
Journal of Artificial Intelligence Research 15 (2001) 391-454 Submitted 6/18; published 12/01

Parameter Learning of Logic Programs for
Symbolic-statistical Modeling

Taisuke Sato sato@mi.cs.titech.ac.jp

Yoshitaka Kameya kame@mi.cs.titech.ac.jp

Dept. of Computer Science, Graduate School of Information
Science and Engineering, Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo Japan 152-8552

Abstract

We propose a logical/mathematical framework for statistical parameter learning of pa-
rameterized logic programs, i.e. definite clause programs containing probabilistic facts with
a parameterized distribution. It extends the traditional least Herbrand model semantics in
logic programming to distribution semantics, possible world semantics with a probability
distribution which is unconditionally applicable to arbitrary logic programs including ones
for HMMs, PCFGs and Bayesian networks.

We also propose a new EM algorithm, the graphical EM algorithm, that runs for a
class of parameterized logic programs representing sequential decision processes where each
decision is exclusive and independent. It runs on a new data structure called support graphs
describing the logical relationship between observations and their explanations, and learns
parameters by computing inside and outside probability generalized for logic programs.

The complexity analysis shows that when combined with OLDT search for all expla-
nations for observations, the graphical EM algorithm, despite its generality, has the same
time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the
Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks
that have been developed independently in each research field. Learning experiments with
PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can
significantly outperform the Inside-Outside algorithm.

1. Introduction

Parameter learning is common in various fields from neural networks to reinforcement learn-
ing to statistics. It is used to tune up systems for their best performance, be they classifiers
or statistical models. Unlike these numerical systems described by mathematical formu-
las however, symbolic systems, typically programs, do not seem amenable to any kind of
parameter learning. Actually there has been little literature on parameter learning of pro-
grams.

This paper is an attempt to incorporate parameter learning into computer programs.
The reason is twofold. Theoretically we wish to add the ability of learning to computer
programs, which the authors believe is a necessary step toward building intelligent systems.
Practically it broadens the class of probability distributions, beyond traditionally used nu-
merical ones, which are available for modeling complex phenomena such as gene inheritance,
consumer behavior, natural language processing and so on.

c©2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Sato & Kameya

The type of learning we consider here is statistical parameter learning applied to logic
programs.1 We assume that facts (unit clauses) in a program are probabilistically true and
have a parameterized distribution.2 Other clauses, non-unit definite clauses, are always
true as they encode laws such as “if one has a pair of blood type genes a and b, one’s
blood type is AB”. We call logic programs of this type a parameterized logic program and
use for statistical modeling in which ground atoms3 provable from the program represent
our observations such as “one’s blood type is AB” and the parameters of the program are
inferred by performing ML (maximum likelihood) estimation on the observed atoms.

The probabilistic first-order framework sketched above is termed statistical abduction
(Sato & Kameya, 2000) as it is an amalgamation of statistical inference and abduction
where probabilistic facts play the role of abducibles, i.e. primitive hypotheses.4 Statistical
abduction is powerful in that it not only subsumes diverse symbolic-statistical frameworks
such as HMMs (hidden Markov models, Rabiner, 1989), PCFGs (probabilistic context free
grammars, Wetherell, 1980; Manning & Schütze, 1999) and (discrete) Bayesian networks
(Pearl, 1988; Castillo, Gutierrez, & Hadi, 1997) but gives us freedom of using arbitrarily
complex logic programs for modeling.5

The semantic basis for statistical abduction is distribution semantics introduced by Sato
(1995). It defines a parameterized distribution, actually a probability measure, over the set
of possible truth assignments to ground atoms and enables us to derive a new EM algorithm6

for ML estimation called the graphical EM algorithm (Kameya & Sato, 2000).
Parameter learning in statistical abduction is done in two phases, search and EM learn-

ing. Given a parameterized logic program and observations, the first phase searches for all
explanations for the observations. Redundancy in the first phase is eliminated by tabulating
partial explanations using OLDT search (Tamaki & Sato, 1986; Warren, 1992; Sagonas, T.,
& Warren, 1994; Ramakrishnan, Rao, Sagonas, Swift, & Warren, 1995; Shen, Yuan, You, &
Zhou, 2001). It returns a support graph which is a compact representation of the discovered
explanations. In the second phase, we run the graphical EM algorithm on the support graph

1. In this paper, logic programs mean definite clause programs. A definite clause program is a set of definite
clauses. A definite clause is a clause of the form A ←L1, . . . , Ln (0 ≤ n) where A, L1, . . . , Ln are atoms.
A is called the head, L1, . . . , Ln the body. All variables are universally quantified. It reads if L1 and
· · · and Ln hold, then A holds. In case of n = 0, the clause is called a unit clause. A general clause is
one whose body may contain negated atoms. A program including general clauses is sometimes called a
general program (Lloyd, 1984; Doets, 1994).

2. Throughout this paper, for familiarity and readability, we will somewhat loosely use “distribution” as a
synonym for “probability measure”.

3. In logic programming, the adjective “ground” means no variables contained.
4. Abduction means inference to the best explanation for a set of observations. Logically, it is formalized as

a search for an explanation E such that E, KB ` G where G is an atom representing our observation, KB
a knowledge base and E a conjunction of atoms chosen from abducibles, i.e. a class of formulas allowed
as primitive hypotheses (Kakas, Kowalski, & Toni, 1992; Flach & Kakas, 2000). E must be consistent
with KB.

5. Existing symbolic-statistical modeling frameworks have restrictions and limitations of various types com-
pared with arbitrary logic programs (see Section 7 for details). For example, Bayesian networks do not
allow recursion. HMMs and PCFGs, stochastic grammars, allow recursion but lack variables and data
structures. Recursive logic programs are allowed in Ngo and Haddawy’s (1997) framework but they
assume domains are finite and function symbols seem prohibited.

6. “EM algorithm” stands for a class of iterative algorithms for ML estimation with incomplete data
(McLachlan & Krishnan, 1997).

392

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

and learn the parameters of the distribution associated with the program. Redundancy in
the second phase is removed by the introduction of inside and outside probability for logic
programs computed from the support graph.

The graphical EM algorithm has accomplished, when combined with OLDT search for
all explanations, the same time complexity as the specialized ones, e.g. the Baum-Welch
algorithm for HMMs (Rabiner, 1989) and the Inside-Outside algorithm for PCFGs (Baker,
1979), despite its generality. What is surprising is that, when we conducted learning exper-
iments with PCFGs using real corpora, it outperformed the Inside-Outside algorithm by
orders of magnitudes in terms of time for one iteration to update parameters. These ex-
perimental results enhance the prospect for symbolic-statistical modeling by parameterized
logic programs of even more complex systems than stochastic grammars whose modeling
has been difficult simply because of the lack of an appropriate modeling tool and their sheer
complexities. The contributions of this paper therefore are

• distribution semantics for parameterized logic programs which unifies existing symbolic-
statistical frameworks,

• the graphical EM algorithm (combined with tabulated search), a general yet efficient
EM algorithm that runs on support graphs and

• the prospect suggested by the learning experiments for modeling and learning complex
symbolic-statistical phenomena.

The rest of this paper is organized as follows. After preliminaries in Section 2, a proba-
bility space for parameterized logic programs is constructed in Section 3 as a mathematical
basis for the subsequent sections. We then propose a new EM algorithm, the graphical
EM algorithm, for parameterized logic programs in Section 4. Complexity analysis of the
graphical EM algorithm is presented in Section 5 for HMMs, PCFGs, pseudo PCSGs and
sc-BNs.7 Section 6 contains experimental results of parameter learning with PCFGs by the
graphical EM algorithm using real corpora that demonstrate the efficiency of the graphical
EM algorithm. We state related work in Section 7, followed by conclusion in Section 8. The
reader is assumed to be familiar with the basics of logic programming (Lloyd, 1984; Doets,
1994), probability theory (Chow & Teicher, 1997), Bayesian networks (Pearl, 1988; Castillo
et al., 1997) and stochastic grammars (Rabiner, 1989; Manning & Schütze, 1999).

2. Preliminaries

Since our subject intersects logic programming and EM learning which are quite different
in nature, we separate preliminaries.

2.1 Logic Programming and OLDT

In logic programming, a program DB is a set of definite clauses8 and the execution is search
for an SLD refutation of a given goal ←G. The top-down interpreter recursively selects the
7. Pseudo PCSGs (probabilistic context sensitive grammars) are a context-sensitive extension of PCFGs

proposed by Charniak and Carroll (1994). sc-BN is a shorthand for a singly connected Bayesian network
(Pearl, 1988).

8. We do not deal with general logic programs in this paper.

393

Sato & Kameya

next goal and unfolds it (Tamaki & Sato, 1984) into subgoals using a nondeterministically
chosen clause. The computed result by the SLD refutation, i.e. a solution, is an answer
substitution (variable binding) θ such that DB ` Gθ.9 Usually there is more than one
refutation for ← G, and the search space for all refutations is described by an SLD tree
which may be infinite depending on the program and the goal (Lloyd, 1984; Doets, 1994).

More often than not, applications require all solutions. In natural language processing
for instance, a parser must be able to find all possible parse trees for a given sentence as
every one of them is syntactically correct. Similarly in statistical abduction, we need to
examine all explanations to determine the most likely one. All solutions are obtained by
searching the entire SLD tree, and there is a choice of the search strategy. In Prolog, the
standard logic programming language, backtracking is used to search for all solutions in
conjunction with a fixed search order for goals (textually from left-to-right) and clauses
(textually top-to-bottom) due to the ease and simplicity of implementation.

The problem with backtracking is that it forgets everything until up to the previous
choice point, and hence it is quite likely to prove the same goal again and again, resulting in
exponential search time. One answer to avoid this problem is to store computed results and
reuse them whenever necessary. OLDT is such an instance of memoizing scheme (Tamaki
& Sato, 1986; Warren, 1992; Sagonas et al., 1994; Ramakrishnan et al., 1995; Shen et al.,
2001). Reuse of proved subgoals in OLDT search often drastically reduces search time
for all solutions, especially when refutations of the top goal include many common sub-
refutations. Take as an example a logic program coding an HMM. For a given string s,
there exist exponentially many transition paths that output s. OLDT search applied to
the program however only takes time linear in the length of s to find all of them unlike
exponential time by Prolog’s backtracking search.

What does OLDT have to do with statistical abduction? From the viewpoint of statisti-
cal abduction, reuse of proved subgoals, or equivalently, structure sharing of sub-refutations
for the top-goal G brings about structure sharing of explanations for G, in addition to the
reduction of search time mentioned above, thereby producing a highly compact representa-
tion of all explanations for G.

2.2 EM Learning

Parameterized distributions such as the multinomial distribution and the normal distribu-
tion provide convenient modeling devices in statistics. Suppose a random sample x1, . . . , xT

of size T on a random variable X drawn from a distribution P (X = x | θ) parameterized
by unknown θ, is observed. The value of θ is determined by ML estimation as the MLE
(maximum likelihood estimate) of θ, i.e. as the maximizer of the likelihood

∏
1≤i≤T P (xi | θ).

Things get much more difficult when data are incomplete. Think of a probabilistic
relationship between non-observable cause X and observable effect Y such as one between
diseases and symptoms in medicine and assume that Y does not uniquely determine the
cause X. Then Y is incomplete in the sense that Y does not carry enough information to
completely determine X. Let P (X = x, Y = y | θ) be a parameterized joint distribution
over X and Y . Our task is to perform ML estimation on θ under the condition that X is

9. By a solution we ambiguously mean both the answer substitution θ itself and the proved atom Gθ, as
one gives the other.

394

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

non-observable while Y is observable. Let y1, . . . , yT be a random sample of size T drawn
from the marginal distribution P (Y = y | θ) =

∑
x P (X = x, Y = y | θ). The MLE of θ is

obtained by maximizing the likelihood
∏

1≤i≤T P (yi | θ) as a function of θ.
While mathematical formulation looks alike in both cases, the latter, ML estimation with

incomplete data, is far more complicated and direct maximization is practically impossible
in many cases. People therefore looked to indirect approaches to tackle the problem of
ML estimation with incomplete data to which the EM algorithm has been a standard
solution (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997). It is an iterative
algorithm applicable to a wide class of parameterized distributions including the multinomial
distribution and the normal distribution such that the MLE computation is replaced by the
iteration of two easier, more tractable steps. At n-th iteration, it first calculates the value
of Q function introduced below using current parameter value θ(n) (E-step)10 :

Q(θ | θ(n)) def=
∑
x

P (x | y, θ(n)) ln P (x, y | θ). (1)

Next, it maximizes Q(θ | θ(n)) as a function of θ and updates θ(n) (M-step):

θ(n+1) = argmaxθQ(θ | θ(n)). (2)

Since the old value θ(n) and the updated value θ(n+1) do not necessarily coincide, the E-steps
and M-steps are iterated until convergence, during which the (log) likelihood is assured to
increase monotonically (McLachlan & Krishnan, 1997).

Although the EM algorithm merely performs local maximization, it is used in a variety
of settings due to its simplicity and relatively good performance. One must notice however
that the EM algorithm is just a class name, taking different form depending on distributions
and applications. The development of a concrete EM algorithm such as the Baum-Welch
algorithm for HMMs (Rabiner, 1989) and the Inside-Outside algorithm for PCFGs (Baker,
1979) requires individual effort for each case.

10. Q function is related to ML estimation as follows. We assume here only one data, y, is observed. From
Jensen’s inequality (Chow & Teicher, 1997) and the concavity of ln function, it follows that∑

x

P (x | y, θ(n)) ln P (x | y, θ) −
∑

x

P (x | y, θ(n)) ln P (x | y, θ(n)) ≤ 0

and hence that

Q(θ | θ(n)) − Q(θ(n) | θ(n))

=
∑

x

P (x | y, θ(n)) ln P (x | y, θ) −
∑

x

P (x | y, θ(n)) ln P (x | y, θ(n)) + ln P (y | θ) − ln P (y | θ(n))

≤ ln P (y | θ) − ln P (y | θ(n)).

