ j,k,x j ∝
∑

x′∈D:x′j=x j

N(x′)p(k | x′, θ) (9)

X j ∈ Xcont-u :

µ j,k :=
1

E[k]

∑
x∈D

p(x j | k, θ)x j (10)

σ2
j,k :=

1
E[k]

∑
x∈D

p(x j | k, θ)(x j − µ j,k)2 (11)

X j ∈ Xcont-m :

µ j,k :=
1

E[k]

∑
x∈D

p(x j | k, θ)x j (12)

Σ j,k :=
1

E[k]

∑
x∈D

p(x j | k, θ)(x j − µ j,k)(x j − µ j,k)T

(13)

Figure 3: The EM algorithm for ML estimation in naive Bayes
models.

3.1.2 Parameter estimation based on MAP

It is well-known in the machine learning literature that ML esti-
mation often suffers from the problem of data-sparseness when
the data size N is not so large compared to the number of param-
eters. One way for avoiding this problem is to take a Bayesian
approach, in which we consider a prior distribution p(θ) on the
parameter space Θ. As is often done, in NBCTK, we use con-
jugate prior distributions [8] for p(θ). To be more concrete:

• As a prior distribution of θclass, (a vector of) the parameters
θk (1 ≤ k ≤ K) for the class variable C, we introduce the
Dirichlet distribution:

p(θclass)
def
=
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k . (14)

Each αk corresponds to θk, and is called a hyperparameter.

• As a prior distribution of θdisc, the parameters θ j,k,x j for

6 In this document, the symbol ‘∝’ means a substitution with normalization.

X j ∈ Xdisc, we also introduce the Dirichlet distribution:

p(θdisc) def
=

K∏
k=1

∏
j∈Jd

 Γ
(∑V j

x j=1 α j,k,x j

)
∏V j

x j=1 Γ
(
α j,k,x j

) V j∏
x j=1

θ
α j,k,x j−1
j,k,x j


(15)

where Jd is a set of the indices of discrete attributes, i.e.
Jd

def
= { j | X j ∈ Xdisc}. Each α j,k,x j is the hyperparameter

corresponding to θ j,k,x j .

• As a prior distribution of θcont-u, the parameters µ j,k and
σ2

j,k for X j ∈ Xcont-u, we introduce the normal-gamma dis-
tribution:

p(θcont-u) def
=

K∏
k=1

∏
j∈Ju

p(µ j,k, λ j,k)

=

K∏
k=1

∏
j∈Ju

N(µ j,k | ν j,k, (τλ j,k)−1) ·

G(λ j,k | a, b), (16)

G(λ j,k | a j,k, b j,k) def
=

1
Γ(a j,k)

b j,k
a j,kλ

a j,k−1
j,k exp(−b j,kλ j,k),

(17)

where Ju
def
= { j | X j ∈ Xcont-u}, and λ j,k

def
= 1
σ2

j,k
is called the

precision of the normal distribution. ν j,k, τ, a and b are the
hyperparameters.

• As a prior distribution of θcont-m, the parameters µ j,k and
Σ j,k for X j ∈ Xcont-m, we introduce the normal-Wishart
distribution:

p(θcont-m)

def
=

K∏
k=1

∏
j∈Jm

p(µ j,k,Λ j,k) ·

=

K∏
k=1

∏
j∈Jm

N(µ j,k | ν j,k, (τΛ j,k)−1) ·

W(Λ j,k | φ j,k,S j,k), (18)
W(Λ j,k | φ j,k,S j,k)

def
= c(n j, φ j,k)|S j,k |

φ j,k
2 |Λ j,k |

φ j,k−n j−1
2 ·

exp
(
−1

2
tr(S j,kΛ j,k)

)
, (19)

c(n j, φ j,k)

def
=

2 φ j,kn j
2 π

n j(n j−1)
4

n j∏
i=1

Γ

(
φ j,k + 1 − i

2

)−1

, (20)

where n j is the dimension of X j, Jm
def
= { j | X j ∈ Xcont-m},

and Λ j,k
def
= Σ−1

j,k is also the precision. ν j,k, τ, φ j,k and S j,k

are the hyperparameters.
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1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and θ j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following until the log-likelihood log p(D | θ) con-
verges:

p(k | x, θ) ∝ p(k, x | θ) = p(k | θ)
J∏

j=1

p(x j | k, θ) (21)

E[k] :=
∑

x

N(x)p(k | x, θ) (22)

θk ∝ E[k] + (αk − 1) (23)

X j ∈ Xdisc :

θ j,k,x j ∝
∑

x′∈D:x′j=x j

N(x′)p(k | x′, θ) + (α j,k,x j − 1) (24)

X j ∈ Xcont-u :

µ j,k :=
τν j,k +

∑
x∈D p(x j | k, θ)x j

τ + E[k]
(25)

σ2
j,k :=

τ(µ j,k − ν j,k)2 +
∑

x∈D p(x j | k, θ)(x j − µ j,k)2 + 2b j,k

2a j,k − 1 + E[k]
(26)

X j ∈ Xcont-m :

µ j,k :=
τν j,k +

∑
x∈D p(x j | k, θ)x j

τ + E[k]
(27)

Σ j,k :=
1

φ j,k − n j + E[k]
·(∑

x∈D p(x j | k, θ)(x j − µ j,k)(x j − µ j,k)T

+ τ(µ j,k − ν j,k)(µ j,k − ν j,k)T + S j,k

)
(28)

Figure 4: The EM algorithm for MAP estimation in naive Bayes
models.

Finally, the whole prior distribution is the product of the above
distributions: p(θ) = p(θclass)p(θdisc)p(θcont-u)p(θcont-m).

Now, instead of p(D | θ), we maximize p(θ | D), an a poste-
riori probability of θ given the dataset D. That is, we have:

θ̂MAP = argmax
θ

p(θ | D) = argmax
θ

log p(θ | D)

= argmax
θ

log
p(θ)p(D | θ)

p(D)

= argmax
θ

{
log p(θ) + log p(D | θ)

}
. (29)

This procedure is usually called MAP (maximum a posteriori)
estimation.

The EM algorithm for MAP estimation is shown in Fig. 4.
The algorithm is obtained by modifying the convergence condi-
tion and the procedure in M-step of the ML version (Fig. 3) [10].
Let us introduce δk

def
= αk−1 and δ j,k,x j

def
= α j,k,x j−1 as the pseudo

counts or the smoothing constants in estimating the correspond-
ing parameters. If we let δk and δ j,k,x j be positive, the estimated

parameters will also be positive, so we would be able to avoid
the problem of data-sparseness.

For simplicity, these pseudo counts are set to be uniform.
When specifying all δk and δ j,k,x j to be 1.0, the estimation
procedure is sometimes called Laplace’s estimation. In Auto-
Class [4], all δk are fixed at 1/K, and all δ j,k,x j are fixed at 1/V j.

A similar discussion is possible for continuous attributes. To
see this, let us introduce x̄ j,k defined as:

x̄ j,k
def
=

1
E[k]

∑
x∈D

p(x j | k, θ)x j. (30)

Then, we can rewrite Eqs. 10 and 25 respectively as:

µ j,k := x̄ j,k (31)

µ j,k :=
τν j,k + E[k]x̄ j,k

τ + E[k]
, (32)

where the former (resp. the latter) is the ML (resp. MAP) esti-
mate of the mean of X j given the class k. It is easily seen that the
latter is an weighted average of the former and ν j,k, where the
weights are E[k] and τ, respectively. Thus, τ works as a pseudo
count for continuous attributes, and if we set τ and ν j,k appro-
priately, the estimation procedure will show a robust behavior
even for a small dataset. Also in Eq. 28 with an appropriate Σ0,
we can prevent the updated Σ j,k from being singular.

3.1.3 Additional notes on ‘pseudo counts’

Since version 0.6, we use the term ‘pseudo counts’ in two ways.
First, in the context of MAP estimation, this term refers to
δk = αk − 1 and δ j,k,x j = α j,k,x j − 1, where αk and α j,k,x j are
hyperparameters in Dirichlet distributions. Accordingly, the
command for MAP estimation (i.e. nbc) is designed so that the
users configure αk and α j,k,x j through the corresponding pseudo
counts δk and δ j,k,x j . To make MAP estimation meaningful, any
of δk and δ j,k,x j should not be negative.

On the other hand, in variational Bayesian (VB) learning, hy-
perparameters αk and α j,k,x j themselves can be seen as pseudo
counts. Hence, in the command for VB learning (i.e. vnbc), we
configure αk and α j,k,x j directly. From the definition of Dirichlet
distributions, αk and α j,k,x j should be positive.

3.1.4 Sample statistics*

In NBCTK, the initial values of parameters or hyperparameters
are often specified by the sample statistics, which are directly
computed from the dataset D. To be more specific, for each
discrete attribute X j ∈ Xdisc, we have relative frequencies θ̃ j,x j

(1 ≤ x j ≤ V j):

θ̃ j,x j :=
1
N

∑
x′∈D:x′j=x j

N(x′). (33)

Note that θ̃ j,x j does not depend on k, the identifier of a cluster,
since the dataset D itself contains no class information.
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For a continuous attribute X j ∈ Xcont-u, we have the sample
mean µ̃ j and the sample covariance σ̃2

j :

µ̃ j =
1
N

∑
x∈D

x j (34)

σ̃2
j =

1
N

∑
x∈D

(x j − µ̃ j)2, (35)

and for continuous attributes X j ∈ Xcont-m, we have the sample
mean µ̃ j and the sample covariance S̃ j:

µ̃ j =
1
N

∑
x∈D

x j (36)

S̃ j =
1
N

∑
x∈D

(x j − µ̃ j)(x j − µ̃ j)
T. (37)

These sample statistics are sensitive to outliers, so NBCTK pro-
vides an option flag --regular-stat that ignores the val-
ues larger than the Q1%-tile value or smaller than the Q2%-
tile value of the corresponding continuous attribute (only) when
computing the sample statistic. Here Q1 and Q2 are specified by
the --extreme flag (by default, Q1 = 95 and Q2 = 5).

