
A Logic-based Approach to Generatively
Defined Discriminative Modeling

Taisuke Sato1, Keiichi Kubota1, and Yoshitaka Kameya2

1 Tokyo institute of Technology, Japan
{sato,kubota}@mi.cs.titech.ac.jp

2 Meijo University, Japan
ykameya@meijo-u.ac.jp

Abstract. Conditional random fields (CRFs) are usually specified by
graphical models but in this paper we propose to use probabilistic logic
programs and specify them generatively. Our intension is first to provide
a unified approach to CRFs for complex modeling through the use of
a Turing complete language and second to offer a convenient way of
realizing generative-discriminative pairs in machine learning.
We implemented our approach as the D-PRISM language by modify-
ing PRISM, a logic-based probabilistic modeling language for generative
modeling, while exploiting its dynamic programming mechanism for ef-
ficient probability computation. We tested D-PRISM with logistic re-
gression, a linear-chain CRF and a CRF-CFG and empirically confirmed
their excellent discriminative performance compared to their generative
counterparts, i.e. naive Bayes, an HMM and a PCFG.

1 Introduction

Conditional random fields (CRFs) [1] are probabilistic models for discriminative
modeling defining a conditional distribution p(y | x) over output y given input x.
They are quite popular for labeling sequence data such as text data and biological
sequences [2]. Although they are usually specified by graphical models, we here
propose to use probabilistic logic programs and specify them generatively. Our
intension is first to provide a unified approach to CRFs for complex modeling
through the use of a Turing complete language and second to offer a convenient
way of realizing generative-discriminative pairs [3] in machine learning.

The use of logical expressions to specify CRFs is not new but they have
been used solely as feature functions [4, 5]. For example in Markov logic net-
works (MLNs)[5], weighted clauses are used as feature functions to define (condi-
tional) Markov random fields and probabilities are obtained by Gibbs sampling.
Contrastingly in our approach implemented by a generative modeling language
PRISM [6, 7], clauses have no weights; they simply constitute a logic program
DB that computes possible output y from input x by proving a top-goal Gx,y

relating x to y from DB, and probabilities are exactly computed by dynamic
programming. However DB contains special atoms of the form msw(i, v), inher-
ited from PRISM and called msw atoms, have weights exp(λi,v · fi,v) where λi,v

is a real number and fi,v is a binary feature (0 or 1) respectively. i and v are
arbitrary terms. They may depend on x and y, and so may do fi,v. We define the
weight q(x, y) of a top-goal Gx,y as a sum-product of such weights appearing in
a proof of Gx,y and consider q(x, y) as an unnormalized distribution. By modify-
ing the dynamic programming mechanism of PRISM slightly, we can efficiently
compute, when possible and feasible, the unnormalized marginal distribution
q(x) =

∑
y q(x, y) and obtain a CRF p(y | x) = q(x, y)/q(x). We implemented

our idea by modifying PRISM and termed the resulting language D-PRISM (dis-
criminative PRISM). D-PRISM is a general programming language that genera-
tively defines CRFs and provides built-in predicates for parameter learning and
Viterbi inference of CRFs.

Our approach to CRFs is general in the sense that, like other statistical
relational learning (SRL) languages for CRFs [5, 8], programs in D-PRISM have
no restriction such as the exclusiveness condition in PRISM [7] except for the
use of binary features and we can write any program, i.e. we can write arbitrary
CRFs as long as they are computationally feasible. We point out that binary
features are most common features and they can encode basic CRF models such
as logistic regression, linear-chain CRFs and CRF-CFGs [9, 10, 2]. Furthermore
by dynamic programming, probabilistic inference can be efficiently carried out
with the same time complexity as their generative counterparts like the case of
linear-chain CRFs and hidden Markov models (HMMs).

In machine learning it is well-known that naive Bayes and logistic regression
form a generative-discriminative pair [3]. That is, any conditional distribution
p(y | x) computed from a joint distribution p(x, y) = p(x | y)p(y) defined
generatively by naive Bayes, where y is a class and x is a feature vector, can
also be defined directly by logistic regression and vice versa. As is empirically
demonstrated in [3], classification accuracy by discriminative models such as
logistic regression is generally better than their corresponding generative models
such as naive Bayes when there is enough data but generative models reach
their best performance more quickly than discriminative ones w.r.t. the amount
of available data. Also the theoretical analysis in [11] suggests that when a
model is wrong in generative modeling, the deterioration of prediction accuracy
is more severe than in discriminative modeling. It seems therefore reasonable
to say “...For any particular data set, it is impossible to predict in advance
whether a generative or a discriminative model will perform better” [2]. Hence
what is desirable is to provide a modeling environment in which the user can test
both types of modeling smoothly without pains and D-PRISM provides such an
environment that makes it easy to test and compare discriminative modeling and
generative modeling for the same class or related family of probabilistic models.