Consequently, we have

Q(θ | θ(n)) ≥ Q(θ(n) | θ(n)) ⇒ ln p(y | θ) ≥ ln p(y | θ(n)) ⇒ p(y | θ) ≥ p(y | θ(n)).

395

Sato & Kameya

3. Distribution Semantics

In this section, we introduce parameterized logic programs and define their declarative se-
mantics. The basic idea is as follows. We start with a set F of probabilistic facts (atoms)
and a set R of non-unit definite clauses. Sampling from F determines a set F ′ of true
atoms, and the least Herbrand model of F ′ ∪ R determines the truth value of every atom
in DB = F ∪ R. Hence every atom can be considered as a random variable, taking on 1
(true) or 0 (false). In what follows, we formalize this process and construct the underlying
probability space for the denotation of DB.

3.1 Basic Distribution PF

Let DB = F∪R be a definite clause program in a first-order language L with countably many
variables, function symbols and predicate symbols where F is a set of unit clauses (facts)
and R a set of non-unit clauses (rules). In the sequel, unless otherwise stated, we consider
for simplicity DB as the set of all ground instances of the clauses in DB, and assume that
F and R consist of countably infinite ground clauses (the finite case is similarly treated).
We then construct a probability space for DB in two steps. First we introduce a probability
space over the Herbrand interpretations11 of F i.e. the truth assignments to ground atoms
in F . Next we extend it to a probability space over the Herbrand interpretations of all
ground atoms in L by using the least model semantics (Lloyd, 1984; Doets, 1994).

Let A1, A2, . . . be a fixed enumeration of atoms in F . We regard an infinite vector ω =
〈x1, x2, . . .〉 of 0s and 1s as a Herbrand interpretation of F in such a way that for i = 1, 2, . . .
Ai is true (resp. false) if and only if xi = 1 (resp. xi = 0). Under this isomorphism, the set
of all possible Herbrand interpretations of F coincides with the Cartesian product:

ΩF
def=

∞∏
i=1

{0, 1}i.

We construct a probability measure PF over the sample space ΩF
12 from a collection of

finite joint distributions P
(n)
F (A1 = x1, . . . , An = xn) (n = 1, 2, . . . , xi ∈ {0, 1}, 1 ≤ i ≤ n)

such that
0 ≤ P

(n)
F (A1 = x1, . . . , An = xn) ≤ 1∑

x1,...,xn
P

(n)
F (A1 = x1, . . . , An = xn) = 1∑

xn+1
P

(n+1)
F (A1 = x1, . . . , An+1 = xn+1) = P

(n)
F (A1 = x1, . . . , An = xn).

(3)

The last equation is called the compatibility condition. It can be proved (Chow & Teicher,
1997) from the compatibility condition that there exists a probability space (ΩF ,F , PF)
where PF is a probability measure on F , the minimal σ algebra containing open sets of ΩF ,
such that for any n,

PF (A1 = x1, . . . , An = xn) = P
(n)
F (A1 = x1, . . . , An = xn).

11. A Herbrand interpretation interprets a function symbol uniquely as a function on ground terms and
assigns truth values to ground atoms. Since the interpretation of function symbols is common to all
Herbrand interpretations, given L, they have a one-to-one correspondence with truth assignments to
ground atoms in L. So we do not distinguish them.

12. We regard ΩF as a topological space with the product topology such that each {0, 1} is equipped with
the discrete topology.

396

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

We call PF a basic distribution.13

The choice of P
(n)
F is free as long as the compatibility condition is met. If we want all

interpretations to be equiprobable, we should set P
(n)
F (A1 = x1, . . . , An = xn) = 1/2n for

every 〈x1, . . . , xn〉. The resulting PF is a uniform distribution over ΩF just like the one
over the unit interval [0, 1]. If, on the other hand, we stipulate no interpretation except
ω0 = 〈c1, c2, . . .〉 should be possible, we put, for each n,

P
(n)
F (A1 = x1, . . . , An = xn) =

{
1 if ∀i xi = ci (1 ≤ i ≤ n)
0 o.w.

Then PF places all probability mass on ω0 and gives probability 0 to the rest.

Define a parameterized logic program as a definite clause program14 DB = F ∪R where
F is a set of unit clauses, R is a set of non-unit clauses such that no clause head in R is
unifiable with a unit clause in F and a parameterized basic distribution PF is associated with
F . A parameterized PF is obtained from a collection of parameterized joint distributions
satisfying the compatibility condition. Generally, the more complex P

(n)
F ’s are, the more

flexible PF is, but at the cost of tractability. The choice of parameterized finite distributions
made by Sato (1995) was simple:

P
(2n)
F (ON1 = x1, OFF 2 = x2, . . . , OFF 2n = x2n | θ1, . . . , θn)

=
n∏

i=1

Pbs(ON2i−1 = x2i−1, OFF 2i = x2i | θi)

where
Pbs(ON2i−1 = x2i−1, OFF 2i = x2i | θi)

=

0 if x2i−1 = x2i

θi if x2i−1 = 1, x2i = 0
1 − θi if x2i−1 = 0, x2i = 1.

(4)

Pbs(ON2i−1 = x2i−1, OFF 2i = x2i | θi) (1 ≤ i ≤ n) represents a probabilistic binary switch,
i.e. a Bernoulli trial, using two exclusive atoms ON2i−1 and OFF 2i in such a way that either
one of them is true on each trial but never both. θi is a parameter specifying the probability
that the switch i is on. The resulting PF is a probability measure over the infinite product of
independent binary outcomes. It might look too simple but expressive enough for Bayesian
networks, Markov chains and HMMs (Sato, 1995; Sato & Kameya, 1997).

3.2 Extending PF to PDB

In this subsection, we extend PF to a probability measure PDB over the possible worlds
for L, i.e. the set of all possible truth assignments to ground atoms in L through the least

13. This naming of PF , despite its being a probability measure, partly reflects the observation that it behaves
like an infinite joint distribution PF (A1 = x1, A2 = x2, . . .) for an infinite random vector 〈A1, A2, . . .〉
of which P

(n)
F (A1 = x1, . . . , An = xn) (n = 1, 2, . . .) are marginal distributions. Another reason is

intuitiveness. These considerations apply to PDB defined in the next subsection as well.
14. Here clauses are not necessarily ground.

397

Sato & Kameya

Herbrand model (Lloyd, 1984; Doets, 1994). Before proceeding however, we need a couple
of notations. For an atom A, define Ax by{

Ax = A if x = 1
Ax = ¬A if x = 0.

Next take a Herbrand interpretation ν ∈ ΩF of F . It makes some atoms in F true and
others false. Let Fν be the set of atoms made true by ν. Then imagine a definite clause
program DB′ = R ∪ Fν and its least Herbrand model MDB′ (Lloyd, 1984; Doets, 1994).
MDB′ is characterized as the least fixed point of a mapping TDB′(·) below

TDB′(I) def=

{
A

∣∣∣∣∣ there is some A ← B1, . . . , Bk ∈ DB′ (0 ≤ k)
such that {B1, . . . , Bk} ⊆ I

}

where I is a set of ground atoms.15 Or equivalently, it is inductively defined by

I0 = ∅
In+1 = TDB′(In)

MDB′ =
⋃
n

In.

Taking into account the fact that MDB′ is a function of ν ∈ ΩF , we henceforth employ a
functional notation MDB(ν) to denote MDB′ .

Turning back, let A1, A2, . . . be again an enumeration, but of all ground atoms in L.16

Form ΩDB, similarly to ΩF , as the Cartesian product of denumerably many {0, 1}’s and iden-
tify it with the set of all possible Herbrand interpretations of the ground atoms A1, A2, . . .
in L, i.e. the possible worlds for L. Then extend PF to a probability measure PDB over ΩDB

as follows. Introduce a series of finite joint distributions P
(n)
DB (A1 = x1, . . . , An = xn) for

n = 1, 2, . . . by

[Ax1
1 ∧ · · · ∧ Axn

n]F
def= {ν ∈ ΩF | MDB(ν) |= Ax1

1 ∧ · · · ∧ Axn
n }

P
(n)
DB (A1 = x1, . . . , An = xn) def= PF ([Ax1

1 ∧ · · · ∧ Axn
n]F).

Note that the set [Ax1
1 ∧ · · · ∧ Axn

n]F is PF -measurable and by definition, P
(n)
DB ’s satisfy the

compatibility condition∑
xn+1

P
(n+1)
DB (A1 = x1, . . . , An+1 = xn+1) = P

(n)
DB (A1 = x1, . . . , An = xn).

Hence there exists a probability measure PDB over ΩDB which is an extension of PF such
that

PDB(A1 = x1, . . . , An = xn) = PF (A1 = x1, . . . , An = xn)

15. I defines, mutually, a Herbrand interpretation such that a ground atom A is true if and only if A ∈ I.
A Herbrand model of a program is a Herbrand interpretation that makes every ground instance of every
clause in the program true.

16. Note that this enumeration enumerates ground atoms in F as well.

398

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

for any finite atoms A1, . . . , An in F and for every binary vector 〈x1, . . . , xn〉 (xi ∈ {0, 1}, 1 ≤
i ≤ n). Define the denotation of the program DB = F ∪ R w.r.t. PF to be PDB. The de-
notational semantics of parameterized logic programs defined above is called distribution
semantics. As remarked before, we regard PDB as a kind of infinite joint distribution
PDB(A1 = x1, A2 = x2, . . .). Mathematical properties of PDB are listed in Appendix A
where our semantics is proved to be an extension of the standard least model semantics in
logic programming to possible world semantics with a probability measure.

3.3 Programs as Distributions

Distribution semantics views parameterized logic programs as expressing distributions. Tra-
ditionally distributions have been expressed by using mathematical formulas but the use of
programs as (discrete) distributions gives us far more freedom and flexibility than mathe-
matical formulas in the construction of distributions because they have recursion and arbi-
trary composition. In particular a program can contain infinitely many random variables
as probabilistic atoms through recursion, and hence can describe stochastic processes that
potentially involve infinitely many random variables such as Markov chains and derivations
in PCFGs (Manning & Schütze, 1999).17

Programs also enable us to procedurally express complicated constraints on distributions
such as “the sum of occurrences of alphabets a or b in an output string of an HMM must be
a multiple of three”. This feature, procedural expression of arbitrarily complex (discrete)
distributions, seems quite helpful in symbolic-statistical modeling.

Finally, providing mathematically sound semantics for parameterized logic programs
is one thing, and implementing distribution semantics in a tractable way is another. In
the next section, we investigate conditions on parameterized logic programs which make
probability computation tractable, thereby making them usable as a means for large scale
symbolic-statistical modeling.

4. Graphical EM Algorithm

According to the preceding section, a parameterized logic program DB = F ∪ R in a
first-order language L with a parameterized basic distribution PF (· | θ) over the Herbrand
interpretations of ground atoms in F specifies a parameterized distribution PDB(· | θ) over
the Herbrand interpretations for L. In this section, we develop, step by step, an efficient EM
algorithm for the parameter learning of parameterized logic programs by interpreting PDB

as a distribution over the observable and non-observable events. The new EM algorithm is
termed the graphical EM algorithm. It is applicable to arbitrary logic programs satisfying
certain conditions described later provided the basic distribution is a direct product of
multi-ary random switches, which is a slight complication of the binary ones introduced in
Section 3.1.

From this section on, we assume that DB consists of usual definite clauses containing
(universally quantified) variables. Definitions and changes relating to this assumption are

17. An infinite derivation can occur in PCFGs. Take a simple PCFG {p : S → a, q : S → SS} where S is a
start symbol, a a terminal symbol, p + q = 1 and p, q > 0. In this PCFG, S is rewritten either to a with
probability p or to SS with probability q. The probability of the occurrence of an infinite derivation is
calculated as max {0, 1 − (p/q)} which is non-zero when q > p (Chi & Geman, 1998).

399

Sato & Kameya

listed below. For a predicate p, we introduce iff (p), the iff definition of p by

iff (p) def= ∀x (p(x) ↔ ∃y1(x = t1 ∧ W1) ∨ · · · ∨ ∃yn(x = tn ∧ Wn)) .

Here x is a vector of new variables of length equal to the arity of p, p(ti) ← Wi (1 ≤ i ≤
n, 0 ≤ n), an enumeration of clauses about p in DB, and yi, a vector of variables occurring
in p(ti) ← Wi. Then define comp(R) as follows.

head(R) def= {B | B is a ground instance of a clause head appearing in R}

iff (R) def= {iff (p) | p appears in a clause head in R}

Eq
def= {f(x) = f(y) → x = y | f is a function symbol}

∪ {f(x) 6= g(y) | f and g are different function symbols}
∪ {t 6= x | t is a term properly containing x}

comp(R) def= iff (R) ∪ Eq

Eq, Clark’s equational theory (Clark, 1978), deductively simulates unification. Likewise
comp(R) is a first-order theory which deductively simulates SLD refutation with the help
of Eq by replacing a clause head atom with the clause body (Lloyd, 1984; Doets, 1994).

We here introduce some definitions which will be frequently used. Let B be an atom.
An explanation for B w.r.t. DB = F ∪ R is a conjunction S such that S,R ` B, and as a
set comprised of its conjuncts, S ⊂ F holds and no proper subset of S satisfies this. The
set of all explanations for B is called the support set for B and designated by ψDB(B).18

4.1 Motivating Example

First of all, we review distribution semantics by a concrete example. Consider the following
program DBb = Fb ∪Rb in Figure 1 modeling how one’s blood type is determined by blood
type genes probabilistically inherited from the parents.19

The first four clauses in Rb state a blood type is determined by a genotype, i.e. a pair of
blood type genes a, b and o. For instance, btype(’A’):- (gtype(a,a) ; gtype(a,o) ;
gtype(o,a)) says that one’s blood type is A if his (her) genotype is 〈a, a〉, 〈a, o〉 or 〈o, a〉.
These are propositional rules.

