An Exhaustive Covering Approach to Parameter-free Mining of Non-redundant Discriminative Itemsets

Yoshitaka Kameya Meijo University

Outline

- Background
- Our propsal
- Experiments

Outline

- Background
- Our propsal - Experiments

Background: Discriminative Patterns (1)

- Discriminative patterns:
- Show differences between two groups (classes)
- Used for:
- Characterizing the positive class
- Building more precise classifiers

Discriminative pattern \boldsymbol{x}

Background: Discriminative Patterns (2)

- Discriminative patterns tend to be more meaningful than frequent patterns (thanks to class labels)
- Are class labels always available?
- Comparing groups is a standard starting point in data analysis
- Clustering can find groups (classes) \rightarrow Cluster labeling

Clusters labeled with
Clusters discriminative patterns

Background: Discriminative Patterns (3)

- Quality score: Measures the overlap between pattern \boldsymbol{x} and positive class c

Quality is high

Quality is low

- Most of popular quality scores are not anti-monotonic: - Confidence, Lift
- Support difference, Weighted relative accuracy, Leverage
- F-score, Dice, Jaccard
\rightarrow Branch \& bound pruning is often used [Morishita+ 00][Zimmarmann+ 09][Nijssen+ 09]

Background: Coping with redundancy (1)

- Example: Item A is relevant to the positive class \rightarrow Patterns containing A tend to be top-ranked in the candidate list (most of them are redundant)

	Dataset		
	TID	Class	Transaction
Positive Transactions	1	+	$\{A, B, D, E\}$
	2	$+$	$\{A, B, C, D, E\}$
	3	+	$\{A, C, D, E\}$
	4	+	$\{A, B, C\}$
	5	+	\{B\}
Negative Transactions	6	-	$\{A, B, D, E\}$
	7	-	$\{B, C, D, E\}$
	8	-	$\{C, D, E\}$
	9	-	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$
	10	-	$\{\mathrm{A}, \mathrm{D}\}$

Top-15 patterns (+1 due to tie score)

Rank	Pattern	F-score	TIDs Covered
1	$\{A, C\}$	0.75	2, 3, 4
2	\{B\}	0.73	$1,2,4,5$
3	\{A\}	0.67	$1,2,3,4$
3	$\{A, B\}$	0.67	1,2,4
5	$\{A, D, E\}$	0.60	1,2,3
5	$\{\mathrm{A}, \mathrm{E}\}$	0.60	$1,2,3$
5	\{C\}	0.60	2, 3, 4
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$	0.57	2, 3
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	0.57	2,3
8	$\{A, C, E\}$	0.57	2, 3
12	$\{\mathrm{A}, \mathrm{D}\}$	0.55	$1,2,3$
13	$\{A, B, D\}$	0.50	1,2
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$	0.50	1,2
13	$\{A, B, E\}$	0.50	1,2
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2, 4

- Set-inclusion-based constraints
- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Background: Coping with redundancy (2)
 - Set-inclusion-based constraints

- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Rank	Pattern	F-score	TIDs Covered		
1	$\{A, C\}$	0.75	2,3,4		
2	\{B\}	0.73	1, 2, 4, 5		Closedness:
3	\{A\}	0.67	$\frac{1}{1}, 2,3,4$		For patterns covering
$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\{A, B\rangle$ $\{A, D, E\}$	0.67	$1,2,4$		the same (positive)
5	$\{A, E\}$	0.60	1, 2, 3		transactions,
5	\{C\}	0.60	2, 3, 4		pick the largest one
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4		
8	$\{A, C, D\}$	0.57	2, 3		
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	0.57 0.57	2, 3		
8	$\{A, C, E\}$ $\{A, D\}$	0.57	2, ${ }^{2,2} 2,3$		
13	$\{A, B, D\}$	0.50	1,2		
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$	0.50	1,2		
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{E}\}$	0.50	1,2		
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2, 4		

