Dynamic Re-ordering in Mining Top-k Productive Discriminative Patterns

Yoshitaka Kameya* and Ken'ya Ito Meijo University

- Background
- Dynamic re-ordering in mining top- k productive discriminative patterns
- Experiments
- Related work and Conclusion

Outline

- Background
- Dynamic re-ordering in mining top-k productive discriminative patterns
- Experiments
- Related work and Conclusion

Background: Discriminative Patterns (1)

- Discriminative patterns:
- Show differences between two groups (classes)
- Used for:
- Characterizing the positive class
- Building more precise classifiers

Discriminative pattern \boldsymbol{x}

Background: Discriminative Patterns (2)

- Discriminative patterns tend to be more meaningful than frequent patterns (thanks to class labels)
- Are class labels always available?
- Comparing groups is a standard (and promising) starting point in data analysis
- Clustering can find groups (classes)! \rightarrow Cluster labeling

Clusters labeled with

Background: Discriminative Patterns (3)

- Quality score: Measures the overlap between pattern \boldsymbol{x} and positive class c

Quality is high

Quality is low

- Most of popular quality scores are not anti-monotonic: - Confidence, Lift
- Support difference, Weighted relative accuracy, Leverage
- F-score, Dice, Jaccard
\rightarrow Branch \& bound pruning is often used [Morishita+ 00][Zimmermann+ 09][Nijssen+ 09]

Background: B\&B Pruning for Top- k Patterns

- Suppose: we are visiting a pattern x in a depth-first search
- We compute the upper bound $U(\boldsymbol{x})$ of its quality $R(\boldsymbol{x})$ ($U(x)=$ an optimistic estimate of qualities of x^{\prime} s extensions)
- We prune the subtree below \boldsymbol{x} if $U(\boldsymbol{x})<R(\boldsymbol{z})$, where z is the k-th candidate

Candidate list
for tentative top-k patterns

Prune the subtree below \boldsymbol{x}

$$
\text { if } U(x)<R(z) \text { ! }
$$

Optimistic estimate:

Background: Suffix Enumeration Trees (1)

Background: Suffix Enumeration Trees (1)

- Beneficial for checking the productivity constraint in a depth-first search

Productivity constraint: Every pattern must not be of less quality than its sub-pattern

Suffix enumeration tree:

Background: Suffix Enumeration Trees (1)

- Beneficial for checking the productivity constraint in a depth-first search

Prefix enumeration tree:

\rightarrow NOT "Sub-patterns first" \varnothing

ABCD
Suffix enumeration tree:
\rightarrow "Sub-patterns first"
"Sub-patterns first" property:
When visiting a pattern x, we have already visited all sub-patterns of x

Background: Suffix Enumeration Trees (2)

- Also beneficial for effective B\&B pruning

Suffix enumeration tree:

Candidate list

Suppose: $\mathrm{A}=$ the highest quality item,
$B=$ the $2^{\text {nd }}$ highest quality item, $\mathrm{C}=$ the $3^{\text {rd }}$ highest quality item,
\rightarrow Items of higher quality are combined earlier
\rightarrow Patterns of higher quality would be visited earlier

B\&B pruning would be more aggressive!

We prune the subtree below x if $U(x)<R(z)$
\rightarrow Threshold in $\mathrm{B} \& \mathrm{~B}$ pruning is higher if z has a higher quality

Outline

\checkmark Background

- Dynamic re-ordering in mining top- k productive discriminative patterns
- Basic idea
- Justification
- Experiments
- Related work and Conclusion

Outline

\checkmark Background

- Dynamic re-ordering in mining top- k productive discriminative patterns
- Basic idea
- Justification
- Experiments
- Related work and Conclusion

Our proposal: Basic idea (1)

- Basic idea:

Re-order sibling patterns dynamically according to their qualities
\rightarrow Patterns of higher quality will be visited yet earlier
\rightarrow B\&B pruning will be yet more aggressive