3.1.5 Initialization of parameters*

In the first steps in Fig. 3 and Fig. 4, we randomly initialize the
parameters. In NBCTK, for the class variable C, we initialize
the parameters θk in two ways:

θk ∝ 1 + r (38)
θk ∝ 1 + ε1r (39)

where r is a real number randomly chosen from [0, 1). We can
switch these initialization methods by the --init-c flag (the
default is the second one), and specify ε1 by the --noise flag
(ε1 = 0.1 by default). Similarly, the parameters θ j,k,x j of each
discrete attribute X j ∈ Xdisc conditioned on the k-th cluster are
initialized in three ways:

θ j,k,x j ∝ 1 + r (40)
θ j,k,x j ∝ 1 + ε1r (41)

θ j,k,x j ∝ θ̃ j,x j + ε1
r

V j
(42)

where r is a real number randomly chosen from [0, 1) and θ̃ j,x j

is the relative frequency of the objects that satisfy X j = x j

(§3.1.4). We can switch these initialization methods by the
--init-a flag (the default is the second one).

For continuous attributes, on the other hand, we initialize the
means of the attributes X j as follows:

µ j,k := µ̃ j + ε2σ̃ j(r − 0.5) (43)

where µ̃ j is the sample means of X j, σ̃ j is the the diagonal ele-
ments of the sample covariance matrix S̃ j, and r is a real number

randomly chosen from [0, 1). §3.1.4 gives a detailed description
on sample statistics. ε2 is specified by the --noise-gauss
flag (ε2 = 0.1 by default). On the other hand, NBCTK does not
perform any perturbation when initializing Σ j,k.

3.1.6 Specifying hyperparameters*

It is obvious from Fig. 4 that the settings of hyperparameters
often affect the result of MAP estimation. Practically, on the
other hand, it is not straightforward to specify these hyperpa-
rameters. Sometimes we determine them by cross-validation
using held-out datasets. In this section, we describe how the
hyperparameters can be specified in NBCTK.

As described above, in MAP estimation, δk and δ j,k,x j (§3.1.2)
work as pseudo counts for the class variable and discrete at-
tributes, respectively, and τ works as a pseudo count for con-
tinuous attributes. We may give these pseudo counts manually,
taking into account the size of the dataset. The default values
are all zero, which make the estimation procedure equivalent to
ML estimation.

We can also give the hyperparameters manually for continu-
ous attributes. On the other hand, for a continuous attribute X j

that follows a univariate Gaussian, NBCTK sets the following
hyperparameters by default:

ν j,k = µ̃ j (44)

a j,k =
1 + ε

2
(45)

b j,k =
1
2
σ̃2

j (46)

and for continuous attributes X j that jointly follow a multivari-
ate Gaussian, NBCTK sets the following hyperparameters by
default:

ν j,k = µ̃ j (47)
φ j,k = n j + ε (48)
S j,k = S̃ j (49)

where ε is a small random noise, µ̃ j and µ̃ j are the sample
means, and σ̃2

j and S̃ j are the sample (co)variances. For a de-
tailed description on sample statistics, see §3.1.4.

3.1.7 Membership distribution

Given the estimated parameters θ̂ (θ̂ML or θ̂MAP) and an attribute
vector x of some object, we can obtain a membership distribu-
tion p(k | x, θ) under which the object belongs to the class k.
The probabilities are computed by:

p(k | x, θ̂) = p(k, x | θ̂)
p(x | θ̂)

∝ p(k, x | θ̂). (50)

Since we often consider that a class summarizes some (hidden)
characteristic of an object, membership distributions play an
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important role in probabilistic inferences based on naive Bayes
models.

In addition, for an attribute (vector) X j, we may consider the
attribute membership distribution p(k | x j), which is computed
as follows:

p(k | x j, θ̂) ∝ p(k | θ̂)p(x j | k, θ̂). (51)

In inferences using attribute membership distributions (de-
scribed in §3.1.8 and §3.1.9), NBCTK makes different treat-
ments between discrete and continuous attributes. That is, for a
discrete attribute X j, p(k | x j, θ̂) is taken into account for each
class k and each possible value 1 ≤ x j ≤ V j. For each continu-
ous attribute (vector) X j′ , on the other hand, we cannot enumer-
ate all possible values, and thus p(k | x j′ , θ̂) is taken into account
for each class k and each value x j′ appeared in the dataset D.

3.1.8 Clustering

As is mentioned above, clustering is a task to partition the ob-
jects in the dataset D into clusters of similar ones. One way
is to classify each object, whose attribute values are x, into its
most probable cluster (class) k∗. More specifically, based on the
estimated parameters θ̂, we compute k∗ by using a membership
probability as a score for clustering:

k∗ = argmax
k:1≤k≤K

p(k | x, θ̂) = argmax
k:1≤k≤K

p(k, x | θ̂). (52)

In this sense, naive Bayes clustering can be seen as an unsuper-
vised classification task based on a naive Bayes model.

Some may be interested in clustering of attribute values for
each attribute. Given an attribute value x j of the j-th attribute
(vector), the most probable cluster is predicted as follows:

k∗ = argmax
k:1≤k≤K

p(k | x j, θ̂) = argmax
k:1≤k≤K

p(k, x j | θ̂) (53)

3.1.9 Relevance analysis

Using the estimated parameters θ̂, we may want to know the
most relevant objects to the class k of interest. One promising
way is to rank the objects x(1), x(2), . . . according to the magni-
tude of R(k, x) def

= p(k | x), i.e. the membership probability [23].
To understand this way of ranking, let us transform the proba-
bility as follows:

R(k, x) = p(k | x, θ̂)

=
p(k | θ̂)p(x | k, θ̂)

p(x | θ̂)
∝ p(x | k, θ̂)

p(x | θ̂)
(54)

(note that k is fixed here). Now R(k, x) can be seen as a rele-
vance score, because it indicates the significance of p(x | k, θ̂)
compared to p(x | θ̂) = ∑K

k=1 p(k | θ̂)p(x | k, θ̂), the uncondi-
tional (or averaged) probability of x being occurred. In some
applications, some highly relevant objects would be a help for
characterizing the cluster [12, 23]. One may find here that, for

a fixed k, the relevance score R(k, x) yields the same ranking
(among different x’s) as that via the pointwise (or pairwise) mu-
tual information [6], which is defined as follows:

I(k, x) def
= log

p(x, k | θ̂)
p(x | θ̂)p(k | θ̂)

= log
p(x | k, θ̂)
p(x | θ̂)

. (55)

One (subtle) practical advantage of R(k, x) over I(k, x) is that it
is normalized (i.e. 0 ≤ R(k, x) ≤ 1 by definition). For example,
we may collect {x | R(k, x) ≥ ρ} as relevant objects to the class
k, where ρ is a threshold common to all classes (0 < ρ < 1).

Furthermore, we can consider the attribute-wise version of
R(k, x). That is, R j(k, x j) indicates the relevance between the
class k and the value x j of the attribute (vector) X j, and is de-
fined as R j(k, x j) = p(k | x j, θ̂). This score measures the de-
gree of relevance between a particular class and a particular at-
tribute value, and so would be useful in the case where we are
interested in the behavior of each attribute (e.g. in distributional
clustering [20]). It should be addressed that AutoClass uses the
attribute-wise version of I(k, x) to measure the ‘influence’ of x j

to the class k, so essentially NBCTK yields the same rankings
of attribute values as those by AutoClass.

3.1.10 Model selection

In clustering, we are often in question of how to determine the
number of clusters. This is a problem of model selection, and in
NBCTK, we attempt to find a solution in a Bayesian approach.
To be specific, we first consider the joint distribution p(D,M, θ)
of complete data D, a probabilistic model M, and its parameters
θ. p(D,M, θ) is factored as p(D | M, θ)p(θ | M)p(M) by the
chain rule, where p(M) is the prior distribution of the model
M, p(θ | M) is the prior distribution of the parameters θ of the
model M, and p(D | M, θ) is the likelihood of the data D based
on the model M with the parameters θ. In naive Bayes models,
for instance, each d ∈ D corresponds to the attribute vector x
of an object. Here, M corresponds to K, the number of classes
(clusters). From the settings above, our goal is to find the most
probable model M∗ based on the data D at hand, that is, we aim
to find M∗ such that:

M∗ = argmaxM p(M | D)

= argmaxM
p(D | M)p(M)

p(D)
= argmaxM p(D | M), (56)

where we assume p(M) to be uniform for simplicity. Now the
goal is reduced to finding M (= M∗) that maximizes p(D | M).
p(D | M) is commonly called the marginal likelihood of D
given M, and is used as a score for model selection. The
marginal likelihood can be interpreted as the expectation (or the
average) of the likelihood p(D | M, θ) with respect to the prior
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distribution p(θ | M):

p(D | M) =
∫
Θ

p(D, θ | M)dθ

=
∫
Θ

p(D | M, θ)p(θ | M)dθ
=

〈
p(D | M, θ)〉p(θ|M) . (57)

If the dataset were complete data Dc, where each d ∈ Dc is a
pair (k, x) of the attribute vector x of an object and the class
k to which the object belongs, then p(Dc | M) is obtained in
closed form (see [7, 11] for the case with Bayesian networks).
On the other hand, when the data is incomplete, as in the case of
probabilistic clustering, the integral in Eq. 57 is difficult to com-
pute. From this background, including MCMC (Markov chain
Monte Carlo) sampling, several approximation methods of log
of the marginal likelihood are proposed so far [5]. Bayesian in-
formation criterion (BIC) [22] should be the most popular ‘de-
terministic’ approximation method, in which Laplace approxi-
mation is introduced based on the large-data assumption. The
Cheeseman-Stutz score [4, 5] is used in AutoClass. The general
forms of these two scores are respectively written as follows:

ScoreBIC(M) def
= p(D | M, θ̂MAP) − |θ|

2
log N (58)

ScoreCS(M) def
= p(D̃c | M) − p(D̃c | M, θ̂MAP)

+p(D | M, θ̂MAP), (59)

where N is the total size of dataset, |θ| denotes the number of
free parameters, and D̃c is pseudo complete data whose suffi-
cient statistics are the expected statistics obtained in the E-step
of the EM algorithm.

3.1.11 Random restarts

Since the EM algorithm is a hill-climbing algorithm, being
trapped in undesirable local maxima is known as one of practi-
cal problems in the EM algorithm. NBCTK provides three fa-
cilities for avoiding such local maxima — random restarts [21],
the deterministic annealing EM (DAEM) algorithm [24], and
the split-merge EM (SMEM) algorithm [25].

In random restarts, we first prepare n different initial param-
eter sets. Then, from each initial parameter set, we run a series
of EM iterations, and record the converged likelihood p(D | θ)
or the a posteriori probability p(θ | D). Finally we pick up
the estimated parameters that bring the highest likelihood or the
highest a posteriori probability.