Succeeding clauses state general rules in terms of logical variables. The fifth clause
says that regardless of the values of X and Y, event gtype(X,Y) (one’s having genotype
〈X, Y〉) is caused by two events, gene(father,X) (inheriting gene X from the father) and
gene(mother,Y) (inheriting gene Y from the mother). gene(P,G):- msw(gene,P,G) is a
clause connecting rules in Rb with probabilistic facts in Fb. It tells us that the gene G
is inherited from a parent P if a choice represented by msw(gene,P,G)20 is made. The

18. This definition of a support set differs from the one used by Sato (1995) and Kameya and Sato (2000).
19. When we implicitly emphasize the procedural reading of logic programs, Prolog conventions are employed

(Sterling & Shapiro, 1986). Thus, ; stands for “or”, , “and” :- “implied by” respectively. Strings
beginning with a capital letter are (universally quantified) variables, but quoted ones such as ’A’ are
constants. The underscore is an anonymous variable.

20. msw is an abbreviation of “multi-ary random switch” and msw(·, ·, ·) expresses a probabilistic choice from
finite alternatives. In the framework of statistical abduction, msw atoms are abducibles from which
explanations are constructed as a conjunction.

400

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

Rb =

btype(’A’) :- (gtype(a,a) ; gtype(a,o) ; gtype(o,a)).
btype(’B’) :- (gtype(b,b) ; gtype(b,o) ; gtype(o,b)).
btype(’O’) :- gtype(o,o).

btype(’AB’) :- (gtype(a,b) ; gtype(b,a)).
gtype(X,Y) :- gene(father,X), gene(mother,Y).
gene(P,G) :- msw(gene,P,G).

Fb = {msw(gene,father,a), msw(gene,father,b), msw(gene,father,o),
msw(gene,mother,a), msw(gene,mother,b), msw(gene,mother,o)}

Figure 1: ABO blood type program DBb

genetic knowledge that the choice of G is by chance and made from {a, b, o} is expressed by
specifying a joint distribution Fb as follows.

PFb
(msw(gene,t,a) = x, msw(gene,t,b) = y, msw(gene,t,o) = z | θa, θb, θo)

def= θx
aθy

b θz
o

where x, y, z ∈ {0, 1}, x + y + z = 1, θa, θb, θo ∈ [0, 1], θa + θb + θo = 1 and t is either
father or mother. Thus θa is the probability of inheriting gene a from a parent. Statistical
independence of the choice of gene, once from father and once from mother, is expressed
by putting

PFb
(msw(gene,father,a) = x, msw(gene,father,b) = y, msw(gene,father,o) = z,

msw(gene,mother,a) = x′, msw(gene,mother,b) = y′, msw(gene,mother,o) = z′

| θa, θb, θo)
= PFb

(x, y, z | θa, θb, θo)PFb
(x′, y′, z′ | θa, θb, θo).

In this setting, atoms representing our observation are obs(DBb) = {btype(’A’), btype(’B’),
btype(’O’), btype(’AB’)}. We observe one of them, say btype(’A’), and infer a possible
explanation S, i.e. a minimal conjunction of abducibles msw(gene,·,·) such that

S,Rb ` btype(’A’).

S is obtained by applying a special SLD refutation procedure to the goal ← btype(’A’)
which preserves msw atoms resolved upon in the refutation. Three explanations are found.

S1 = msw(gene,father,a) ∧ msw(gene,mother,a)

S2 = msw(gene,father,a) ∧ msw(gene,mother,o)

S3 = msw(gene,father,o) ∧ msw(gene,mother,a)

So ψDBb
(btype(a)), the support set for btype(a), is {S1, S2, S3}. The probability of each

explanation is respectively computed as PFb
(S1) = θ2

a and PFb
(S2) = PFb

(S3) = θaθo. From
Proposition A.2 in Appendix A, it follows that PDBb

(btype(’A’)) = PDBb
(S1 ∨ S2 ∨ S3) =

PFb
(S1 ∨ S2 ∨ S3) and that

PDBb
(btype(’A’) | θa, θb, θo) = PFb

(S1) + PFb
(S2) + PFb

(S3)
= θ2

a + 2θaθo.

401

Sato & Kameya

Here we used the fact that S1, S2 and S3 are mutually exclusive as the choice of gene is
exclusive. Parameters, i.e. θa, θb and θo are determined by ML estimation performed on a
random sample such as {btype(’A’), btype(’O’), btype(’AB’)} of btype as follows.

〈θa, θb, θo〉 = argmax〈θa,θb,θo〉 PDBb
(btype(’A’))PDBb

(btype(’O’))PDBb
(btype(’AB’))

= argmax〈θa,θb,θo〉 (θ2
a + 2θaθo)θ2

oθaθb

This program contains neither function symbol nor recursion though our semantics
allows for them. Later we see an example containing both, a program for an HMM (Rabiner
& Juang, 1993).

4.2 Four Simplifying Conditions

DBb in Figure 1 is simple and probability computation is easy. This is not generally the
case. Since our primary interest is learning, especially efficient parameter learning of param-
eterized logic programs, we hereafter concentrate on identifying what property of a program
makes probability computation easy like DBb, thereby makes efficient parameter learning
possible.

To answer this question precisely, let us formulate the whole modeling process. Suppose
there exist symbolic-statistical phenomena such as gene inheritance for which we hope
to construct a probabilistic computational model. We first specify a target predicate p
whose ground atom p(s) represents our observation of the phenomena. Then to explain
the empirical distribution of p, we write down a parameterized logic program DB = F ∪ R
having a basic distribution PF with parameter θ that can reproduce all observable patterns
of p(s). Finally, observing a random sample p(s1), . . . , p(sT) of ground atoms of p, we
adjust θ by ML estimation, i.e. by maximizing the likelihood L(θ) =

∏T
t=1 PDB(p(st) | θ) so

that PDB(p(·) | θ) approximates as closely to the empirically observed distribution of p as
possible.

At first sight, this formulation looks right, but in reality it is not. Suppose two events
p(s) and p(s′) (s 6= s′) are observed. We put L(θ) = PDB(p(s) | θ)PDB(p(s′) | θ). But this
cannot be a likelihood at all simply because in distribution semantics, p(s) and p(s′) are
two different random variables, not two realizations of the same random variable.

A quick remedy is to note that in the case of blood type program DBb where obs(DBb) =
{btype(’A’), btype(’B’), btype(’O’), btype(’AB’)} are observable atoms, only one of
them is true for each observation, and if some atom is true, others must be false. In other
words, these atoms collectively behave as a single random variable having the distribution
PDBb

whose values are obs(DBb).
Keeping this in mind, we introduce the following condition. Let obs(DB) (⊂ head(R))

be a set of ground atoms which represent observable events. We call them observable atoms.

Uniqueness condition:
PDB(G ∧ G′) = 0 for any G 6= G′ ∈ obs(DB), and

∑
G∈obs(DB) PDB(G) = 1.

402

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

The uniqueness condition enables us to introduce a new random variable Yo representing
our observation. Fix an enumeration G1, G2, . . . of observable atoms in obs(DB) and define
Yo by21

Yo(ω) = k iff ω |= Gk for ω ∈ ΩDB (k ≥ 1). (5)

Let Gk1 , Gk2 , . . . , GkT
∈ obs(DB) be a random sample of size T . Then L(θ) =

∏T
t=1 PDB(Gkt |

θ) =
∏T

t=1 PDB(Yo = kt | θ) qualifies for the likelihood function w.r.t. Yo.
The second condition concerns the reduction of probability computation to addition.

Take again the blood type exmaple. The computation of PDBb
(btype(’A’)) is decomposed

into a summation because explanations in the support set are mutualy exclusive. So we
introduce

Exclusiveness condition:
For every G ∈ obs(DB) and the support set ψDB(G), PDB(S ∧ S′) = 0 for any S 6=
S′ ∈ ψDB(G).

Using the exclusiveness condition (and Proposition A.2 in Appendix A), we have

PDB(G) =
∑

S∈ψDB(G)

PF (S).

From a modeling point of view, it means that while a single event, or a single observation,
G, may have several (or even infinite) explanations ψDB(G), only one of ψDB(G) is allowed
to be true for each observation.

Now introduce ΨDB, i.e. the set of all explanations relevant to obs(DB) by

ΨDB
def=

⋃
G∈obs(DB)

ψDB(G)

and fix an enumeration S1, S2, . . . of explanations in ΨDB. It follows from Proposition A.2,
the uniqueness condition and the exclusiveness condition that

PDB(Si ∧ Sj) = 0 for i 6= j and∑
S∈ΨDB

PDB(S) =
∑

G∈obs(DB)

∑
S∈ψDB(G)

PDB(S)

=
∑

G∈obs(DB)

PDB(G)

= 1.

So we are able to introduce under the uniqueness condition and the exclusiveness condition
yet another random variable Xe, representing an explanation for G, defined by

Xe(ω) = k iff ω |= Sk for ω ∈ ΩDB. (6)

The third condition concerns termination.

21.
∑

G∈obs(DB)
PDB(G) = 1 only guarantees that the measure of {ω | ω |= Gk for some k (≥ 1)} is one, so

there can be some ω satisfying no Gk’s. In such case, we put Yo(ω) = 0. But values on a set of measure
zero do not affect any part of the discussion that follows. This also applies to the definition of Xe in (6).

403

Sato & Kameya

Finite support condition:
For every G ∈ obs(DB) ψDB(G) is finite.

PDB(G) is then computed from the support set ψDB(G) = {S1, . . . , Sm} (0 ≤ m), with
the help of the exclusiveness condition, as a finite summation

∑m
i=1 PF (Si). This condition

prevents an infinite summation that is hardly computable.
The fourth condition simplifies the probability computation to multiplication. Recall

that an explanation S for G ∈ obs(DB) is a conjunction a1 ∧ · · · ∧ am of some abducibles
{a1, . . . , am} ⊂ F (1 ≤ m). In order to reduce the computation of PF (S) = PF (a1∧· · ·∧am)
to the multiplication PF (a1) · · ·PF (am), we assume

Distribution condition:
F is a set Fmsw of ground atoms with a parameterized distribution Pmsw specified below.

Here atom msw(i,n,v) is intended to simulate a multi-ary random switch whose name is i
and whose outcome is v on trial n. It is a generalization of primitive probabilistic events
such as coin tossing and dice rolling.

1. Fmsw consists of probabilistic atoms msw(i,n,v). The arguments i, n and v are ground
terms called switch name, trial-id and a value (of the switch i), respectively. We
assume that a finite set Vi of ground terms called the value set of i is associated with
each i, and v ∈ Vi holds.

2. Write Vi as {v1, v2, . . . , vm} (m = |Vi|). Then, one of the ground atoms { msw(i,n,v1),
msw(i,n,v2), . . . , msw(i,n,vm)} becomes exclusively true (takes on value 1) on each
trial. With each i, a parameter θi,v ∈ [0, 1] such that

∑
v∈Vi

θi,v = 1 is associated. θi,v

is the probability of msw(i,·,v) being true (v ∈ Vi).

3. For each ground terms i, i′, n, n′, v ∈ Vi and v′ ∈ Vi′ , random variable msw(i,n,v) is
independent of msw(i′,n′,v′) if n 6= n′ or i 6= i′.

In other words, we introduce a family of parameterized finite distributions P(i,n) such that

P(i,n)(msw(i,n,v1) = x1, . . . , msw(i,n,vm) = xm | θi,v1 , . . . , θi,vm)

def=

{
θx1
i,v1

· · · θxm
i,vm

if
∑m

k=1 xk = 1
0 o.w.

(7)

where m = |Vi|, xk ∈ {0, 1} (1 ≤ k ≤ m), and define Pmsw as their infinite product

Pmsw
def=

∏
i,n

P(i,n).

Under this condition, we can compute Pmsw(S), the probability of an explanation S, as the
product of parameters. Suppose msw(ij,n,v) and msw(ij′,n

′,v′) are different conjuncts in
an explanation S = msw(i1,n1,v1) ∧ · · · ∧ msw(ik,nk,vk). If either j 6= j′ or n 6= n′ holds,
they are independent by construction. Else if j = j′ and n = n′ but v 6= v′, they are not
independent but Pmsw(S) = 0 by construction. As a result, whichever condition may hold,
Pmsw(S) is computed from the parameters.

404

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

4.3 Modeling Principle

Up to this point, we have introduced four conditions, the uniqueness condition, the exclu-
siveness condition, the finite support condition and the distribution condition, to simplify
probability computation. The last one is easy to satisfy. We just adopt Fmsw together with
Pmsw. So, from here on, we always assume that Fmsw has a parameterized distribution Pmsw

introduced in the previous subsection. Unfortunately the rest are not satisfied automati-
cally. According to our modeling experiences however, it is only mildly difficult to satisfy
the uniqueness condition and the exclusiveness condition as long as we obey the following
modeling principle.

Modeling principle: DB = Fmsw∪R describes a sequential decision process
(modulo auxiliary computations) that uniquely produces an observable atom
G ∈ obs(DB) where each decision is expressed by some msw atom.22

Translated into programming level, it says that we must take care when writing a pro-
gram so that for any sample F ′ from Pmsw, there must uniquely exist goal ←G (G ∈ obs(DB))
which has a successful refutation from DB′ = F ′ ∪ R. We can confirm the principle by the
blood type program DBb = Fb ∪ Rb. It describes a process of gene inheritance, and for
an arbitrary sample F ′

b from Pmsw, say F ′
b = {msw(gene,father,a), msw(gene,mother,o)},

there exists a unique goal, ←btype(’A’) in this case, that has a successful SLD refutation
from F ′

b ∪ Rb.
The idea behind this principle is that a decision process always produces some result (an

observable atom), and different decision processes must differ at some msw thereby entailing
mutually exclusive observable atoms. So the uniqueness condition and the exclusiveness
condition will be automatically satisfied.

Satisfying the finite support condition is more difficult as it is virtually equivalent to
writing a program DB for which all solution search for ←G (G ∈ obs(DB)) always termi-
nates. Apparently we have no general solution to this problem, but as far as specific models
such as HMMs, PCFGs and Bayesian networks are concerned, it can be met. All programs
for these models satisfy the finite support condition (and other conditions as well).