Background: Coping with redundancy (2)
 - Set-inclusion-based constraints

- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Rank	Pattern	F-score	$\begin{gathered} \text { TIDs } \\ \text { Covered } \end{gathered}$	
1	$\{\mathrm{A}, \mathrm{C}\}$	0.75	2,3,4	
2	$\{B\}$	0.73	1,2,4,5	Closedness:
3	[A]	0.67 0.67	1, 2, 3, 4	For patterns covering
3 5	\{A, $\left\{\begin{array}{l}\text { a } \\ \text {, }\end{array}\right.$	0.67 0.60	$1,2,4$ $1,2,3$	the same (positive)
5	$\{A, E\}$	0.60	1, 2, 3	transactions,
8	\{A, B, C\}	0.65	le $\begin{aligned} & 1,3,4 \\ & 2,4\end{aligned}$	lar
8	\{A, C, D $\}$	0.57	2, 3	
8	$\{A, C, D, E\}$	0.57	2, 3	
8	$\{A, C, E\}$	0.57	2, 3	
12	\{A, D $\}$	0.55	1,2,3	
13	$\{A, B, D\}$	0.50	1,2	
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$	0.50	1,2	
13	$\{A, B, E\}$	0.50	1,2	
13	$\{B, C\}$	0.50	2,4	

Background: Coping with redundancy (2)
 - Set-inclusion-based constraints

- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Rank	Pattern	F-score	TIDs Covered
1	$\{\mathrm{A}, \mathrm{C}\}$	0.75	2, 3, 4
2	\{B\}	0.73	$1,2,4,5$
3	\{A\}	0.67	$1,2,3,4$
3	$\{\mathrm{A}, \mathrm{B}\}$	0.67	$1,2,4$
5	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$	0.60	1, 2, 3
5	$\{A, E\}$	0.60	1,2,3
5	\{C\}	0.60	2, 3, 4
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4
8	$\{A, C, D\}$	0.57	2,3
8	$\{A, C, D, E\}$	0.57	2, 3
8	$\{A, C, E\}$	0.57	2,3
12	$\{A, D$,	0.55	$1,2,3$
13	$A, B, D\}$	0.50	1,2
13	$\{A, B, D, E\}$	0.50	1,2
13	$\{A, B, E\}$	0.50	1,2
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2,4

16 patterns $\rightarrow \mathbf{8}$ patterns

Background: Coping with redundancy (2)
 - Set-inclusion-based constraints

- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Rank	Pattern	F-score	$\begin{gathered} \text { TIDs } \\ \text { Covered } \\ \hline \end{gathered}$
1	\{A, C $\}$	0.75	2, 3, 4
2	\{B\}	0.73	1, 2, 4, 5
3	\{A\}	0.67	1, 2, 3, 4
3	\{A, B $\}$	0.67	1, 2, 4
5	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$	0.60	1, 2, 3
5	\{A, E\}	0.60	1, 2, 3
5	\{C\}	0.60	2, 3, 4
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4
8	\{A, C, D $\}$	0.57	2,3
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	0.57	2,3
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$	0.57	2, 3
12	\{A, D $\}$	0.55	1,2,3
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$	0.50	1,2
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$	0.50	1,2
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{E}\}$	0.50	1,2
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2,4

Productivity:

If a super-pattern has no higher quality, remove it

Background: Coping with redundancy (2)
 - Set-inclusion-based constraints

- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Rank	Pattern	F-score	$\begin{gathered} \hline \text { TIDs } \\ \text { Covered } \\ \hline \end{gathered}$
1	\{A, C $\}$	0.75	2, 3, 4
2	\{B\}	0.73	1, 2, 4, 5
3	\{A\}	0.67	1, 2, 3, 4
3	A, B $\}$	0.67	1,2,4
5	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$	0.60	1, 2, 3
5	$\{\mathrm{A}, \mathrm{E}\}$	0.60	1, 2, 3
5	\{C\}	0.60	2, 3, 4
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4
8	$\{A, C, D\}$	0.57	2,3
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	0.57	2, 3
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$	0.57	2, 3
12	\{A, D\}	0.55	1,2,3
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$	0.50	1,2
13	\{A, B, D, E\}	0.50	1,2
13	$\{\mathrm{A}, \mathrm{B}, \mathrm{E}\}$	0.50	1,2
13	\{B, C $\}$	0.50	2, 4