3.1.12 Deterministic annealing EM algorithm*

Since the final estimate of the parameters depends on the choice
of initial parameters, in the DAEM algorithm, we attempt to
reduce an undesirable influence from the initial parameters in
the early stage of EM iterations. To achieve this, by an analogy
from statistical mechanics, the free energy is introduced first as:

Fβ = −
1
β

log
K∑

k=1

p(k, x | θ)β, (60)

parameter space

β : small

: largeβ
(close to 1)

L
β

Figure 5: Image of the deterministic annealing EM algorithm.

where β is the inverse temperature which controls the influence
from the initial parameters. Then we can obtain the DAEM
algorithm, which tries to minimize the free energy Fβ at each
temperature 1

β
. Fig. 5 shows an expected behavior of the DAEM

algorithm, where Lβ is introduced as −Fβ (then we will try to
maximize Lβ). In the DAEM algorithm, we start from the small
β, under which the free energy is expected to have a smooth
shape, and hopefully has only one local maximum (i.e. the
global maximum). Thus, under the smaller β, we may be able
to find the global maximum or a good local maximum. When
β increases, on the other hand, the shape of the free energy
changes (becomes sharper), and hence we should continue to
update the parameters by EM iterations. However please note
that the starting point of these EM iterations is expected to be
more promising than the initial parameters. Finally we perform
EM iterations at β = 1, which is equivalent to the usual EM
iterations.

To be more concrete, we show the DAEM algorithm in naive
Bayes models in Fig. 6. For an effective use of DAEM algo-
rithm, the temperature schedule is important. In NBCTK, fol-
lowing [24], we start from β0 = βinit and then update β by the
update rule βt+1 ← βt ·βrate, where βinit and βrate are given by the
user (the default values are 0.1 and 1.2, respectively).

3.1.13 Split-merge EM algorithm*

The SMEM algorithm is applicable to mixture models, and with
this algorithm, we attempt to escape from local maxima by
forcedly applying the split operation and the merge operation
to unpromising clusters.

To be more specific, we merge two clusters, say k1 and k2,
that closely overlap with each other (Fig. 7 (a)), and split a
cluster, say k3, that excessively covers objects (Fig. 7 (b)). In
the paper that firstly proposed the SMEM algorithm [25], the
split operation and the merge operation are always paired, so
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1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and θ j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat Step 3 for each β = β0, β1, β2, . . . , 1.0

3. Repeat the following until the log-likelihood log p(D | θ) con-
verges:

p(k | x, θ) ∝ p(k | θ)β
J∏

j=1

p(x j | k, θ)β. (61)

(The rest are the same as those in Fig. 3, the original EM algo-
rithm.)

Figure 6: The DAEM algorithm for ML estimation in naive
Bayes models.

split
(b)

merge
(a)

Figure 7: Image of a merge operation and a split operation,
where the dots and the ovals stand for objects and clusters, re-
spectively.

the number of resulting clusters will not change. After a split-
merge operation pair executed, the EM algorithm is conducted
until the convergence of likelihood p(D | θ) or the a posteriori
probability p(θ | D).

The possible triplets of clusters (k1, k2, k3) are kept as priori-
tized candidates for the next split-merge operation. If the con-
verged likelihood or a posteriori probability is improved with
the first candidate (i.e. the candidate is said to be accepted), we
will proceed to further split-merge operations. If there is no
(significant) improvement with the first candidate, we will dis-
card the result of the EM algorithm (i.e. the candidate is said to
be rejected) and try the next candidate. In the sequel, for mak-
ing simpler descriptions, we will concentrate on the case that
the attributes are all discrete.

� Prioritizing the split-merge candidates

To prioritize the split-merge candidates, we first get the pairs
{(k1, k2) | 1 ≤ k1 < k2 ≤ K} of classes to be merged, in the
descending order of heuristic scores Jmerge(k1, k2 | θ). The score
is defined as follows:

Jmerge(k1, k2 | θ)
def
= pk1 (θ)T pk2 (θ)
=

∑
x N(x)p(k1 | x, θ)p(k2 | x, θ),

(62)

where we have a multiset of objects D = {x(1), x(2), . . . , x(N)} as
the observed data, and pk(θ) is the vector of the membership

probabilities to the class k:

pk(θ) = (p(k | x(1), θ), p(k | x(2), θ), . . . , P(k | x(N), θ))T . (63)

Intuitively, Jmerge(k1, k2 | θ) measures a (partially empirical)
similarity between the classes k1 and k2 based on the data D.
Besides, we may use the normalized version:

J̃merge(k1, k2 | θ)
def
=

pk1 (θ)T pk2 (θ)
||pk1 (θ)|| · ||pk2 (θ)|| . (64)

Then, for each (k1, k2) pair to be merged, we also get the
classes {k3 | 1 ≤ k3 ≤ K, k3 , k1, k3 , k2} to be split, in the
descending order of another heuristic score Jsplit(k3 | θ):

Jsplit(k3 | θ)
def
= KL(p̃(x | k3, θ) || p(x | k3, θ))

=
∑

x
p̃(x | k3, θ) log

p̃(x | k3, θ)
p(x | k3, θ)

, (65)

where p̃(x | k3, θ) is a local empirical probability computed by:

p̃(x | k3, θ) ∝ p̃(x)p(k3 | x, θ)
∝ N(x)p(k3 | x, θ). (66)

In the above, p̃(x) denotes N(x)/N, the empirical unconditional
probability of x. By using Jsplit(k3 | θ), the class that does not
fit to the data will be split earlier.

� Partial EM iterations

After a split-merge operation, we should re-initialize the param-
eters of the modified classes. Let k′1 be the new class obtained
by merging k1 and k2. Also we consider two classes k′2 and k′3
which are obtained by splitting k3. Then, for the merged class
k′1, we re-initialize the parameters related to k′1 as follows:

θk′1 := θk1 + θk2 (67)

θ j,k′1,x j :=
E[k1]θ j,k1,x j + E[k2]θ j,k2,x j

E[k1] + E[k2]
(68)

On the other hand, for the split classes k′2 and k′3, we re-initialize
θk′2 := 1

2θk3 , θk′3 := 1
2θk3 , θ j,k′2,x j := θ j,k3,x j + ε and θ j,k′3,x j :=

θ j,k3,x j + ε
′, where ε and ε′ are some random noises.

In partial EM iterations, to make it reasonable to compute E-
step and M-step only for the modified classes (k′1, k′2 and k′3),
M-step is modified as follows (k′ = k′1, k

′
2, k
′
3):

θ j,k′,x j =
E[k′]∑

k′′=k′1,k
′
2,k
′
3

E[k′′]
·

∑
k′′=k′1,k

′
2,k
′
3

θ j,k′′,x j (69)

� Behavior of the SMEM algorithm

Fig. 8 shows a typical pattern on the changes in log-likelihood
by the SMEM algorithm, where we apply five split-merge op-
erations. Note here that we have only plotted a sequence with
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Figure 8: Changes in log-likelihood by the SMEM algorithm.

the accepted split-merge operations. It is seen from Fig. 8 that
the log-likelihood decreases at the moment of applying a split-
merge operation, but as a whole, the log-likelihood steadily in-
creases, and finally we can obtain the estimates with a higher
log-likelihood than the one obtained by the usual EM algorithm.

3.2 VB based clustering
3.2.1 Model selection based on VB

As described in §3.1.10, to obtain the model M∗ that explains
best the data D at hand, we consider M = M∗ is the model
that maximizes the marginal likelihood p(D | M). In naive
Bayes models, the optimal number K∗ of classes is the num-
ber of classes in M∗. It has been known that if D is complete
data Dc, p(D | M) can be obtained in closed form. However,
when D is incomplete, i.e. there is some hidden data z such that
Dc = (D, z) (for instance, in naive Bayes clustering, the classes
of the objects are hidden in D), some approximation method is
required. In this section, we briefly describe the approximation
via the VB approach.

First, let us consider log of the marginal likelihood L(D) def
=

log p(D | M), and then we have:

L(D) = log
∑

z

∫
Θ

p(D, z, θ | M)dθ

= log
∑

z

∫
Θ

q(z, θ | D,M)
p(D, z, θ | M)
q(z, θ | D,M)

dθ

≥
∑

z

∫
Θ

q(z, θ | D,M) log
p(D, z, θ | M)
q(z, θ | D,M)

dθ.(
from Jensen’s inequality

)
(70)

For the space limitation, we fix the model M for the moment,
and simply write p(· | M) = p(·) and q(· | D,M) = q(· | D), and

then obtain:

L(D) ≥ F[q]
def
=

∑
z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ, (71)

where F[q] can be seen as a lower limit of L(D), and is called
the variational (or negative) free energy. Then, to get a good
approximation of L(D), we find a distribution function q = q∗

that maximizes a functional F[q]. In model selection, we use
the free energy F[q] as a model score.

Besides, to get another view, we have the following by con-
sidering L(D) =

∑
z
∫
Θ

q(z, θ | D) log p(D)dθ:

L(D) − F[q]

=
∑

z

∫
Θ

q(z, θ | D) log
{

p(D) · q(z, θ | D)
p(D, z, θ)

}
dθ

=
∑

z

∫
Θ

q(z, θ | D) log
q(z, θ | D)
p(z, θ | D)

dθ

= KL(q(z, θ | D) || p(z, θ | D)). (72)

Here, maximizing F[q] implies minimizing the Kullback-
Leibler divergence between q(z, θ | D) and p(z, θ | D). As a
result, finding q∗ leads to a good approximation of p(z, θ | D),
the conditional distribution of hidden variables and the parame-
ters.