4.4 Four Conditions Revisited

In this subsection, we discuss how to relax the four simplifying conditions introduced in Sub-
section 4.2 for the purpose of flexible modeling. We first examine the uniqueness condition
considering its crucial role in the adaptation of the EM algorithm to our semantics.

The uniqueness condition guarantees that there exists a (many-to-one) mapping from
explanations to observations so that the EM algorithm is applicable (Dempster et al., 1977).
It is possible, however, to relax the uniqueness condition while justifying the application
of the EM algorithm. We assume the MAR (missing at random) condition introduced by
Rubin (1976) which is a statistical condition on how a complete data (explanation) be-
comes an incomplete data (observation), and is customarily assumed implicitly or explicitly
in statistics (see Appendix B). By assuming the MAR condition, we can apply our EM

22. Decisions made in the process are a finite subset of Fmsw.

405

Sato & Kameya

algorithm to non-exclusive observations O such that
∑

O P (O) ≥ 1 where the uniqueness
condition is seemingly destroyed.

Let us see the MAR condition in action with a simple example. Imagine we walk along
a road in front of a lawn. We occasionally observe their state such as “the road is dry but
the lawn is wet”. Assume that the lawn is watered by a sprinkler running probabilistically.
The program DBrl = Rrl ∪ Frl in Figure 2 describes a sequential process which outputs
an observation observed(road(x),lawn(y)) (“the road is x and the lawn is y”) where
x, y ∈ {wet, dry}.

Rrl = { observed(road(X),lawn(Y)):-
msw(rain,once,A),
(A = yes, X = wet, Y = wet
; A = no, msw(sprinkler,once,B),

(B = on, X = dry, Y = wet
; B = off, X = dry, Y = dry)). }

Frl = { msw(rain,once,yes), msw(rain,once,no),
msw(sprinkler,once,on), msw(sprinkler,once,off) }

Figure 2: DBrl

The basic distribution over Frl is specified like PFb
(·) in Subsection 4.1, so we omit it.

msw(rain,once,A) in the program determines whether it rains (A = yes) or not (A = no),
whereas msw(sprinkler,once,B) determines whether the sprinkler works fine (B = on)
or not (B = off). Since for each sampled values of A = a (a ∈ {yes, no}) and B = b
(b ∈ {on, off}), there uniquely exists an observation observed(road(x),lawn(y)) (x, y ∈
{wet, dry}), there is a many-to-one mapping χ : χ(a, b) = 〈x, y〉. In other words, we
can apply the EM algorithm to the observations observed(road(x),lawn(y)) (x, y ∈
{wet, dry}). What would happen if we observe exclusively either a state of the road or
that of the lawn? Logically, this means we observe ∃y observed(road(x),lawn(y)) or
∃x observed(road(x),lawn(y)). Apparently the uniqueness condition is not met, because
∃y observed(road(wet),lawn(y)) and ∃x observed(road(x),lawn(wet)) are compatible
(they are true when it rains). Despite the non-exclusiveness of the observations, we can still
apply the EM algorithm to them under the MAR condition, which in this case translates
into that we observe either the lawn or the road randomly regardless of their state.

We now briefly check other conditions. Basically they can be relaxed at the cost of
increased computation. Without the exclusiveness condition for instance, we would need an
additional process of transforming the support set ψDB(G) for a goal G into a set of exclusive
explanations. For instance, if G has explanations {msw(a,n,v), msw(b,m,w)}, we have to
transform it into {msw(a,n,v), ¬msw(a,n,v) ∧ msw(b,m,w)} and so on.23 Clearly, this
transformation is exponential in the number of msw atoms and efficiency concern leads to
assuming the exclusiveness condition.

The finite support condition is in practice equivalent to the condition that the SLD tree
for ← G is finite. So relaxing this condition might induce infinite computation.

23. ¬msw(a,n,v) is further transformed to a disjunction of exclusive msw atoms like
∨

v′ 6=v,v′∈Va
msw(a,n,v′).

406

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

Relaxing the distribution condition and accepting probability distributions other than
Pmsw serve to expand the horizon of the applicability of parameterized logic programs. In
particular the introduction of parameterized joint distributions P (v1, . . . , vk) like Boltz-
mann distributions over switches msw1, . . . , mswk where v1, . . . , vk are values of the switches,
makes them correlated. Such distributions facilitate writing parameterized logic programs
for complicated decision processes in which decisions are not independent but interdepen-
dent. Obviously, on the other hand, they increase learning time, and whether the added
flexibility of distributions deserves the increased learning time or not is yet to be seen.

4.5 Naive Approach to EM Learning

In this subsection, we derive a concrete EM algorithm for parameterized logic programs
DB = Fmsw ∪ R assuming that they satisfy the uniqueness condition, the exclusiveness
condition and the finite support condition.

To start, we introduce Yo, a random variable representing our observations according
to (5) based on a fixed enumeration of observable atoms in obs(DB). We also introduce
another random variable Xe representing their explanations according to (6) based on some
fixed enumeration of explanations in ΨDB. Our understanding is that Xe is non-observable
while Yo is observable, and they have a joint distribution PDB(Xe = x, Yo = y | θ) where
θ denotes relevant parameters. It is then immediate, following (1) and (2) in Section 2, to
derive a concrete EM algorithm from the Q function defined by Q(θ | θ′) def=

∑
x PDB(x |

y, θ′) ln PDB(x, y | θ) whose input is a random sample of observable atoms and whose output
is the MLE of θ.

In the following, for the sake of readability, we substitute an observable atom G (G ∈
obs(DB)) for Yo = y and write PDB(G | θ) instead of PDB(Yo = y | θ). Likewise we
substitute an explanation S (S ∈ ΨDB) for Xe = x and write PDB(S,G | θ) instead of
PDB(Xe = x, Yo = y | θ). Then it follows from the uniqueness condition that

PDB(S,G | θ) =

{
0 if S 6∈ ψDB(G)
Pmsw(S | θ) if S ∈ ψDB(G).

We need yet another notation here. For an explanation S, define the count of msw(i,n,v)
in S by

σi,v(S) def= |{ n | msw(i,n,v) ∈ S}| .

We have done all preparations now. Suppose we make some observations G = G1, . . . , GT

where Gt ∈ obs(DB) (1 ≤ t ≤ T). Put

I
def= {i | msw(i,n,v) ∈ S ∈ ψDB(Gt), 1 ≤ t ≤ T}

θ
def= {θi,v | msw(i,n,v) ∈ S ∈ ψDB(Gt), 1 ≤ t ≤ T}.

I is a set of switch names that appear in some explanation for one of the Gt’s and θ denotes
parameters associated with these switches. θ is finite due to the finite support condition.

407

Sato & Kameya

Various probabilities and the Q function are computed by using Proposition A.2 in
Appendix A together with our assumptions as follows.

PDB(Gt | θ) = PDB

(∨
ψDB(Gt)

∣∣∣ θ)
=

∑
S∈ψDB(Gt)

Pmsw(S | θ) (8)

Pmsw(S | θ) =
∏

i∈I,v∈Vi

θ
σi,v(S)
i,v

Q(θ | θ′) def=
T∑

t=1

∑
S∈ΨDB

PDB(S | Gt, θ
′) lnPDB(S,Gt | θ)

=
∑

i∈I,v∈Vi

η(i, v, θ′) ln θi,v ≤
∑

i∈I,v∈Vi

(
η(i, v, θ′) ln

η(i, v, θ′)∑
v′∈Vi

η(i, v′,θ′)

)
(9)

where

η(i, v, θ) def=
T∑

t=1

1
PDB(Gt | θ)

∑
S∈ψDB(Gt)

Pmsw(S | θ)σi,v(S)

Here we used Jensen’s inequality to obtain (9). Note that PDB(Gt | θ)−1 ∑
S∈ψDB(Gt)

Pmsw(S | θ)σi,v(S) is the expected count of msw(i,·,v) in an SLD refutation of Gt. Speaking
of the likelihood function L(θ) =

∏T
t=1 PDB(Gt | θ), it is already shown in Subsection 2.2

(footnote) that Q(θ | θ′) ≥ Q(θ′ | θ′) implies L(θ) ≥ L(θ′). Hence from (9), we reach
the procedure learn-naive(DB,G) below that finds the MLE of the parameters. The array
variable η[i, v] stores η(i, v, θ) under the current θ.

1: procedure learn-naive(DB,G) begin
2: Initialize θ with appropriate values and ε with a small positive number ;
3: λ(0) :=

∑T
t=1 lnPDB(Gt | θ); % Compute the log-likelihood.

4: repeat
5: foreach i ∈ I, v ∈ Vi do

6: η[i, v] :=
T∑

t=1

1
PDB(Gt | θ)

∑
S∈ψDB(Gt)

Pmsw(S | θ)σi,v(S);

7: foreach i ∈ I, v ∈ Vi do

8: θi,v :=
η[i, v]∑

v′∈Vi
η[i, v′]

; % Update the parameters.

9: m := m + 1;
10: λ(m) :=

∑T
t=1 lnPDB(Gt | θ) % Compute the log-likelihood again.

11: until λ(m) − λ(m−1) < ε % Terminate if converged.
12: end

This EM algorithm is simple and correctly calculates the MLE of θ, but the calcula-
tion of PDB(Gt | θ) and η[i, v](Line 3, 6 and 10) may suffer a combinatorial explosion of
explanations. That is, |ψDB(Gt)| often grows exponentially in the complexity of the model.
For instance, |ψDB(Gt)| for an HMM with N states is O(NL), exponential in the length L
of an input/output string. Nonetheless, suppressing the explosion to realize efficient com-
putation in a polynomial order is possible, under suitable conditions, by avoiding multiple
computations of the same subgoal as we see next.

408

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

4.6 Inside Probability and Outside Probability for Logic Programs

In this subsection, we generalize the notion of inside probability and outside probability
(Baker, 1979; Lari & Young, 1990) to logic programs. Major computations in learn-naive(DB,G)
are those of two terms in Line 6, PDB(Gt | θ) and

∑
S∈ψDB(Gt) Pmsw(S | θ)σi,v(S). Computa-

tional redundancy lurks in the naive computation of both terms. We show it by an example.
Suppose there is a propositional program DBp = Fp ∪ Rp where Fp = {a, b, c, d, m} and

Rp =

f ← a ∧ g
f ← b ∧ g
g ← c
g ← d ∧ h
h ← m.

(10)

Here f is an observable atom. We assume that a, b, c, d and m are independent and also
that {a, b} and {c, d} are pair-wise exclusive. Then the support set for f is calculated as

ψDBp(f) = {a ∧ c, a ∧ d ∧ m, b ∧ c, b ∧ d ∧ m }.

Hence, in light of (8), we may compute PDBp(f) as

PDBp(f) = PFp(a ∧ c) + PFp(a ∧ d ∧ m) + PFp(b ∧ c) + PFp(b ∧ d ∧ m). (11)

This computation requires 6 multiplications (because PFp(a ∧ c) = PFp(a)PFp(c) etc.) and
3 additions. On the other hand, it is possible to compute PDBp(f) much more efficiently by
factoring out common computations. Let A be a ground atom. Define the inside probability
β(A) of A as

β(A) def= PDB(A | θ).24 (12)

Then by applying Theorem A.1 in Appendix A to

comp(Rp) ` f ↔ (a ∧ g) ∨ (b ∧ g), g ↔ c ∨ (d ∧ h), h ↔ m (13)

which unconditionally holds in our semantics, and by using the independent and the ex-
clusiveness assumption made on Fp, the following equations about inside probability are
derived.

β(f) = β(a)β(g) + β(b)β(g)
β(g) = β(c) + β(d)β(h)
β(h) = β(m)

(14)

PDBp(f)(= β(f)) is obtained by solving (14) about β(f), for which only 3 multiplications
and 2 additions are required.

It is quite straightforward to generalize (14) but before proceeding, look at a program
DBq = {m} ∪ {g:-m ∧ m, g:-m} where g is an observable atom and m the only msw atom.
We have g ↔ (m ∧ m) ∨ m in our semantics, but to compute P (g) = P (m)P (m) + P (m) is
clearly wrong as it ignores the fact that clause bodies for g, i.e. m∧m and m are not mutually
exclusive, and atoms in the clause body m∧m are not independent (here P (·) = PDBq(·)).
Similarly, if we set a = b = c = d = m, the equation (14) will be totally incorrect.

24. Note that if A is a fact in F , β(A) = Pmsw(A | θ).

409

Sato & Kameya

We therefore add, temporarily in this subsection, two assumptions on top of the ex-
clusiveness condition and the finite support condition so that equations like (14) become
mathematically correct. The first assumption is that “clause” bodies are mutually exclu-
sive i.e. if there are two clauses B ← W and B ← W ′, PDB(W ∧ W ′ | θ) = 0, and the
second assumption is that body atoms are independent, i.e. if A ← B1 ∧ · · · ∧ Bk is a rule,
PDB(B1 ∧ · · · ∧ Bk | θ) = PDB(B1 | θ) · · ·PDB (Bk | θ) holds.

Please note that “clause” used in this subsection has a special meaning. It is intended to
mean G ← τ where G is a goal and τ is a tabled explanation for G obtained by OLDT search
both of which will be explained in the next subsection.25 In other words, these additional
conditions are not imposed on a source program but on the result of OLDT search. So
clauses for auxiliary computations do not need to satisfy them.

Now suppose clauses about A occur in DB like

A ← B1,1 ∧ · · · ∧ B1,i1

· · ·
A ← BL,1 ∧ · · · ∧ BL,iL

where Bh,j (1 ≤ h ≤ L, 1 ≤ j ≤ ih) is an atom. Theorem A.1 in Appendix A and the above
assumptions ensure

β(A) =
i1∏

j=1

β(B1,j) + · · · +
iL∏

j=1

β(BL,j). (15)

(15) suggests that β(Gt) can be considered as a function of β(A) if these equations about
inside probabilities are hierarchically organized in such a way that β(Gt) belongs to the top
layer and any β(A) appearing on the left hand side only refers to β(B)’s which belong to the
lower layers. We refer to this condition as the acyclic support condition. Under the acyclic
support condition, equations of the form (15) have a unique solution, and the computation
of PDB(G | θ) via inside probabilities allows us to take advantage of reusing intermediate
results stored as β(A), thereby contributing to faster computation of PDB(Gt | θ).

