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Abstract—This paper proposes a white-box, associative clas-
sifier that uses discriminative patterns mined from a dataset
including numeric values. In the proposed model, when there
exist conflicting patterns for a test instance, we take into
account the training instances covered in common by them as
the “neighbors” of the test instance. By this design, we can
accurately capture the space around the test instance, and as
a result, it is observed in our experiments that the predictive
performance is improved from some simpler methods. We also
show another advantage of the proposed classifier by inspecting
its interpretability/explanability.

Index Terms—Associative Classifiers, Discriminative Patterns,
Interpretability, Explanability

I. INTRODUCTION

Frequently we wonder why or how our predictive model
generates the outputs we have obtained when taking a machine
learning approach. As an example, let us consider the case of
automated loan approval in a bank. In such a case, the bank
judges whether it is acceptable to lend money to a customer.
With a black-box classifier, the customer would not be able
to trust the result of the prediction even if it shows a good
predictive performance, since the classifier does not show the
reason for the prediction. In contrast, with an interpretable
classifier, the customer would trust the prediction since he/she
can tell the degree of credibility to his/her knowledge, and
futhermore, customers way accept that the bank has decided
not to lend money.

From the motivation above, in this paper, we aim to build
a white-box, associative classifier [1], called the ECHO clas-
sifier, which uses discriminative patterns [2], [3] mined by an
algorithm we call Exhaustive Covering in Hybrid Domains
(ECHO) [4]. Discriminative patterns exhibit the differences
among classes and can be directly used as if-then rules from
which users easily understand the reason for each predic-
tion. One advantage of ECHO is that it can directly deal
with a dataset including numeric values. There also exist
methods that make black-box models, including deep neural
networks, interpretable [5]. However, at present, developing
such interpretation methods are still under study (e.g. [6]).
Instead, we prefer to build a classifier without an extra tool
for interpretation. In this paper, for simplicity, we focus on
binary classification.

When making a prediction using discriminative patterns,
the classes they predict often conflict, and the way of re-
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solving such a conflict would severely affect the accuracy of
classification. Some associative classifiers simply return the
class predicted by the discriminative pattern with the highest
performance metric [1]. However, such patterns cannot always
capture the space around the test instance and often lead to
erroneous prediction for test instances. For this reason, in this
paper, we propose to take into account the training instances
covered in common by conflicting patterns in prediction for a
test instance. Such common instances work as the “neighbors”
of the test instance, and therefore we can accurately capture
the space around the test instance. In addition, we conducted
some experiments that compare the proposed method with
some simpler methods, and show that the predictive perfor-
mance of the proposed method is improved from such simpler
methods. We also inspect the interpretability/explanability of
discriminative patterns used in the ECHO classifier and show
its another advantage.

The rest of this paper is outlined as follows. First, we will
describe ECHO in Section II. Next, we introduce the proposed
classifier in Section III and show the results of our experiments
in Section IV. Finally, we conclude this paper in Section V.

II. BACKGROUND

In this section, we will give a brief description on ECHO.
Please refer to [4] for details.

A. Datasets, Instances, Items, and Patterns

Let us start with introducing some notations and related
concepts. Throughout the paper, we consider a database D =
{t1, t2, ..., tN} of size N , where each ti is called an instance,
and is a set of attribute-value pairs of the form ⟨A, v⟩, where
A is called an attribute, and v is called a value. Here we have
two types of attributes, i.e. symbolic attributes and numeric
attributes. If an attribute A is symbolic, v is some symbolic
value chosen from A’s own domain, and if A is numeric, v is
some real number. In classification and discriminative pattern
mining, we assume that each ti in D is associated with a class
ci, which is one of pre-defined classes C.