In VB learning, we further assume q(z, θ | D) ≈ q(z | D)q(θ |
D), and obtain a generic form of variational Bayesian EM (VB-
EM) algorithm as an iterative procedure consisting of the fol-
lowing two updating rules:

q(z | D) ∝ exp
(∫
Θ

q(θ | D) log p(D, z | θ)dθ
)
, (73)

q(θ | D) ∝ p(θ) exp
(∑

z q(z | D) log p(D, z | θ)) . (74)

Now we can derive a VB-EM algorithm specific to naive
Bayes clustering, shown in Fig. 9, by substituting the distribu-
tion form of a naive Bayes model (Eq. 1 and the predefined
distributions for attributes) to the generic VB-EM procedure
above. For simplicity, we assume in Fig. 9 that the attributes
are all discrete. For the descriptions of the VB-EM algorithm
for Gaussian mixture models, please see [19, 26].7 In Fig. 9, πk

and π j,k,x j are defined as follows:

πk
def
= exp

(
Ψ (αk) − Ψ

(∑K
k′=1 αk′

))
, (75)

π j,k,x j

def
= exp

(
Ψ

(
α j,k,x j

)
− Ψ

(∑V j

x′j=1 α j,k,x′j

))
, (76)

where Ψ(·) is the digamma function. One may find that the
resulting VB-EM algorithm receives the data D as input, and
outputs the learned hyperparameters α∗ (or the learned pseudo
counts δ∗). In NBCTK, the initial hyperparameters such as α(0)

k

7 Precisely speaking, the VB-EM algorithm implemented in NBCTK is
based on the author’s derivation, and is a bit different from the ones in these
papers (e.g. some coefficients of terms in the update rules).
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1. Initialize randomly the hyperparameters α(0)
k (1 ≤ k ≤ K) and

α(0)
j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following steps until the free energy F[q] converges:

q(k | x) ∝ πk

J∏
j=1

π j,k,x j (78)

E[k] :=
∑

x

N(x)q(k | x) (79)

E j[k, x j] :=
∑

x′∈D:x′j=x j

N(x′)q(k | x′) (80)

αk := α(0)
k + E[k] (81)

α j,k,x j := α(0)
j,k,x j
+ E j[k, x j] (82)

Figure 9: The VB-EM algorithm in naive Bayes models.

are obtained by adding small random noises. For instance, we
obtain α(0)

k by:

α(0)
k := αk + εk , (77)

where αk is the quantity specified by the user, and εk is a small
random noise.

3.2.2 Clustering

As in the ML/MAP case (§3.1.8), we may regard the cluster k∗

which has the highest membership probability for an object x
as the cluster to which the object belongs. The difference is that
we use the distribution p(k, x) =

∫
Θ

q∗(θ | D)p(k, x | θ)dθ, an
averaged distribution on the prior distribution q∗(θ | D) with
learned hyperparameters α∗, instead of p(k, x | θ̂) which relies
on the point-estimated value θ̂. That is, we have:

k∗ = argmax
k:1≤k≤K

p(k | x) = argmax
k:1≤k≤K

p(k, x)

= argmax
k:1≤k≤K

∫
Θ

q∗(θ | D)p(k, x | θ)dθ

= argmax
k:1≤k≤K

p∗(k)
J∏

j=1

p∗(x j | k) , (83)

where p∗ is the predictive distribution. That is, for the class C
and each discrete attribute X j, the predictive distributions are
obtained in closed form:

p∗(k) = α∗k/
∑

k′ α
∗
k′ (84)

p∗(x j | k) = α∗j,k,x j
/
∑

x′j
α∗j,k,x′j

. (85)

On the other hand, for continuous attributes, each p∗(x j | k) is
analytically obtained as the Student’s t-distribution.

3.2.3 Other inference tasks

In VB learning, it seems not easy in straightforward ways to
conduct the probabilistic inferences other than clustering based
on the membership distribution (§3.2.2) such as relevance anal-
ysis (§3.1.9). One compromise is to use the probabilities p∗

obtained by Eqs. 84 and 85 instead of θ̂, the point-estimated pa-
rameters in ML/MAP [3], and actually NBCTK adopts this way.
It is important to note however that the resulting probabilistic
inferences might not be good approximations of the inferences
based on a posteriori quantities.

3.2.4 Deterministic annealing EM algorithm*

In NBCTK, the deterministic-annealing version of VB-EM is
available. To be specific, following [14], let us revisit the defi-
nition of the variational free energy (Eq. 71):

F[q] def
=

∑
z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ

=
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ

−
∑

z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ (86)

Again, by an analogy to statistical mechanics, we correspond
F[q] with −F (F : the free energy), the first term in the right
hand side of Eq. 86 with −U (U: the internal energy) and the
second term with S (S: the entropy). Then we newly introduce
the variational free energy that takes into account the (inverse)
temperature:

Fβ[q] def
=

∑
z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ

−1
β

∑
z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ.

(87)

The VB-EM algorithm that tries to maximize Fβ[q] (i.e. the DA-
version of the VB-EM algorithm) has a similar procedure to that
of the DAEM algorithm for ML/MAP estimation.

3.2.5 Split-merge EM algorithm*

Basically, the SMEM algorithm for VB-EM (say, VB-SMEM)
follow almost the same procedures as the ones for the
ML/MAP-EM algorithms (§3.1.11 and §3.1.13). The difference
is that we need to use the probabilities p∗ obtained by Eqs. 84
and 85 to compute two heuristic scores Jmerge and Jsplit (Eqs. 62–
65).

3.3 Evaluation of clusters
As mentioned before, naive Bayes clustering can be viewed as
a unsupervised classification of objects, and hence the clusters
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form a partition. In this document, such a partition is called a
cluster partition and denoted by π = {C1,C2, . . . ,CK}, where Ck

is a set of objects that belong to the k-th cluster (1 ≤ k ≤ K) and
K is the number of clusters.

Sometimes we may want to compare the cluster partition
π made by NBCTK with π′, the one by the other clustering
method. Besides, for the applications where a cluster partition
π′ made by human is given in advance, we may regard such a
cluster partition as the gold standard, and evaluate the quality
of our cluster partition. Furthermore, such an evaluation would
enable us to tune the control parameters (such as a setting of
hyperparameters).

For the purposes above, a number of similarity/dissimilarity
measures between two different cluster partitions (π and π′)
have been proposed so far, and NBCTK automatically computes
some of them [16, 18] — purity/inverse purity, Rand index, nor-
malized mutual information and so on — when a cluster parti-
tion π′ by human or another system is given. These measures
take into account that the numbers of clusters in π and π′ can
differ, and that the obtained clusters are anonymous.

Here let us introduce some terminologies. Suppose that
we have a cluster partition π = {C1,C2, . . . ,CK} obtained by
NBCTK and a cluster partition π′ = {C′1,C′2, . . . ,C′K′ } given by
human or by another clustering system (K may not equal K′).
Hereafter each Ck is called a predicted cluster and each C′k′ is
called an answer cluster. Also let us denote the total number of
objects by N (obviously N =

∑K
k=1 |Ck | =

∑K′
k′=1 |C′k′ | holds).

3.3.1 Purity/Inverse purity

Based on the settings above, purity, inverse purity and their F-
measure are respectively defined as follows:

Purity(π, π′) def
=

1
N

K∑
k=1

max
1≤k′≤K′

|Ck ∩ C′k′ |

=

K∑
k=1

|Ck |
N

max
1≤k′≤K′

|Ck ∩ C′k′ |
|Ck |

(88)

Inv-Purity(π, π′) def
= Purity(π′, π)

=
1
N

K′∑
k′=1

max
1≤k≤K

|Ck ∩ C′k′ |

=

K′∑
k′=1

|Ck′ |
N

max
1≤k≤K

|Ck ∩ C′k′ |
|C′k′ |

(89)

Purityβ(π, π
′) def
= Fβ(Purity(π, π′), Inv-Purity(π, π′))

(90)

where the F-measure based on P and R (P,R ∈ [0, 1]) with
weight β to R is a weighted harmonic mean of P and R:

Fβ(P,R) =
(β2 + 1)PR
β2P + R

. (91)

As β gets larger, Fβ(P,R) will put more weights on the recall.

Both purity and inverse purity range over [0, 1] and measures
the similarity between π and π′ (e.g. purity ≈ 1 means that π
is very close to π′). From Eq. 88, purity (resp. inverse purity)
can be interpreted as the weighted average of the ratios of the
objects that belong to the dominating answer cluster (resp. pre-
dicted cluster). One may notice from Eqs. 88 and 89 that pu-
rity tends to increase as we have more predicted clusters (K is
larger and each predicted cluster Ck becomes smaller accord-
ingly), while inverse purity tends to decrease as we have more
predicted clusters. To summarize, purity and inverse purity have
biases in opposite directions w.r.t. the number of predicted clus-
ters, and the F-measure is therefore introduced to take a balance
between them.

3.3.2 Rand index and related measures

Rand index (RI) is based on the pairs of objects. To define RI,
we first introduce the following statistics:

M11: the number of pairs of objects that are in the same cluster
under both π and π′,

M10: the number of pairs of objects that are in the same cluster
under π but not under π′,

M01: the number of pairs of objects that are in the same cluster
under π′ but not under π, and

M00: the number of pairs of objects that are in different clusters
under both π and π′.

These statistics are computed by:

M11 =
∑K

k=1
∑K′

k′=1

(
Nkk′

2

)
= 1

2

(∑
k,k′ N2

kk′ − N
)

(92)

M10 =
∑K

k=1

(
Nk
2

)
− M11 (93)

M01 =
∑K′

k′=1

(N′k′
2

)
− M11 (94)

M00 =
(

N
2

)
− (M11 + M10 + M01) (95)

where Nkk′
def
= |Ck ∩ C′k′ |, Nk

def
= |Ck | and N′k′

def
= |C′k′ | . Then, RI

is defined as:

RI(π, π′) def
=

M11 + M00

M11 + M10 + M01 + M00
=

M11 + M00(
N
2

) . (96)

Several related measures, Wallace’s (asymmetric) measures
(WI, WII and their F-measure Wβ), Fowlkes and Mallows in-
dex (FMI), adjusted Rand index (ARI), Jaccard index (JI) and
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Mirkin metric (MM), are defined as follows [16, 18]:

WI(π, π′)
def
= M11/(M11 + M10) (97)

WII(π, π′)
def
= M11/(M11 + M01) (98)

Wβ(π, π′)
def
= Fβ(WI(π, π′),WII(π, π′)) (99)

FMI(π, π′) def
=

√
WI(π, π′)WII(π, π′) (100)

ARI(π, π′) def
=

∑
k,k′

(
Nkk′

2

)
−∑

k

(
Nk
2

)∑
k′
(N′k′

2

)
/
(

N
2

)
1
2

(∑
k

(
Nk
2

)
+

∑
k′
(N′k′

2

))
−∑

k

(
Nk
2

)∑
k′
(N′k′

2

)
/
(

N
2

)
(101)

JI(π, π′) def
= M11/(M11 + M10 + M01) (102)

MM(π, π′) def
=

∑
k N2

k +
∑

k′ N′k′
2 − 2

∑
k
∑

k′ N2
kk′ (103)

= 2(M10 + M01) = 2
(

N
2

)
(1 − RI(π, π′)).