Next we tackle a more intricate problem, the computation of
∑

S∈ψDB(Gt) Pmsw(S |
θ)σi,v(S). Since the sum equals

∑
n

∑
msw(i,n,v)∈S∈ψDB(Gt) Pmsw(S | θ), we concentrate

on the computation of
µ(Gt, m)

def=
∑

m∈S∈ψDB(Gt)

Pmsw(S | θ)

where m = msw(i,n,v). First we note that if an explanation S contains m like S = a1∧· · ·∧
ah ∧ m, then we have β(S) = β(a1) · · ·β(ah)β(m). So µ(Gt, m) is expressed as

µ(Gt, m) = α(Gt, m)β(m) (16)

where α(Gt, m) = ∂µ(Gt,m)
∂β(m) and α(Gt, m) does not depend on β(m). Generalizing this obser-

vation to arbitrary ground atoms, we introduce the outside probability of ground atom A
w.r.t. Gt by

α(Gt, A) def=
∂β(Gt)
∂β(A)

25. The logical relationship (13) corresponds to (20) where f, g and h are table atoms.

410

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

assuming the same conditions as inside probability. In view of (16), the problem of comput-
ing µ(Gt, m) is now reduced to that of computing α(Gt, m), which is recursively computable
as follows. Suppose A occurs in the ground program DB like

B1 ← A ∧ W1,1, · · · , B1 ← A ∧ W1,i1

· · ·
BK ← A ∧ WK,1, · · · , BK ← A ∧ WK,iK .

As β(Gt) is a function of β(B1), . . . , β(BK) by our assumption, the chain rule of derivatives
leads to

α(Gt, A) =
(

∂β(Gt)
∂β(B1)

) (
∂β(A ∧ W1,1)

∂β(A)

)
+ · · · +

(
∂β(Gt)
∂β(BK)

) (
∂β(A ∧ WK,iK)

∂β(A)

)
and hence to26

α(Gt, Gt) = 1 (17)

α(Gt, A) = α(Gt, B1)
i1∑

j=1

β(W1,j) + · · · + α(Gt, BK)
iK∑
j=1

β(WK,j). (18)

Therefore if all inside probabilities have already been computed, outside probabilities are
recursively computed from the top (17) using (18) downward along the program layers. In
the case of DBp with f and m being chosen atoms, we compute

α(f, f) = 1
α(f, g) = β(a) + β(b)
α(f, h) = α(f, g)β(d)
α(f, m) = α(f, h).

(19)

From (19), the desired sum µ(f, m) is calculated as

µ(f, m) = α(f, m)β(m) = (β(a) + β(b))β(d)β(m)

which requires only two multiplications and one addition compared to four multiplications
and one addition in the naive computation.

Gains obtained by computing inside and outside probability may be small for this case,
but as the problem size grows, they become enormous, and compensate enough for addi-
tional restrictions imposed on the result of OLDT search.

4.7 OLDT Search

To compute inside and outside probability recursively like (15) or (17) and (18), we need
at programming level a tabulation mechanism for structure-sharing of partial explanations

26. Because of the independence assumption on body atoms, Wh,j (1 ≤ h ≤ K, 1 ≤ j ≤ ih) and A are
independent. Therefore

∂β(A ∧ Wh,j)

∂β(A)
=

∂β(A)β(Wh,j)

∂β(A)
= β(Wh,j).

411

Sato & Kameya

between subgoals. We henceforth deal with programs DB in which a set table(DB) of table
predicates are declared in advance. A ground atom containing a table predicate is called
a table atom. The purpose of table atoms is to store their support sets and eliminate the
need of recomputation, and by doing so, to construct hierarchically organized explanations
made up of the table atoms and the msw atoms.

Let DB = Fmsw ∪ R be a parameterized logic program which satisfies the finite support
condition and the uniqueness condition. Also let G1, G2, . . . , GT be a random sample of
observable atoms in obs(DB). We make the following additional assumptions.

Assumptions:
For each t (1 ≤ t ≤ T), there exists a finite set {τ t

1, . . . , τ
t
Kt

} of table atoms associated
with conjunctions S̃t

k,j (0 ≤ k ≤ Kt, 1 ≤ j ≤ mk) such that

comp(R) `
(
Gt ↔ S̃t

0,1 ∨ · · · ∨ S̃t
0,m0

)
∧

(
τ t
1 ↔ S̃t

1,1 ∨ · · · ∨ S̃t
1,m1

)
∧ · · · ∧

(
τ t
Kt

↔ S̃t
Kt,1

∨ · · · ∨ S̃t
Kt,mKt

) (20)

where

• each S̃t
k,j (0 ≤ k ≤ Kt, 1 ≤ j ≤ mk) is, as a set, a subset of Fmsw ∪ {τk+1, . . . , τKt}

(acyclic support condition). As a convention, we put τ0 = Gt and call respectively
τ t
DB

def= {τ0, τ
t
1, . . . , τ

t
Kt

} the set of table atoms for Gt and S̃t
k,j (k ≥ 0) a t-explanation

for τ t
k.

27 The set of all t-explanations for τk is denoted by ψ̃DB(τ t
k) and we consider

ψ̃DB(·) as a function of table atoms.

• t-explanations are mutually exclusive, i.e. for each k (0 ≤ k ≤ Kt), PDB(S̃t
k,j ∧ S̃t

k,j′) =
0 (1 ≤ j 6= j′ ≤ mk) (t−exclusiveness condition).

• S̃t
k,j (0 ≤ k ≤ Kt, 1 ≤ j ≤ mk) is a conjunction of independent atoms (independent

condition).28

These assumptions are aimed at efficient probability computation. Namely, the acyclic
support condition makes dynamic programming possible, the t-exclusiveness condition re-
duces PDB(A∨B) to PDB(A)+PDB(B) and the independent condition reduces PDB(A∧B)
to PDB(A)PDB(B). There is one more point concerning efficiency however. Note that the
computation in dynamic programming proceeds following the partial order on τ t

DB
29 im-

posed by the acyclic support condition and access to the table atoms will be much simplified
if they are linearly ordered. We therefore topologically sort τ t

DB respecting the said partial
order and call the linearized τ t

DB satisfying the three assumptions (the acyclic support con-
dition, the t-exclusiveness condition and the independent condition) a hierarchical system
of t-explanations for Gt. We write it as τ t

DB = 〈τ t
0, τ

t
1, . . . , τ

t
Kt

〉 (τ0 = Gt) assuming ψ̃DB(·) is
implicitly given.30 Once a hierarchical system of t-explanations for Gt is successfully built

27. Prefix “t-” is an abbreviation of “tabled-”.
28. The independence mentioned here only concerns positive propositions. For B1, B2 ∈ head(DB), we say

B1 and B2 are independent if PDB(B1 ∧ B2 | θ) = PDB(B1 | θ)PDB(B2 | θ) for any θ.
29. τi precedes τj if and only if the top-down execution of τi w.r.t. DB invokes τj directly or indirectly.
30. So now it holds that if τi precedes τj then i < j.

412

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

from the source program, equations on inside probability and outside probability such as
(14) and (19) are automatically derived and solved in time proportional to the size of the
equations. It plays a central role in our approach to efficient EM learning.

One way to obtain such t-explanations is to use OLDT search (Tamaki & Sato, 1986;
Warren, 1992), a complete refutation method for logic programs. In OLDT search, when
a goal G is called for the first time, we set up an entry for G in a solution table and store
its answer substitutions Gθ there. When a call to an instance G′ of G occurs later, we stop
solving G′ and instead try to retrieve an answer substitution Gθ stored in the solution table
by unifying G′ with Gθ. To record the remaining answer substitutions of G, we prepare a
lookup table for G′ and hold a pointer to them.

For self-containedness, we look at details of OLDT search using a sample program
DBh = Fh∪Rh in Figure 431 which depicts an HMM32 in Figure 3. This HMM has two states
{s0, s1}. At a state transition, it probabilistically chooses the next destination from {s0, s1}

s s

a,b

a,b

a,b a,b

10

Figure 3: Two state HMM

Fh =

 f1: values(init, [s0,s1]).
f2: values(out(_),[a,b]).
f3: values(tr(_), [s0,s1]).

Rh =

h1: hmm(Cs):- % To generate a string (chars) Cs,
msw(init,once,Si), % Set initial state to Si, and then
hmm(1,Si,Cs). % Enter the loop with clock = 1.

h2: hmm(T,S,[C|Cs]):- T=<3, % Loop:
msw(out(S),T,C), % Output C in state S.
msw(tr(S),T,NextS), % Transit from S to NextS.
T1 is T+1, % Put the clock ahead.
hmm(T1,NextS,Cs). % Continue the loop (recursion).

h3: hmm(T,_,[]):- T>3. % Finish the loop if clock > 3.

Figure 4: Two state HMM program DBh

31. f1, f2, f3, h1, h2 and h3 are temporary marks, not part of the program.
32. An HMM defines a probability distribution over strings in the given set of alphabets, and works as a

stochastic string generator (Rabiner & Juang, 1993) such that an output string is a sample from the
defined distribution.

413

Sato & Kameya

and also an alphabet from {a, b} to emit. Note that to specify a fact set Fh and the associ-
ated distribution compactly, we introduce here a new notation values(i,[v1,...,vm]). It
declares that Fh contains msw atoms of the form msw(i,n,v) (v ∈ {v1, . . . , vm}) whose distri-
bution is P(i,n) given by (7) in Subsection 4.2. For example, (f3), values(tr(),[s0,s1])
introduces msw(tr(t),n,v) atoms into the program such that t can be any ground term,
v ∈ {s0, s1} and for a ground term n, they have a distribution

P(tr(t),n)(msw(tr(t),n,s0) = x, msw(tr(t),n,s1) = y | θi,s0, θi,s1) = θx
i,s0θ

y
i,s1

where i = tr(t), x, y ∈ {0, 1} and x + y = 1.
This program runs like a Prolog program. For a non-ground top-goal ← hmm(S), it func-

tions as a stochastic string generator returning a list of alphabets such as [a,b,a] in the
variable S as follows. The top-goal calls clause (h1) and (h1) selects the initial state by ex-
ecuting subgoal msw(init,once,Si)33 which returns in Si an initial state probabilistically
chosen from {s0, s1}. The second clause (h2) is called from (h1) with ground S and ground
T. It makes a probabilistic choice of an output alphabet C by asking msw(out(S),T,C) and
then determines NextS, the next state, by asking msw(tr(S),T,NextS). (h3) is there to
stop the transition. For simplicity, the length of output strings is fixed to three. This way
of execution is termed as sampling execution because it corresponds to a random sampling
from PDBh

. If the top-goal is ground like ← hmm([a,b,a]), it works as an acceptor, i.e.
returning success (yes) or failure (no).

If all explanations for hmm([a,b,a]) are sought for, we keep all msw atoms resolved upon
during the refutation as a conjunction (explanation), and repeat this process by backtrack-
ing until no more refutation is found. If we need t-explanations however, backtracking must
be abandoned because sharing of partial explanations through t-explanations, the purpose
of t-explanations itself, becomes impossible. We therefore instead use OLDT search for all

t1: top_hmm(Cs,Ans):- tab_hmm(Cs,Ans,[]).
t2: tab_hmm(Cs,[hmm(Cs)|X],X):- hmm(Cs,_,[]).
t3: tab_hmm(T,S,Cs,[hmm(T,S,Cs)|X],X):- hmm(T,S,Cs,_,[]).
t4: e_msw(init,T,s0,[msw(init,T,s0)|X],X).
t4’: e_msw(init,T,s1,[msw(init,T,s1)|X],X).
:

t7: hmm(Cs,X0,X1):- e_msw(init,once,Si,X0,X2), tab_hmm(1,Si,Cs,X2,X1).
t8: hmm(T,S,[C|Cs],X0,X1):-

T=<3, e_msw(out(S),T,C,X0,X2), e_msw(tr(S),T,NextS,X2,X3),
T1 is T+1, tab_hmm(T1,NextS,Cs,X3,X1).

t9: hmm(T,S,[],X,X):- T>3.

Figure 5: Translated program of DBh

33. If msw(i,n,V) is called with ground i and ground n, V, a logical variable, behaves like a random variable.
It is instantiated to some term v with probability θi,v selected from the value set Vi declared by a values

atom. If, on the other hand, V is a ground term v when called, the procedural semantics of msw(i,n,v)
is equal to that of msw(i,n,V) ∧ V = v.

414

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

t-explanation search. In the case of the HMM program for example, to build a hierarchical
system of t-explanations for hmm([a,b,a]) by OLDT search, we first declare hmm/1 and
hmm/3 as table predicate.34 So a t-explanation will be a conjunction of hmm/1 atoms, hmm/3
atoms and msw atoms. We then translate the program into another logic program, analo-
gously to the translation of definite clause grammars (DCGs) in Prolog (Sterling & Shapiro,
1986). We add two arguments (which forms a D-list) to each predicate for the purpose of
accumulating msw atoms and table atoms as conjuncts in a t-explanation. The translation
applied to DBh yields the program in Figure 5.