On the other hand, we consider two types of items. A sym-
bolic items takes the form ⟨A, v⟩, and we can equate it with an
attribute-value pair in an instance. An interval item takes the
form ⟨A, [u, v)⟩ and further has two types. A base interval
item ⟨A, [vi, vi+1)⟩ corresponds to one of n base intervals
obtained from n − 1 cut-points ∆A = {v1, v2, . . . , vn−1}
and two extreme points v0 = −∞ and vn = ∞. An upper



interval item is then defined as ⟨A, [vi, vj)⟩ where 0 ≤ i ≤ n,
0 ≤ j ≤ n, and i < j. We hereafter replace every attribute-
value pair ⟨A, vraw⟩ in D in advance with a basic interval
item ⟨A, [vi, vi+1)⟩ where vi ≤ vraw < vi+1, and think of
each instance ti as a set of symbolic items and basic interval
items. In a default setting, we adaptively decide the cut-points
∆A for each attribute A based on previous work [7], [8].

A pattern is basically defined as a set of items. In a logical
context, on the other hand, we sometimes consider each item
as an atomic proposition, and each pattern x as a conjunction
of items in it, i.e.

∧
x∈x x. One may see that interval items

form a concept lattice. Indeed, for two interval items x =
⟨A, [u, v)⟩ and y = ⟨A, [u′, v′)⟩ where u ≤ u′ and v′ ≤ v, x
is more general than y, or x subsumes y, which is written as
x ⪰ y. This subsumption relation x ⪰ y also holds for two
symbolic items x = ⟨A, u⟩ and y = ⟨A, v⟩ where u = v. We
can finally consider the subsumption relation among patterns.
That is, for two patterns x and y, x ⪰ y holds when, for each
x ∈ x, there exists y ∈ y such that x ⪰ y. As a special case,
we say that a pattern x covers an instance ti when x ⪰ ti.

B. Classification Metrics

Let c be the class of our current interest. Then, discrimi-
native patterns are the patterns that distinguish the instances
in class c (positive instances), and the instances not in c
(negative instances). One may directly use a discriminative
pattern x for class c as a classification rule x ⇒ c, which
predicts class c for an instance covered by x. Thus, in order
to measure the quality of a discriminative pattern x, we borrow
the metrics often used in performance evaluation of a classifier.
These metrics are computed based on the empirical joint
probabilities p(c,x) = N(c,x)/N from the database, where
N(c,x) = #{i | ci = c,x ⪰ ti, 1 ≤ i ≤ N}, i.e. the number
of instances in class c covered by pattern x. Here #S indicates
the number of elements of set S.

Precision and recall are frequently used as classification
metrics of a classifier. Using the notation above, confidence
is written as p(c | x) and positive support as p(x | c). We
may call positive support simply “support.” F-value is then
defined as the harmonic mean of them: Fc(x) = 2p(c | x)p(x |
c)/(p(c | x) + p(x | c)). A normalized version of χ2-value
is defined based on a binary relation between pattern x and
class c: χ2

c(x) =
∑

c′∈{c,¬c},x′∈{x,¬x} τ(c
′,x′), where

τ(c′,x′) =
(p(c′,x′)− p(c′)p(x′))2

p(c′)p(x′)
. (1)

Our implementation of ECHO allows us to specify the min-
imum confidence and the minimum positive support. From
now on, however, we just consider intuitive settings, i.e. 0.5
and 1/N , respectively.

C. Reducing Redundancy among Patterns

ECHO employs the closedness constraint [9] and the best-
covering constraint [10] to reduce redundancy among patterns.
The closedness constraint leaves only the most specific pattern

among the patterns that cover the same set of positive in-
stances. This helps ECHO to find more specific and hopefully
more discriminative patterns. Inversely, when we disable the
closedness constraint, the obtained patterns will become more
general. The best-covering constraint says that each output
pattern x must have some positive transaction covered by x
with the highest classification metric. It is shown in [10] that
the best-covering constraint is tighter than the productivity
constraint [11], often used in discriminative pattern mining.