Similarly to purity, the measures based on object pairs are intu-
itive and would help our evaluation. On the other hand, how-
ever, there are some issues we need to note, as described in [18].

3.3.3 Normalized mutual information

Normalized mutual information (NMI) is a similarity measure
between π = {C1,C2, . . . ,CK} and π′ = {C′1,C′2, . . . ,C′K′ } based
on information theory, and defined as:

NMI(π, π′) def
=

I(π, π′)
(H(π) + H(π′))/2

, (104)

where I(π, π′) is the mutual information between π and π′, and
H(π) is the entropy of π:

I(π, π′) def
=

K∑
k=1

K′∑
k′=1

|Ck ∩ C′k′ |
N

log
N · |Ck ∩ C′k′ |
|Ck ||C′k′ |

, (105)

H(π) def
= −

K∑
k=1

|Ck |
N

log
|Ck |
N
, (106)

H(π′) def
= −

K′∑
k′=1

|Ck′ |
N

log
|Ck′ |
N
. (107)

As mentioned in [16], NMI is actually normalized (i.e. it ranges
over [0, 1]), since I(π, π′) ≤ min(H(π),H(π′)) ≤ 1

2 (H(π) +
H(π′)). NMI ≈ 1 means that π is very close to π′.

Variation of information (VI) [18] is an information-based
distance measure between π and π′:

VI(π, π′) def
= H(π) + H(π′) − 2I(π, π′). (108)

We can see that a normalized version of VI (NVI) can be ob-
tained using NMI:

NVI(π, π′) def
=

VI(π, π′)
H(π) + H(π′)

= 1 − NMI(π, π′). (109)

4 How to use NBCTK

4.1 Overall organization of NBCTK

NBCTK 0.7 provides three executables named nbc, vnbc and
nbcsep:

• nbc covers probabilistic inferences for ML/MAP-based
clustering (§3.1).

• vnbc covers probabilistic inferences for VB-based clus-
tering (§3.2).

• nbcsep is an auxiliary tool for post-processing of the out-
put files from nbc or vnbc.

See §4.2 for the installation procedure. The usages of nbc,
vnbc and nbcsep are described in §4.3, §4.4 and §4.5, re-
spectively.

4.2 Installation

4.2.1 Contents of the package

NBCTK is packaged depending on platforms:

• Linux (32bit): nbctk-0.7_linux32.tar.gz

• Linux (64bit): nbctk-0.7_linux64.tar.gz

• Mac OS X (v10.6): nbctk-0.7_mac.tar.gz

• Windows: nbctk-0.7_win.zip

After the package unfolded, you may find the following subdi-
rectories (or sub-folders):

• src/ contains C source code.

• doc/ contains the document files including this manual.

• bin/ contains executables.

• example/ contains data examples.

Installation is quite easy — we only need to move/copy the ex-
ecutables above into the folder that appears in the PATH envi-
ronment variable.

To build the executables from the source code, see §4.2.3 for
Linux, Mac OS X and Win32 with Cygwin/MinGW, or §4.2.4
for Win32 with MSVC++. If you wish to deal with the files
which are not ASCII-safe, the executables need to be rebuilt
from the source code after GNU libiconv is additionally in-
stalled (§4.2.2).
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4.2.2 Preliminary installation (GNU libiconv)

To handle the dataset with non-ASCII-safe character en-
codings, NBCTK provides a way to utilize GNU libiconv
(http://www.gnu.org/software/libiconv/). If
you are sure that the target dataset only contains ASCII charac-
ters or is ASCII-safe, GNU libiconv will not be required. Other-
wise and if GNU libiconv is not installed in your environment,
you need to install GNU libiconv in advance of the installation
of NBCTK.

On Windows, iconv.dll should be placed in the folder
specified by the PATH environment variable, or in one of the
system folders such as c:\WINDOWS\system32. To obtain
iconv.dll, we may download http://ftp.gnu.org/
pub/gnu/libiconv/libiconv-1.9.1.bin.woe32.
zip, which includes a couple of executables and DLL files
already built.8 On the other hand, the latest version can be built
from the source files.9

4.2.3 Using configure

For Linux, Mac OS X, and Win32 with Cygwin or MinGW, we
can use the configure script in the package. That is, after
moving to the src directory, just type:

./configure Options
make
make install

where Options are some appropriate setting to your system. For
the details on Options, please consult the INSTALL file in the
src directory. Also,

./configure --help

will show the details of the options for the configure script.
In the default setting of the configure script, like many

of GNU tools, the prefix of the installation directories is set
to /usr/local/, and then the compiled executables will be
installed under /usr/local/bin. Since /usr/local/ is
a system area in most systems, there are two typical choices:

• If you wish to install the executables into /usr/local/
bin, you need to be a super user before typing ‘make
install’, or need to use the sudo command together
(i.e. type ‘sudo make install’ instead of ‘make
install’).

• If not, it is possible to install the executables into the di-
rectory ‘somewhere/bin’ under your home directory by
giving the --prefix option to the configure script:

./configure --prefix=${HOME}/somewhere

8 It is confirmed that the NBCTK binaries built using MSVC++ 9.0 can run
with iconv.dll from libiconv-1.9.1.bin.woe32.

9 According to README.woe32 in the released package of GNU libi-
conv 1.12 (the latest version as of Dec. 2008), building requires MinGW, and
MSVC++ is no longer supported.

4.2.4 Using Makefile.msvc

To build NBCTK on Win32 with MSVC++, we attempt to com-
pile the source code by the cl command of MSVC++. Please
follow the steps below:

1. Edit src/Makefile.msvc as suitable for your envi-
ronment.

2. Invoke the Command Prompt window prepared for
MSVC++. For instance, if you are using MS Visual Stu-
dio 2008 on Windows XP, please follow the menus: [Start]
→ [All Programs] → [Microsoft Visual Studio 2008] →
[Visual Studio Tools] → [Visual Studio 2008 Command
Prompt].

3. At the Command Prompt invoked, visit the src folder.

4. Type the following command to compile NBCTK:

nmake -f Makefile.msvc

5. Type the following command to install NBCTK:

nmake -f Makefile.msvc install

By default (i.e. without modifying Makefile.msvc), all
executables will be copied into the bin directory of the
unfolded package.

4.3 ML/MAP based clustering

4.3.1 Overview

As is mentioned above, we use the executable nbc for
ML/MAP based clustering. Roughly speaking, nbc conducts
the EM algorithm first to estimate the parameters, and then,
based on the estimated parameters, makes a couple of requested
probabilistic inferences including clustering. We can pass our
settings and tasks to nbc through the command line argu-
ments:10

nbc -f Base -x NumAttr \
-k NumClass Options...

Here ‘-f Base’ indicates that we have a file named Base_
freq.Ext containing the target dataset D. Base will work as
the base name of the input/output files listed in Table 2. Ext
is the file extension, which can be txt or csv according to
the format (See §4.3.3). NumAttr, given with -x, indicates the
number of attributes in Base_freq.Ext (Note that the count
column is not counted as an attribute). Typically we also spec-
ify the number of classes by -k option. The details of optional
flags will be described in §4.3.6.

10 The symbol ‘\’ just means a continuation of the command line, and is used
here just for space limitation.
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Table 2: Input/Output files for nbc. Base is the base name, and
Ext is txt (for files in the tab-separated value format) or csv
(for files in the comma-separated value format).

Filename Content
Input Base_freq.Ext Description of objects
Input Base_name.txt Attribute names
Input/Output Base_param.Ext Parameters
Input Base_hparam.Ext Hyperparameters
Output Base_cluster.Ext Clustering results
Output Base_memp.Ext Membership probs.
Output Base_rank.Ext Result of relevance analysis
Output Base_eval.Ext Evaluation results
Output Base_log.Ext Logs
Output Base_msg.txt Terminal messages

4.3.2 Attribute types

By default, in nbc, all attributes in the dataset D are considered
to be discrete. Hence we need to specify (the indices of) con-
tinuous attributes explicitly, using --gauss (-u) option. Also
we may have to specify the following attributes which can be
included in real datasets:

• The ID attribute, which only identifies the object, but is
irrelevant to the characteristics of the object.

• The answer class attribute, which is annotated by human
for the purpose of cluster evaluation.

• Ignored attributes, whose values are recorded in the
dataset, but are not used in clustering.

The indices of these attributes are specified by --id (-I),
--eval (-E) and --ignore (-y) options (see §4.3.6 for de-
tails). When the answer class attribute is specified, nbc will
conduct cluster evaluation (§3.3).

4.3.3 File format

Fig. 10 illustrates the file format that is common to most of
NBCTK’s input/output files (the only exception is the input file
for attribute names — see §4.3.4). In this format, a file contains
several data matrices each having a header part which consists
of the lines starting with ‘#’. A header part includes the identi-
fier to the corresponding data matrix and gives a brief descrip-
tion on columns. Each data matrix follows the tab-separated
value format or the CSV format, where a row in the matrix is
separated into data cells by tab characters or commas, respec-
tively. Note that the CSV format used here is just a restricted
one — e.g. the current version of NBCTK does not understand
the quotation characters. Missing values, denoted by ‘?’ or
‘NA’, are allowed to exist in the data matrix.

The input file format is automatically determined based on
the file extension, and the files in the tab-separated value (resp.

#### ID: Identifier for data matrix #1
#### Brief descriptions of columns
####

Data matrix #1

#### ID: Identifier for data matrix #2
#### Brief descriptions of columns
####

Data matrix #2

...

Figure 10: Common file format in NBCTK.

CSV) format must have the file extension txt (resp. csv).
By default, NBCTK first tries to read Base_freq.txt,11

and if the file does not exist, NBCTK then tries to read Base
_freq.csv. As a result, we only need to put the input files
with the valid file extension in the current working directory.
On the other hand, when ‘--input Ext’ is given, NBCTK
reads Base_freq.Ext only. The output file format is the same
as the input file format by default, while we can change it by
giving ‘--output Ext’ or ‘-j Ext’.

4.3.4 Attribute names

Since version 0.7, we can optionally give NBCTK the names
of attributes to get more comprehensible output files. These
names are specified in the file Base_name.txt, which have
two columns separated by space or tab characters. Each line
corresponds to an attribute, where the first column specifies the
name of the attribute and the second column specifies the type
of the attribute:

• ‘id’ indicates that the attribute is the ID attribute.

