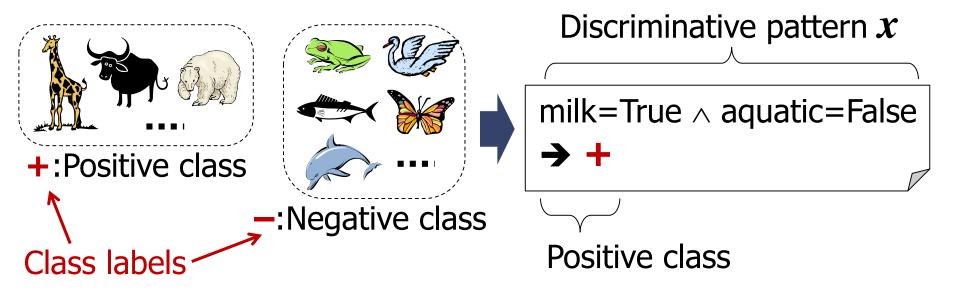


Dynamic Re-ordering in Mining Top-*k* **Productive Discriminative Patterns**

Yoshitaka Kameya* and Ken'ya Ito Meijo University

Outline

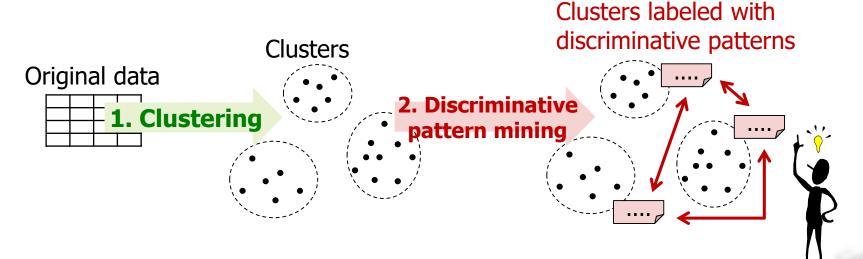
- Background
- Dynamic re-ordering in mining top-*k* productive discriminative patterns
- Experiments
- Related work and Conclusion


Outline

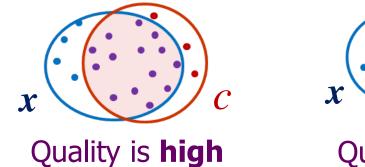
• Background

- Dynamic re-ordering in mining top-*k* productive discriminative patterns
- Experiments
- Related work and Conclusion

Background: Discriminative Patterns (1)


- Discriminative patterns:
 - Show differences between two groups (classes)
 - Used for:
 - Characterizing the positive class
 - Building more precise classifiers

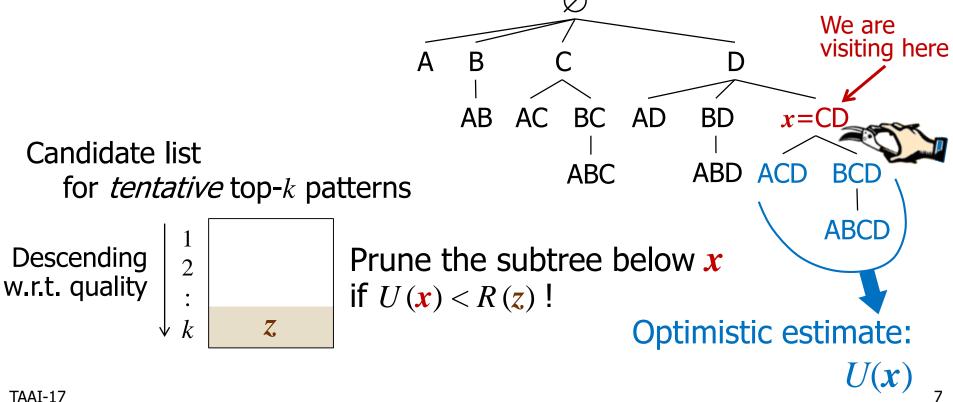
Background: Discriminative Patterns (2)

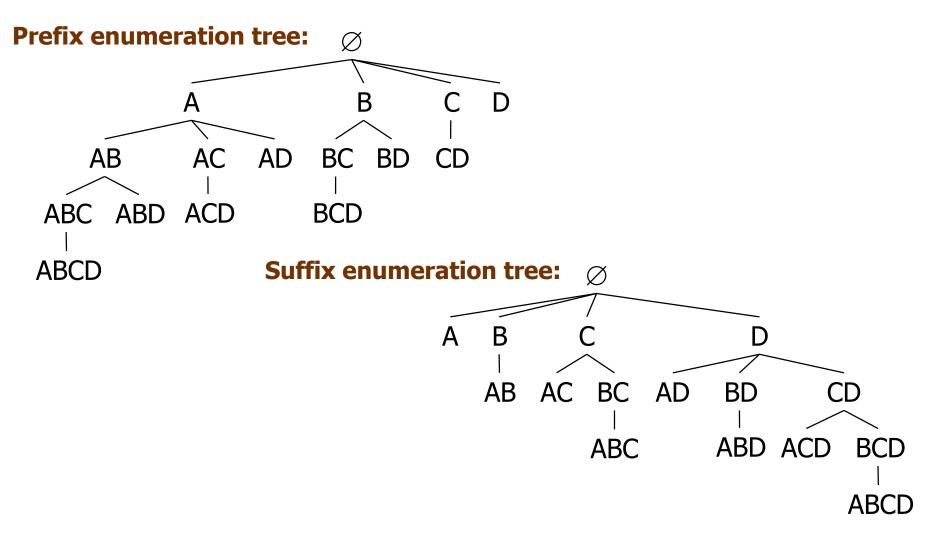

- Discriminative patterns tend to be more meaningful than frequent patterns (thanks to class labels)
- Are class labels always available?
 - Comparing groups is a standard (and promising) starting point in data analysis
 - Clustering can find groups (classes) !