Productivity:
If a super-pattern has no higher quality, remove it

Background: Coping with redundancy (2)
 - Set-inclusion-based constraints

- Closedness [Pasquier+ 99]
- Productivity [Bayardo 00][Webb 07]

Rank	Pattern	F-score	TIDs Covered
1	$\{A, C\}$	0.75	$2,3,4$
2	$\{A, \ldots\}$	0.73	$1,2,4,5$
3	$\{A$,	0.67	$1,2,3,4$
3	$\{A, B\}$	0.67	$1,2,4$
5	$\{A, D, E\}$	0.60	$1,2,3$
5	$\{A, E\}$	0.60	$1,2,3$
5	$\{C\}$	0.60	$2,3,4$
8	$\{A, B, C\}$	0.57	2,4
8	$\{A, C, D\}$	0.57	2,3
8	$\{A, C, D, E\}$	0.57	2,3
8	$\{A, C, E\}$	0.57	2,3
12	$\{A, D\}$	0.55	$1,2,3$
13	$\{A, B, D\}$	0.50	1,2
13	$\{A, B, D, E\}$	0.50	1,2
13	$\{A, B, E\}$	0.50	1,2
13	$\{B, C\}$	0.50	2,4

16 patterns $\rightarrow \mathbf{4}$ patterns

Background: Coping with redundancy (2)

- Set-inclusion-based constraints
- Productivity + Closedness [Kameya+ 13]

Rank	Pattern	F-score	TIDs Covered
1	$\{A, C\}$	0.75	$2,3,4$
2	$\{B\}$	0.73	$1,2,4,5$
3	$\{A\}$	0.67	$1,2,3,4$
3	$\{A, B\}$	0.67	$1,2,4$
5	$\{A, E, E\}$	0.60	$1,2,3$
5	$\{A, E\}$	0.60	$1,2,3$
55	$\{C\}$	0.60	$2,3,4$
8	$\{A, B, C\}$	0.57	2,4
8	$\{A, C, D\}$	0.57	2,3
8	$\{A, C, D, E\}$	0.57	2,3
8	$\{A, C, E\}$	0.57	2,3
12	$\{A, D\}$	0.55	$1,2,3$
13	$\{A, B, D\}$	0.50	1,2
13	$\{A, B, D, E\}$	0.50	1,2
13	$\{A, B, E\}$	0.50	1,2
13	$\{B, C\}$	0.50	2,4

16 patterns $\rightarrow \mathbf{3}$ patterns

Background: Coping with redundancy (3)

- The best-covering constraint
- In the same spirit of the HCC (highest confidence covering) constraint in HARMONY [Wang+ 05]

Rank	Pattern	F-score	TIDs Covered	Best-covering:
1	\{A, C $\}$	0.75	2, 3, 4) Every pattern must be
2	\{B\}	0.73	1, 2, 4, 5	\} the best to at least one
3	\{A\}	0.67	1, 2, 3, 4	positive transaction
3	$\{\mathrm{A}, \mathrm{B}\}$	0.67	1, 2, 4	
5	\{A, D, E\}	0.60	1, 2, 3	
5	$\{\mathrm{A}, \mathrm{E}\}$	0.60	1,2,3	
5	\{C\}	0.60	2, 3, 4	
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4	
8	\{A, C, D\}	0.57	2, 3	
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	0.57	2, 3	
8	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$	0.57	2,3	
12	\{A, D $\}$	0.55	1,2,3	
13	\{A, B, D $\}$	0.50	1,2	
13	$\{A, B, D, E\}$	0.50	1,2	
13	$\{A, B, E\}$	0.50	1,2	
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2, 4	

Background: Coping with redundancy (3)

- The best-covering constraint
- In the same spirit of the HCC (highest confidence covering) constraint in HARMONY [Wang+ 05]