In the translated program, clause (t1) corresponds to the top-goal ← hmm(l) with an
input string l, and a t-explanation for the table atom hmm(l) will be returned in Ans. (t2)
and (t3) are auxiliary clauses to add to the callee’s D-list a table atom of the form hmm(l)
and hmm(t,s,l) respectively (t: time step, s: state). In general, if p/n is a table predicate
in the original program, p/(n+2) becomes a table predicate in the translated program and
an auxiliary predicate tab p/(n+2) is inserted to signal the OLDT interpreter to check the
solution table for p/n, i.e. to check if there already exist t-explanations for p/n. Likewise
clauses (t4) and (t4’) are a pair corresponding to (f1) which insert msw(init,T,·) to the
callee’s D-list with T = once. Clauses (t7), (t8) and (t9) respectively correspond to (h1),
(h2) and (h3).

hmm([a,b,a]):[hmm([a,b,a])]

hmm(1,s0,[a,b,a]):[hmm(1,s0,[a,b,a])]

hmm(1,s1,[a,b,a]):[hmm(1,s1,[a,b,a])]

hmm(2,s0,[b,a]):[hmm(2,s0,[b,a])]

hmm(2,s1,[b,a]):[hmm(2,s1,[b,a])]

hmm(3,s0,[a]):[hmm(3,s0,[a])]

hmm(3,s1,[a]):[hmm(3,s1,[a])]

[[msw(init,once,s0), hmm(1,s0,[a,b,a])],
 [msw(init,once,s1), hmm(1,s1,[a,b,a])]]

[[msw(out(s0),1,a), msw(tr(s0),1,q0), hmm(2,s0,[b,a])],
 [msw(out(s0),1,a), msw(tr(s0),1,s1), hmm(2,s1,[b,a])]]

[[msw(out(s1),1,a), msw(tr(s1),1,s0), hmm(2,s0,[b,a])],
 [msw(out(s1),1,a), msw(tr(s1),1,s1), hmm(2,s1,[b,a])]]

[[msw(out(s0),2,b), msw(tr(s0),2,s0), hmm(3,s0,[a])],
 [msw(out(s0),2,b), msw(tr(s0),2,s1), hmm(3,s1,[a])]]

[[msw(out(s1),2,b), msw(tr(s1),2,s0), hmm(3,s0,[a])],
 [msw(out(s1),2,b), msw(tr(s1),2,s1), hmm(3,s1,[a])]]

[[msw(out(s0),3,a), msw(tr(s0),3,s0), hmm(4,s0,[])],
 [msw(out(s0),3,a), msw(tr(s0),3,s1), hmm(4,s1,[])]]

[[msw(out(s1),3,a), msw(tr(s1),3,s0), hmm(4,s0,[])],
 [msw(out(s1),3,a), msw(tr(s1),3,s1), hmm(4,s1,[])]]

hmm(4,s0,[]):[hmm(4,s0,[])]

hmm(4,s1,[]):[hmm(4,s1,[])]

[[]]

[[]]

Figure 6: Solution table

34. In general, p/n means a predicate p with arity n. So although hmm/1 and hmm/3 share the predicate name
hmm, they are different predicates.

415

Sato & Kameya

Then after translation, we apply OLDT search to ←top hmm([a,b,a],Ans) while not-
ing (i) the added D-list does not influence the OLDT procedure, and (ii) we associate with
each solution of a table atom in the solution table a list of t-explanations. The resulting
solution table is shown in Figure 6. The first row reads that a call to hmm([a,b,a]) oc-
curred and entered the solution table and its solution, hmm([a,b,a]) (no variable bind-
ing generated), has two t-explanations, msw(init,once,s0) ∧ hmm(1,s0,[a,b,a]) and
msw(init,once,s1) ∧ hmm(1,s1,[a,b,a]). The remaining task is the topological sort-
ing of the table atoms stored in the solution table respecting the acyclic support condition.
This can be done by using depth-first search (trace) of t-explanations from the top-goal for
example. Thus we obtain a hierarchical system of t-explanations for hmm([a,b,a]).

4.8 Support Graphs

Looking back, all we need to compute inside and outside probability is a hierarchical system
of t-explanations, which essentially is a boolean combination of primitive events (msw atoms)
and compound events (table atoms) and as such can be more intuitively representable as a
graph. For this reason, and to help visualizing our learning algorithm, we introduce a new
data-structure termed support graphs, though the new EM algorithm in the next subsection
itself is described solely by the hierarchical system of t-explanations.

As illustrated in Figure 7 (a), the support graph for Gt is a graphical representation of
the hierarchical system of t-explanations τ t

DB = 〈τ t
0, τ

t
1, . . . , τ

t
Kt

〉 (τ t
0 = Gt) for Gt in (20).

It consists of totally ordered disconnected subgraphs, each of which is labeled with the
corresponding table atom τ t

k in τ t
DB (0 ≤ k ≤ Kt). A subgraph labeled τ t

k comprises two
special nodes (the start node and the end node) and explanation graphs, each corresponding
to a t-explanation S̃t

k,j in ψ̃DB(τ t
k) (1 ≤ j ≤ mk).

An explanation graph of S̃t
k,j is a linear graph in which a node is labeled either with a

table atom τ or with a switch msw(·,·,·) in S̃t
k,j . They are called a table node and a switch

node respectively. Figure 7 (b) is the support graph for hmm([a,b,a]) obtained from the
solution table in Figure 6. Each table node labeled τ refers to the subgraph labeled τ , so
data-sharing is achieved through the distinct table nodes referring to the same subgraph.

4.9 Graphical EM Algorithm

We describe here an efficient EM learning algorithm termed the graphical EM algorithm
(Figure 8) introduced by Kameya and Sato (2000), that runs on support graphs. Suppose
we have a random sample G = G1, . . . , GT of observable atoms. Also suppose support
graphs for Gt (1 ≤ t ≤ T), i.e. hierarchical systems of t-explanations satisfying the acyclic
support condition, the t-exclusiveness condition and the independent condition, have been
successfully constructed from a parameterized logic program DB satisfying the uniqueness
condition and the finite support condition.

The graphical EM algorithm refines learn-naive(DB,G) by introducing two subroutines,
get-inside-probs(DB, G) to compute inside probabilities and get-expectations(DB, G) to com-
pute outside probabilities. They are called from the main routine learn-gEM(DB,G). When
learning, we prepare four arrays for each support graph for Gt in G:

• P[t, τ] for the inside probability of τ , i.e. β(τ) = PDB(τ | θ) (see (12))

416

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

hmm([a,b,a]):

msw(init,once,s0) hmm(1,s0,[a,b,a])

start

start

msw(init,once,s1) hmm(1,s1,[a,b,a])

hmm(1,s0,[a,b,a]):

msw(out(s0),1,a) msw(tr(s0),1,s0) hmm(2,s0,[b,a])

msw(out(s0),1,a) msw(tr(s0),1,s1) hmm(2,s1,[b,a])

start

hmm(1,s1,[a,b,a]):

msw(out(s1),1,a) msw(tr(s1),1,s0) hmm(2,s0,[b,a])

msw(out(s1),1,a) msw(tr(s1),1,s1) hmm(2,s1,[b,a])

end

end

end

msw

G t :

:

:

(a)

(b)

start

start

msw

end

end

msw msw

msw msw

msw

τ k

τ k

τ :k

explanation graph

Figure 7: A support graph (a) in general form, (b) for Gt = hmm([a,b,a]) in the HMM
program DBh. A double-circled node refers to a table node.

• Q[t, τ] for the outside probability of τ w.r.t. Gt, i.e. α(Gt, τ) (see (17) and (18))

• R[t, τ, S̃] for the explanation probability of S̃ (∈ ψ̃DB(τ t
k)), i.e. PDB(S̃ | θ)

417

Sato & Kameya

1: procedure learn-gEM (DB,G)
2: begin
3: Select some θ as initial

parameters;
4: get-inside-probs(DB,G);
5: λ(0) :=

∑T
t=1 lnP[t, Gt];

6: repeat
7: get-expectations(DB,G);
8: foreach i ∈ I, v ∈ Vi do
9: η[i, v] :=∑T

t=1 η[t, i, v]/P[t, Gt];
10: foreach i ∈ I, v ∈ Vi do
11: θi,v := η[i, v]/

∑
v′∈Vi

η[i, v′];
12: get-inside-probs(DB,G);
13: m := m + 1;
14: λ(m) :=

∑T
t=1 lnP[t, Gt]

15: until λ(m) − λ(m−1) < ε
16: end.

1: procedure get-inside-probs(DB,G)
2: begin
3: for t := 1 to T do begin
4: Let τ t

0 = Gt;
5: for k := Kt downto 0 do begin
6: P[t, τ t

k] := 0;
7: foreach S̃ ∈ ψ̃DB(τ t

k) do begin
8: Let S̃ = {A1, A2, . . . , A|S̃|};
9: R[t, τ t

k, S̃] := 1;
10: for l := 1 to |S̃| do
11: if Al = msw(i,·,v) then
12: R[t, τ t

k, S̃] ∗= θi,v

13: else R[t, τ t
k, S̃] ∗= P[t, Al];

14: P[t, τ t
k] += R[t, τ t

k, S̃]
15: end /* foreach S̃ */
16: end /* for k */
17: end /* for t */
18: end.

1: procedure get-expectations(DB,G) begin
2: for t := 1 to T do begin
3: foreach i ∈ I, v ∈ Vi do η[t, i, v] := 0;
4: Let τ t

0 = Gt; Q[t, τ t
0] := 1.0;

5: for k := 1 to Kt do Q[t, τ t
k] := 0;

6: for k := 0 to Kt do
7: foreach S̃ ∈ ψ̃DB(τ t

k) do begin
8: Let S̃ = {A1, A2, . . . , A|S̃|};
9: for l := 1 to |S̃| do

10: if Al = msw(i,·,v) then η[t, i, v] += Q[t, τ t
k] · R[t, τ t

k, S̃]
11: else Q[t, Al] += Q[t, τ t

k] · R[t, τ t
k, S̃]/P[t, Al]

12: end /* foreach S̃ */
13: end /* for t */
14: end.

Figure 8: graphical EM algorithm.

• η[t, i, v] for the expected count of msw(i,·,v), i.e.
∑

S∈ψDB(Gt) Pmsw(S | θ)σi,v(S)

and call the procedure learn-gEM(DB,G) in Figure 8. The main routine learn-gEM(DB,G) ini-
tially computes all inside probabilities (Line 4) and enters a loop in which get-expectations(DB,G)
is called first to compute the expected count η[t, i, v] of msw(i,·,v) and parameters are up-
dated (Line 11). Inside probabilities are renewed by using the updated parameters before
entering the next loop (Line 12).

418

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

The subroutine get-inside-probs(DB,G) computes the inside probability β(τ) = PDB(τ | θ)
(and stores it in P[t, τ]) of a table atom τ from the bottom layer up to the topmost layer τ0 =
Gt (Line 4) of the hierarchical system of t-explanations for Gt (see (20) in Subsection 4.6).
It takes a t-explanation S̃ in ψ̃DB(τ t

k) one by one (Line 7), decomposes S̃ into conjuncts and
multiplies their inside probabilities which are either known (Line 12) or already computed
(Line 13).

The other subroutine get-expectations(DB,G) computes outside probabilities following the
recursive definitions (17) and (18) in Subsection 4.6 and stores the outside probability
α(Gt, τ) of a table atom τ in Q[t, τ]. It first sets the outside probability of the top-goal
τ0 = Gt to 1.0 (Line 4) and computes the rest of outside probabilities (Line 6) going down
the layers of the t-explanation for Gt described by (20) in Subsection 4.6. (Line 10) adds
Q[t, τ t

k] · R[t, τ t
k, S̃] = α(Gt, τ

t
k) · β(S̃) to η[t, i, v], the expected count of msw(i,·,v), as a

contribution of msw(i,·,v) in S̃ through τ t
k to η[t, i, v]. (Line 11) increments the outside

probability Q[t, Al] = α(Gt, Al) of Al according to the equation (18). Notice that Q[t, τ t
k]

has already been computed and R[t, τ t
k, S̃]/P[t, Al] = β(W) for S̃ = Al ∧ W . As shown in

Subsection 4.5, learn-naive(DB,G) is the MLE procedure, hence the following theorem holds.

Theorem 4.1 Let DB be a parameterized logic program, and G = G1, . . . , GT a ran-
dom sample of observable atoms. Suppose the five conditions (uniqueness, finite support
(Subsection 4.2), acyclic support, t-exclusiveness and independence (Subsection 4.7)) are
met. Then learn-gEM (DB,G) finds the MLE θ∗ which (locally) maximizes the likelihood
L(G | θ) =

∏T
t=1 PDB(Gt | θ).

(Proof) Sketch.35 Since the main routine learn-gEM(DB,G) is the same as learn-naive(DB,G)
except the computation of η[i, v] =

∑T
t=1 η[t, i, v], we show that η[t, i, v] =

∑
S∈ψDB(Gt) Pmsw(S |

θ)σi,v(S) (=
∑

n

∑
msw(i,n,v)∈S∈ψDB(Gt) Pmsw(S | θ)). However,

η[t, i, v] =
∑

0≤k≤Kt

∑
n

∑
msw(i,n,v)∈S̃∈ψ̃DB(τ t

k
)

α(Gt, τ
t
k)β(S̃)

(see (Line 10) in get-expectations(DB,G))
=

∑
n

α(Gt, msw(i,n,v))β(msw(i,n,v))

=
∑
n

µ(Gt, msw(i,n,v)) (see the equation (16))

=
∑
n

∑
msw(i,n,v)∈S∈ψDB(Gt)

Pmsw(S | θ). Q.E.D.

Here we used the fact that if S̃ contains msw(i,n,v) like S̃ = S̃′ ∧ msw(i,n,v), β(S̃) =
β(S̃′)β(msw(i,n,v)) holds, and hence

α(Gt, τ
t
k)β(S̃) = α(Gt, τ

t
k)β(S̃′)β(msw(i,n,v))

= (contribution of msw(i,n,v) in S̃ through τ t
k to α(Gt, msw(i,n,v)))β(msw(i,n,v)).

35. A formal proof is given by Kameya (2000). It is proved there that under the common parameters θ, η[i, v]
in learn-naive(DB,G) coincides with η[i, v] in learn-gEM(DB,G). So, the parameters are updated to
the same values. Hence, starting with the same initial values, the parameters converge to the same
values.

419

Sato & Kameya

The five conditions on the applicability of the graphical EM algorithm may look hard
to satisfy at once. Fortunately, the modeling principle in Section 4.3 still stands, and with
due care in modeling, it is likely to lead us to a program that meets all of them. Actually,
we will see in the next section, programs for standard symbolic-statistical frameworks such
as Bayesian networks, HMMs and PCFGs all satisfy the five conditions.

5. Complexity

In this section, we analyze the time complexity of the graphical EM algorithm applied
to various symbolic-statistical frameworks including HMMs, PCFGs, pseudo PCSGs and
Bayesian networks. The results show that the graphical EM algorithm is competitive with
these specialized EM algorithms developed independently in each research field.