Our proposal: Basic idea (2)

- Example:

- 10 transactions
- Quality is measured by F-score

	Dataset	
	Class	Transaction
Positive	+	\{A, B $\}$
	+	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$
	+	$\{\mathrm{A}, \mathrm{D}\}$
	+	$\{B, C, E\}$
	+	$\{\mathrm{B}, \mathrm{D}\}$
Negative	-	$\{A, B, C\}$
	-	$\{\mathrm{B}, \mathrm{E}\}$
	-	$\{\mathrm{C}, \mathrm{D}\}$
	-	$\{C, D, E\}$
	-	\{E\}

Our proposal: Basic idea (4)

- Example:

- 10 transactions
- Quality is measured by F-score

Recall of $\{A\}=3 / 5=0.6$
Precision of $\{\mathrm{A}\}=3 / 4=0.75$

$$
\begin{aligned}
& \text { F-score of }\{A\}= \\
& 2 * 0.6 * 0.75 /(0.6+0.75)=0.67
\end{aligned}
$$

- Similarly, we have:
- F-score of $\{A\}=0.67$
- F-score of $\{B\}=0.6$
- F-score of $\{C\}=0.4$
- F-score of $\{D\}=0.44$
- F -score of $\{\mathrm{E}\}=0.4$

	Dataset	
	Class	Transaction
Positive $\{$	+	$\{\mathrm{A}, \mathrm{B}\}$
	$+$	$\{A, C, E\}$
	$+$	$\{A, D\}$
	+	$\{B, C, E\}$
	$+$	$\{\mathrm{B}, \mathrm{D}\}$
Negative	-	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
	-	$\{\mathrm{B}, \mathrm{E}\}$
	-	$\{\mathrm{C}, \mathrm{D}\}$
	-	$\{C, D, E\}$
	-	\{E\}

Static ordering among patterns:

$$
\mathrm{A}<\mathrm{B}<\mathrm{D}<\mathrm{C}<\mathrm{E}
$$

Our proposal: Basic idea (4)

- Example:

- 10 transactions
- Quality is measured by F-score

	Dataset	
	Class	Transaction
Positive	+	$\{\mathrm{A}, \mathrm{B}\}$
	+	$\{A, C, E\}$
	+	$\{\mathrm{A}, \mathrm{D}\}$
	+	$\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$
	+	$\{\mathrm{B}, \mathrm{D}\}$
Negative $\{$	-	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
	-	$\{\mathrm{B}, \mathrm{E}\}$
	-	$\{\mathrm{C}, \mathrm{D}\}$
	-	$\{C, D, E\}$
	-	\{E\}

(Note)
Patterns that do not appear in the dataset are hidden
"Sub-patterns first" property holds and we have productive patterns $\{A\},\{B\},\{C, E\},\{D\},\{C\},\{E\}$

Our proposal: Basic idea (4)

- Example:

- 10 transactions
- Quality is measured by F-score

Suffix enumeration tree

 with dynamic re-ordering:

	Dataset	
	Class	Transaction
Positive	$+$	\{A, B
	+	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$
	$+$	$\{\mathrm{A}, \mathrm{D}\}$
	+	$\{B, C, E\}$
	+	$\{\mathrm{B}, \mathrm{D}\}$
Negative	-	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
	-	$\{\mathrm{B}, \mathrm{E}\}$
	-	$\{\mathrm{C}, \mathrm{D}\}$
	-	$\{C, D, E\}$
	-	\{E\}

Outline

\checkmark Background

- Dynamic re-ordering in mining top- k productive discriminative patterns

\checkmark Basic idea
- Justification

- Experiments
- Related work and Conclusion

Our proposal: Justification (1)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search =
ヨtopological order over a Hasse diagram \Rightarrow The search is "sub-patterns first"