Rank	Pattern	F-score	$\begin{aligned} & \text { TIDs } \\ & \text { Covered } \end{aligned}$	Best-covering:
1	\{A, C $\}$	0.75	2,3,4) Every pattern must be
2	S $\left.{ }^{\text {S }}\right\}$	0.73	$1,2,4,5$	\} the best to at least one
3	\{A\}	0.67	$1,2,3,4$	positive transaction
3	\{A, B $\}$	0.67	1, 2, 4	positive transaction
5	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$	0.60	$1,2,3$	
5	$\{A, E\}$	0.60	1,2,3	
5	\{C\}	0.60	2, 3, 4	
8	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	0.57	2, 4	
8	$\{A, C, D\}$	0.57	2, 3	
8	\{A, C, D, E\}	0.57	2,3	
8	\{A, C, E $\}$	0.57	2, 3	
12	$\{\mathrm{A}, \mathrm{D}\}$	0.55	$1,2,3$	
13	\{A, B, D $\}$	0.50	1,2	
13	\{A, B, D, E\}	0.50	1,2	
13	$\{A, B, E\}$	0.50	1,2	
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2, 4	

Background: Coping with redundancy (3)

- The best-covering constraint
- In the same spirit of the HCC (highest confidence covering) constraint in HARMONY [Wang+ 05]

Rank	Pattern	F-score	TIDs Covered
1	\{A, C	0.75	2,3,4
2	\{B\}	0.73	1,2,4,5
3	\{A\}	0.67	1,2,3,4
3	\{A, B $\}$	0.67	1, 2, 4
5	\{A, D, E\}	0.60	1,2,3
5	$\{\mathrm{A}, \mathrm{E}\}$	0.60	1,2,3
5	\{C\}	0.60	2, 3, 4
8	\{A, B, C\}	0.57	2, 4
8	$\{A, C, D\}$	0.57	2, 3
8	$A \mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	0.57	2,3
8	$\{A, C, E\}$	0.57	2,3
12	\{A, D\}	0.55	$1,2,3$
13	\{A, B, D\}	0.50	1,2
13	\{A, B, D, E\}	0.50	1,2
13	\{A, B, E\}	0.50	1,2
13	$\{\mathrm{B}, \mathrm{C}\}$	0.50	2, 4

16 patterns $\rightarrow \mathbf{2}$ patterns

Background: Control parameters

- Minimum support (minsup) $\sigma_{\min }$ is a sensitive control parameter
- Top-k mining [Han+ 02]:

$-k=$ "\# of output patterns"
$-k$ is fairly easy to specify because we usually know how many patterns we can handle (k is more human-centric than $\sigma_{\text {min }}$)
- However, we do not exactly know in advance how many useful patterns we can mine
- Is it possible to remove even k ?

Background: Sequential covering (1)

- Sequential covering:
- One traditional way for building a rule-based classifier
- Procedure:
- Iterate until there are no uncovered positive examples
- Induce a new rule r
- Remove all positive examples covered by r

Positive examples
 Negative examples

Background: Sequential covering (1)

- Sequential covering:
- One traditional way for building a rule-based classifier
- Procedure:
- Iterate until there are no uncovered positive examples
- Induce a new rule r
- Remove all positive examples covered by r

Positive examples

Negative examples

Background: Sequential covering (1)

- Sequential covering:
- One traditional way for building a rule-based classifier
- Procedure:
- Iterate until there are no uncovered positive examples
- Induce a new rule r
- Remove all positive examples covered by r

Positive examples

Negative examples

Background: Sequential covering (1)

- Sequential covering:
- One traditional way for building a rule-based classifier
- Procedure:
- Iterate until there are no uncovered positive examples
- Induce a new rule r
- Remove all positive examples covered by r

Positive examples

Negative examples

Background: Sequential covering (1)

- Sequential covering:
- One traditional way for building a rule-based classifier
- Procedure:
- Iterate until there are no uncovered positive examples
- Induce a new rule r
- Remove all positive examples covered by r

Positive examples

Negative examples

Background: Sequential covering (2)

- Problems in removing positive examples:
- Lately-generated rules may not be meaningful
- The number of positive examples decreases [Domingos 94] \rightarrow Lately-generated rules may not be statistically reliable

Next rules must be learned
Positive examples

Negative examples

Our proposal

- ExCover: an efficient and exact method for finding non-redundant discriminative itemsets
- Features:
- Exhaustive search unlike sequential covering
- Best-covering constraint tighter than productivity \rightarrow fewer redundant patterns
- No control parameters limiting the search space