 \rightarrow Cluster labeling

Background: Discriminative Patterns (3)

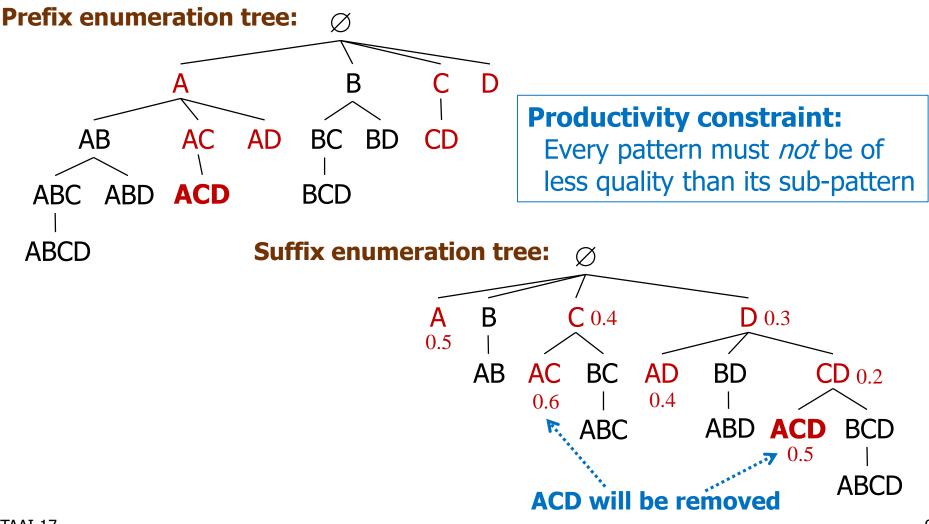
• Quality score: Measures the overlap between pattern *x* and positive class *c*



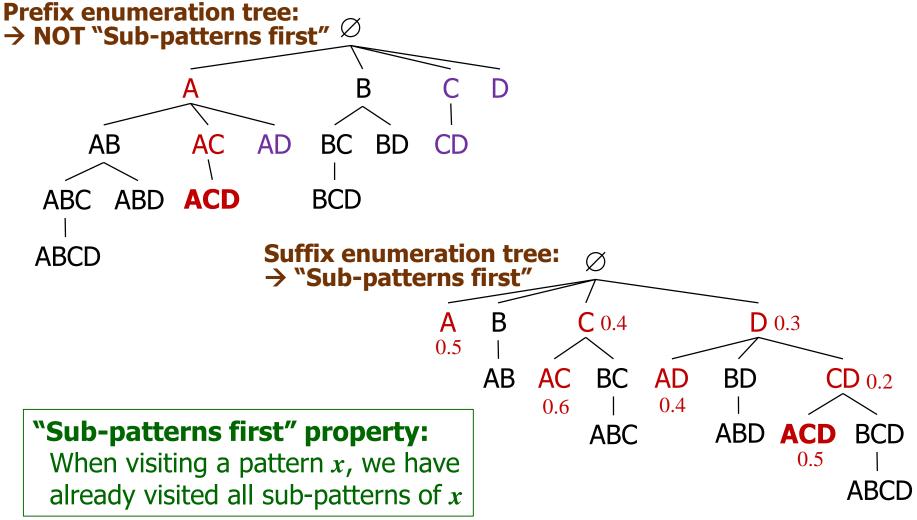

- Most of popular quality scores are *not* anti-monotonic:
 - Confidence, Lift
 - Support difference, Weighted relative accuracy, Leverage
 - F-score, Dice, Jaccard
 - ➔ Branch & bound pruning is often used [Morishita+ 00][Zimmermann+ 09][Nijssen+ 09]

Background: B&B Pruning for Top-*k* **Patterns**

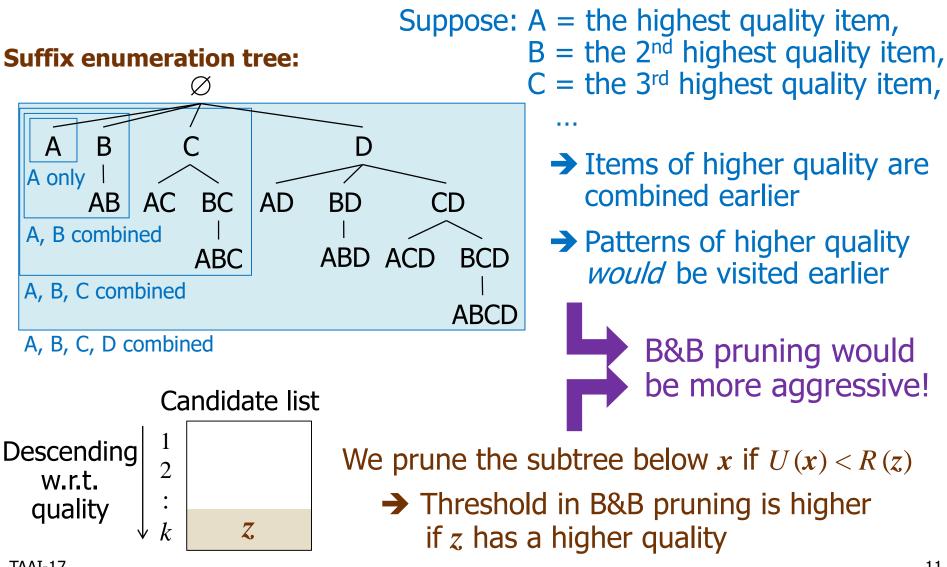
- Suppose: we are visiting a pattern x in a depth-first search
- We compute the upper bound U(x) of its quality R(x)
 (U(x) = an *optimistic* estimate of qualities of x's extensions)
- We prune the subtree below *x* if U(*x*) < R(*z*), where *z* is the *k*-th candidate



Background: Suffix Enumeration Trees (1)


Background: Suffix Enumeration Trees (1)

 Beneficial for checking the productivity constraint in a depth-first search


Background: Suffix Enumeration Trees (1)

 Beneficial for checking the productivity constraint in a depth-first search

Background: Suffix Enumeration Trees (2)

Also beneficial for effective B&B pruning

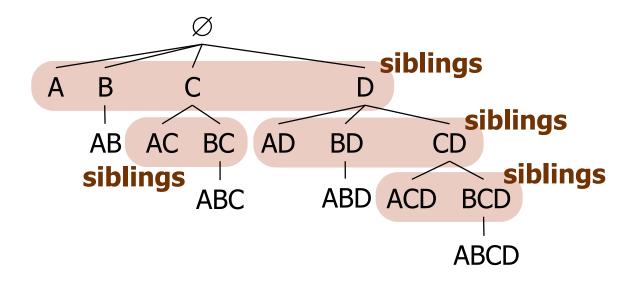
Outline

✓ Background

- Dynamic re-ordering in mining top-*k* productive discriminative patterns
 - Basic idea
 - Justification
- Experiments
- Related work and Conclusion