Our proposal: Justification (2)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search =
ヨtopological order over a Hasse diagram \Rightarrow The search is "sub-patterns first"

Our proposal: Justification (2)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search =
ヨtopological order over a Hasse diagram
\Rightarrow The search is "sub-patterns first"

Our proposal: Justification (2)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search =
ヨtopological order over a Hasse diagram
\Rightarrow The search is "sub-patterns first"

Our proposal: Justification (2)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search =
ヨtopological order over a Hasse diagram \Rightarrow The search is "sub-patterns first"

A	Stack
B	
AB	
C	
AC	
BC	
ABC	
D	
AD	
BD	
ABD	
CD	
ACD	
BCD	
ABCD	

Our proposal: Justification (2)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- Key observation:

Visiting order of a search =
ヨtopological order over a Hasse diagram
\Rightarrow The search is "sub-patterns first"
Suffix enumeration tree with a static ordering A $<\mathrm{B}<\mathrm{C}<\mathrm{D}<\mathrm{E}$:

A
B
$A B$
C
$A C$
$B C$
$A B C$
D
$A D$
$B D$
$A B D$
CD
$A C D$
$B C D$
$A B C D$

Our proposal: Justification (3)

- "Sub-patterns first" property is assured even with dynamic re-ordering
- We can always consider a topological sorting that simulates our dynamic re-ordering

A
B
AB
y C
BC
AC
S Stack
D
AD
CD
ACD
BD
BCD
ABD
ABCD

Our proposal: Justification (4)

- Topological sorting over a Hasse diagram also help us justify a "sub-patterns first" enumeration tree for sequence patterns:

To build this enumeration tree, we extend x whose lastly added item is u as follows:

- Insert items u or x such that $x<u$ in the ascending order w.r.t. <
- When inserting x, insert it everywhere outside/between the items in \boldsymbol{x}
- When inserting u, insert it on the left side of the lastly added u
- SPADE-like algorithm using a vertical layout can work with this tree, though max-gap constraint does not hold monotonically

Outline

\checkmark Background
\checkmark Dynamic re-ordering in mining top- k productive discriminative patterns
\checkmark Basic idea
\checkmark Justification

- Experiments
- Related work and Conclusion

Experiments: Settings

- Target: 16 datasets preprocessed by the CP4IM project:

Dataset	\#Trans.	\#Items
anneal	812	93
audiology	216	148
australian-credit	653	125
german-credit	1,000	112
heart-cleveland	296	95
hepatitis	137	68
hypothyroid	3,247	88
kr-vs-kp	3,196	73

Dataset	\#Trans.	Items
lymph	148	68
mushroom	8,124	110
primary-tumor	336	31
soybean	630	50
splice-1	3,190	287
tic-tac-toe	958	28
vote	435	48
zoo-1	101	36

- We compare 3 variants of FP-growth with:
- Static ordering based on quality (Static)
- Static random ordering (Random)
- Dynamic re-ordering (Dynamic; the proposed method)

Experiments: Results (1)

- Number k of output patterns $=1$ (lightweight cases)

Dataset	Entire \# of visited patterns				
	Static	Dynamic	Random	Reduction ratio	$\begin{array}{l}\text { Reduction ratio } \\ \text { (}\end{array}$ (Static $\rangle-\langle$ (Dynamic $\left.\rangle\right) /\langle$ Static \rangle

Experiments: Results (2)

- Number k of output patterns = 1 (lightweight cases)

