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ABSTRACT 

In order to detect kidney cancer automatically from abdominal UCT (unenhanced CT) or CECT (contrast- 

enhanced CT) images at an early stage, a promising approach is to use deep learning techniques with convolutional 

neural networks (CNNs). However, there still seem to be several challenges in detection of kidney cancer. For 

example, it is necessary to cope with the wide variety of abdominal CT images. In this paper, as an empirical 

study, we attempt to construct a CNN that detects kidney cancer well from abdominal CT images, with a special 

focus on how visual explanations produced by Gradient-weighted Class Activation Mapping (Grad-CAM) help 

us to construct such a CNN. 
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1. INTRODUCTION 

One major way for detecting kidney cancer from abdominal computer tomography (CT) images is to use contrast agents, 

which enhance the contrast among tissues in a kidney. CT images obtained under an administration of contrast agents are 

called contrast-enhanced CT (CECT) images, and medical experts often diagnose kidneys using a couple of CECT 

images taken at predetermined time intervals.1, 2 For some patients, on the other hand, unenhanced CT (UCT) is highly 

preferred if they have allergy for contrast agents or injecting contrast agents worsens their renal function. In this study, 

aiming to detect kidney cancer automatically from UCT or CECT images at an early stage, we take a deep learning 

approach using convolutional neural networks (CNNs). 

Although CNNs have shown remarkable predictive performance for image-related tasks, there still seem to be several 

challenges in detection of kidney cancer from CT images. First, unlike well-known benchmark datasets for image 

classification such as ImageNet, abdominal CT images of an individual patient are basically very similar, and a CNN 

should capture the patient’s kidney and a cancer in it in a precise way. Especially, it is known to be difficult to detect a 

kidney cancer in a kidney from UCT images, since the cancer often has a texture quite similar to that of the other tissues 

in the kidney.3 Second, since abdominal organs locate at various positions depending on individual patients, it is also 

necessary to tackle with the wide variety of abdominal CT images. Lastly, CNNs are said to be black-box models, and 

from both clinical and engineering points of view, we need some explanation method for understanding the reasons why 

their decisions have been made.4 One well-known visual explanation method is Gradient-weighted Class Activation 

Mapping (Grad-CAM),5 which can highlight some regions in the input image relevant to the CNN’s decision. In this 

paper, as an empirical study, we attempt to construct a CNN that detects kidney cancer well from abdominal CT images, 

with a special focus on how visual explanations produced by Grad-CAM help us to construct such a CNN. 
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The rest of this paper is organized as follows. First, we introduce some background notions in Section 2. Then, the 

methods and the experimental settings adopted in this study are described in Section 3. Section 4 discusses the relations 

between the detection accuracy of CNNs and visual explanations produced by Grad-CAM, and Section 5 concludes the 

paper. This study was approved by the Ethics Committees at Nagoya University and Meijo University. 
 

 

Figure 1. An UCT image (left) and the corresponding CECT image (right). 

 

2. BACKGROUND 

2.1 Contrast-enhanced CT and endophytic kidney cancer 

As mentioned above, the texture of kidney cancer and that of normal tissues are often similar in UCT images, and thus it 

is often difficult to detect kidney cancer from UCT images. What is worse is that endophytic kidney cancer grows inside 

a kidney and does not deform the contour of the kidney.3 CECT images mitigate this problem by presenting different 

textures between cancer and normal tissues after the injection of a contrast agent. A typical example is shown in Fig. 1, 

where the left image is an UCT image, and the right one is the corresponding CECT image. In these images, kidneys are 

surrounded by red rectangles, and one would see that kidney cancer can be found more clearly in the CECT image. In this 

study, we observe the detection accuracy of CNNs trained with UCT images and those trained with CECT images, and 

pay an additional attention to their detection accuracy for endophytic kidney cancer. 