Outline

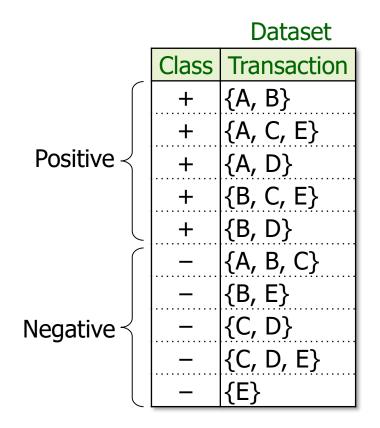
✓ Background


- Dynamic re-ordering in mining top-*k* productive discriminative patterns
 - Basic idea
 - Justification
- Experiments
- Related work and Conclusion

Our proposal: Basic idea (1)

• Basic idea:

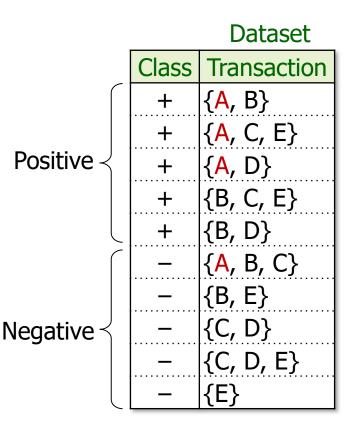
Re-order sibling patterns *dynamically* according to their qualities


→ Patterns of higher quality will be visited *yet earlier*→ B&B pruning will be *yet more* aggressive

Our proposal: Basic idea (2)

• Example:

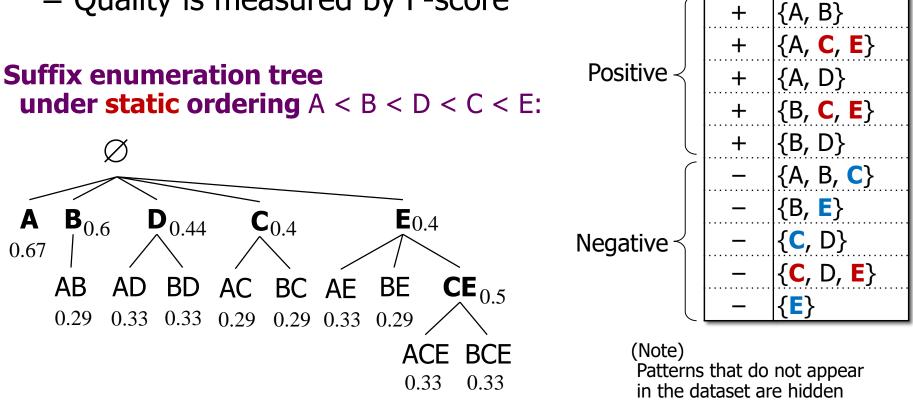
- 10 transactions
- Quality is measured by F-score


Our proposal: Basic idea (4)

• Example:

- 10 transactions
- Quality is measured by F-score

Recall of $\{A\} = 3 / 5 = 0.6$ Precision of $\{A\} = 3 / 4 = 0.75$ F-score of $\{A\} = 2 * 0.6 * 0.75 / (0.6 + 0.75) = 0.67$


- Similarly, we have:
 - F-score of {A} = 0.67
 - F-score of {B} = 0.6
 - F-score of {C} = 0.4
 - F-score of {D} = 0.44
 - F-score of {E} = 0.4

Our proposal: Basic idea (4)

• Example:

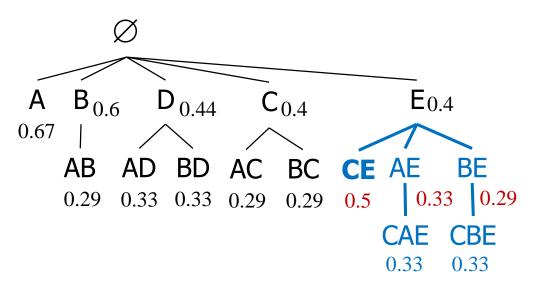
- 10 transactions
- Quality is measured by F-score

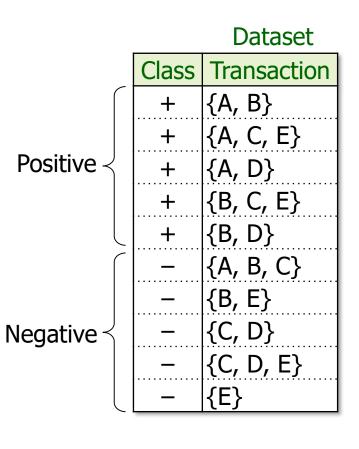
"Sub-patterns first" property holds and we have productive patterns {A}, {B}, {C, E}, {D}, {C}, {E}

Dataset

Transaction

Class


Our proposal: Basic idea (4)


Example:

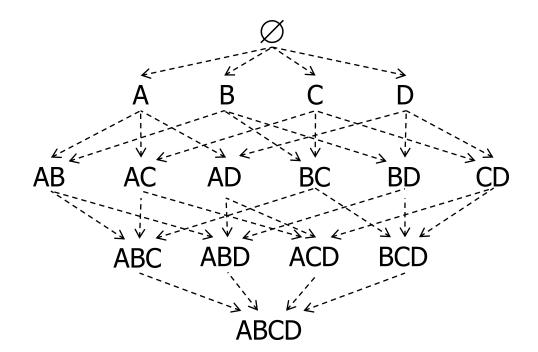
- Quality is measured by F-score

Suffix enumeration tree with dynamic re-ordering:

{C, E} comes earlier than before and it is interesting to see the "sub-patterns first" property *still* holds → Why?