5.1 Basic Property

Since the EM algorithm is an iterative algorithm and since we are unable to predict when
it converges, we measure time complexity by the time taken for one iteration. We therefore
estimate time per iteration on the repeat loop of learn-gEM (DB,G) (G = G1, . . . , GT). We
observe that in one iteration, each support graph for Gt (1 ≤ t ≤ T) is scanned twice, once
by get-inside-probs(DB,G) and once by get-expectations(DB,G). In the scan, addition is
performed on the t-explanations, and multiplication (possibly with division) is performed
on the msw atoms and table atoms once for each. So time spent for Gt per iteration by the
graphical EM algorithm is linear in the size of the support graph, i.e. the number of nodes
in the support graph for Gt. Put

∆̃t
DB

def=
⋃

τ∈τ t
DB

ψ̃DB(τ)

ξnum
def= max

1≤t≤T
|∆̃t

DB|

ξmaxsize
def= max

1≤t≤T,S̃∈∆̃t
DB

|S̃|.

Recall that τ t
DB is the set of table atoms for Gt, and hence ∆̃t

DB is the set of all t-explanations
appearing in the right hand side of (20) in Subsection 4.7. So ξnum is the maximum number
of t-explanations in a support graph for the Gt’s and ξmaxsize the maximum size of a t-
explanation for the Gt’s respectively. The following is obvious.

Proposition 5.1 The time complexity of the graphical EM algorithm per iteration is linear
in the total size of support graphs, O(ξnumξmaxsizeT) in notation, which coincides with the
space complexity because the graphical EM algorithm runs on support graphs.

This is a rather general result, but when we compare the graphical EM algorithm with
other EM algorithms, we must remember that the input to the graphical EM algorithm is
support graphs (one for each observed atom) and our actual total learning time is

OLDT time + (the number of iterations) ×O(ξnumξmaxsizeT)

420

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

where “OLDT time” denotes time to construct all support graphs for G. It is the sum of
time for OLDT search and time for the topological sorting of the table atoms, but because
the latter is part of the former order-wise,36 we represent “OLDT time” by time for OLDT
search. Also observe that the total size of support graphs does not exceed time for OLDT
search for G order-wise.

To evaluate OLDT time for a specific class of models such as HMMs, we need to know
time for table operations. Observe that our OLDT search in this paper is special in the
sense that table atoms are always ground when called and there is no resolution with solved
goals. Accordingly a solution table is used only

• to check if a goal G already has an entry in the solution table, i.e. if it was called
before, and

• to add a new searched t-explanation for G to the list of discovered t-explanations
under G’s entry.

The time complexity of these operations is equal to that of table access which depends
both on the program and on the implementation of the solution table.37 We first suppose
programs are carefully written in such a way that the arguments of table atoms used as in-
decies for table access are integers. Actually all programs used in the subsequent complexity
analysis (DBh in Subsection 4.7, DBg and DBg′ in Subsection 5.3, DBGτ in Subsection 5.5)
satisfy or can satisfy this condition by replacing non-integer terms with appropriate inte-
gers. We also suppose that the solution table is implemented using an array so that table
access can be done in O(1) time.38

In what follows, we present a detailed analysis of the time complexity of the graphical
EM algorithm applied to HMMs, PCFGs, pseudo PCSGs and Bayesian networks, assuming
O(1) time access to the solution table. We remark by the way that their space complexity
is just the total size of solution tables (support graphs).

5.2 HMMs

The standard EM algorithm for HMMs is the Baum-Welch algorithm (Rabiner, 1989; Ra-
biner & Juang, 1993). An example of HMM is shown in Figure 3 in Subsection 4.7.39 Given
T observations w1, . . . , wT of output string of length L, it computes in O(N2LT) time in
each iteration the forward probability αt

m(q) = P (ot
1o

t
2 · · · ot

m−1, q | θ) and the backward
probability βt

m(q) = P (ot
mot

m+1 · · · ot
L | q, θ) for each state q ∈ Q, time step m (1 ≤ m ≤ L)

and a string wt = ot
1o

t
2 · · · ot

L (1 ≤ t ≤ T), where Q is the set of states and N the number of
states. The factor N2 comes from the fact that every state has N possible destinations and

36. Think of OLDT search for a top-goal Gt. It searches for msw atoms and table atoms to create a so-
lution table, while doing some auxiliary computations. Therefore its time complexity is never less
than O(|the number of msw atoms and table atoms in the support graph for Gt|), which coincides with
the time we need to topologically sort table atoms in the solution table by depth-first search from τ0 = Gt.

37. Sagonas et al. (1994) and Ramakrishnan et al. (1995) discuss about the implementation of OLDT.
38. If arrays are not available, we may be able to use balanced trees, giving O(log n) access time where n

is the number data in the solution table, or we may be able to use hashing, giving average O(1) time
access under a certain condition (Cormen, Leiserson, & Rivest, 1990).

39. We treat here only “state-emission HMMs” which emit a symbol depending on the state. Another type,
“arc-emission HMMs” in which the emitted symbol depends on the transition arc, is treated similarly.

421

Sato & Kameya

we have to compute the forward and backward probability for every destination and every
state. After computing all αt

m(q)’s and βt
m(q)’s, parameters are updated. So, the total

computation time in each iteration of the Baum-Welch algorithm is estimated as O(N2LT)
(Rabiner & Juang, 1993; Manning & Schütze, 1999).

To compare this result with the graphical EM algorithm, we use the HMM program
DBh in Figure 4 with appropriate modifications to L, the length of a string, Q, the
state set, and declarations in Fh for the output alphabets. For a string w = o1o2 · · · oL,
hmm(n,q,[om, om+1, . . . , oL]) in DBh reads that the HMM is in state q ∈ Q at time n and
has to output [om,om+1,...,oL] until it reaches the final state. After declaring hmm/1 and
hmm/3 as table predicate and translation (see Figure 5), we apply OLDT search to the goal
← top hmm([o1,...,oL],Ans) w.r.t. the translated program to obtain all t-explanations
for hmm([o1,...,oL]). For a complexity argument however, the translated program and
DBh are the same, so we talk in terms of DBh for the sake of simplicity. In the search,
we fix the search strategy to multi-stage depth-first strategy (Tamaki & Sato, 1986). We
assume that the solution table is accessible in O(1) time.40 Since the length of the list in
the third argument of hmm/3 decreases by one on each recursion, and there are only finitely
many choices of the state transition and the output alphabet, the search terminates, leaving
finitely many t-explanations in the solution table like Figure 6 that satisfy the acyclic sup-
port condition respectively. Also the sampling execution of ←hmm(L) w.r.t. DBh is nothing
but a sequential decision process such that decisions made by msw atoms are exclusive,
independent and generate a unique string, which means DBh satisfies the t-exclusiveness
condition, the independence condition and the uniqueness condition respectively. So, the
graphical EM algorithm is applicable to the set of hierarchical systems of t-explanations for
hmm(wt) (1 ≤ t ≤ T) produced by OLDT search for T observations w1, . . . , wT of output
string. Put wt = ot

1o
t
2 · · · ot

L. It follows from

τ t
DBh

= {hmm(m,q,[ot
m,...,ot

L]) | 1 ≤ m ≤ L + 1, q ∈ Q} ∪ {hmm([ot
1,...,o

t
L])}

ψ̃DBh
(hmm(m,q,[ot

m,...,ot
L]))

(1 ≤ m ≤ L)
=

{
msw(out(q),m,om), msw(tr(q),m,q′),

hmm(m + 1,q′,[ot
m+1,...,o

t
L])

∣∣∣∣∣ q′ ∈ Q

}

that for a top-goal hmm([ot
1,...,o

t
L]), there are at most O(NL) calling patterns of hmm/3

and each call causes at most N calls to hmm/3, implying there occur O(NL ·N) = O(N2L)
calls to hmm/3. Since each call is computed once due to the tabling mechanism, we have
ξnum = O(N2L). Also ξmaxsize = 3. Applying Proposition 5.1, we reach

Proposition 5.2 Suppose we have T strings of length L. Also suppose each table operation
in OLDT search is done in O(1) time. OLDT time by DBh is O(N2LT) and the graphical
EM algorithm takes O(N2LT) time per iteration where N is the number of states.

O(N2LT) is the time complexity of the Baum-Welch algorithm. So the graphical EM
algorithm runs as efficiently as the Baum-Welch algorithm.41

40. O(1) is possible because in the translated program DBh in Section 4.7, we can identify a goal pattern of
hmm(·,·,·,·,·) by the first two arguments which are constants (integers).

41. Besides, the Baum-Welch algorithm and the graphical EM algorithm whose input are support graphs
generated by DBh update parameters to the same value if initial values are the same.

422

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

By the way, the Viterbi algorithm (Rabiner, 1989; Rabiner & Juang, 1993) provides for
HMMs an efficient way of finding the most likely transition path for a given input/output
string. A similar algorithm for parameterized logic programs that determines the most
likely explanation for a given goal can be derived. It runs in time linear in the size of the
support graph, thereby O(N2L) in the case of HMMs, the same complexity as the Viterbi
algorithm (Sato & Kameya, 2000).

5.3 PCFGs

We now compare the graphical EM algorithm with the Inside-Outside algorithm (Baker,
1979; Lari & Young, 1990). The Inside-Outside algorithm is a well-known EM algorithm
for PCFGs (Wetherell, 1980; Manning & Schütze, 1999).42 It takes a grammar in Chomsky
normal form. Given N nonterminals, a production rule in the grammar takes the form
i → j, k (1 ≤ i, j, k ≤ N) (nonterminals are named by numbers from 1 to N and 1 is a
starting symbol) or the form i → w where 1 ≤ i ≤ N and w is a terminal. In each iteration,
it computes the inside probability and the outside probability of every partial parse tree
of the given sentence to update parameters for these production rules. Time complexity is
measured by time per iteration, and is described by N , the number of nonterminals, and
L, the number of terminals in a sentence. It is O(N3L3T) for T observed sentences (Lari
& Young, 1990).

To compare the graphical EM algorithm with the Inside-Outside algorithm, we start
from a propositional program DBg = Fg ∪ Rg below representing the largest grammar
containing all possible rules i → j, k in N nonterminals where nonterminal 1 is a starting
symbol, i.e. sentence.

Fg =
{msw(i,[d,d′],[j,k]) | 1 ≤ i, j, k ≤ N, d, d′ are numbers}

∪ {msw(i,d,w) | 1 ≤ i ≤ N, d is a number, w is a terminal}

Rg =

q(i,d0,d2) :- msw(i,[d0,d2],[j,k]),

q(j,d0,d1),
q(k,d1,d2).

∣∣∣∣∣∣∣
1 ≤ i, j, k ≤ N,
0 ≤ d0 < d1 < d2 ≤ L

⋃ {

q(i,d,d+1) :- msw(i,d,wd+1).
∣∣∣ 1 ≤ i ≤ N, 0 ≤ d ≤ L − 1

}

Figure 9: PCFG program DBg

DBg is an artificial parsing program whose sole purpose is to measure the size of an
OLDT tree43 created by the OLDT interpreter when it parses a sentence w1w2 · · ·wL. So

42. A PCFG (probabilistic context free grammar) is a backbone CFG with probabilities (parameters) as-
signed to each production rule. For a nonterminal A having n production rules {A → αi | 1 ≤ i ≤ n}, a
probability pi is assigned to A → αi (1 ≤ i ≤ n) where

∑n

i=1
pi = 1. The probability of a sentence s is

the sum of probabilities of each (leftmost) derivation of s. The latter is the product of probabilities of
rules used in the derivation.

43. To be more precise, an OLDT structure, but in this case, it is a tree because DBg contains only constants
(Datalog program) and there never occurs the need of creating a new root node.

423

Sato & Kameya

 q(1,d,d+1),
 q(1,d+1,L)

 q(1,d+1,L)

 q(1,d,d+1),
 q(k,d+1,L)

 q(j,d,d+1),
 q(1,d+1,L)

 q(j,d,d+1),
 q(k,d+1,L)

 q(j,d,e),
 q(1,e,L)

 q(j,d,e),
 q(k,e,L)

 q(1,d,L)

q(i,d’,d’’) already appears
 d+1 d’ d’’ L, 1 i N
 d’’-d’ L-d-2

 q(1,d+1,L) q(k,d+1,L) q(k,d+1,L)

 q(j’,e’,e),
 q(1,e,L)

 q(1,e,L)

 q(k,e,L) q(i’,d,e’),
 q(j’,e’,e),
 q(1,e,L)

2 k N2 k N

 2 j N

d+2 e L-1
1 j N

2 k N

Td+1

 T d

 Td
’

[Note]

1 i N

p(i) p(1) p(2) p(N)

...

q q

Td+1

(1)

(1)

(k)
1 i’ N,
1 j’ N,

d+2 e’ e

Figure 10: OLDT tree for the query ←q(1,d,L)

the input sentence w1w2 · · ·wL is embedded in the program separately as msw(i,d,wd+1)
(0 ≤ d ≤ L−1) in the second clauses of Rg (this treatment does not affect the complexity ar-
gument). q(i,d0,d1) reads that the i-th nonterminal spans from position d0 to position d1,
i.e. the substring wd0+1 · · ·wd1 . The first clauses q(i,d0,d2) :- msw(·,·,·), q(j,d0,d1),
q(k,d1,d2) are supposed to be textually ordered according to the lexicographic order for
tuples 〈i, j, k, d0, d2, d1〉. As a parser, the top-goal is set to ← q(1,0,L).44 It asks the
parser to parse the whole sentence w1w2 · · ·wL as the syntactic category “1” (sentence).