D. Exhaustive Covering

For finding meaningful discriminative patterns, ECHO per-
forms a depth-first search with branch-and-bound pruning for
patterns of higher quality, under the closedness constraint and
the best-covering constraint. This search strategy is called
exhaustive covering [10]. At the algorithmic level, we built
ECHO on top of FP-growth [12], a standard frequent pattern
mining algorithm, by extending FP-trees based on concept
lattices over interval items. In the search process, appropriate
interval items will be chosen from concept lattices, which
means that discretization that considers multiple attributes
simultaneously is conducted inside ECHO. Several conven-
tional associative classifiers basically require discretization in
advance [1]. Discretization in each individual attribute may
lead to a considerable information loss, so the way of handling
numeric values above is one notable advantage of ECHO.
Another advantage also comes from its exhaustiveness. Rule-
based classifiers such as decision trees can also deal with
numeric values, but they are greedy algorithms relying on a
heuristic function whose effect is often unclear. In contrast, the
patterns found by ECHO have declarative meaning in terms
of classification metrics and the constraints among patterns,
which would lead to higher interpretability/explanability of
associative classifiers using discriminative patterns.

Of course, the computational burden of exhaustive search
is not ignorable in many real-world datasets. To mitigate
this, ECHO adopts dynamic re-ordering [13] at branches in
the depth-first search, and attribute-wise binning based on
Jensen-Shannon divergence. By dynamic re-ordering, ECHO
is controlled to find promising patterns earlier, and hence
would output patterns of higher quality within a limited
amount of time. In our implementation, we specify Tmax as
an upper limit of running time of ECHO. Similarly, in our
attribute-wise binning, we specify Imax as an upper limit of
the number of base intervals for each attribute. With smaller
Imax, we have only to consider fewer base intervals, and thus
the search space can be drastically reduced. In this binning,
we merge base intervals so as to maximize the difference
between the probability distributions of positive instances and
negative instances. The difference is measured by Jensen-
Shannon divergence, and the merge operation is conducted in a
dynamic programming fashion similarly to optimal histogram
construction [14]. It should be noted here that, in this binning,
we just intend to limit the number of base intervals, and not
to find an optimal set of base intervals for each attribute, like



[15]. Rather, as said above, appropriate interval items will be
chosen in the later search process of ECHO.

III. PROPOSED METHOD

Here we describe our proposed method, the ECHO clas-
sifier, which predicts the class of a test instance using dis-
criminative patterns obtained by ECHO. In most cases, there
are some patterns that cover the test instance, and we need
to decide which patterns are used for prediction. A simple
approach to exploiting discriminative patterns is that we rank
the patterns according to a performance metric (e.g. F-value
or χ2-value). However, this method may not be suitable when
some discriminative patterns overly cover many instances, and
they tend to be selected as the best pattern even for an almost
irrelevant instance. This method can also be problematic since
it relies on a single rule. Therefore in this study, we propose
a method that exploits multiple, conflicting discriminative
patterns rules using the training instances covered in common
by them. Then, we predict a class based on a weighted class
ratio in the common instances.

To be more specific, we first consider a set X of discrimi-
native patterns obtained by ECHO. We then pick up the subset
X ∗ from X that covers the test instance of interest. Note
here that the classes predicted by the patterns in X ∗ can be
conflicting. Also we introduce a set Ix of training instances
covered by a pattern x, and a set of common training instances
I∗ =

∩
x∈X∗ Ix covered by the patterns in X ∗. Finally, we

predict c∗ as a class for the test instance, where

c∗ = argmax
c

1

p(c)
p

(
c

∣∣∣∣∣ ∧
x∈X∗

x

)
(2)

p

(
c

∣∣∣∣∣ ∧
x∈X∗

x

)
=

#{i | ti ∈ I∗, ci = c, 1 ≤ i ≤ N}
#I∗

. (3)

Here we can interpret p(c |
∧

x∈X∗ x) as the estimated
class distribution inside the space limited by

∧
x∈X∗ x around

the test instance, and 1/p(c) is the weight that cancels the
influence from the imbalance in the entire class distribution.