Outline

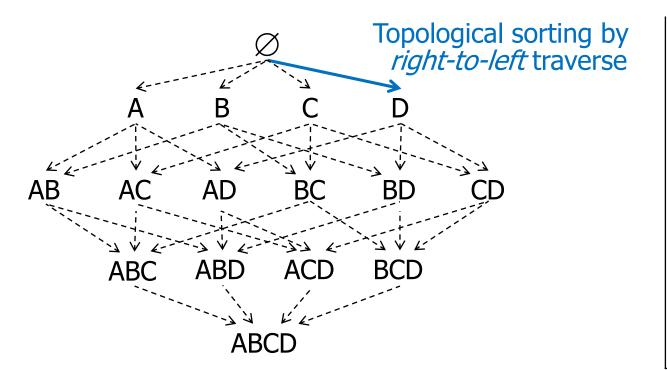
✓ Background


• Dynamic re-ordering in mining top-*k* productive discriminative patterns

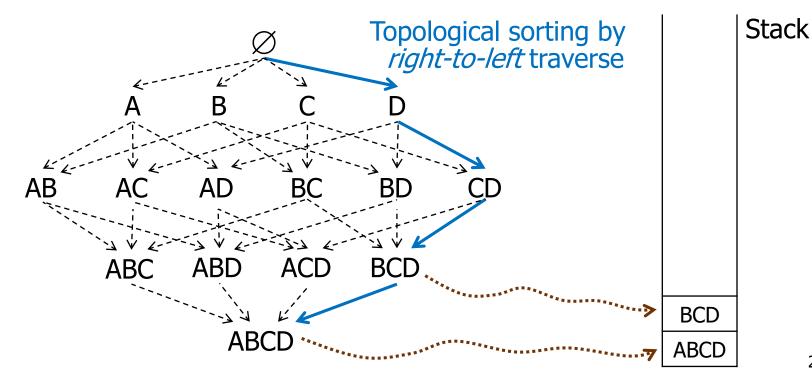
✓ Basic idea

- Justification
- Experiments
- Related work and Conclusion

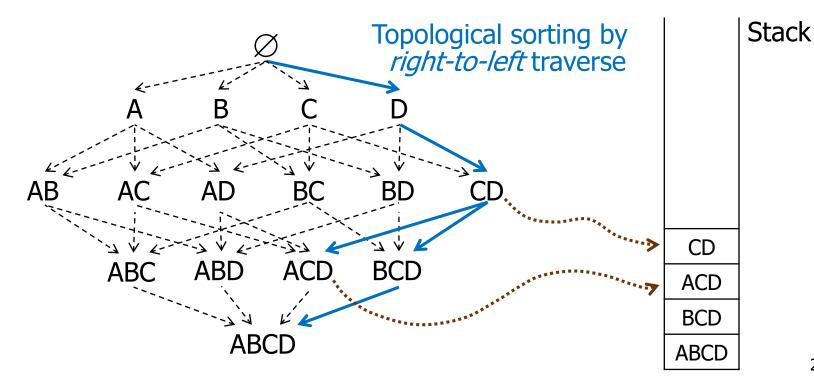
- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:


Visiting order of a search = ∃topological order over a Hasse diagram ⇒ The search is "sub-patterns first"

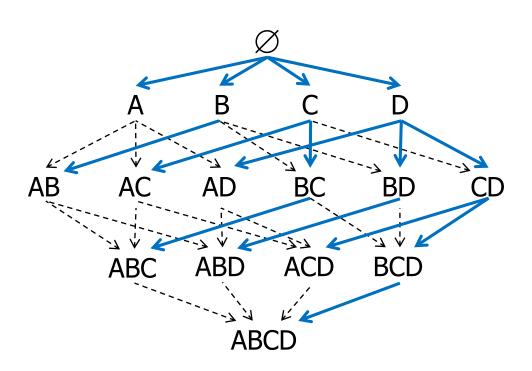
- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

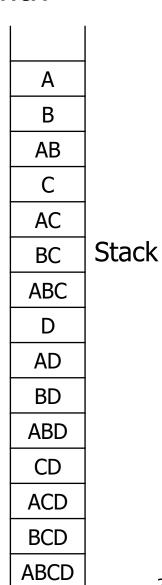

Visiting order of a search = ∃topological order over a Hasse diagram ⇒ The search is "sub-patterns first"

Stack

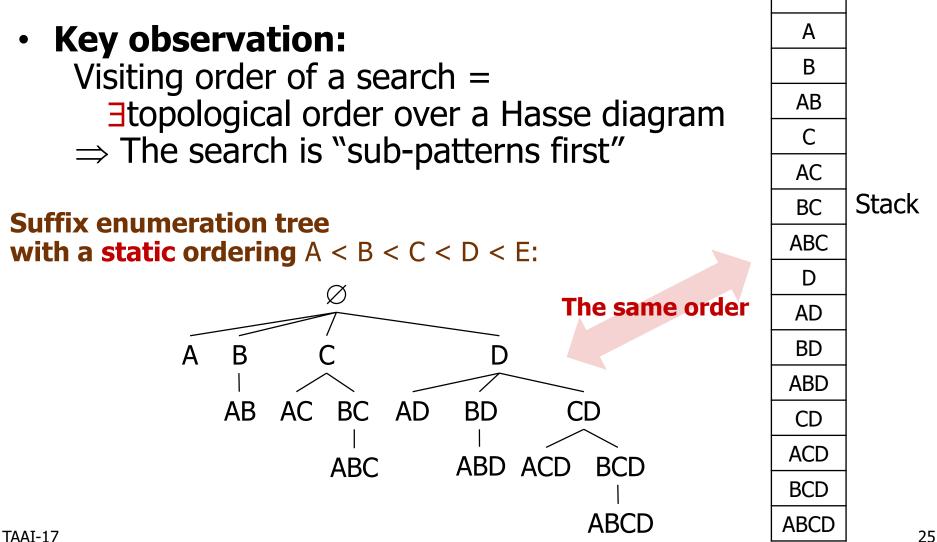

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search = ∃topological order over a Hasse diagram ⇒ The search is "sub-patterns first"

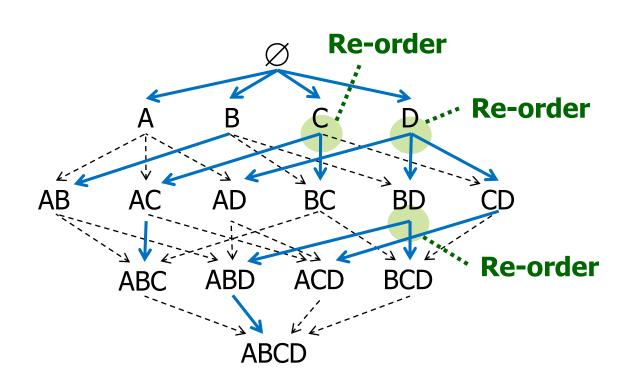


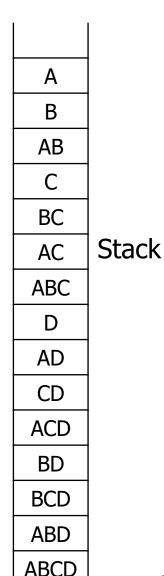

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search = ∃topological order over a Hasse diagram ⇒ The search is "sub-patterns first"