In what follows, we review CRFs in Section 2 and also review three basic
models, i.e. logistic regression, linear-chain CRFs and CRF-CFGs in Section 3.
We then introduce D-PRISM in Section 4 which is a discriminative version of
PRISM. We empirically verify the effectiveness of our approach in Section 5
using the three basic models. Section 6 contains related work and discussion and
Section 7 is the conclusion.

2 Conditional random fields

Conditional random fields (CRFs) [1] are popular probabilistic models defining
a conditional distribution p(y | x) over the output sequence y3 given an input
sequence x which takes the following form.

p(y | x) ≡ 1
Z(x)

exp
{ K∑

k=1

λkfk(x, y)
}

(1)

Here fk(x, y) and λk (1 ≤ k ≤ K) are respectively a real valued function (feature
function) and the associated weight (parameter) and Z(x) a normalizing con-
stant. As Z(x) is the sum of exponentially many terms, the exact computation is
generally intractable and takes O(M |y|) time where M is the maximum number
of possible values for each component of y and hence approximation methods
have been developed [2]. However when p(y | x) has recursive structure of specific
type as a graphical model like linear-chain CRFs, Z(x) is efficiently computable
by dynamic programming.

Now let D = {(x(1), y(1)), · · · , (x(T), y(T))} be a training set. The conditional
log-likelihood l(λ | D) of D is given by

l(λ | D) ≡
T∑

t=1

log p(y(t) | x(t)) − µ

2

K∑
k=1

λ2
k

=
T∑

t=1

{ K∑
k=1

λkfk(x(t),y(t)) − log Z(x(t))
}
− µ

2

K∑
k=1

λ2
k

where λ = λ1, . . . , λK are parameters and
µ

2

K∑
k=1

λ2
k is a penalty term. Parameters

are then estimated as the ones that maximize l(λ | D), for example by New-
ton’s or quasi-Newton methods. The gradient required for parameter learning is
computed as

∂l(λ | D)
∂λk

=
T∑

t=1

{
fk(x(t), y(t)) − E(fk | x(t))

}
− µλk.

The problem here is that the expectation E(fk | x(t)) is difficult to compute
and hence a variety of approximation methods such as stochastic gradient descent
(SDG) [2] have been proposed. However in this paper we focus on cases where
exact computation by dynamic programming is possible and use an algorithm
that generalizes the outside probability computation in probabilistic context free
grammars (PCFGs) [12].
3 Bold italic letters are random vectors in this paper.

After parameter learning, we apply our model to prediction tasks and infer
the most-likely output ŷ for an input sequence x which is given by (2) below.
As naively computing ŷ is straightforward but too costly, we again consider only
cases where dynamic programming is feasible and apply a variant of the Viterbi
algorithm for HMMs.

ŷ ≡ argmaxyp(y | x) = argmaxy

K∑
k=1

λkfk(x, y) (2)

3 Basic models

3.1 Logistic regression

Logistic regression specifies a conditional distribution p(y | x) over a class
variable y given the input x = x1, . . . , xK , a vector of attributes. It assumes
log p(y | x) is a linear function of x and given by

p(y | x) ≡ 1
Z(x)

exp
{

λy +
K∑

j=1

λy,jxj

}
. (3)

We here confirm that logistic regression is a CRF. Rewrite λy =
∑

y′ λy′1{y′=y}
and λy,jxj =

∑
y′ λy′,j1{y′=y}xj

4 and substitute them for λy and λy,jxj in (3).
We then obtain

p(y | x) =
1

Z(x)
exp

{∑
y′

λy′1{y′=y} +
∑
y′

K∑
j=1

λy′,j1{y′=y}xj

}
. (4)

By considering 1{y′=y} and 1{y′=y}xj as feature functions (of y and x), we can
see logistic regression is a CRF.