The outline of the prediction procedure is as follows:

1 Load the discriminative patterns that have been found
with the closedness constraint.

2 Predict a class according to the number of patterns
covering a test instance:

– 0 → Go to Step 3.
– 1 → Return the class of the covering pattern.
– 2 or more → Is there any common training

instance covered by the patterns? (Case 1)
∗ Yes → Return the class predicted by Eq. 2.
∗ No → Go to Step 3.

3 Load the discriminative patterns that have been found
without the closeness constraint.

4 Predict a class according to the number of patterns
covering a test instance:

– 0 → Return the majority class.
– 1 → Return the class of the covering pattern.
– 2 or more → Is there any common training

instance covered by the patterns? (Case 1)
∗ Yes → Return the class predicted by Eq. 2.
∗ No → Return the prediction by k-NN.

(Case 2)

Note here that we refer to discriminative patterns with the
closedness constraint first, and then refer to those without
the closedness constraint. This is because, as mentioned in
Section II-C, we tend to have more specific and more discrimi-
native patterns under the closedness constraint. In addition, in
Case 1, we need to consider common instances only when
the classes predicted by the patterns covering the test instance
are conflicting. Moreover, in Case 2, we call the k-nearest
neighbor classifier (k-NN) when there is no common instance
covered by conflicting discriminative patterns. In the cases
other than Case 2, we can predict the class of a test instance
in an interpretable way using discriminative patterns. k-NN is
primarily adopted for guaranteeing the predictive performance,
but we can still think of k-NN methods as interpretable since
it is possible to present (a summary of) k-neighbor instances
as the reason for the prediction [16].

IV. EXPERIMENTAL RESULTS

In this section, we report the results of our experiments.
First, we describe the experimental settings, and review the
other classifiers in comparison. Second, we show some results
on predictive performance. Lastly, we make a simple analysis
on the interpretability/explanability of the proposed method.

A. Experimental Settings

1) Datasets: Datasets were selected from UCI Machine
Learning Repository. All datasets are provided primarily for
binary classification. We show the datasets below, where the
name of each dataset is followed by the number of positive
instances and the number of negative instances.

• Both symbolic and numeric attributes contained (hybrid):
– credit-german (bad : good = 300 : 700)
– heart-cleveland (‘>50 1’ : ‘<50’ = 138 : 165)
– hepatitis (DIE : LIVE = 32 : 123)
– sick (sick : negative = 231 : 3541)

• Only continuous attributes contained (numeric):
– breast-w (malignant : benign = 241 : 458)
– diabetes (test positive : test negative = 268 : 500)
– ionosphere (b : g = 126 : 225)

• Only discrete attributes contained (symbolic):
– kr-vs-kp (nowin : won = 1527 : 1669)
– mushroom (e : p = 4062 : 4062)
– vote (republican : democrat = 168 : 267)

The dataset files are converted from the ARFF files provided
in Weka’s website (https://www.cs.waikato.ac.nz/ml/weka/).



TABLE I
EXPERIMENTAL RESULTS ON CLASSIFICATION

Classifier Dataset

# Settings Hybrid Numeric Symbolic Average
Method Tmax Imax credit-g heart-c hepatitis sick breast-w diabetes ionosphere kr-vs-kp mushroom vote

1 top-ranker 1 unlimited 0.498 0.726 0.552 0.282 0.903 *0.664 0.894 0.866 *0.913 0.932 0.723
2 no-k-NN 1 unlimited 0.537 0.779 *0.581 0.297 0.924 0.653 0.858 *0.915 0.881 0.932 0.736
3 full 1 unlimited 0.540 0.787 0.516 0.679 *0.929 0.644 0.863 *0.915 0.887 0.933 0.769
4 full 3 unlimited 0.559 0.797 0.500 0.703 0.926 0.647 0.870 *0.915 0.887 *0.942 0.775
5 full 6 unlimited *0.571 *0.799 0.525 0.721 0.926 0.647 0.876 *0.915 0.887 0.938 0.781
6 full 1 20 0.555 0.797 0.484 *0.778 0.926 0.637 *0.899 *0.915 0.887 0.939 *0.782
7 full 1 50 0.559 0.793 0.492 0.765 0.926 0.642 0.870 *0.915 0.887 0.933 0.778