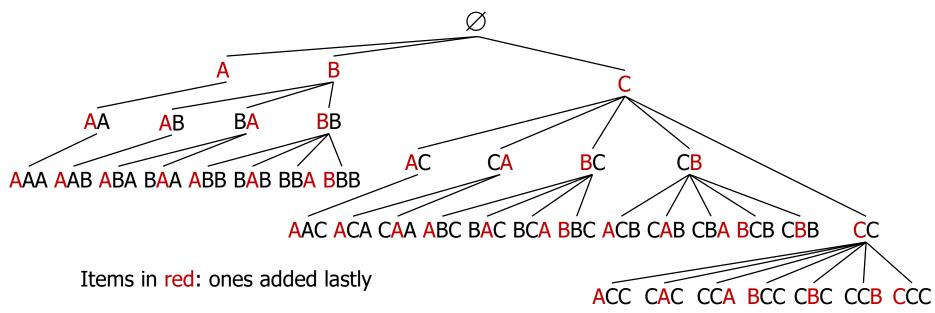


- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation: Visiting order of a search = ∃topological order over a Hasse diagram ⇒ The search is "sub-patterns first"





• "Sub-patterns first" property is assured *even with* dynamic re-ordering



- "Sub-patterns first" property is assured even with dynamic re-ordering
- We can always consider a topological sorting that simulates our dynamic re-ordering

 Topological sorting over a Hasse diagram also help us justify a "sub-patterns first" enumeration tree for <u>sequence patterns</u>:

To build this enumeration tree, we extend *x* whose lastly added item is *u* as follows:

- Insert items *u* or *x* such that *x* < *u* in the ascending order w.r.t. <
- When inserting x, insert it everywhere outside/between the items in x
- When inserting u, insert it on the left side of the lastly added u
- SPADE-like algorithm using a vertical layout can work with this tree, though max-gap constraint does not hold monotonically

Outline

✓ Background

- Dynamic re-ordering in mining top-k productive discriminative patterns
 - ✓ Basic idea
 - ✓ Justification
- Experiments
- Related work and Conclusion

Experiments: Settings

• Target: 16 datasets preprocessed by the CP4IM project:

Dataset	#Trans.	#Items	Dataset	#Trans.	Items
anneal	812	93	lymph	148	68
audiology	216	148	mushroom	8,124	110
australian-credit	653	125	primary-tumor	336	31
german-credit	1,000	112	soybean	630	50
heart-cleveland	296	95	splice-1	3,190	287
hepatitis	137	68	tic-tac-toe	958	28
hypothyroid	3,247	88	vote	435	48
kr-vs-kp	3,196	73	zoo-1	101	36

- We compare 3 variants of FP-growth with:
 - Static ordering based on quality (Static)
 - Static random ordering (Random)
 - Dynamic re-ordering (**Dynamic**; the proposed method)

Experiments: Results (1)

Number k of output patterns = 1 (lightweight cases)

En	tire # of v	visited pat	terns	Reduction ratio
Static	Dynamic	Random	Reduction ratio	$= (\langle \text{Static} \rangle - \langle \text{Dynamic} \rangle) / \langle \text{Static} \rangle$
2.4E+5	2.4E+5	2.5E+5	0.0	
N/A	N/A	N/A	N/A	
5.1E+3	5.1E+3	1.1E+4	0.0	
3.4E+2	3.4E+2	3.6E+2	0.0	
5.7E+3	5.7E+3	7.1E+3	0.0	
8.0E+1	8.0E+1	9.0E+1	0.0	
1.2E+3	1.2E+3	2.5E+3	0.0	
2.0E+5	2.0E+5	2.6E+5	0.0	
1.1E+4	1.1E+4	1.2E	Dumon	nie chowe na porformance
1.2E+2	1.2E+2	1.4E	-	nic shows <i>no</i> performance
8.8E+2	8.8E+2	1.1E	Improv	ement from Static
4.3E+3	4.3E+3	5.1E •	Static	and Dynamic work
2.5E+2	2.5E+2	2.5E-		better than Random
2.7E+1	2.7E+1	2.8E+1		
4.8E+1	4.8E+1	5.1E+1	0.0	
5.4E+1	5.4E+1	7.2E+1	0.0	
	Static 2.4E+5 N/A 5.1E+3 3.4E+2 5.7E+3 8.0E+1 1.2E+3 2.0E+5 1.1E+4 1.2E+2 8.8E+2 8.8E+2 4.3E+3 2.5E+2 2.7E+1 4.8E+1	StaticDynamic2.4E+52.4E+5N/AN/A5.1E+35.1E+33.4E+23.4E+25.7E+35.7E+38.0E+18.0E+11.2E+31.2E+32.0E+51.1E+41.1E+41.1E+41.2E+28.8E+28.8E+28.8E+24.3E+34.3E+32.7E+12.7E+14.8E+14.8E+1	Static Dynamic Random 2.4E+5 2.4E+5 2.5E+5 N/A N/A N/A 5.1E+3 5.1E+3 1.1E+4 3.4E+2 3.4E+2 3.6E+2 5.7E+3 5.7E+3 7.1E+3 8.0E+1 8.0E+1 9.0E+1 1.2E+3 1.2E+3 2.5E+3 2.0E+5 2.0E+5 2.6E+5 1.1E+4 1.1E+4 1.2E+3 1.2E+2 2.0E+5 2.6E+5 1.1E+4 1.1E+4 1.2E+3 4.3E+2 8.8E+2 1.4E 4.3E+3 4.3E+3 5.1E 2.5E+2 2.5E+2 2.5E+3 2.7E+1 2.7E+1 2.8E+1 4.8E+1 4.8E+1 5.1E+1	Static Dynamic Random ratio 2.4E+5 2.4E+5 2.5E+5 0.0 N/A N/A N/A N/A 5.1E+3 5.1E+3 1.1E+4 0.0 3.4E+2 3.4E+2 3.6E+2 0.0 5.7E+3 5.7E+3 7.1E+3 0.0 5.7E+3 5.7E+3 7.1E+3 0.0 8.0E+1 8.0E+1 9.0E+1 0.0 1.2E+3 1.2E+3 2.5E+3 0.0 1.1E+4 1.2E+3 2.6E+5 0.0 1.1E+4 1.1E+4 1.2E+3 0.0 1.1E+4 1.1E+4 1.2E+3 0.0 1.1E+4 1.1E+4 1.2E+3 0.0 1.1E+4 1.2E+2 1.4E+3 Manor 8.8E+2 8.8E+2 1.1E+4 Manor 4.3E+3 4.3E+3 5.1E+5 Static 2.5E+2 2.5E+2 2.5E+3 slightly 2.7E+1 2.7E+1 2.8E+1 0.0

(Note) "f E + i" indicates " $f \times 10^{i}$ "

Experiments: Results (2)

Number k of output patterns = 1 (lightweight cases)