Dataset	Running time (sec)				Reduction ratio $=(\langle$ Static $\rangle-\langle$ Dynamic $\rangle) /\langle$ Static \rangle	
	Static	Dynamic	Random	$\begin{array}{\|c\|} \hline \text { Reduction } \\ \text { ratio } \end{array}$		
anneal	1.11	1.30	1.15	-0.17		
audiology	N/A	N/A	N/A	N/A		
australian-credit	0.49	0.64	0.64	-0.29		
german-credit	0.40	0.40	0.44	0.01		
heart-cleveland	0.45	0.45	0.61	-0.01		
hepatitis	0.06	0.07	0.08	-0.07		
hypothyroid	0.73	0.76	0.77	-0.03		
kr-vs-kp	0.86	1.52	1.71	-0.76		
lymph	0.44	0.48	0.44	-0.08		
mushroom	0.21	0.21	0.44	0.01		
primary-tumor	0.09	0.10	0.11	-0.13		
soybean	0.21	0.23	0.24	-0.09		
splice-1	0.65	0.65	0.66	0.00		
tic-tac-toe	0.05	0.0				
vote	0.05					
zoo-1	0.03	0.0 due to some overhead by re-ordering (though it seems ignorable in practice)				

Experiments: Results (3)

- Number k of output patterns = 50 (burdensome cases)

Dataset	Entire \# of visited patterns			
	Static	Dynamic	Random	Reduction ratio
anneal	$9.0 \mathrm{E}+5$	$7.6 \mathrm{E}+5$	$7.5 \mathrm{E}+6$	0.16
audiology	N / A	N / A	N / A	N / A
australian-credit	$1.7 \mathrm{E}+5$	$1.4 \mathrm{E}+5$	$1.1 \mathrm{E}+7$	0.17
german-credit	$2.3 \mathrm{E}+6$	$1.1 \mathrm{E}+6$	$3.2 \mathrm{E}+5$	0.51
heart-cleveland	$3.2 \mathrm{E}+4$	$2.7 \mathrm{E}+4$	$4.5 \mathrm{E}+6$	0.16
hepatitis	$3.1 \mathrm{E}+7$	$1.4 \mathrm{E}+7$	$7.7 \mathrm{E}+6$	0.54
hypothyroid	N / A	N / A	N / A	N / A
kr-vs-kp	$4.3 \mathrm{E}+5$	$4.3 \mathrm{E}+5$	$9.8 \mathrm{E}+5$	0.00
lymph	$2.1 \mathrm{E}+4$	$1.9 \mathrm{E}+4$	$4.4 \mathrm{E}+4$	0.06
mushroom	$2.0 \mathrm{E}+4$	$1.7 \mathrm{E}+4$	$1.0 \mathrm{E}+4$	0.16
primary-tumor	$3.8 \mathrm{E}+4$	$2.4 \mathrm{E}+4$	$2.4 \mathrm{E}+4$	0.37
soybean	$1.4 \mathrm{E}+4$	$1.4 \mathrm{E}+4$	$1.6 \mathrm{E}+4$	0.00
splice-1	$1.5 \mathrm{E}+3$	$1.5 \mathrm{E}+3$	$1.0 \mathrm{E}+4$	0.01
tic-tac-toe	$2.0 \mathrm{E}+3$	$1.4 \mathrm{E}+3$	$1.3 \mathrm{E}+3$	0.30
vote	$1.6 \mathrm{E}+5$	$8.0 \mathrm{E}+4$	$4.6 \mathrm{E}+4$	0.49
zoo-1	$2.7 \mathrm{E}+3$	$2.6 \mathrm{E}+3$	$2.1 \mathrm{E}+3$	0.01

```
Reduction ratio
= (\langleStatic\rangle - <Dynamic })//\langle\mathrm{ Static }
```

Dynamic outperforms Random in some cases

Experiments: Results (3)

- Number k of output patterns = 50 (burdensome cases)