Random Forests 0.594 0.807 0.512 0.721 0.956 0.695 0.909 0.959 0.950 0.948 0.805
Decision Trees 0.582 0.773 0.460 0.736 0.895 0.668 0.841 0.963 0.950 0.935 0.780

2) Settings for ECHO: We implemented the ECHO clas-
sifier in a scikit-learn (https://scikit-learn.org/) compatible
fashion, in order to easily compare with existing classifiers
with standard evaluation methods. The learning procedure
(i.e. the “fit” function) includes the routine that finds the
discriminative patterns by ECHO. As the prediction procedure
(i.e. the “predict” function), on the other hand, the procedure
described in Section III was implemented.

For rigorous comparison, we introduced grid search and
stratified cross-validation [17]. Grid search is one of the
standard hyper-parameter tuning methods, finds the best com-
bination of hyper-parameters from all combinations. In strat-
ified cross-validation, the number of folds is set as 10. The
performance metric we use is F-value for the minority class.
This is because, in general, the problem of identifying the
minority class is more difficult and important. Grid search
was not performed for ECHO since ECHO has only a few
hyper-parameters to be tuned. This is another advantage of
using ECHO, as more complex models can be more difficult to
tune their hyper-parameters. We also conducted a grid search
for tuning k-NN, whose hyper-parameter is the number of
neighbors k ∈ {1, 3, 5, 9, 19, 29}. The candidates for k were
chosen as odd for avoiding ties. Furthermore, in the grid
search, 10-fold stratified cross-validation is applied to k-NN.
The processor we used is Core i7-8700 (3.2GHz).

The ECHO classifiers use two hyper-parameters Tmax and
Imax defined in Section II-D, and they were configured in
two ways. One way is that we vary Tmax using 1, 3, and 6
hours with Imax being unlimited. Another way is that we vary
Imax using 20 and 50 with Tmax being 1 hour. Based on a
preliminary experiment, we chose χ2-value as the classfication
metric in finding discriminative patterns by ECHO.

To see the effect of the operations in the ECHO classifiers
described in Section III, we consider two simplified variants.
The first variant, called the “top-ranker” variant, just ranks
discriminative patterns according to χ2-value without using
common instances covered by conflicting patterns. The second
one, the “no-k-NN” variant, does use such common instances,
but returns the majority class without using k-NN.

3) Settings for Conventional Classifiers: We also chose
random forests and decision trees as conventional classification
models in comparison. Random forests are an ensemble model

known for its high predictive accuracy thanks to the majority
decision of multiple trees. We performed imputation for miss-
ing values and one-hot encoding for symbolic attributes as
preprocessing. Missing values for an attribute are imputed by
randomly generated values from the other instances having
observed values for the attribute.

In hyper-parameter tuning of these conventional classifiers,
we conducted grid search. In learning random forests, we
tuned three hyper-parameters: the number of trees to be gener-
ated (‘n estimators’), the minimum number of supports each
leaf holds (‘min samples leaf’), and whether to consider class
weights (‘class weight’). The candidates of hyper-parameters
are as follows.

‘n estimators’: 50, 100, 200, 500, and 1000
‘min samples leaf’: 1, 2, 5, 10, and 20
‘class weight’:
“balanced according to the class distribution” and “uniform”

In learning decision trees, we conducted grid search for
‘min samples leaf’ and ‘class weight’ over the same candi-
dates as those in random forests. We run 10-fold stratified
cross-validation using the tuned hyper-parameters. Similarly to
the ECHO classifiers, we evaluated the conventional classifiers
by F-value for the minority class. Random forests and decision
trees we use are implemented in scikit-learn.

B. Results

We show the results in Table I, where the names of some
datasets are abbreviated due to the space limit. Also, for easy
reference, the variants of the ECHO classifiers are numbered
as in the first column of the table. For each dataset, the best
performance metric among all classifiers is written in bold. In
addition, the best performance among the ECHO classifiers
(#1–7) is annotated with the ‘∗’ symbol.