Outline

\checkmark Background

- Our proposal
- Best-covering constraint - ExCover
- Experiments

Outline

\checkmark Background

- Our proposal
- Best-covering constraint - ExCover - Experiments

Best-covering constraint (1)

- Best-covering constraint: "Every pattern must have the highest quality for at least one positive transaction it covers"

Best-covering constraint (2)

- Best-covering constraint: "Every pattern must have the highest quality for at least one positive transaction it covers"

Best-covering constraint (3)

- Best-covering constraint: "Every pattern must have the highest quality for at least one positive transaction it covers"

Best-covering constraint (3)

- Best-covering constraint: "Every pattern must have the highest quality for at least one positive transaction it covers"

Best-covering constraint (3)

- Best-covering constraint:
"Every pattern must have the highest quality for at least one positive transaction it covers"

Positive transactions

We can also say : x must have higher quality than any other competitors for some instance

Instance of x

Best-covering constraint (4)

- Tightness:

Best-covering is tighter than productivity
Sketch of proof

- Sub-pattern of \boldsymbol{x} is always a competitor of \boldsymbol{x}
- If \boldsymbol{x} is best-covering, its sub-pattern must have lower quality
- Productivity: \boldsymbol{x} must have higher quality than its sub-patterns

Best-covering:

x must have higher quality than any other competitors for some instance

- Branch \& bound pruning:

We can safely prune \boldsymbol{x} and its descendants when the upper bound of x 's quality is lower than the quality of any competitor of x

Outline

\checkmark Background

- Our proposal

\checkmark Best-covering constraint

- ExCover
- Experiments

ExCover: Search space

- Basic strategy:
- Depth-first search by a variant [kameya+ 13] of LCM [Uno+ 04]:
- Only visits patterns closed on positive transactions \rightarrow The closedness constraint is built-in
- Visits earlier shorter patterns including high quality items \rightarrow There is more chance of pruning

Enumeration tree
of closed patterns:

All combinations
of B and $A$$\{B, A\}\{B, A, C\}\{B, A, E, D\}\{A, C, E, D\}$
All combinations
of B, A and C
$\{B, A, C, E, D\}$
Quality of item:
B $>\mathrm{A}>\mathrm{C}>\mathrm{E}>\mathrm{D}$

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate patterns are maintained in the candidate table following the best-covering constraint

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate patterns are maintained in the candidate table following the best-covering constraint

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t
Candidate table

Current pattern

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t
Candidate table

Current pattern

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t
Candidate table

Current pattern

t_{1}	
t_{2}	
t_{3}	(empty)
t_{4}	
t_{5}	
t_{6}	
t_{7}	z_{1}
t_{8}	
t_{9}	z_{2}

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t
Candidate table

Current pattern

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t Candidate table

Current pattern

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t Candidate table

Current pattern

Quality $(\boldsymbol{x})>\operatorname{Quality}\left(\boldsymbol{z}_{1}\right)$

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t Candidate table

Current pattern

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t Candidate table

Current pattern

$\operatorname{Quality}(\boldsymbol{x})<\operatorname{Quality}\left(\boldsymbol{z}_{2}\right)$

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t Candidate table

Current pattern

ExCover: Candidate table

- Basic strategy (cont'd):
- Top-1 (Top- k with $k=1$) mining concurrently for each positive transaction
- Candidate table is a map:

Positive transaction $t \rightarrow$ Best competitor(s) for t Candidate table

Pruned!