		Running	time (sec)	Reduction ratio
Dataset	Static	Dynamic	Random	Reduction ratio	$= (\langle \text{Static} \rangle - \langle \text{Dynamic} \rangle) / \langle \text{Stat} \rangle$
anneal	1.11	1.30	1.15	-0.17	
audiology	N/A	N/A	N/A	N/A	
australian-credit	0.49	0.64	0.64	-0.29	
german-credit	0.40	0.40	0.44	0.01	
heart-cleveland	0.45	0.45	0.61	-0.01	
hepatitis	0.06	0.07	0.08	-0.07	
hypothyroid	0.73	0.76	0.77	-0.03	
kr-vs-kp	0.86	1.52	1.71	-0.76	
lymph	0.44	0.48	0.44	-0.08	
mushroom	0.21	0.21	0.44	0.01	
primary-tumor	0.09	0.10	0.11	-0.13	
soybean	0.21	0.23	0.24	-0.09	
splice-1	0.65	0.65			
tic-tac-toe	0.05	0.01	0.05		
vote	0.05	0.0	Jynam	IC IS SIIG	htly slower than Static
zoo-1	0.03				erhead by re-ordering
AI-17		(though	it seem	s ignorable in practice)

Experiments: Results (3)

• Number k of output patterns = 50 (**burdensome** cases)

	Entire # of visited patterns						
Dataset	Static	Dynamic	Random	Reduction ratio	2		
anneal	9.0E+5	7.6E+5	7.5E+6	0.16			
audiology	N/A	N/A	N/A	N/A			
australian-credit	1.7E+5	1.4E+5	1.1E+7	0.17			
german-credit	2.3E+6	1.1E+6	3.2E+5	0.51			
heart-cleveland	3.2E+4	2.7E+4	4.5E+6	0.16			
hepatitis	3.1E+7	1.4E+7	7.7E+6	0.54			
hypothyroid	N/A	N/A	N/A	N/A			
kr-vs-kp	4.3E+5	4.3E+5	9.8E+5	0.00			
lymph	2.1E+4	1.9E+4	4.4E+4	0.06			
mushroom	2.0E+4	1.7E+4	1.0E+4	0.16			
primary-tumor	3.8E+4	2.4E+4	2.4E+4	0.37			
soybean	1.4E+4	1.4E+4	1.6E+4	0.00			
splice-1	1.5E+3	1.5E+3	1.0E+4	0.01			
tic-tac-toe	2.0E+3	1.4E+3	1.3E+3	0.30			
vote	1.6E+5	8.0E+4	4.6E+4	0.49			
zoo-1	2.7E+3	2.6E+3	2.1E+3	0.01			

Reduction ratio = ($\langle Static \rangle - \langle Dynamic \rangle$) / $\langle Static \rangle$

Dynamic outperforms **Random** in some cases

Experiments: Results (3)

• Number k of output patterns = 50 (**burdensome** cases)

	En	ntire # of v	visited pat	terns	Reduction ratio
Dataset	Static	Dynamic	Random	Reduction ratio	$= (\langle \text{Static} \rangle - \langle \text{Dynamic} \rangle) / \langle \text{Static} \rangle$
anneal	9.0E+5	7.6E+5	7.5E+6	0.16	
audiology	N/A	N/A	N/A	N/A	
australian-credit	1.7E+5	1.4E+5	1.1E+7	0.17	
german-credit	2.3E+6	1.1E+6	3.2E+5	0.51	
heart-cleveland	3.2E+4	2.7E+4	4.5E+6	0.16	
hepatitis	3.1E+7	1.4E+7	7.7E+6	0.54	
hypothyroid	N/A	N/A	N/A	N/A	
kr-vs-kp	4.3E+5	4.3E+5	9.8E+5		
lymph	2.1E+4	1.9E+4	4.4E+4		
mushroom	2.0E+4	1.7E+4	1.0E+4	Dy	namic alleviates the bad
primary-tumor	3.8E+4	2.4E+4	2.4E+4	infl	uence of the initial order
soybean	1.4E+4	1.4E+4	1.6E+4	0.00	
splice-1	1.5E+3	1.5E+3	1.0E+4	0.01	
tic-tac-toe	2.0E+3	1.4E+3	1.3E+3	0.30	
vote	1.6E+5	8.0E+4	4.6E+4	0.49	
zoo-1	2.7E+3	2.6E+3	2.1E+3	0.01	

Experiments: Results (4)

• Number k of output patterns = 50 (**burdensome** cases)

		Running	time (sec)	Reduction ratio
Dataset	Static	Dynamic	Random	Reduction ratio	$= (\langle \text{Static} \rangle - \langle \text{Dynamic} \rangle) / \langle \text{Static} \rangle$
anneal	2.69	2.93	45.76	-0.17	
audiology	N/A	N/A	N/A	N/A	
australian-credit	0.89	0.83	44.12	0.06	
german-credit	20.16	5.15	6.42	0.74	
heart-cleveland	0.70	0.70	17.39	0.01	
hepatitis	117.56	42.75	20.52	0.64	Dynamic shows
hypothyroid	N/A	N/A	N/A	N/A	a stable performance
kr-vs-kp	2.07	2.21	8.29	-0.06	a stable performance
lymph	0.51	0.52	1.01	-0.03	
mushroom	1.02	0.93	1.40	0.09	
primary-tumor	0.96	0.70	0.74	0.27	
soybean	0.44	0.47	0.46	-0.05	
splice-1	1.21	1.33	1.69	-0.10	
tic-tac-toe	0.18	0.19	0.17	-0.06	
vote	1.61	1.45	0.88	0.10	
zoo-1	0.17	0.19	0.18	-0.09	

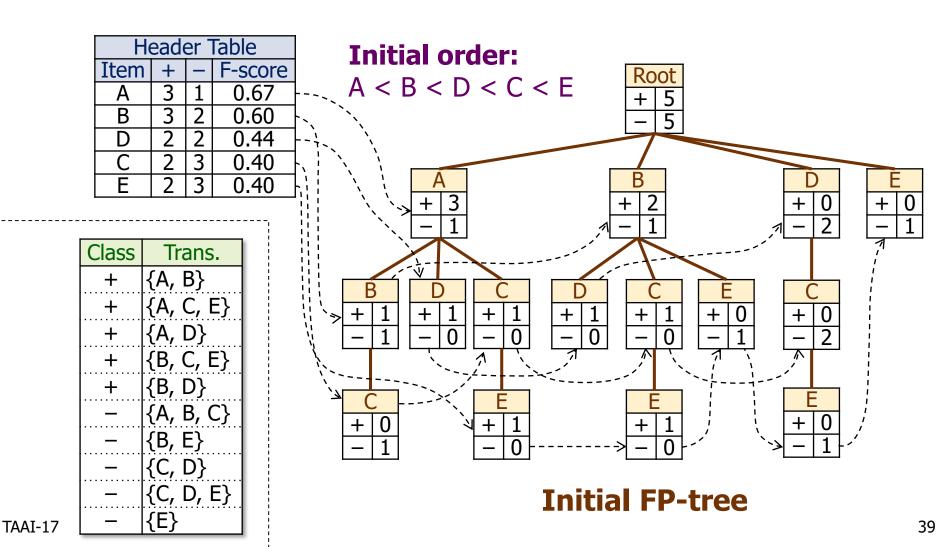
Experiments: Results (5)