First of all, we compare the “top-ranker” variant (#1) and
the “no-k-NN” variant (#2). The “no-k-NN” variant has a
higher average F-value than the “top-ranker” variant. However,
the F-value for the sick dataset remains low. This result
implies that the stability of these simplified variants seems
low. Next, we compare the “no-k-NN” variant (#2) and the full
ECHO classifier (#3). The full ECHO classifier has a higher
average F-value than the “no-k-NN” variant. In particular, in



TABLE II
STATISTICS ON DISCRIMINATIVE PATTERNS

Classifier Statistics Closedness Dataset

constraint Hybrid Numeric Symbolic
credit-g heart-c hepatitis sick breast-w diabetes ionosphere kr-vs-kp mushroom vote

Avg. number of patterns Yes 82 32 23 57 18 70 23 11 10 11
ECHO No 69 31 27 50 24 68 20 11 12 11

classifier Avg. pattern length Yes 4.02 5.36 4.62 3.04 6.01 3.71 6.83 5.65 4.44 1.19
No 3.11 3.95 4.08 2.16 4.93 3.20 2.73 3.97 2.22 1.19

Decision Trees Number of leaves 31 18 10 61 19 23 9 34 12 13
Maximum depth 10 6 5 30 7 7 5 11 6 5

TABLE III
A PART OF DISCRIMINATIVE PATTERNS OBTAINED BY ECHO FOR THE CREDIT-GERMAN DATASET

Test instance age = 28, checking status = ‘0 ≤X<200’, credit amount = 5234, duration = 30, housing = ‘own’
(class = ‘bad’) purpose = ‘new car’, other payment plans = ‘none’, savings status = ‘<100’, . . .

Covering 15.50 ≤ duration < 66.00, savings status = ‘<100’
patterns 19.50 ≤ age < 29.50, 653.0 ≤ credit amount < 15270, 8.500 ≤ duration < 66.00, purpose = ‘new car’
for ‘bad’ checking status = ‘0 ≤X<200’, 14.50 ≤ duration
Covering 23.50 ≤ age, credit amount < 7973, duration < 46.00, housing = ‘own’, other payment plans = ‘none’
patterns 23.50 ≤ age, credit amount < 7845, duration < 46.00, other payment plans = ‘none’

for ‘good’ 26.50 ≤ age, credit amount < 12860, duration < 66.00, housing = ‘own’

the sick dataset the full ECHO classifier showed a significant
improvement in average F-value.

There are also several results with other settings for the full
ECHO classifier. First, from some cases in which the upper
limit of running time (Tmax) for finding discriminative patterns
for each class is raised (#3, 4, and 5), one may find that the
performance is improved as the quality of patterns gets higher.
When the upper limit is 6 hours, it is higher than decision trees
on average. It should also be noted that ECHO’s exhaustive
search for discriminative patterns finished within one hour in
hepatitis, breast-w, kr-vs-kp, mushroom, and vote, and thus
there was only little difference among cases #3, 4, and 5.1

Next, we see some cases in which we change the upper limit of
the number of intervals (Imax) for numeric attributes in ECHO
(#3, 6, and 7). From these cases, we see that performance is
improved by limiting the number of base intervals to some
extent. In particular, we find that F-value was improved for the
sick dataset. With the upper limit being set as 20, the ECHO
classifier shows a better performance than decision trees.

C. Discussion

As said before, the ECHO classifier is expected to have
advantages as a white-box classifier. In this section, we discuss
the interpretability/explanability of the ECHO classifier.

1) Statistics on Discriminative Patterns: We first confirm
whether discriminative patterns are interpretable. For that, we
collect two statistics on discriminative patterns. One statistic
is the average number of discriminative patterns obtained by
ECHO for one class, in 10-folds stratified cross-validation. We
consider two cases where the closedness constraint is enabled

1Some variation in F-value arose due to the test instances to which we
applied k-NN.

and disabled. Another statistic is the average of lengths of
patterns and we present them in Table II. In Table III, we
show a part of discriminative patterns in the credit-german
dataset. In this example, the length of the first pattern is 2,
that of the second pattern is 4, and so on. Then, we take their
average over 10-folds. We also consider the cases where the
closedness constraint is enabled and disabled.