• ‘eval’ indicates that the attribute is the answer class at-
tribute.

• ‘ignored’ indicates that the attribute is an ignored at-
tribute.

• ‘nominal’ indicates that the attribute is a discrete at-
tribute which takes on the values appearing in Base_
freq.Ext.

• ‘{Value1,Value2,...,ValueN}’ indicates that the at-
tribute is a discrete attribute which takes on the values
Value1, Value2, . . . , ValueN.

• ‘real’ indicates that the attribute is a continuous attribute
which essentially takes on real numbers.

11 When --read-param (-R) option specified, NBCTK first tries to read
Base_param.txt, and NBCTK then tries to read Base_param.csv.
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• ‘integer’ indicates that the attribute is a continuous at-
tribute which essentially takes on real numbers.

The order of the name/type specifications should follow the or-
der of the attributes in the dataset Base_freq.Ext and should
be consistent with the type specification with command line
options (§4.3.2 and §4.3.6). Currently, the type specifications
‘real’ and ‘integer’ are not distinguished in the cluster-
ing algorithms — the attributes of these types are just treated
as continuous attributes that follow Gaussian distributions. The
characters after ‘#’ are ignored in each line, and empty lines
are skipped. For example, for the attributes in Table 1 (page 2),
ex1_name.txt may contain the following specifications:

customer-id id
customer-group eval
blood-type nominal
income real
deposit ignored
gender {male, female}

...
...

In the type specification of the form ‘{Value1,Value2,...,
ValueN}’, we can specify the values that do not appear in the
dataset Base_freq.Ext, but can potentially appear in future or
under another study. This may affect the clustering results un-
der a Bayesian learning setting, i.e. MAP estimation (§3.1.2) or
variational Bayes (§3.2), and would also be useful in classifying
new objects into one of the clusters we already have.

4.3.5 Compression of the indistinguishable objects

As described in §2.1, the objects having the same attribute val-
ues will be compressed into a single object unless they have
the ID attribute or continuous attributes. This implies that the
number of distinct objects can be less than the number of lines
in the data file Base_freq.Ext. The number of occurrences
of the resulting object is of course the sum of the numbers of
occurrences of the distinct objects. On the other hand, we can
inhibit such a compression by giving --uncompress option
to the command.

4.3.6 Command line options

NBCTK provides dozens of command line options for flexible
configurations. The options having a short form are considered
as major, or as frequently used.

�Model specification (general)

--n-class NumClass
-k NumClass

By this option, we set NumClass to K, the number of
classes. Given ‘-k Kmin:Kmax:Kstep’, nbc will en-
ter into the ‘model scoring’ mode (§3.1.10). That is, with

varying the number K of classes from Kmin to Kmax with
step Kstep, we evaluate the plausibility of K based on
the score specified by --score (-g) option. This op-
tion is mandatory except when --read-param (-R) or
--read-hparam (-H) is given.

--n-attr NumAttr
-x NumAttr

This option tells nbc that the total number of attributes, in-
cluding the ID attribute, the answer class attribute, ignored
attributes (§4.3.2), is NumAttr.

--gauss ContAttrs
-u ContAttrs

This option specifies the zero-based indices of continuous
attributes. Basically we specify Ai, the i-th attribute, as
continuous and single-dimensional by ‘-u i’, whereas the
n continuous attributes that jointly follow a multivariate
normal distribution is specified by ‘-u i1,i2,...,in’.
For two or more normal distributions, we use this option
for each of them. For example, ‘-u 1,3 -u 2’ declares
that we have two normal distributions, where the first cor-
responds to a bivariate normal distribution the attributes
(A1, A3) follow, and the second corresponds to a univariate
normal distribution followed by A2. For convenience, nbc
allows a variety of abbreviated forms:

• ‘-u 0-3’ is the same as ‘-u 0,1,2,3’.

• ‘-u -3’ is the same as ‘-u 0-3’.

• ‘-u 2-’ is the same as ‘-u 2,3,...,(T − 1)’,
where T is the number of attributes specified by -x
option.

• ‘-u 2-4,8’ is the same as ‘-u 2,3,4,8’.

• ‘-u 1#3,4’ is the same as ‘-u 1 -u 3,4’.

• ‘-u 2˜4’ is the same as ‘-u 2#3#4’, and hence as
‘-u 2 -u 3 -u 4’.

--id IdAttr
-I IdAttr

This option specifies the zero-based index of the ID at-
tribute.

--ignore IgnoreAttrs
-y IgnoreAttrs

This option specifies the zero-based index (indices) of ig-
nored attribute(s). If there are more than one ignored at-
tribute, we can specify them using hyphen and comma.
The meanings of hyphen and comma are the same as those
for --gauss (-u) option, i.e. ‘-y 2-4,8’ will be in-
terpreted as ‘-y 2,3,4,8’, and hence as ‘-y 2 -y 3
-y 4 -y 8’.

--eval AnsAttr
-E AnsAttr
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This option specifies the zero-based index of the answer
class attribute. The answer classes will be recorded into
the output files, and NBCTK automatically evaluates the
predicted clusters based on the answer classes. The results
of evaluation will be recorded into Base_eval.Ext.

--read-param (no argument)
-R (no argument)

With this option, nbc will skip the EM algorithm and
read the parameters from Base_param.Ext, which may
have been created by hand or by a previous run of nbc.
With this option, the number of classes is then deter-
mined according to the content of Base_param.Ext (so
--n-class (-k) option will be ignored).

�Model specification (hyperparameters)

On contrary to AutoClass, NBCTK allows us to specify raw
hyperparameters. In addition, for the cases where it is tedious to
specify them, --autoclass (-A) option is provided to make
a similar12 configuration to AutoClass.

--smooth-c ClassPseudoCount
-c ClassPseudoCount

This option specifies a uniform pseudo count for the class
variable. That is, for each class k, the pseudo count δk is
equally set to ClassPseudoCount. When ‘auto’ is spec-
ified for ClassPseudoCount, the pseudo counts are set as
the ones used in AutoClass (§3.1.2). The default is 0.

--smooth-a AttrPseudoCount
-w AttrPseudoCount

This option specifies uniform pseudo counts for discrete
attributes. If AttrPseudoCount is just a non-negative num-
ber ζ, all pseudo counts δ j,k,x j for discrete attributes are
equally set as ζ. If AttrPseudoCount takes a comma-
separated form ‘ζ j1,ζ j2,· · ·,ζ jM ’, where X jm is a discrete
attribute and M is the number of discrete attributes, the
pseudo counts δ jm,k,x jm

(1 ≤ x jm ≤ V jm ) are equally set as
ζ jm . When ‘auto’ is specified for ζ or for some ζ jm , the
corresponding pseudo counts are set as the ones used in
AutoClass (§3.1.2). The default values are all 0.

--tau Tau
-T Tau

Basically this option sets Tau to τ, a hyperparameter of
the normal-gamma or the normal-Wishart distribution (see
§3.1.2). If Tau is given as ‘auto’, similarly to the pseudo
counts for discrete attributes, τ will be set as 1/K, where
K is the number of classes. If this option is not given, ML
estimation will be conducted for the continuous attributes.

12 To be precise, the configuration with --autoclass (-A) for continuous
attributes is different from Autoclass, because AutoClass uses different prior
distributions for continuous attributes.

--alpha Alpha
-O Alpha

This option sets Alpha/2 (resp. Alpha) to a j,k (resp. φ j,k), a
hyperparameter of the normal-Gamma (resp. the normal-
Wishart) distribution (see §3.1.2). If this option is not
given, a j,k will be set as (1 + ε)/2 (resp. φ j,k will be set
as n j + ε, where n j is the dimension of attributes X j), and ε
is a small positive number. The name of this option might
be confusing, and so will be changed in the future release.

--smooth-mean Mean
-K Mean

This option sets Mean to ν j,k, a hyperparameter of the
normal-gamma or the normal-Wishart distribution (see
§3.1.2). If this option is not given, we use µ̃ j instead for
attributes X j, where µ̃ j is the sample mean of X j in the
dataset D as if there is no latent class variable (§3.1.6).

--smooth-var Var
-L Var

This option configures b j,k (resp. S j,k), a hyperparameter of
the normal-gamma (resp. the normal-Wishart) distribution
(see §3.1.2) as follows:

• If Var takes the form ‘sample:κ’, b (resp. Σ0) will
be set to κσ̃2

j/2 (resp. κΣ̃ j) for attribute X j (resp. at-
tributes X j), where σ̃2

j (resp. Σ̃ j) is the sample vari-
ance σ̃2

j (resp. the sample covariances S̃ j) of X j in
the dataset D as if there is no latent class variable
(§3.1.6).

• If Var takes the form ‘const:κ’, b (resp. Σ0) will be
set as κ/2 (resp. κI, where I is the identity matrix).

• If Var is ‘sample’ (resp. ‘const’), it is interpreted
as ‘sample:1.0’ (resp. ‘const:1.0).

• If Var is a floating-point number κ, it is interpreted as
‘sample:κ’.

--autoclass (no argument)
-A (no argument)

With this option, we have a similar configuration to Auto-
Class. This option is equivalent to ‘--smooth-c auto
--smooth-a auto --tau auto --score cs’.

--read-hparam (no argument)
-H (no argument)

With this option, nbc will run the MAP-based EM al-
gorithm (§3.1.2) under the pseudo counts (the smooth-
ing constants) read from a file named Base_hparam.Ext,
which may have been created by hand or by a previous
run of vnbc (§4.4). The number of classes is deter-
mined according to the content of Base_hparam.Ext (so
--n-class (-k) option will be ignored).
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� EM algorithm

The ML/MAP-based EM algorithms for naive Bayes models
are described in §3.1.1 and §3.1.2.

--seed RandomSeed
-r RandomSeed

nbc will use RandomSeed as a random seed for initializa-
tion of parameters in the EM algorithm (Step 1 in Fig. 3
and Fig. 4).

--epsilon Threshold
-e Threshold

nbc will use Threshold as the threshold ξ for judging the
convergence of the likelihood or the a posteriori probabil-
ity (Step 2 in Fig. 3 and Fig. 4). That is, if the difference
between the values of the log-likelihood (or log of the a
posteriori probability) before the update and the one af-
ter the update becomes less than ξ, we will consider that
the parameters have been converged. The default value is
10−3.