3.2 Linear-chain CRFs

CRFs [1] are generally intractable and a variety of approximation methods such
as sampling and loopy BP have been developed. There is however a tractable
subclass called linear-chain CRF s defining a conditional distribution p(y | x)
shown in (5) below over sequences y given the sequence x such that |x|5= |y|
and feature functions are restricted to the form f(x, yi, yi−1) (2 ≤ i ≤ |y|). As a
result exact probability computation is possible in time linear in the input length
|x| by a variant of the forward-backward algorithm. They are considered as a
generalized and undirected version of HMMs which enable us to use far richer
feature functions other than transition probabilities and emission probabilities
in HMMs.

p(y | x) ≡ 1
Z(x)

exp
{ K∑

k=1

λk

∑
i

fk(x, yi, yi−1)
}

(5)

4 1{y′=y} is a binary function of y taking 1 if y = y′, otherwise 0.
5 |x| denotes the length of vector x.

3.3 CRF-CFGs

PCFGs [12] are a basic class of probabilistic grammars extending CFGs by as-
signing selection probabilities θ to production rules. In PCFGs, the probabil-
ity of a sentence is the sum of probabilities of parse trees and the probabil-
ity of a parse tree is the product of probabilities associated with production
rules used in the tree. PCFGs are generative models and parameters are usu-
ally learned by maximum likelihood estimation (MLE). So given parse trees
τ1, . . . , τT and the corresponding sentences s1, . . . , sT , parameters are estimated
as θ∗ = argmaxθ

∏T
t=1 p(τt, st | θ).

Seeking better parsing accuracy, Johnson attempted parameter learning by
maximizing conditional likelihood: θ

′
= argmaxθ

∏T
t=1 p(τt | st, θ) but found the

improvement is not statistically significant [9]. Later Finkel et al. generalized
PCFGs to conditional random field context free grammars (CRF-CFGs) where
the conditional probability p(τ | s) of a parse tree τ given a sentence s is defined
by (6) [10].

p(τ | s) ≡ 1
Z(s)

exp
{ K∑

k=1

λk

∑
r∈τ

fk(r, s)
}

(6)

Here λ1, . . . , λK are parameters and r ∈ τ is a CFG rule (enriched with other
information) appearing in the parse tree τ and fk(r, s) is a feature function.

They conducted learning experiments with a CRF-CFG using the Penn Tree-
bank [13]. Parameters are learned from parse trees τ1, . . . , τT and corresponding
sentences s1, . . . , sT in the corpus by maximizing conditional likelihood just like
[9] but this time they obtained a significant gain in parsing accuracy [10]. Their
experiments clearly demonstrate the advantage of extensive use of features and
discriminative parameter learning.

4 D-PRISM

Having seen basic models of CRFs, we next show how they are uniformly sub-
sumed by a logic-based modeling language PRISM [6, 7] with a simple modifica-
tion of its probability computation. The modified language is termed D-PRISM
(discriminative PRISM).

4.1 PRISM at a glance

Before proceeding further we quickly review PRISM6. PRISM is a high-level
generative modeling language based on Prolog extended with a rich array of
probabilistic built-in predicates for various types of probabilistic inference and
parameter learning. Specifically it offers, in addition to MLE by the EM al-
gorithm, Viterbi training (VT), variational Bayes (VB), variational VT (VB-
VT) and MCMC for Bayesian inference. PRISM has been applied to music and
6 http://sato-www.cs.titech.ac.jp/prism/

bioinformatics [14–16]. A PRISM program DB contains msw atoms of the form
msw(i, v) (i and v are terms) representing a probabilistic choice such that for
given i, there is a set of possible values (outcomes) V = {v1, . . . , v|V |} and ex-
ecuting msw(i,X) returns vk in X with probability θk (1 ≤ k ≤ |V |) where∑|V |

k=1 θk = 1. {θ1, . . . , θ|V |} are called parameters for msw(i, ·).
DB defines a probability measure pDB(·) over Herbrand interpretations [7].