2.2 Convolutional neural networks 

In this study, we attempt to detect kidney cancer by classifying abdominal CT images into those containing the cancer 

and those not containing the cancer, and use a CNN for such classification. CNNs are typically comprised of 

convolutional layers, pooling layers, and fully-connected layers, and known for its high predictive performance. In 

medical image processing, CNNs have been used for detecting kidney cancer,6 and for classifying kidney cancer into 

three subtypes.1 In the former study, to achieve patient-wise detection of cancer, the authors proposed a CNN which takes 

as input a collage of multiple abdominal CT images of a patient, and predicts the presence/absence of the cancer for the 

patient. In this study, as described later, we take a simpler approach to patient-wise detection, exploiting the class labels 

given to individual CT images. 

2.3 Visual explanation by Grad-CAM 

One practical problem in using a deep neural network is the lack of explainability for its prediction. Recently, in image 

classification, dozens of visual explanation methods that indicate the crucial regions in the input image for a CNN’s 

prediction have been proposed.4 Grad-CAM is a well-known visual explanation method, which is said to be class-

discriminative in the sense that a visual explanation for a particular target class (the presence/absence of cancer, in this 

study) exclusively highlights relevant regions in the input image.5 In medical image processing, Philbrick et al. used a 

couple of visual explanation methods including Grad-CAM for CNNs that identify the contrast enhancement phase of an 

input CT image.2 Seto et al. applied SmoothGrad, another well-known visual explanation method, to their CNN that 

detects esophageal cancer from chest CT images.7 In this study, we will discuss more extensively how visual 

explanations change under various experimental settings, and help us to improve the detection accuracy of CNNs. 

 

3. METHODS AND SETTINGS 

3.1 Datasets 

In this study, we worked with a dataset comprised of UCT images and that of CECT images, both of which have been 

collected at Nagoya University Hospital. The CECT images we used were the ones taken 30 seconds after the injection of 



a contrast agent.  In these datasets, each CT image was associated with a class label indicating whether a kidney cancer is 

present or absent, based on the axial positions of the top-end and the bottom-end of a kidney and a kidney cancer (if it 

exists) suggested by a medical expert. Then, we split each original dataset randomly into the training dataset, the 

validation dataset, and the evaluation dataset, with keeping the class distribution. For simplicity, we just focused on the 

right kidney. Like the CT images shown in Fig. 1, from each original CT image of size (512, 512), we cropped out the 

area of size (256, 256) that ranges [40, 296) horizontally and [186, 442) vertically, in order to reduce unwanted influence 

from the other organs around a kidney. The numbers of patients in split datasets are shown in Table 1. Note here that the 

‘Both’ column indicates the number of both patients having endophytic cancer and those having exophytic cancer, while 

the ‘Endophytic’ column indicates the number of patients having endophytic cancer only. Also note that the figures in 

parentheses in Table 1 are the numbers of available UCT and CECT images, where the numbers of CT images not 

containing cancer of the patients having cancer are included in the ‘Cancer: Absent’ columns. In the rest of this paper, we 

think of a patient or a CT image having cancer as positive, and as negative otherwise. 

 

Table 1. The number of patients in each dataset split from the original dataset. 
 

 

Dataset 

UCT CECT 

Cancer: Present Cancer: Absent Cancer: Present Cancer: Absent 

Both Endophytic Both Endophytic 

Training 45 (228) 15 (71) 29 (1,269) 43 (188) 13 (52) 29 (1,127) 

Validation 9 (33) 3 (10) 6 (274) 9 (28) 3 (9) 5 (236) 

Evaluation 10 (47) 4 (17) 5 (253) 10 (36) 4 (12) 5 (221) 

3.2 Finding the correspondence between UCT images and CECT images 

Actually the positions of the top-end and the bottom-end of kidneys and kidney cancer were only suggested for CECT 

images, and we needed to find the correspondence between UCT images and CECT images, like the images shown in Fig. 