Dataset	Entire \# of visited patterns				Reduction ratio $=(\langle$ Static $\rangle-\langle$ Dynamic $\rangle) /\langle$ Static \rangle
	Static	Dynamic	Random	Reduction ratio	
anneal	9.0E+5	7.6E+5	7.5E+6	0.16	
audiology	N/A	N/A	N/A	N/A	
australian-credit	1.7E+5	$1.4 \mathrm{E}+5$	$1.1 \mathrm{E}+7$	0.17	
german-credit	$2.3 \mathrm{E}+6$	$1.1 \mathrm{E}+6$	$3.2 \mathrm{E}+5$	0.51	
heart-cleveland	$3.2 \mathrm{E}+4$	$2.7 \mathrm{E}+4$	$4.5 \mathrm{E}+6$	0.16	
hepatitis	$3.1 \mathrm{E}+7$	1.4E+7	7.7E+6	0.54	
hypothyroid	N/A	N/A	N/A	N/A	
kr-vs-kp	$4.3 \mathrm{E}+5$	$4.3 \mathrm{E}+5$	$9.8 \mathrm{E}+5$	0.00	
lymph	$2.1 \mathrm{E}+4$	$1.9 \mathrm{E}+4$	$4.4 \mathrm{E}+4$		
mushroom	$2.0 \mathrm{E}+4$	$1.7 \mathrm{E}+4$	1.0E+4		namic alleviates the bad
primary-tumor	$3.8 \mathrm{E}+4$	$2.4 \mathrm{E}+4$	$2.4 \mathrm{E}+4$		ence of the initial order
soybean	$1.4 \mathrm{E}+4$	$1.4 \mathrm{E}+4$	$1.6 \mathrm{E}+4$	u.ve	
splice-1	$1.5 \mathrm{E}+3$	$1.5 \mathrm{E}+3$	$1.0 \mathrm{E}+4$	0.01	
tic-tac-toe	$2.0 \mathrm{E}+3$	$1.4 \mathrm{E}+3$	$1.3 \mathrm{E}+3$	0.30	
vote	$1.6 \mathrm{E}+5$	8.0E+4	$4.6 \mathrm{E}+4$	0.49	
zoo-1	$2.7 \mathrm{E}+3$	$2.6 \mathrm{E}+3$	$2.1 \mathrm{E}+3$	0.01	

Experiments: Results (4)

- Number k of output patterns = 50 (burdensome cases)

Dataset	Running time (sec)				Reduction ratio $=(\langle$ Static $\rangle-\langle$ Dynamic $\rangle) /\langle$ Static \rangle
	Static	Dynamic	Random	Reduction ratio	
anneal	2.69	2.93	45.76	-0.17	
audiology	N/A	N/A	N/A	N/A	
australian-credit	0.89	0.83	44.12	0.06	
german-credit	20.16	5.15	6.42	0.74	
heart-cleveland	0.70	0.70	17.39	0.01	
hepatitis	117.56	42.75	20.52	0.64	Dynamic shows
hypothyroid	N/A	N/A	N/A	N/A	
kr-vs-kp	2.07	2.21	8.29	-0.06	
lymph	0.51	0.52	1.01	-0.03	
mushroom	1.02	0.93	1.40	0.09	
primary-tumor	0.96	0.70	0.74	0.27	
soybean	0.44	0.47	0.46	-0.05	
splice-1	1.21	1.33	1.69	-0.10	
tic-tac-toe	0.18	0.19	0.17	-0.06	
vote	1.61	1.45	0.88	0.10	
zoo-1	0.17	0.19	0.18	-0.09	

Experiments: Results (5)

- We also recorded the number of visited patterns until true top- k pattern lastly found has been visited (= the effective number of visited patterns)