The probability pDB(G) of a top-goal G then is computed as a sum-product
of parameters in two steps. First G is reduced using DB by SLD search to a
disjunction E1 ∨ · · · ∨ EM such that each Ej (1 ≤ j ≤ M) is a conjunction
of msw atoms representing a sequence of probabilistic choices. Ej is called an
explanation for G because it explains why G is true or how G is probabilistically
generated. Let φ(G) ≡ {E1, . . . , EM} be the set of all explanations for G. pDB(G)
is computed as pDB(G) =

∑
E∈φ(G) pDB(E) and pDB(E) =

∏N
k=1 θk for E =

msw1 ∧ · · · ∧ mswN , where θk is a parameter for mswk (1 ≤ k ≤ N).
Let p(x, y) be a joint distribution over input x (or observation) and output y

(or hidden state). Suppose we wish to construct p(x, y) as a PRISM program. We
write a program DB that probabilistically proves Gx,y, a top-goal that relates x
to y, using msw atoms, in such a way that p(x, y) = pDB(Gx,y) holds. Since (x, y)
forms a complete data, Gx,y has only one explanation Ex,y for Gx,y, so we have
pDB(Gx,y) = pDB(Ex,y) =

∏
i,v θ

σi,v(Ex,y)
i,v where σi,v(Ex,y) is the count of oc-

currences of msw(i, v) in Ex,y. Introduce Gx = ∃y Gx,y. Then the marginal prob-
ability p(x) is obtained as pDB(Gx) because p(x) =

∑
y pDB(Gx,y) = pDB(Gx)

holds. Hence the conditional distribution p(y | x) is computed as

p(y | x) =
pDB(Gx,y)
pDB(Gx)

=
pDB(Ex,y)
pDB(Gx)

=

∏
i,v θ

σi,v(Ex,y)
i,v∑

Ex,y∈φ(Gx)

∏
i,v θ

σi,v(Ex,y)
i,v

. (7)

Let T stand for temperature, H humidity, and S season respectively. A PRISM
program in Fig. 1 generatively defines a joint distribution p([T,H], S) by naive
Bayes as the distribution of nb([T,H],S). It first probabilistically generates a
season S by executing a probabilistic built-in predicate msw(season,S)7, then
similarly generates a value T of temperature and a value H of humidity, each con-
ditioned on S, by executing msw(attr(temp,S),T) and msw(attr(humidity,S),H)
in turn. The correspondence to (7) is that Gx,y = nb([T,H],S) and Gx =
nb([T,H]) where x = [T,H] and y = S.

4.2 From probability to weight

The basic idea of our generative approach to discriminative modeling is to gen-
eralize (7) by generalizing probability to weight, i.e. by replacing parameters θi,v

for msw(i, v) with weights of the form exp(λi,vfi,v(Gx, Ex,y)) where fi,v(Gx, Ex,y)
is a binary feature function taking 0 or 1. We compute pDB(Gx) as a sum-product
7 S in msw(season,S) runs over a set {spring,summer,fall,winter} of seasons as spec-

ified by the values/2 declaration values(season,[spring,summer,fall,winter]).

values(season,[spring,summer,fall,winter]).

values(attr(temp,_),[high,mild,low]).

values(attr(humidity,_),[high,low]).

nb([T,H],S):- % defines p([T,H],S)

msw(season,S), % S from {spring,summer,fall,winter}

msw(attr(temp,S),T), % T from {high,mild,low}

msw(attr(humidity,S),H). % H from {high,low}

nb([T,H]):- nb([T,H],_). % defines p([T,H])

Fig. 1. Naive Bayes program

of weights as before but with normalization, to have a CRF in the left-hand side
of (7). More precisely, we first introduce an unnormalized distribution q(x, y)
defined by:

q(x, y) ≡ exp
(∑

i,v

λi,vfi,v(Gx, Ex,y)σi,v(Ex,y)
)

where fi,v(G,E) =
{

1 : E ∈ φ(G) ∧ msw(i, v) ∈ E
0 : otherwise. (8)

obtained from replacing probabilities with weights in the computation of pDB(Gx,y)
(=pDB(Ex,y)). Note that by setting λi,v = ln θi,v, q(x, y) is reduced to p(x, y) =
pDB(Gx,y) again. Next we introduce ηi,v ≡ exp(λi,v) and rewrite (7) as p(y | x)

= p(Ex,y | Gx) =
q(x, y)∑
y q(x, y)

. We reach (9) and (10).

p(Ex,y | Gx) =
1

Z(Gx)
exp

(∑
i,v

λi,vσi,v(Ex,y)
)

=
1

Z(Gx)