--restart NumInit
-n NumInit

With this option, random restarts will be enabled in the
EM algorithm (§3.1.11), where the number of trials is Nu-
mInit. By default, NumInit is set as 1, that is, nbc will not
perform random restarts.

--max-iter MaxIter
-m MaxIter

This option indicates the maximum number of iterations
to be performed is MaxIter. That is, nbc will stop the EM
algorithm when the number of iterations exceeds MaxIter.
If this option is omitted or MaxIter = 0, the EM iterations
will be continued until the convergence.

--max-iter-restart MaxInitIter
-l MaxInitIter

With this option, the maximum number of preliminary EM
iterations in random restarts (§3.1.11) will be set as Max-
InitIter.

--init-c InitClassMethod

This option specifies the initialization method for the class
parameters (Step 1 in Fig. 3 and Fig. 4). There are
two alternatives — ‘noisy_u’ initializes the parameters
based on a uniform distribution with small noises (Eq. 39),
and ‘random’ initializes the parameters more randomly
(Eq. 38). The default method is ‘noisy_u’. See §3.1.5
for more details.

--init-a InitAttrMethod

This option specifies the initialization method for the pa-
rameters of discrete attributes (Step 1 in Fig. 3 and Fig. 4).

Similarly to --init-c option, ‘noisy_u’ initializes
the parameters based on a uniform distribution with small
noises (Eq. 41), and ‘random’ initialize the parameters
more randomly (Eq. 40). In addition, ‘v_freq’ initial-
izes the parameters based on the relative frequencies with
small noises (Eq. 42). That is, each parameter θ j,k,x j will
be initialized to 1

N
∑

x′∈D:x′j=x j
N(x′) with a small noise. The

default method is ‘noisy_u’. See §3.1.5 for more details.

--noise Noise

This option controls the potential magnitude of noises in
initialization of the parameters of discrete attributes. For
details, see §3.1.5, where Noise corresponds to ε1.

--noise-gauss Noise

This option controls the potential magnitude of noises in
initialization of the parameters of continuous attributes.
For details, see §3.1.5, where Noise corresponds to ε2.

�Membership distribution

--mem-prob (no argument)
-D (no argument)

With this option, the membership probabilities p(k | x)
(§3.1.7) will be written into a file ‘Base_memp.Ext’.

� Relevance analysis

--rank RankArg
-z RankArg

This option enables relevance analysis (§3.1.9), in which
the most relevant objects or attribute values to each class
(each cluster) are recorded into ‘Base_rank.Ext’. If
RankArg is a floating-point number ρ between 0 and 1,
nbc only records the objects (resp. attribute values) whose
relevance score R(k, x) = p(k | x, θ) (resp. R j(k, x j) = p(k |
x j, θ)) is greater than or equal to ρ. If RankArg is a positive
integer N ≥ 1, only N most relevant objects or attribute
values will be recorded. If RankArg is set as 0, the ranking
over all objects or attribute values will be recorded.

--hide-rank (no argument)

With this option, the objects (resp. the attribute val-
ues) whose relevance score R(k, x) = p(k | x, θ) (resp.
R j(k, x j) = p(k | x j, θ)) is smaller than 1/K, where
K is the number of classes, will not be written into
‘Base_rank.Ext’.

�Model selection

If we give an option ‘-k Kmin:Kmax:Kstep’, nbc will enter
into the ‘model scoring’ mode (§3.1.10) — that is, if we spec-
ify ‘-k 3:10:2’, nbc will compute the scores of the models
with the numbers of classes K = 3, 5, 7, 9.
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--score ModelScore
-g ModelScore

This option specifies the model score as ModelScore. The
available model scores are ‘bic’ (BIC, Eq. 58) and ‘cs’
(the Cheeseman-Stutz score, Eq. 59). The default score
is BIC. The Cheeseman-Stutz score is also enabled by
--autoclass (-A) option.

� DAEM algorithm

--daem (no argument)
-b (no argument)

This option enables the DAEM algorithm.

--itemp InvTempInit:InvTempRate
-B InvTempInit:InvTempRate

This option sets the initial value βinit of the inverse temper-
ature as InvTempInit, and the updating coefficient βrate as
InvTempRate. It is required that 0 < βinit ≤ 1 and βrate > 1.
If ‘InvTempInit:’ is given as the argument, the default
value 1.2 is used for βrate. If ‘:InvTempRate’ is given, the
default value 0.1 is used for βinit. From our experience,
the appropriate values of βinit and βrate seem quite different
according to the target data.

When we enable the DAEM algorithm, the terminal messages
like below will be displayed (βinit = 0.4 and βrate = 1.2). In
these messages, each ‘*’ indicates that the inverse temperature
has just been updated.

% nbc -f ex1 -k 4 -x 10 -I 0 -E 1 -y 4,9 -u 3,6,7 -b
-B 0.4: -n 3
Reading cases from ex1_freq.csv...done
#classes = 4:
[0] #iters *0*....100.*.***.* (Converged: 163 iters)

L=-5747.688373
[1] #iters *0*....100.*.*.*** (Converged: 167 iters)

L=-5747.688373
[2] #iters *0**...**** (Converged: 75 iters) L=-574

7.688373
<<Resumed best parameter set #0>>
[0] #iters * (Converged: 165 iters) L=-5747.688373
BIC = -5923.836132

� SMEM algorithm

Since the number of split-merge candidates to be examined is
K(K−1)(K−2) at maximum, where K is the number of classes,
the SMEM algorithm could take a long time to find a better
set of parameters. nbc provides several (ad-hoc) control flags
not to explore unpromising search space. Currently, the SMEM
algorithm is considered as experimental.

--n-sm NumOp
-o NumOp

This option enables the SMEM algorithm, where the num-
ber of operations is set as NumOp.

--n-cand NumCand
-a NumCand

This option specifies the maximum number of the split-
merge candidates to be examined.

--n-split NumSplitCand
-G NumSplitCand

This option limits the number of the split candidates to be
taken into account for each merge candidate.

--min-c-param MinClassPar

This option specifies the lower limit of the class probability
of a class to be split. That is, if the class probability of a
split candidate is lower than MinClassPar, nbc will skip
the candidate. If this option is omitted, no limit will be set.

--min-new-c-param MinNewClassPar

This option specifies the lower limit of the class probability
of a new class obtained by a split-merge operation. That is,
if one of the probabilities of three newly obtained classes is
lower than MinNewClassPar, the result of the split-merge
operation will be discarded. If this option is omitted, no
limit will be set.

--min-sm-imp MinImprove

This option specifies the lower limit of the improvement
of a split-merge operation. That is, the improvement of
such a operation does not exceed MinImprove, the result
of the operation will be discarded. The default value is
10 × ξ, where ξ is the threshold for judging convergence
of the likelihood or the a posteriori probability, which is
specified with --epsilon (-e) option.

--norm-jmerge (no argument)

This option enables the normalized version of Jmerge
(Eq. 64), instead of the original one (Eq. 62).

� Evaluation of clusters

When the index of the answer class attribute is given by
--eval (-E) option, NBCTK automatically evaluates the pre-
dicted clusters based on the answer clusters. The results under
various evaluation measures, described in §3.3, will be written
into ‘Base_eval.Ext’.

--weight-purity Beta

This option specifies the weight β in the F-measure of pu-
rity and inverse purity (Eq. 90) as Beta. The default value
is 1.

--weight-wallace Beta

This option specifies the weight β in the F-measure of Wal-
lace’s measures (Eq. 99) as Beta. The default value is 1.
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� Input/Output files

With GNU libiconv, we can handle datasets with non-ASCII-
safe character codes. The default codeset can be specified at
the installation time, by the configure script (§4.2.3) or
Makefile.msvc (§4.2.4). Without such a configuration, the
default codeset will be set as UTF-8. Running ‘iconv -l’
would show a list of the available codesets. As described in
§4.3.3, each input/output file is either in the CSV format or in
the tab-separated value format.

--target Base
-f Base

This option indicates that we have a file named Base
_freq.Ext containing the target dataset D. Base will also
be used as the base name of the input/output files as listed
in Table 2.

--suffix Suffix
-s Suffix

nbc adds a suffix Suffix to the base name of the output
files. For example, ‘Base_param.Ext’ will be changed
as ‘Base_Suffix_param.Ext’.

--input Ext

As described in §4.3.3, nbc tries to determine the input file
format automatically. On the other hand, with this option,
nbc only reads the input files that have the file extension
Ext. The input files should be in the tab-separated value
(resp. CSV) format when Ext is txt (resp. csv).

--output Ext
-j Ext

As described in §4.3.3, the output file format is the same
as the input file format by default. On the other hand, with
this option, nbc outputs the files whose file extension is
Ext, where the output files are in the tab-separated value
(resp. CSV) format when Ext is txt (resp. csv).

--code-in Charcode
-p Charcode (Available only with GNU libiconv)

nbc assumes the character codeset of the input files is
Charcode. If this option is omitted, the default codeset
(which can be specified at compilation time) will be used.

--code-out Charcode
-q Charcode (Available only with GNU libiconv)

nbc outputs files with the character codeset Charcode. If
this option is omitted, the default codeset (which can be
specified at compilation time) will be used.

�Miscellaneous

--log-scale (no argument)
-J (no argument)

With this option, most of probability values are stored in
log-scale. This would remedy the problem of underflow of
very small probabilities, but on the other hand, the proba-
bility computations will take a bit longer time. Also it is
highly recommended to combine this option with the set-
tings for MAP estimation (e.g. with --autoclass (-A)
option).

--save-msg (no argument)
-S (no argument)

By default, nbc outputs the terminal messages to the stan-
dard error output. This option switches the output to a
file named ‘Base_msg.txt’. Then the buffer will not be
flushed for each dot symbol, so for a small model/dataset,
this option would shorten the runtime.

--regular-stat (no argument)

With this option, NBCTK ignores the values of each con-
tinuous attribute that are larger than the Q1%-tile value,
and smaller than the Q2%-tile value, (only) when comput-
ing the sample means and the sample variances (see also
§3.1.4).

--extreme Q

When computing the sample statistics with this option and
--regular-stat, NBCTK ignores the values of each
continuous attribute that are larger than the Q1%-tile value,
and smaller than the Q2%-tile value, where 0 < Q < 1
should hold, Q2 = 100 × Q and Q1 = 100 × (1 − Q).
Without this option, Q = 0.05. See also §3.1.4.

--uncompress (no argument)

This option inhibits the compression of indistinguishable
objects, which is described in §2.1 and §4.3.5.