Table II shows the average number of discriminative pat-
terns and the average of pattern lengths observed in our
experiments. The ECHO classifier uses the same setting as that
of #5 in Table I. In Table II, we also show the number of leaves
and the maximum depth in decision trees. One may see that
the number of patterns is considerably large in Table II, since
ECHO searches for discriminative patterns exhaustively. This
tendency can also be observed in the datasets where it takes a
long time for finding discriminative patterns. In contrast, each
pattern short and intuitive, as illustrated in Table III, where
each interval item ⟨A, [vi, vj)⟩ is expressed as vi ≤ A < vj .
We can interpret patterns thanks to this shortness of patterns.
Decision trees are understandable at a glance if they are small,
but they can easily be too complicated to write down.

2) Tracing the Classification Process: Next we show an
example of how the ECHO classifier predicts the class of
a test instance. The ECHO classifier finds 40 patterns for
positive class ‘bad’ and 43 patterns for negative class ‘good’
using the credit-german dataset (Step 1 in Section III). Among
those patterns, there are 17 patterns for ‘bad’ and 27 patterns
for ‘good’ covering the test instance shown in Table III,
and Table III also shows a part of patterns covering the
test instance. We then extract the common instance covered
by these covering patterns (Step 2-2). In this example, the
number of the common training instances for ‘bad’ is 1 and
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Fig. 1. (a) Relative frequency of attributes in ECHO with the closedness constraint. (b) Relative frequency of attributes in ECHO without the closedness
constraint. (c) Importance of attributes in random forests.

for ‘good’ is 0. In this way, we can make an instance-specific,
detailed explanation of how the ECHO classifier works in the
classification process.

3) Usage of Attributes in Discriminative Patterns: Ad-
ditionally, we may make a model-specific explanation by
inspecting usage of attributes in discriminative patterns. That
is, in the ECHO classifier, we counted the attributes appearing
in discriminative patterns. For example, in Table III, ‘duration’
appears more frequently for six times and ‘age’ for four times.
We also consider two cases where the closedness constraint
is enabled and disabled. Here random forests are considered
as a target for comparison. The scikit-learn implementation
of random forests is able to compute the importance of each
attribute. The target dataset is the credit-german dataset. The
settings for ECHO are the same as the ones in Section IV-C1.
We show the relative frequency of each attributes in the
patterns obtained by ECHO in Figs. 1 (a) and (b) and the
importance of attributes in random forests presented in Fig. 1
(c). Fig 1 (a) (resp. Fig. 1 (b)) shows the results when the
closedness constraint is enabled (resp. disabled).

First, by comparing Figs. 1 (a) and (b), we have almost
the same relative frequencies. In the results related to ECHO
(Fig. 1 (a) or (b)), it is seen that ‘age,’ ‘credit amount,’ and
‘duration’ are quite frequently used. Besides, a comparison
between Fig. 1 (a) (or Fig. 1 (b)) and Fig. 1 (c), one may
see that the ECHO classifier only uses fewer attributes in
prediction than random forests. Note here that, at present,
random forests give us no simple way for making instance-
specific explanations, like the one described in Section IV-C2.

V. CONCLUSION

In this paper, we proposed a white-box, associative clas-
sifier that uses the training instances covered in common by
conflicting discriminative patterns. We also introduced k-NN
for the test instance not covered by interpretable discriminative
patterns in order to guarantee the accuracy of prediction. Using
this classifier, we achieved at least the same performance
metric as that of decision trees. We also investigated the inter-
pretability/explanability of the proposed classifier. Currently,
we are planning to shorten the running time of ECHO by

parallelization, and to compare the proposed classifier with
other associative classifiers such as CBA [18].
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