1. An intricate problem here is that the absolute/relative positions of individual abdominal organs constantly change even 

in the same patient, and UCT images and CECT images have been taken at different intervals (5 mm and 1 mm, 

respectively) on the axial axis under different conditions of a patient. The class labels of UCT images can therefore be 

incorrect. To avoid this, we relabeled each UCT image with the class of the most similar CECT image under the cosine 

similarity. 

3.3 Data augmentation 

As stated in the introduction, abdominal organs locate at various positions depending on individual patients, and thus we 

have a wide variety of abdominal CT images. This urges us to construct a CNN with higher generalization performance. 

One general technique for acquiring generalization performance is data augmentation, and in this study, we augmented 

the training dataset with additional CT images created by the transformations listed in Table 2. The degree of each 

transformation was configured so that kidneys and kidney cancer do not disappear from the transformed image. The 

training dataset then turned to be 25 times larger than the original. Both original and transformed images were finally 

cropped with size (224, 224) at the center, and given to the CNN. 

 

Table 2. Details of data augmentation conducted in this study. 
 

Transformation Details #augmented 

Shift {0  8, 8  16} pixels upward, downward, to the left and to the right 8 

Rotation {0  8, 8  16, 16  24, 24  32} degree clockwise and anti-clockwise 8 

Shear transformation {−15  0, 0  15} degree horizontally and vertically 4 

Zooming-in By a factor of {1  272/256, 272/256  288/256} 2 

Zooming-out By a factor of {224/256  240/256, 240/256  1} 2 

 



 

3.4 Masking the other organs 

During the experiments, we considered that CNNs suffer from unwanted influence from the other organs around a kidney. 

So, as a trial, a couple of non-experts masked such organs manually as shown in Fig. 2, where a kidney is surrounded by 

a red square in the left image. The effect of masking will be discussed in Section 4 based on detection accuracy and visual 

explanations. Table 3 shows the numbers of patients (and the number of CT images) in split datasets, where we just 

deleted masked images of apparently low quality. 

 
Figure 2. An original UCT image (left) and the masked one (right). 

 

Table 3. The number of patients in each dataset comprised of masked images. 
 

 

Dataset 

UCT CECT 
Cancer: Present Cancer:  Absent Cancer: Present Cancer:  Absent 

Both Endophytic Both Endophytic 

Training 45 (223) 15 (71) 29 (1,238) 43 (187) 13 (52) 29 (1,113) 

Validation 9 (33) 3 (10) 5 (265) 9 (27) 3 (9) 5 (234) 

Evaluation 10 (43) 4 (17) 5 (240) 10 (36) 4 (12) 5 (221) 

3.5 Coping with class imbalance 

Also during the experiments, we encountered a kind of class imbalance problem.8 To be more specific, in Table 1, the 

training dataset comprised of UCT images contains 223 positive images and 1,238 negative images, and by CNNs trained 

on this training dataset, an excessive number of images in the evaluation dataset were classified as negative. We tackled 

with this problem in two ways.  The former is to give a weight N–
train to positive patients and N+

train to negative patients 

in the cross-entropy loss function, where N+
train (resp. N–

train) is the total number of positive (resp. negative) CT 

images in the training dataset. The latter is to construct a balanced training dataset by selecting the most 

similar negative CT image for each positive CT image.7 Hereafter, the former method is referred to as 

instance weighting (IW), and the latter as negative example selection (NES). 

3.6 Training CNNs 

The CNN we used in this study is a variant of VGG-16,9 which has 13 convolutional layers and three fully-

connected layers together with batch normalization. We performed transfer learning where the weights in con- 

volutional layers were pre-trained with ImageNet and those in fully-connected layers were trained by ourselves 

with the training dataset. In a preliminary experiment, fully-trained models did not perform as well as the pre-

trained model. The training was conducted by AdaGrad with mini-batch size 32, initial learning rate 10−5, and 

dropout rate 0.5. We finally chose the CNN having achieved the highest accuracy over the validation dataset 

after 50 epochs.  