We also recorded the number of visited patterns until *true* top-k pattern lastly found has been visited
 (= the **effective** number of visited patterns)

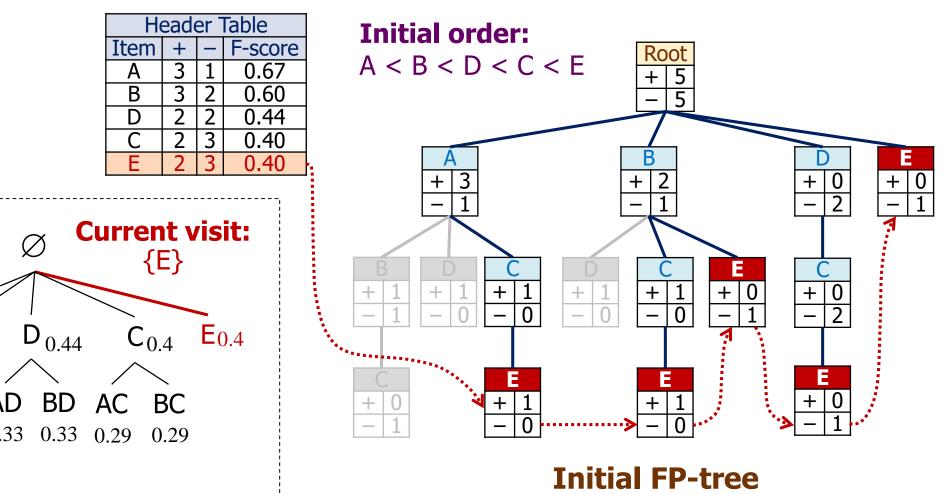
Datacat	Entire #	of visited	patterns	Effective	# of visite	d patterns	
Dataset	Static	Dynamic	Random	Static	Dynamic	Random	
anneal	9.0E+5	7.6E+5	7.5E+6	8.9E+5	7.5E+5	7.1E+6	
audiology	N/A	N/A	N/A	N/A	N/A	N/A	
australian-credit	1.7E+5	1.4E+5	1.1E+7	1.4E+4	6.6E+3	1.0E+7	
german-credit	2.3E+6	1.1E+6	3.2E+5	2.3E+6	1.1E+6	3.2E+5	
heart-cleveland	3.2E+4	2.7E+4	4.5E+6	1.8E+3	8.8E+2	4.5E+6	
hepatitis	3.1E+7	1.4E+7	7.7E+6	3.1E+7	1.4E+7	7.7E+6	
hypothyroid	N/A	N/A	N/A	N/A	N/A	N/A	
kr-vs-kp	4.3E+5	4.3E+5	9.8E+5	1.8E+3	1.7E+3	8.1E+5	
lymph	2.1E+4	1.9E+4	4.4E+4	3.3E+3	2.6E+3	3.8E+4	
mushroom	2.0E+4	1.7E+4	1.0E+4	2.0E+4	1.7E+4	1.0E+4	
primary-tumor	3.8E+ 1						1
soybean	1.4E+ D	ynam	ic worl	ks as a	better	anytime	<i>e</i>
splice-1	1.5E+ a	lgorithr	n than	others	for sol	me data	set
tic-tac-toe	2.0E+J		T''T	2.ULTJ	T'⊥L⊥?	1.∠L⊤J	
vote	1.6E+5	8.0E+4	4.6E+4	1.6E+5	7.9E+4	4.0E+4	
zoo-1	2.7E+3	2.6E+3	2.1E+3	2.2E+3	2.2E+3	1.9E+3	

Outline

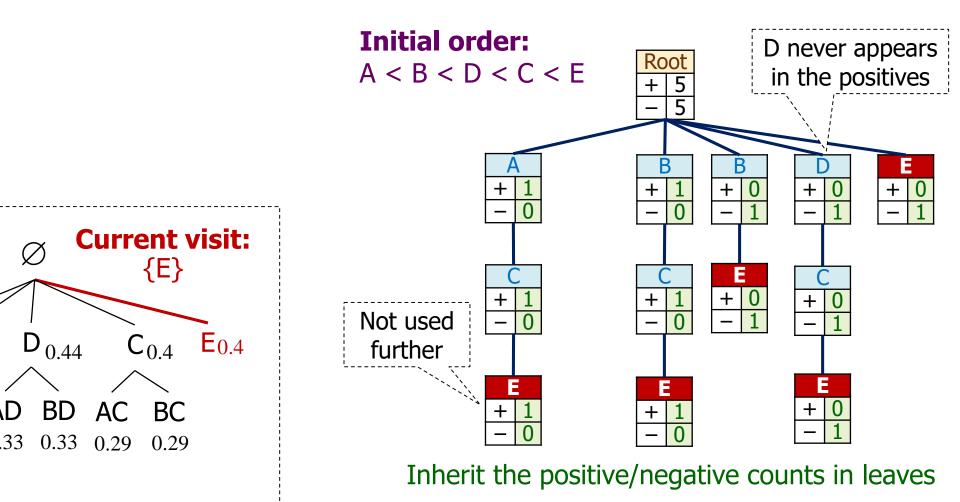
✓ Background


- Dynamic re-ordering in mining top-k productive discriminative patterns
 - ✓ Basic idea
 - ✓ Justification
- ✓ Experiments
- Related work and Conclusion

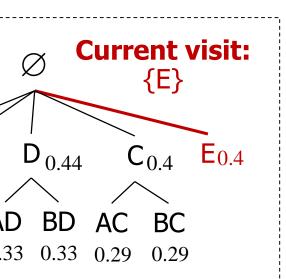
Related work and Conclusion

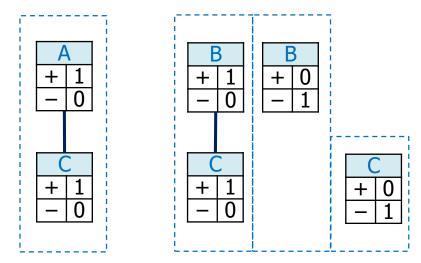

- "Sub-patterns first" property was firstly introduced in selecting frequent minimal generators [Li+ 06]
- Dynamic re-ordering itself has been introduced in:
 - OPUS [Webb 95]
 - SD-Map* [Atzmueller+ 09]
- This work's originality: productivity constraint + dynamic re-ordering
 - Formally justified using the notion of topological sorting over a Hasse diagram
 - Empirically supported by experiments

Thank you for your attention!