Dataset	Entire \# of visited patterns			Effective \# of visited patterns		
	Static	Dynamic	Random	Static	Dynamic	Random
anneal	9.0E+5	7.6E+5	7.5E+6	8.9E+5	$7.5 \mathrm{E}+5$	7.1E+6
audiology	N/A	N/A	N/A	N/A	N/A	N/A
australian-credit	1.7E+5	$1.4 \mathrm{E}+5$	1.1E+7	1.4E+4	$6.6 \mathrm{E}+3$	$1.0 \mathrm{E}+7$
german-credit	$2.3 \mathrm{E}+6$	$1.1 \mathrm{E}+6$	$3.2 \mathrm{E}+5$	$2.3 \mathrm{E}+6$	$1.1 \mathrm{E}+6$	3.2E+5
heart-cleveland	$3.2 \mathrm{E}+4$	$2.7 \mathrm{E}+4$	$4.5 \mathrm{E}+6$	$1.8 \mathrm{E}+3$	$8.8 \mathrm{E}+2$	$4.5 \mathrm{E}+6$
hepatitis	3.1E+7	$1.4 \mathrm{E}+7$	7.7E+6	3.1E+7	1.4E+7	7.7E+6
hypothyroid	N/A	N/A	N/A	N/A	N/A	N/A
kr-vs-kp	4.3E+5	$4.3 \mathrm{E}+5$	$9.8 \mathrm{E}+5$	$1.8 \mathrm{E}+3$	$1.7 \mathrm{E}+3$	8.1E+5
lymph	$2.1 \mathrm{E}+4$	$1.9 \mathrm{E}+4$	$4.4 \mathrm{E}+4$	3.3E+3	$2.6 \mathrm{E}+3$	3.8E+4
mushroom	$2.0 \mathrm{E}+4$	$1.7 \mathrm{E}+4$	$1.0 \mathrm{E}+4$	$2.0 \mathrm{E}+4$	$1.7 \mathrm{E}+4$	$1.0 \mathrm{E}+4$
primary-tumor	$3.8 \mathrm{E}+{ }^{\wedge}$					
soybean	1.4E+ Dynamic works as a better anytime					
splice-1	$1.5 \mathrm{E}+$ algorithm than others for some datasets					
tic-tac-toe	$2.0 \mathrm{E}+$ 」	1.7LтJ	,	L.vL	1.7누	1.¢LTJ
vote	$1.6 \mathrm{E}+5$	8.0E+4	4.6E+4	$1.6 \mathrm{E}+5$	7.9E+4	4.0E+4
zoo-1	2.7E+3	$2.6 \mathrm{E}+3$	2.1E+3	$2.2 \mathrm{E}+3$	$2.2 \mathrm{E}+3$	$1.9 \mathrm{E}+3$

Outline

\checkmark Background

\checkmark Dynamic re-ordering in mining top-k productive discriminative patterns
\checkmark Basic idea
\checkmark Justification
\checkmark Experiments

- Related work and Conclusion

Related work and Conclusion

- "Sub-patterns first" property was firstly introduced in selecting frequent minimal generators [Li+ 06]
- Dynamic re-ordering itself has been introduced in:
- OPUS [Webb 95]
- SD-Map* [Atzmueller+ 09]
- This work's originality: productivity constraint + dynamic re-ordering
- Formally justified using the notion of topological sorting over a Hasse diagram
- Empirically supported by experiments

Thank you for your attention!

Implementation (1)

- We re-order the items in the header table and conditional transactions while building a FP-tree

Implementation (2)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Implementation (3)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Inherit the positive/negative counts in leaves

Implementation (4)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Header Table			
Item	+	-	F-score
A	1	0	0.67
B	1	1	0.60
C	2	1	0.40

Initial order:
A $<$ B $<$ D $<C<E$

Conditional transactions

Implementation (5)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Header Table			
Item	+	-	F-score
A	1	0	0.33
B	1	1	0.29
C	2	1	0.50

Conditional order on $\{E\}$:

$$
C<A<B
$$

Conditional transactions

Implementation (6)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Re-order

Conditional order on $\{E\}$:
$C<A<B$

Conditional transactions

Implementation (7)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Implementation (8)

- We re-order the items in the header table and conditional transactions while building a FP-tree (cont'd)

Header Table			
Item	+	-	F-score
C	2	1	0.50
A	1	0	0.33
B	1	1	0.29

Conditional order on $\{\mathrm{E}\}$:

$$
C<A<B
$$