∏
i,v

η
σi,v(Ex,y)
i,v (9)

Z(Gx) =
∑

Ex,y∈φ(Gx)

exp
(∑

i,v

λi,vσi,v(Ex,y)
)

=
∑

Ex,y∈φ(Gx)

∏
i,v

η
σi,v(Ex,y)
i,v (10)

(9) and (10) are fundamental equations for D-PRISM describing how a CRF
p(y | x) is defined and computed as p(Ex,y | Gx). By comparing (7) to (9)
and (10), we notice that the most computationally demanding task, computing
Z(Gx) in (10), can be carried out efficiently by dynamic programming just by
replacing θi,v in PRISM with ηi,v, which gives the same time complexity as
PRISM’s probability computation.

Syntactically D-PRISM programs are PRISM programs. More precisely they
are PRISM programs that prove top-goals Gx,y for complete data (x, y) and Gx

for incomplete data x. For example, the PRISM program in Fig. 1 for naive
Bayes is also a D-PRISM program defining logistic regression.

In D-PRISM, parameters are learned discriminatively from complete data.
Consider the (log) conditional likelihood l(λ | D) of a set of observed data
D = {d1, d2, · · · , dT } where dt = (Gx(t) , Ex(t),y(t)) = (Gt, Et) (1 ≤ t ≤ T).
l(λ | D) is given by

l(λ | D) ≡
T∑

t=1

log p(Et | Gt) −
µ

2

∑
i,v

λ2
i,v

=
T∑

t=1

{∑
i,v

λi,vσi,v(Et) − log Z(Gt)
}
− µ

2

∑
i,v

λ2
i,v (11)

and parameters, λ, are estimated as those that maximize l(λ | D). Currently we
use L-BFGS [17] to maximize l(λ | D). The gradient used in the maximization
is computed as

∂l(λ|D)
∂λi,v

=
T∑

t=1

{
σi,v(Et) −

∂

∂λi,v
log Z(Gt)

}
− µλi,v

=
T∑

t=1

{
σi,v(Et) − E(σi,v | Gt)

}
− µλi,v. (12)

Finally, Viterbi inference, computing the most likely output y for the input x,
or the most likely explanation E∗

x,y for the top-goal Gx is formulated as (13) in
D-PRISM and computed by dynamic programming just like PRISM.

E∗
x,y = argmaxEx,y∈φ(Gx)p(Ex,y | Gx)

= argmaxEx,y∈φ(Gx)

∑
i,v

λi,vσi,v(Ex,y) (13)

5 Experiments

In this section, we conduct learning experiments with CRFs. CRFs encoded
by D-PRISM programs and their generative counterpart encoded by PRISM
programs are used to compare their accuracy in discriminative tasks. We consider
three basic models, logistic regression, a linear-chain CRF and a CRF-CFG.

5.1 Logistic regression with UCI datasets

We select four datasets with no missing data from the UCI Machine Learn-
ing Repository [18] and compare prediction accuracy, one by logistic regression
written in D-PRISM and the other by a naive Bayes model written in PRISM.

Table 1. Logistic regression: UCI datasets and accuracy

Dataset Size #Class #Attr. D-PRISM PRISM

zoo 101 7 16 95.19%(8.16) 95.19%(8.16)

car 1728 4 6 93.51%(1.35) 85.36%(2.56)

kr-vs-kp 3196 2 36 97.56%(0.93) 87.49%(2.06)

nursery 12960 5 8 92.62%(0.82) 90.20%(0.47)

We use the program in Fig. 1 with a slight generalization for accepting arbi-
trary attribute sets. The result by ten-fold cross-validation is shown in Table 1
with standard deviation in parentheses. D-PRISM there means logistic regres-
sion whereas PRISM means a naive Bayes model. Except for the zoo dataset,
logistic regression by D-PRISM outperforms a naive Bayes model by PRISM.
The difference is statistically significant by t-test at 0.05 significance level.

5.2 Linear-chain CRF with the Penn Treebank

We here compare a linear-chain CRF encoded as a D-PRISM program and an
HMM encoded as a PRISM program using sequence data extracted from the
Penn Treebank[13]. What we actually do is to write an HMM program in PRISM
for complete and incomplete data and consider it as a D-PRISM program defin-
ing a linear-chain CRF, similarly to the case of the naive Bayes and logistic
regression.