Implementation (1)

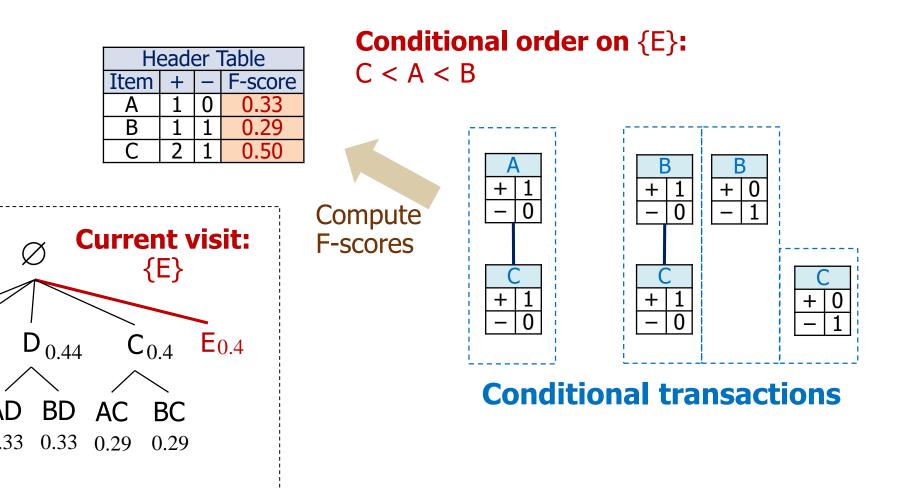
Implementation (2)


Implementation (3)

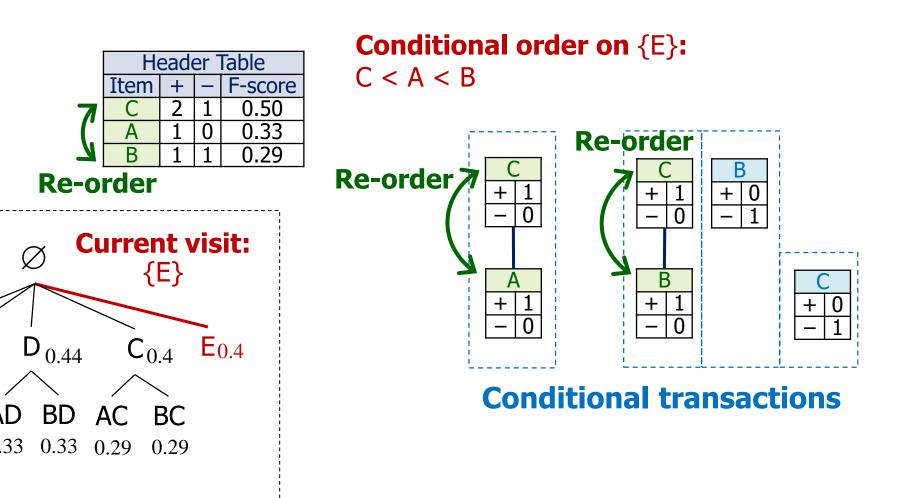

Implementation (4)

• We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

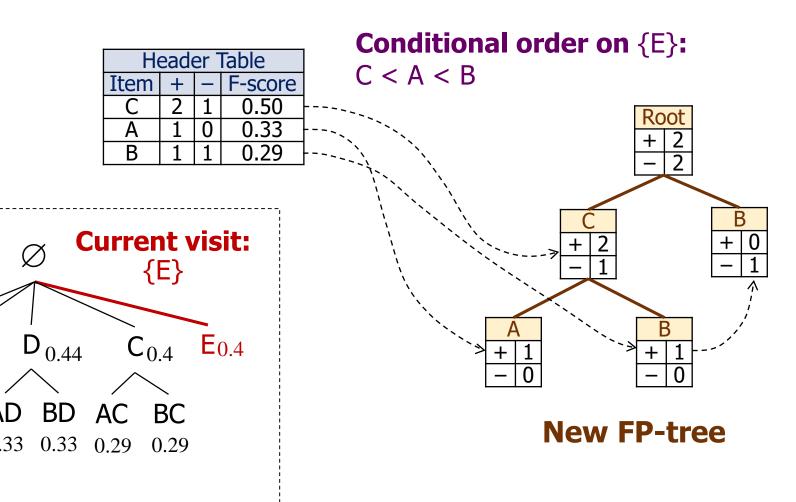
Header Table							
Item	F-score						
Α	1	0	0.67				
В	1	1	0.60				
С	2	1	0.40				

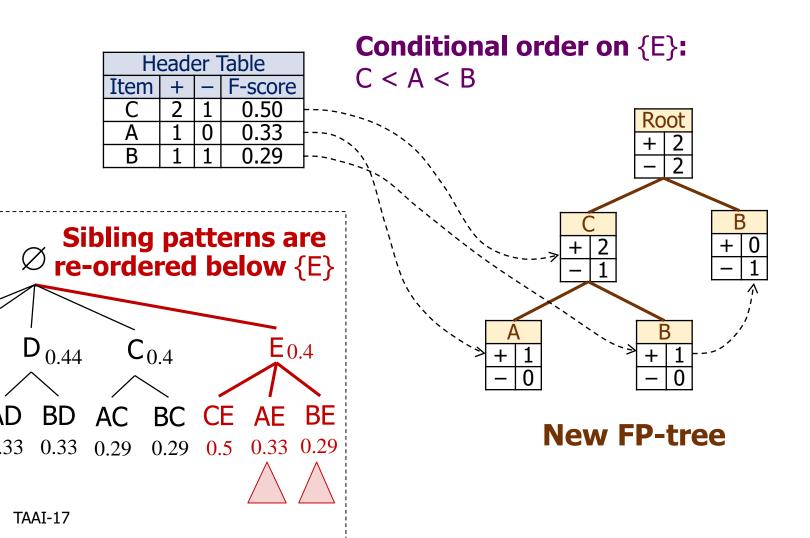


Initial order: A < B < D < C < E



Conditional transactions


Implementation (5)


Implementation (6)

Implementation (7)

Implementation (8)