3.7 Image- and patient-wise detection 

In this study, we detect kidney cancer of a patient in two steps. In the first step, called image-wise detection, 

we classify each abdominal CT image of the patient into the one containing cancer and the one not containing 

cancer. Then, in the second step, called patient-wise detection, we combine the results of image-wise detection 

for the patient’s CT images. Of course, only patient-wise detection is meaningful in a clinical sense, but it is 

also useful to inspect the results of image-wise detection to see how well the CNN has been trained. 

More specifically, let us consider a set X(p) of abdominal CT images of a patient p. Then, in image-wise 

detection for each abdominal CT image xX(p), the softmax layer of the trained CNN outputs the confidence 

c = P(positive | x) that the image x contains cancer.   Now we predict that the image x contains cancer (x is 



positive) if c ≥ θimage, where θimage  is the decision threshold for image-wise detection, and that x does not 

contain cancer (x is negative) otherwise. In patient-wise detection for a patient p, on the other hand, we just 

compute the maximum confidence c∗ = max xX(p) P(positive | x) over all abdominal CT images of the patient p, 

and then predict that the patient p has cancer (p is positive) if c∗  ≥ θpatient, where θpatient  is the decision 

threshold for patient-wise detection, and that p does not have cancer (p is negative) otherwise. In this study, for 

simplicity, the decision thresholds θimage  and θpatient  were fixed at 0.5 and 0.95, respectively. 

3.8 Running Grad-CAM 

After image-wise detection, we run Grad-CAM to obtain its visual explanation. Our PyTorch implementation for 

Grad-CAM is based on the one described in https://www.noconote.work/entry/2019/01/12/231723, a technical blog 

post written in Japanese. To create such an explanation, Grad-CAM focuses on the feature maps in the final 

convolutional layer of the trained CNN, which is supposed to hold meaningful high-level features, and 

identifies relevant regions based on the weighted average of these feature maps. The class-discriminativity of 

Grad-CAM comes from a design where each weight is computed as the average gradient of activation for a 

target class. In this study, we considered that the target class is the class predicted by the trained CNN. The 

relevant regions are finally highlighted in the form of a heatmap which is superimposed on the target 

abdominal CT image. 

 

Table 4. The results of image-wise detection. 
 

Setting TP FN TN FP Precision Recall F-score 

UCT+Unmasked+IW 13 (3) 34 (14) 230 23 0.361 (0.115) 0.277 (0.177) 0.313 (0.140) 

UCT+Unmasked+NES 32 (7) 15 (10) 137 116 0.216 (0.057) 0.681 (0.412) 0.328 (0.100) 

UCT+Masked+NES 29 (9) 14 (5) 202 38 0.433 (0.192) 0.674 (0.643) 0.527 (0.295) 

CECT+Unmasked+NES 6 (4) 30 (8) 205 16 0.273 (0.200) 0.167 (0.333) 0.207 (0.250) 

CECT+Masked+NES 28 (10) 8 (2) 162 59 0.322 (0.145) 0.778 (0.833) 0.455 (0.247) 

4. RESULTS AND DISCUSSION 

4.1 Detection accuracy 

We first show the detection accuracy of the trained CNNs in image-wise and patient-wise detection under various 

experimental settings. An experimental setting is a combination of three binary choices, i.e. {UCT, CECT} (whether we 

use UCT images or CECT images), {Unmasked, Masked} (whether we use unmasked images or masked images), and 

{IW, NES} (whether we conduct instance weighting or negative example selection to cope with class imbalance). In what 

follows, each setting is referred to like UCT+Unmasked+IW, and we focus on five settings UCT+Unmasked+IW, 

UCT+Unmasked+NES, UCT+Masked+NES, CECT+Unmasked+NES, and CECT+Masked+NES which produced 

relatively high detection accuracy. One may find that, among these five settings, a setting with lower (clinical, annotation, 

or computational) cost comes earlier. 