For simplicity we employ as features the number of occurrences of transitions
and emissions. Fig. 2 is a D-PRISM program for a CRF with two states {s0,
s1} and two emission symbols {a, b}. hmm0/2 describes complete data and corre-
sponds to Gx,y in (7) whereas hmm0/18 is for incomplete data and corresponds to
Gx in (7). Binary feature functions over a sequence x of symbols and a sequence
y of states are implicitly represented by ground msw atoms, i.e. msw(init,s),
msw(tr(s),s′) (s, s′ ∈ {s0, s1}) and msw(out(s,e) (e ∈ {a, b}). For exam-
ple msw(tr(s),s′) returns 1 (true) if y contains a transition from s to s′, else 0
(false).

We conduct a comparison of prediction accuracy by a linear-chain CRF and
an HMM using the D-PRISM program in Fig. 2 with appropriate values/2 dec-
larations. The task is to predict the pos-tag sequence given a sentence. As learn-
ing data, we use two sets of sentences and their pos-tag sequences extracted from
the Penn Treebank [13], Section-02 in the WSJ (Wall Street Journal articles)
corpus referred to here as WSJ02 ALL and its subset referred to as WSJ02 16,
consisting of data of length less-than or equal to 16.

Table 2 contains prediction accuracy (%) by eight-fold cross-validation in
which D-PRISM means a linear-chain CRF and PRISM means an HMM, to-
gether with some statistics of data. The table clearly demonstrates that we
8 Using “hmm0([X0|Xs]):- hmm0([X0|Xs],)” to define hmm0/1 is possible and theo-

retically correct but kills the effect of tabling.

values(init,[s0,s1]). values(tr(_),[s0,s1]). values(out(_),[a,b]).

hmm0([X0|Xs],[Y0|Ys]):- msw(init,Y0),msw(out(Y0),X0),hmm1(Y0,Xs,Ys).

hmm1(_,[],[]).

hmm1(Y0,[X|Xs],[Y|Ys]):- msw(out(Y0),X),msw(tr(Y0),Y),hmm1(Y,Xs,Ys).

hmm0([X|Xs]):- msw(init,Y0),msw(out(Y0),X),hmm1(Y0,Xs).

hmm1(_,[]).

hmm1(Y0,[X|Xs]):- msw(tr(Y0),Y1),msw(out(Y1),X),hmm1(Y1,Xs).

Fig. 2. Simple linear-chain CRF program

can achieve considerably better (significant by t-test at 0.05 significance level)
performance only by switching from PRISM to D-PRISM while using similar
programs.

Table 2. Linear-chain CRF: Penn Treebank data and labeling accuracy

Dataset Size Max-len Ave-len #Tags #Words D-PRISM PRISM

WSJ02 16 1087 16 9.69 40 3341 83.17%(1.23) 77.23%(1.38)

WSJ02 ALL 2419 105 19.28 45 8476 90.60%(0.32) 87.27%(0.29)

5.3 CRF-CFG with the ATR tree corpus

We here deal with probabilistic grammars which are beyond the scope of graph-
ical models. We compare the parsing accuracy of a CRF-CFG described by a
D-PRISM program and a PCFG described by a PRISM program. We do not use
features other than the number of occurrences of a rule in the parsing tree. To
save space, we omit programs though they are (almost) identical.

As a dataset, we use the ATR tree corpus and its associated CFG [19].
Their statistics are shown in Table 3. After parameter learning by MLE using
conditional likelihood (6) for the CRF-CFG and the one by the usual likelihood
for the PCFG, we compare their parsing accuracy by eight-fold cross-validation.
The task is to predict a parse tree given a sentence and the predicted parse tree
is considered correct when it exactly coincides with the one for the sentence in
the ATR tree corpus.

D-PRISM (resp. PRISM) in Table 3 indicates the average accuracy of the
CRF-CFG model (reps. PCFG model). Apparently as in the case of [10], shifting
from PRISM (PCFG) to D-PRISM (CRF-CFG) yields a considerable difference
(the difference is statistically significant by t-test at 0.05 significance level).