Current pattern
$\overline{\mathrm{Quality}(\boldsymbol{x})}<\mathrm{Quality}\left(\boldsymbol{z}_{1}\right)$
upper bound of x 's quality
$\overline{\text { Quality }(\boldsymbol{x})}<$ Quality $\left(z_{2}\right)$
$\overline{\operatorname{Quality}(\boldsymbol{x})}<\operatorname{Quality}\left(z_{3}\right)$

ExCover: Property

- ExCover is...
- Exhaustive
- Only performs safe branch \& bound pruning
- Parameter-free
- Conducts concurrent top-1 mining

Fixed inside the algorithm

ExCover: Related work

- HARMONY [Wang+ 05]
- Uses the same strategy as that of ExCover
- However its original paper does not mention on redundancy
- Uses confidence $p(c \mid \boldsymbol{x})$ as the quality score
- Confidence prefers highly specific patterns \rightarrow Not easy to have its upper bound
- User-specified minsup $\sigma_{\min }$ is required for pruning

Outline

\checkmark Background
\checkmark Our proposal
\checkmark Best-covering constraint \checkmark ExCover

- Experiments

Experiments: Outline

- We use datasets from UCI ML Repository
- Experiment 1:
- Detailed analysis on redundancy among patterns using the Mushroom dataset
- Experiment 2:
- Analysis on search performance using 16 datasets preprocessed by the CP4IM project:

Dataset	\#Trans.	\# Items
anneal	812	93
audiology	216	148
australian-credit	653	125
german-credit	1,000	112
heart-cleveland	296	95
hepatitis	137	68
hypothyroid	3,247	88
kr-vs-kp	3,196	73

Dataset	\#Trans.	Items
lymph	148	68
mushroom	8,124	110
primary-tumor	336	31
soybean	630	50
splice-1	3,190	287
tic-tac-toe	958	28
vote	435	48
zoo-1	101	36

Experiment 1: Mushroom

Covers

4,112 out of
4,208 positive transactions
Productivity + Closedness + Top- k [Kameya+ 13] ($k=30$)

Rank	Pattern	F-score
1	\{odor=n, veil-type=p\}	0.881
2	\{gill-size=b, stalk-surface-above-ring=s, veil-type=p\}	0.866
3	\{gill-size=b, stalk-surface-below-ring=s, veil-type=p\}	0.837
4	\{gill-size=b, veil-type=p\}	0.798
5	\{stalk-surface-above-ring=s, veil-type=p\}	0.776
6	\{ring-type=p, veil-type=p\}	0.771
7	\{stalk-surface-below-ring=s, veil-type=p\}	0.744
8	$\{$ veil-type $=$ p $\}$	0.682

Covers remaining
96 positive transactions

Experiment 1: Mushroom

 loses information from 96 positive transactions!Productivity + Closedness + Top- k [Kameya+ 13] ($k=30$)

	Rank	Pattern	F-score
	1	\{odor=n, veil-type=p\}	0.881
\longrightarrow	2	\{gill-size=b, stalk-surface-above-ring=s, veil-type=p\}	0.866
	3	\{gill-size=b, stalk-surface-below-ring=s, veil-type=p\}	0.837
	4	\{gill-size=b, veil-type=p\}	0.798
	5	\{stalk-surface-above-ring=s, veil-type=p\}	0.776
	6	\{ring-type=p, veil-type=p\}	0.771
	7	\{stalk-surface-below-ring=s, veil-type=p\}	0.744
	8	\{veil-type=p\}	0.682
Covers rema ExCover 96 positive			
	Rank	Pattern	F-score
	1	\{odor=n, veil-type=p\}	0.881
	2	\{gill-size=b, stalk-surface-above-ring=s, veil-type $=$ p\}	0.866
	3	\{stalk-surface-above-ring=s, veil-type=p\}	0.776

We only need 3 best-covering patterns

Experiment 2: Settings

- 16 datasets preprocessed by the CP4IM project
- Previous method in comparison [Kameya+ 13]:
- Productivity + Closedness + Top-k
$-k$ was chosen from 10, 100 and 1,000

Experiment 2: \#Patterns

- ExCover outputs a more compact set of patterns
- \# of output patterns was moderate and did not vary

Experiment 2: Search space

- Search space = \# of visited patterns in depth-first search

Experiment 2: Running time

- Our implementation: In Java
- Running time averaged over 30 runs
- For most datasets, ExCover finishes within one second

Summary

- ExCover: an efficient and exact method for finding non-redundant discriminative itemsets
- Works under the best-covering constraint
- Requires no control parameters limiting the search space
- Finds a more compact set of patterns in a shorter time

Future work

- Transactions including numeric values
- Building classifiers from best-covering patterns
- Sequence pattern mining