4.1.1 Image-wise detection 

The results of image-wise detection under the five settings above are shown in Table 4, where we abbreviate the number 

of true positives, false positives, true negatives, and false negatives as TP, FP, TN, and FN, respectively. Three evaluation 

metrics, i.e. precision, recall, and F-score, are computed w.r.t. the positive class,  i.e. the presence of cancer. The figures 

in parentheses in Table 4 are the ones related to endophytic cancer. For example, in Table 4, precision w.r.t. the presence 

of endophytic cancer under the UCT+Unmasked+IW setting is computed as 3 / (3 + 23) = 0.115. 

We can say from Table 4 as follows. First, recall with negative example selection (NES) was higher than that with 

instance weighting (IW), at the cost of the increase in the number of false positives. Second, with masked images, all 

evaluation metrics were improved. This would imply that the influence from the other organs around the kidney is not 

ignorable. Third, while CECT images did not improve detection accuracy as expected, the decrease of evaluation metrics 



 

for endophytic cancer was not observed with CECT images. Lastly, as might be expected, we achieved the highest recall 

under the most costly setting, i.e. CECT+Masked+NES. 

4.1.2 Patient-wise detection 

The results of patient-wise detection under the selected five settings are shown in Table 5, where all evaluation metrics 

were higher than those in image-wise detection, even for endophytic cancer. In particular, we achieved quite high recall 

due to our way for patient-wise detection that exploits the maximum confidence over all CT images of a patient. It should 

also be noted that the evaluation metrics were sensitive to the threshold θpatient in patient-wise detection. 

 

Table 5. The results of patient-wise detection. 
 

Setting TP FN TN FP Precision Recall F-score 

UCT+Unmasked+IW 3 (1) 7 (3) 4 1 0.750 (0.500) 0.300 (0.250) 0.429 (0.333) 

UCT+Unmasked+NES 10 (4) 0 (0) 1 4 0.714 (0.500) 1.000 (1.000) 0.833 (0.667) 

UCT+Masked+NES 10 (4) 0 (0) 2 3 0.769 (0.571) 1.000 (1.000) 0.870 (0.727) 

CECT+Unmasked+NES 3 (2) 7 (2) 4 1 0.750 (0.667) 0.300 (0.500) 0.429 (0.571) 

CECT+Masked+NES 10 (4) 0 (0) 2 3 0.769 (0.571) 1.000 (1.000) 0.870 (0.727) 

4.2 Visual Explanation 

From now on, we show several examples of visual explanations produced by Grad-CAM under each of the selected five 

settings, and discuss the relations between the accuracy of image-wise detection and visual explanations. 

4.2.1 UCT+Unmasked+IW 

Fig. 3 shows several visual explanations in the form of heatmaps under the UCT+Unmasked+IW setting. One may find 

that, for the CT images in Figs. 3 (a) and 3 (d), the trained CNN surely looked at the kidney, but it often performed 

classification based on the other organs as exhibited by Figs. 3 (b), 3 (c), and 3 (e). Overall, the kidney did not frequently 

overlap with the regions relevant to the CNN’s decision. 

4.2.2 UCT+Unmasked+NES 

Fig. 4 shows visual explanations under the UCT+Unmasked+NES setting. For the images in Figs. 4 (a), 4 (b), and 4 (d), 

the trained CNN decided the presence/absence of cancer by looking at the kidney, but for the images in Figs. 4 (c) and 4 

(e), it relied on the regions around the kidney. Overall, thanks to negative example selection, the trained CNN turned to 

be sensitive to the differences inside the kidney, not in the surrounding organs, and it achieved a better detection accuracy 

than that under the UCT+Unmasked+IW setting. 

4.2.3 UCT+Masked+NES 

Fig. 5 shows visual explanations under the UCT+Masked+NES setting.  For the images in Figs. 5 (a), 5 (b), 5 (c), and 5 

(e), which were classified as positive, it is obvious that the trained CNN looked only at the kidney. As Table 4 says, the 

accuracy of image-wise detection was much improved under this setting, and thus reducing irrelevant information in the 

input image is particularly important. It should be noted however that the trained CNN’s decision was sensitive to the 

contour of the kidney, and eventually, to the quality of masking. 