Table 3. CRF-CFG: ATR corpus and parsing accuracy

Dataset Size Max-len Ave-len #Rules D-PRISM PRISM

ATR corpus 10995 49 9.97 860 82.74%(1.62) 79.06%(1.25)

6 Discussion and future work

There are already discriminative modeling languages for CRFs such as Alchemy
[20] based on MLNs and Factorie [8] based on factor graphs. To define models,
the former uses weighted clauses whereas the latter uses imperatively defined
factor graphs. Both use Markov chain Monte-Carlo (MCMC) for probabilistic
inference. D-PRISM differs from them in that although programs define CRFs,
they are purely generative, computing output from input, and probabilities are
computed by dynamic programming.

Compared to PRISM, D-PRISM has no restriction on programs such as the
uniqueness condition, exclusiveness condition and independence condition [7].
Consequently non-exclusive or is permitted in a program. Also computation is
allowed to fail by constraints. Of course this freedom is realized at the expense of
normalization cost which may be prohibitive even when dynamic programming
is possible. However thanks to the removal of restrictive conditions, D-PRISM is
now more amenable to structure learning in ILP than PRISM, which is expected
to open up a new line of research of learning CRFs in ILP.

Currently only binary features are allowed. Generally a binary feature f(x, y)
is written as a conjunction like Fi,v(x, y)∧ msw(i, v) in which Fi,v(x, y) succeeds
if-and-only-if x has a feature Fi,v. Introducing arbitrary features is a future work
and so is a mechanism of parameter tying.

7 Conclusion

We have introduced D-PRISM, a logic-based generative language for discrimina-
tive modeling. As examples show, D-PRISM programs are just PRISM programs
with probabilities replaced by weights. It is the first modeling language to our
knowledge that generatively defines CRFs (and their extension to probabilistic
grammars). We can freely build logistic regression, linear-chain CRFs, CRF-
CFGs or more complex models generatively with the same modeling cost as
PRISM while achieving better performance in discriminative tasks.

References

1. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th
International Conference on Machine Learning (ICML’01). (2001) 282–289

2. Sutton, C., McCallum, A.: An introduction to conditional random fields. Founda-
tions and Trends in Machine Learning 4(4) (2012) 267–373

3. Ng, A., Jordan, M.: On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes. In: NIPS. (2001) 841–848

4. Gutmann, B., Kersting, K.: TildeCRF: Conditional random fields for logical se-
quences. In: In Proceedings of the 15th European Conference on Machine Learning
(ECML-06). (2006) 174–185

5. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62 (2006)
107–136

6. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI’97). (1997) 1330–1335

7. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

8. McCallum, A., Schultz, K., Singh, S.: Factorie: Probabilistic programming via
imperatively defined factor graphs. In: Advances in Neural Information Processing
Systems 22. (2009) 1249–1257

9. Johnson, M.: Joint and conditional estimation of tagging and parsing models.
In: Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics (ACL-01). (2001) 322–329

10. Finkel, J., Kleeman, A., Manning, C.: Efficient, feature-based, conditional random
field parsing. In: Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics (ACL’08). (2008) 959–967

11. Liang, P., Jordan, M.: An asymptotic analysis of generative, discriminative, and
pseudolikelihood estimators. In: Proceedings of the 25th international conference
on Machine learning (ICML’08). (2008) 584–591

12. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press (1999)

13. Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus
of English: the Penn Treebank. Computational Linguistics 19 (1993) 313–330

14. Sneyers, J., Vennekens, J., De Schreye, D.: Probabilistic-logical modeling of mu-
sic. In: Proceedings of the 8th International Symposium on Practical Aspects of
Declarative Languages (PADL’06), vol.3819, LNCS. (2006) 60–72

15. Biba, M., Xhafa, F., Esposito, F., Ferilli, S.: Stochastic simulation and modelling
of metabolic networks in a machine learning framework. Simulation Modelling
Practice and Theory 19(9) (2011) 1957–1966

16. Mørk, S., Holmes, I.: Evaluating bacterial gene-finding hmm structures as proba-
bilistic logic programs. Bioinformatics 28(5) (2012) 636–642

17. Liu, D., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45 (1989) 503–528

18. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
19. Uratani, N., Takezawa, T., Matsuo, H., Morita, C.: ATR integrated speech and

language database. Technical Report TR-IT-0056, ATR Interpreting Telecommu-
nications Research Laboratories (1994)

20. Kok,S. and Singla,P. and Richardson,M.and Domingos,P.: The Alchemy system
for statistical relational AI. Technical report, Department of Computer Science
and Engineering, University of Washington (2005)