--hide-attr (no argument)
-V (no argument)

By default, the attribute values appearing in the dataset D
will always be recorded into files. With this option, on the
other hand, they will not be recorded.

--show-attr-memp

By this option, attribute-wise membership probabilities
will be output into Base_memp.Ext .

--show-attr-cluster

By this option, attribute-wise clusters will be output into
Base_cluster.Ext .

--prec-out NumDigits

This option sets NumDigits to the number of significant
digits in each floating-point number to be written into files.
At the implementation level, NumDigits will be passed as
N in “%.Ng” to fprintf() in the standard C library.
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--prec-msg NumDigits

This option sets NumDigits to the number of digits af-
ter the decimal point in each floating-point number to be
displayed on the terminal. At the implementation level,
NumDigits will be passed as N in “%.Nf” or “%.Ne” to
fprintf() in the standard C library.

--verbose (no argument)

With this option, several temporary results are recorded
into ‘Base_log.Ext’. It should be noted that the resulting
log file may become quite large.

--occ-order (no argument)

By default, the discrete attribute values output from nbc
are ordered according to their character codes. With this
option, on the other hand, nbc will write them in the order
of appearances in ‘Base_freq.Ext’.

--version (no argument)
-v (no argument)

This option displays the version number.

--help (no argument)
-h (no argument)

This option displays a short description on major optional
flags.

--helpall (no argument)
-X (no argument)

This option displays a short description on all optional
flags.

4.4 VB based clustering
Generally speaking, the usage of vnbc is quite similar to that
of nbc. The names of input/output files are shown in Table 3.
Also the file format for vnbc is the same as that of nbc except
the descriptions in the header parts (see §4.3.3). The differences
are as follows:

• The options --read-param (-R), --autoclass
(-A), --score (-g), --init-c, --init-a and
--log-scale (-J)13 are ignored in vnbc.

• The meaning of --read-hparam (-H) is changed as
follows:

--read-hparam (no argument)
-H (no argument)

If this option is given, vnbc will skip the VB-
EM algorithm and read the hyperparameters from
a file named Base_hparam.Ext. The number of
classes is then determined according to the content
of Base_hparam.Ext.

13 Most of probability(-like) values are unconditionally stored in log-scale.

Table 3: Input/Output files for vnbc. Base is the base name,
and Ext is txt (for the file in the tab-separated value format) or
csv (for the file in the comma-separated value format).

Filename Content
Input Base_freq.Ext Description of objects
Input Base_name.txt Attribute names
Input/Output Base_hparam.Ext Hyperparameters
Output Base_cluster.Ext Clustering results
Output Base_memp.Ext Membership probs.
Output Base_rank.Ext Result of relevance analysis
Output Base_predict.Ext Predictive distribution
Output Base_eval.Ext Evaluation results
Output Base_log.Ext Logs
Output Base_msg.txt Terminal messages

• The meanings of --smooth-c (-c), --smooth-a
(-w), --tau (-T), --alpha (-O), --smooth-mean
(-K) and --smooth-var (-L) are changed to specify
the initial hyperparameters such as α(0)

k and α(0)
j,k,x j

in Step
1 of Fig. 9. For instance, if we give ‘--smooth-c
ClassPseudoCount’, the initial hyperparameters α(0)

k are
set as (1 + ClassPseudoCount) + εk, where εk is a small
random noise.

We also have an option that is only available in vnbc:

--predict (no argument)
-P (no argument)

With this option, the parameters of the predictive distri-
bution (§3.2.2) will be output into Base_predict.Ext.
More specifically, for discrete attributes, p∗(k) and p∗(x j |
k) in Eqs. 84 and 85 will be output, and for continuous at-
tributes, the means, the (co-)variances and the degrees of
freedom of the Student’s t-distribution will be output.

4.5 Auxiliary tool for post-processing: nbcsep
NBCTK provides a simple auxiliary tool named nbcsep for
post-processing of the outputs from the executables nbc and
vnbc. Hopefully, using nbcsep combined with some UNIX
commands such as grep, cut, sort, join, and so on, we
may not have to write extra post-processing programs (in Perl,
etc.).

As described above, an output file contains several data ma-
trices each of which has a header part with a predefined iden-
tifier. In a typical case, we use nbcsep to split the output file
into the files whose names have the corresponding identifiers
(Fig. 11). The synopsis of nbcsep is as follows:

nbcsep [Options] InputFile [InputFile ...]

If ‘-’ is given as an InputFile, nbcsep assumes that one in-
put is passed from the standard input. If no options are given,
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#### ID:XXXX
####
####

#### ID:YYYY
####
####

#### ID:ZZZZ
####
####

#### ID:XXXX
####
####

#### ID:YYYY
####
####

#### ID:ZZZZ
####
####

(Data matrix #1)

(Data matrix #2)

(Data matrix #3)

foo.txt
_XXXXbar .txt

_YYYYbar .txt

_ZZZZbar .txt

(Data matrix #1)

(Data matrix #2)

(Data matrix #3)

(generated by nbc/vnbc)

Figure 11: Output file split by nbcsep with ‘-f bar’.

nbcsep displays all identifiers of the data matrices in Input-
Files. The below is a list of available options:

--target Base
-f Base

nbcsep writes each data matrix in InputFile into the file
named ‘Base_ID.Ext’, where ID is the identifier of the data
matrix, and Ext is the file extension of InputFile. The de-
fault value of Base is out.

--view ID
-v ID

nbcsep outputs only the data matrices whose identifiers
match with ID, ignoring the case of letters, to the standard
output. The matching criterion can be configured by -m
option.

--output ID
-o ID

This is the same as ‘-v ID’ except that the output will be
saved into the file(s) whose names have a prefix specified
with -f option.

--match Criterion
-m Criterion

This option specifies the matching criterion as Criterion
for -v and -o options. Criterion is one from exact,
infix, prefix and suffix. The default value is
infix.

--suffix Suffix
-s Suffix

nbcsep adds Suffix to the name of the output file of
nbcsep. The resulting filename will be ‘Base_Suffix_
ID.Ext’.

--ext Ext
-e Ext

nbcsep uses Ext as a new file extension for the output
files. If this option is omitted, the file extension will be set
as the one commonly appearing in InputFiles. If different
extensions are used in InputFiles, ‘out’ will be used as
the default file extension.

--del-head (no argument)
-d (no argument)

nbcsep outputs only the data matrices.

--del-body (no argument)
-D (no argument)

nbcsep outputs only the header parts.

--hide-file (no argument)
-F (no argument)

nbcsep does not display the filenames even if two or
more input files are given.

--code-in Charcode
-p Charcode (Available only with GNU libiconv)

nbcsep assumes the character codeset of the input files is
Charcode.

--code-out Charcode
-q Charcode (Available only with GNU libiconv)

nbcsep outputs the files with the character codeset Char-
code.

--help (no argument)
-h (no argument)

nbcsep displays a simple help message.

5 Miscellaneous remarks

5.1 Settings for attribute types
Even in recent versions, the way of specifying the attribute
types might be error-prone. That is, if we miss specify-
ing --id (-I), --eval (-E) or --gauss (-u) option for
some attributes, the programs will regard these attributes as
discrete descriptive attributes (floating-point numbers such as
"1.234" will be treated as a label), and finish without re-
porting the error. To avoid this problem, it is recommended
to write Base_name.txt, which additionally specifies the
names/types of attributes (§4.3.4), and then to check the data
matrix SETTING-MODEL-BASE in the log file Base_log.
Ext.
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5.2 Settings for EM algorithms
The computation time and space required for an EM iteration
is almost linear in each of the number of classes, the number of
single-dimensional attributes, and the number of distinct objects
in the dataset. Exceptionally, however, it is cubic in the largest
dimension of the multivariate normal distributions included in
the model.

For some applications, the default value of the threshold for
judging convergence of the likelihood or the a posteriori proba-
bility, which is specified by --epsilon (-e) option (§4.3.6),
might be small. Early researches on statistical natural language
processing reported that, at least in ML estimation, a large num-
ber of EM iterations do not necessarily lead to a good perfor-
mance in probabilistic inferences after EM learning (e.g. Sec-
tion 10.3.2 of [17] discusses the case of hidden Markov mod-
els). In other words, there can be cases where it is reasonable
to give a larger value to --epsilon (-e) option, or set the
maximum number of iterations with --max-iterate (-m)
option (§4.3.6). In addition, it is empirically observed that the
EM algorithm run with larger pseudo counts tends to converge
with a smaller number of iterations.

5.3 Precision of floating-point numbers
For large datasets, NBCTK might show an unexpected behavior
due to the problems with arithmetic precision such as underflow
or precision errors. --log-scale option provides a way to
avoid underflow. Also, NBCTK uses the long double type
for floating-point numbers on Linux, Mac OS X, and Win32
with Cygwin. Of course long double can be memory con-
suming than double,14 and thus, to use double instead of
long double, we add the ‘--disable-long-double’
flag to the configure script. Also it should be addressed that,
in the current implementation of the digamma function Ψ(·),
floating-point numbers are treated as double.

5.4 Numerical problems in ML/MAP-based
clustering

As described in §3.1.2, ML/MAP-based clustering with mul-
tivariate Gaussian distributions tends to show an unstable be-
havior for a small dataset (e.g. the updated covariances may
be singular). For such cases, the MAP estimation is more pre-
ferred than the ML estimation, and --log-scale (-J) option
would make the probability computation more stable.

5.5 Parallelization via OpenMP*
Nowadays a couple of popular C compilers support OpenMP
for shared-memory parallel computing. In NBCTK’s source

14 The physical size of long double is system-dependent, and is only
guaranteed not to be smaller than that of double. If you are using long
double, the physical size will be recorded into the log file.

code, several ‘pragma’ declarations for OpenMP are added to
the ‘for’ loops which require massive numerical computation.
An interested user may enable these ‘pragma’ declarations by
giving compiler-dependent flags to the C compiler. With the
GNU C compiler (version 4.2 or later), for instance, we may
add CFLAGS=’-fopenmp -O3’ and LIBS=’-lgomp’ to
the arguments of the configure script, and specify the num-
ber of threads at runtime by the OMP_NUM_THREADS environ-
ment variable.

Contact information
NBCTK is still under development, and bug reports, questions,
suggestions, or any other feedbacks are highly welcome. To
make a contact, please send an e-mail to nbct[AT]mi.cs.
titech.ac.jp (please replace [AT] with @).
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