     

(a) (b) (c) (d) (e) 

Figure 3. (a)–(c) Heatmaps in true positive cases under the UCT+Unmasked+IW setting, (d) a heatmap in false negative 

cases, and (e) a heatmap in false positive cases. 

 



     

(a) (b) (c) (d) (e) 

Figure 4. (a)–(c) Heatmaps in true positive cases under the UCT+Unmasked+NES setting, (d) a heatmap in false negative 

cases, and (e) a heatmap in false positive cases. 

 

     

(a) (b) (c) (d) (e) 

Figure 5. (a)–(c) Heatmaps in true positive cases under the UCT+Masked+NES setting, (d) a heatmap in false negative cases, 

and (e) a heatmap in false positive cases. 

4.2.4 CECT+Unmasked+NES 

Fig. 6 shows visual explanations under the CECT+Unmasked+NES setting. For the images in Figs. 6 (a), 6 (b), 6 (c), and 

6 (e), which were classified as positive, the trained CNN looked at the surrounding organs. On the other hand, for the 

image in Fig. 6 (d), which was classified as negative, the trained CNN looked at normal tissues in the kidney, which were 

mostly whitened in CECT images. One hypothesis for the latter is that the decision by the trained CNN may have been 

made based on the texture of a kidney rather than its contour, and hence there would be a room for improvement of the 

CNN’s structure or its training process. 

     

(a) (b) (c) (d) (e) 

Figure 6. (a)–(c) Heatmaps in true positive cases under the CECT+Unmasked+NES setting, (d) a heatmap in false negative 

cases, and (e) a heatmap in false positive cases. 

 

4.2.5 CECT+Masked+NES 

Lastly, Fig. 7 shows visual explanations under the CECT+Masked+NES setting. For the images in Figs. 7 (a), 7 (b), 7 (c), 

and 7 (e), which were classified as positive, the focus of the trained CNN is primarily on the kidney. Similarly to the case 

under the UCT+Masked+NES setting, we can say that masking is effective in reducing the unwanted influence, while its 

quality is crucial. In addition, contrastingly with the case under the CECT+Unmasked+NES setting, the kidney was 

surely taken into account. 

     

(a) (b) (c) (d) (e) 

Figure 7. (a)–(c) Heatmaps in true positive cases under the CECT+Masked+NES setting, (d) a heatmap in false negative 

cases, and (e) a heatmap in false positive cases. 



 

5. CONCLUSION 

In this paper, as an empirical study, we constructed a CNN that detects kidney cancer well from abdominal CT images, 

and discussed the relations between the CNN’s detection accuracy and visual explanations produced by Grad-CAM. With 

a help from visual explanations that highlight the regions relevant to the CNN’s decision, we improved the detection 

accuracy of the CNN by elaborating the dataset. For example, reducing the unwanted influence from the organs around a 

kidney is found to be the most effective, and selection of negative examples is a promising vehicle that only requires a 

computational cost. As is often said,10 for the decision made by a deep neural network, visual explanation is inherently 

just an approximation of the true explanation. However, at least in this study, it often gave us clues for improving 

predictive models and planning experiments. We would also like to add that visual explanation played a key role in 

discussion with medical experts. 

In future, we will work for further improvement of the CNN’s detection accuracy. We are planning to extend the datasets 

of UCT and CECT images, and to refine the method for patient-wise detection. In patient-wise detection, decision 

thresholds can be opt based on the validation dataset, or more sophisticatedly, following Seto et al., we can combine 

high-level features extracted from multiple CT images of a patient as an input of a recurrent neural network,7 provided 

more CT images are available. It is also interesting to introduce a recent visual explanation method equipped with class-

discriminativity and high resolution at the same time.11 
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