We make an exhaustive search for this query by OLDT search.45 As before, the multi-
stage depth-first search strategy and O(1) time access to the solution table are assumed.
Then the time complexity of OLDT search is measured by the number of nodes in the
OLDT tree. Let T

(k)
d be the OLDT tree for ← q(k,d,L). Figure 10 illustrates T

(1)
d for d

(0 ≤ d ≤ L − 3) where msw atoms are omitted. As can be seen, the tree has many similar
subtrees, so we put them together (see Note in Figure 10). Due to the depth-first strategy,
T

(1)
d has a recursive structure and contains T

(1)
d+1 as a subtree. Nodes whose leftmost atom

is not underlined are solution nodes, i.e. they solve their leftmost atoms for the first time in
the entire refutation process. The underlined atoms are already computed in the subtrees
to their left.46 They only check the solution table if there are their entries (= already

44. L here is not a Prolog variable but a constant denoting the sentence length.
45. q is a table predicate.

46. It can be inductively proved that T
(1)
d+1 contains every computed q(i,d′,d′′) (0 ≤ d ≤ L−3, d+1 ≤ d′ <

d′′ ≤ L, 1 ≤ i ≤ N, d′′ − d′ ≤ L − d − 2).

424

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

computed) in O(1) time. Since all clauses are ground, such execution only generates a
single child node.

We enumerate h
(1)
d , the number of nodes in T

(1)
d but not in T

(k)
d+1 (1 ≤ k ≤ N). From

Figure 10, we see h
(1)
d = O(N3(L− d)2).47 Let h

(k)
d (2 ≤ k ≤ N) be the number of nodes in

T
(k)
d+1 not contained in T

(1)
d+1. It is estimated as O(N2(L−d−2)). Consequently, the number

of nodes that are newly created in T
(1)
d is h

(1)
d +

∑N
k=2 h

(k)
d = O(N3(L − d)2). As a result,

total time for OLDT search is computed as
∑L−3

d=0 hd = O(N3L3)48 which is also the size of
the support graph.

We now consider a non-propositional parsing program DBg′ = Fg′ ∪ Rg′ in Figure 11
whose ground instances constitute the propositional program DBg. DBg′ is a probabilistic
variant of DCG program (Pereira & Warren, 1980) in which q’/1, q’/6 and between/3 are
declared as table predicate. Semantically DBg′ specifies a probability distribution over the
atoms of the form {q’(l) | l is a list of terminals}.

Fg′ =
{msw(si,t,[sj,sk]) | 1 ≤ i, j, k ≤ N, t is a number}

∪ {msw(si,t,w) | 1 ≤ i ≤ N, t is a number, w is a terminal}

Rg′ =

q’(S) :- length(S,D), q’(s1,0,D,0, ,S-[]).

q’(I,D0,D2,C0,C2,L0-L2) :- between(D0,D1,D2),
msw(I,C0,[J,K]),
q’(J,D0,D1,s(C0),C1,L0-L1),
q’(K,D1,D2,s(C1),C2,L1-L2).

q’(I,D,s(D),C0,s(C0),[W|X]-X) :- msw(I,C0,W).

Figure 11: Probabilistic DCG like program DBg′

The top-goal to parse a sentence S = [w1, . . . , wL] is ← q’([w1, . . . , wL]). It invokes
q’(s1,0,D,0, ,[w1,. . .,wL]-[]) after measuring the length D of an input sentence S by
calling length/2. 49 50 In general, q’(i,d0,d2,c0,c2,l0-l2) works identically to q(i,d0,d2)
but three arguments, c0, c2 and l0-l2, are added. c0 supplies a unique trial-id for msws to be
used in the body, c2 the latest trial-id in the current computation, and l0-l2 a D-list holding
a substring between d0 and d2. Since the added arguments do not affect the shape of the

47. We here focus on the subtree T ′
d. j, i′ and j′ range from 1 to N , and

∣∣{(e, e′) | d + 2 ≤ e′ < e ≤ L − 1}
∣∣ =

O((L − d)2). Hence, the number of nodes in T ′
d is O(N3(L − d)2). The number of nodes in T

(1)
d but

neither in T
(1)
d+1 nor in T ′

d is negligible, therefore h
(1)
d = O(N3(L − d)2).

48. The number of nodes in T
(1)
L−1 and T

(1)
L−2 is negligible.

49. To make the program as simple as possible, we assume that an integer n is represented by a ground term

sn
def
=

(n)︷ ︸︸ ︷
s(· · ·s (0)· · ·). We also assume that when D0 and D2 are ground, the goal ←between(D0, D1, D2)

returns an integer D1 between them in time proportional to |D1− D0|.
50. We omit an obvious program for length(l,sn) which computes the length sn of a list l in O(|l|) time.

425

Sato & Kameya

search tree in Figure 10 and the extra computation caused by length/2 is O(L) and the
one by the insertion of between(D0,D1,D2) is O(NL3) respectively,51 OLDT time remains
O(N3L3), and hence so is the size of the support graph.

To apply the graphical EM algorithm correctly, we need to confirm the five conditions
on its applicability. It is rather apparent however that the OLDT refutation of any top-
goal of the form ← q’([w1,. . .,wL]) w.r.t. DBg′ terminates, and leaves a support graph
satisfying the finite support condition and the acyclic support condition. The t-exclusiveness
condition and the independent condition also hold because the refutation process faithfully
simulates the leftmost stochastic derivation of w1 · · ·wL in which the choice of a production
rule made by msw(si,sc,[sj,sk]) is exclusive and independent (trial-ids are different on
different choices).

What remains is the uniqueness condition. To confirm it, let us consider another pro-
gram DBg′′ , a modification of DBg′ such that the first goal length(S,D) in the body of the
first clause and the first goal between(D0,D1,D2) in the second clause of Rg′ are moved to
the last position in their bodies respectively. DBg′′ and DBg′ are logically equivalent, and
semantically equivalent as well from the viewpoint of distribution semantics. Then think of
the sampling execution by the OLDT interpreter of a top-goal ← q’(S) w.r.t. DBg′′ where
S is a variable, using the multi-stage depth-first search strategy. It is easy to see first that
the execution never fails, and second that when the OLDT refutation terminates, a sentence
[w1, . . . , wL] is returned in S, and third that conversely, the set of msw atoms resolved upon
in the refutation uniquely determines the output sentence [w1, . . . , wL].52 Hence, if the
sampling execution is guaranteed to always terminate, every sampling from PFg′′ (= PFg′)
uniquely generates a sentence, an observable atom, so the uniqueness condition is satisfied
by DBg′′ , and hence by DBg′ .

Then when is the sampling execution guaranteed to always terminate? In other words,
when does the grammar only generate finite sentences? Giving a general answer seems
difficult, but it is known that if the parameter values in a PCFG are obtained by learning
from finite sentences, the stochastic derivation by the PCFG terminates with probability
one (Chi & Geman, 1998). In summary, assuming appropriate parameter values, we can
say that the parameterized logic program DBg′ for the largest PCFG with N nonterminal
symbols satisfies all applicability conditions, and the OLDT time for a sentence of length
L is O(N3L3)53 and this is also the size of the support graph. From Proposition 5.1, we
conclude

Proposition 5.3 Let DB be a parameterized logic program representing a PCFG with N
nonterminals in the form of DB′

g in Figure 11, and G = G1, G2, . . . , GT be the sampled atoms
representing sentences of length L. We suppose each table operation in OLDT search is done
in O(1) time. Then OLDT search for G and one iteration in learn-gEM are respectively
done in O(N3L3T) time.

51. between(D0,D1,D2) is called O(N(L−d)2) times in T
(1)
d . So it is called

∑L−3

d=0
O(N(L−d)2) = O(NL3)

times in T
(1)
0 .

52. Because the trial-ids used in the refutation record which rule is used at what step in the derivation of
w1 · · ·wL.

53. In DBg′ , we represent integers by ground terms made out of 0 and s(·) to keep the program short. If
we use integers instead of ground terms however, the first three arguments of q’(·,·,·,·,·,·) are enough
to check whether the goal is previously called or not, and this check can be done in O(1) time.

426

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

O(N3L3T) is also the time complexity of the Inside-Outside algorithm per iteration
(Lari & Young, 1990), hence our algorithm is as efficient as the Inside-Outside algorithm.

5.4 Pseudo PCSGs

PCFGs can be improved by making choices context-sensitive, and one of such attempts is
pseudo PCSGs (pseudo probabilistic context sensitive grammars) in which a rule is cho-
sen probabilistically depending on both the nonterminal to be expanded and its parent
nonterminal (Charniak & Carroll, 1994).

A pseudo PCSG is easily programmed. We add one extra-argument, N, representing
the parent node, to the predicate q’(I,D0,D2,C0,C2,L0-L2) in Figure 11 and replace
msw(I,C0,[J,K]) with msw([N,I],C0,[J,K]). Since the (leftmost) derivation of a sentence
from a pseudo PCSG is still a sequential decision process described by the modified program,
the graphical EM algorithm applied to the support graphs generated from the modified
program and observed sentences correctly performs the ML estimation of parameters in the
pseudo PCSG.

A pseudo PCSG is thought to be a PCFG with rules of the form [n, i] → [i, j][i, k]
(1 ≤ n, i, j, k ≤ N) where n is the parent nonterminal of i, so the arguments in the previous
subsection are carried over with minor changes. We therefore have (details omitted)

Proposition 5.4 Let DB be a parameterized logic program for a pseudo PCSG with N
nonterminals as shown above, and G = G1, G2, . . . , GT the observed atoms representing
sampled sentences of length L. Suppose each table operation in OLDT search can be done
in O(1) time. Then OLDT search for G and each iteration in learn-gEM is completed in
O(N4L3T) time.

5.5 Bayesian Networks

A relationship between cause C and its effect E is often probabilistic such as the one be-
tween diseases and symptoms, and as such it is mathematically captured as the conditional
probability P (E = e | C = c) of effect e given the cause c. What we wish to know however is
the inverse, i.e. the probability of a candidate cause c given evidence e, i.e. P (C = c | E = e)
which is calculated by Bayes’ theorem as P (E = e | C = c)P (C = c)/

∑
c′ P (E = e | C =

c′)P (C = c′). Bayesian networks are a representational/computational framework that fits
best this type of probabilistic inference (Pearl, 1988; Castillo et al., 1997).

A Bayesian network is a graphical representation of a joint distribution P (X1 = x1, . . . ,
XN = xN) of finitely many random variables X1, . . . , XN . The graph is a dag (directed
acyclic graph) such as ones in Figure 12, and each node is a random variable.54

In the graph, a conditional probability table (CPT) representing P (Xi = xi | Πi = ui)
(1 ≤ i ≤ N) is associated with each node Xi where Πi represents Xi’s parent nodes and ui

their values. When Xi has no parent, i.e. a topmost node in the graph, the table is just a
marginal distribution P (Xi = xi). The whole joint distribution is defined as the product of

54. We only deal with discrete cases.

427

Sato & Kameya

Multiply-connectedG2()Singly-connectedG1()

BA

C

E

D

F

A

C

E

D

B

F

Figure 12: Bayesian networks

these conditional distributions:

P (X1 = x1, . . . , XN = xN)55 =
N∏

i=1

P (Xi = xi | Πi = ui). (21)

Thus the graph G1 in Figure 12 defines

PG1(a, b, c, d, e, f) = PG1(a)PG1(b)PG1(c | a)PG1(d | a, b)PG1(e | d)PG1(f | d)

where a, b, c, d, e and f are values of corresponding random variables A, B, C, D, E
and F , respectively.56 As mentioned before, one of the basic tasks of Bayesian networks
is to compute marginal probabilities. For example, the marginal distribution PG1(c, d) is
computed either by (22) or (23) below.

PG1(c, d) =
∑

a,b,e,f

PG1(a)PG1(b)PG1(c | a)PG1(d | a, b)PG1(e | d)P (f | d) (22)

=

∑
a,b

PG1(a)PG1(b)PG1(c | a)PG1(d | a, b)

 ∑
e,f

PG1(e | d)PG1(f | d)

(23)

(23) is clearly more efficient than (22). Observe that if the graph were like G2 in
Figure 12, there would be no way to factorize computations like (23) but to use (22) requiring
exponentially many operations. The problem is that computing marginal probabilities is
NP-hard in general, and factorization such as (23) is assured only when the graph is singly
connected like G1, i.e. has no loop when viewed as an undirected graph. In such case, the
computation is possible in O(|V |) time where V is the set of vertices in the graph (Pearl,
1988). Otherwise, the graph is called multiply-connected, and might need exponential time
to compute marginal probabilities. In the sequel, we show the following.

• For any discrete Bayesian network G defining a distribution PG(x1, . . . , xN), there is a
parameterized logic program DBG for a predicate bn(·) such that PDBG

(bn(x1,. . .,xN))
= PG(x1, . . . , xN).

55. Thanks to the acyclicity of the graph, without losing generality, we may assume that if Xi is an ancestor
node of Xj , then i < j holds.

56. For notational simplicity, we shall omit random variables when no confusion arises.

428

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

• For arbitrary factorizations and their order to compute a marginal distribution, there
exists a tabled program that accomplishes the same computation in the specified way.

• When the graph is singly connected and evidence e is given, there exists a tabled
program DBGτ such that OLDT time for ← bn(e) is O(|V |), and hence the time
complexity per iteration of the graphical EM algorithm is O(|V |) as well.

Let G be a Bayesian network defining a joint distribution PG(x1, . . . , xN) and {PG(Xi =
xi | Πi = ui) | 1 ≤ i ≤ N, xi ∈ val(Xi), ui ∈ val(Πi)} the conditional probabilities
associated with G where val(Xi) is the set of Xi’s possible values and val(Πi) denotes
the set of possible values of the parent nodes Πi as a random vector, respectively. We
construct a parameterized logic program that defines the same distribution PG(x1, . . . , xN).
Our program DBG = FG ∪ RG is shown in Figure 13.

FG = { msw(par(i,ui),once,xi) | 1 ≤ i ≤ N, ui ∈ val(Πi), xi ∈ val(Xi) }

RG = { bn(X1,. . .,XN):-
∧N

i=1 msw(par(i,Πi),once,Xi). }

Figure 13: Bayesian network program DBG

FG is comprised of msw atoms of the form msw(par(i,ui),once,xi) whose probability is
exactly the conditional probability PG(Xi = xi | Πi = ui). When Xi has no parents, ui is
the empty list []. RG is a singleton, containing only one clause whose body is a conjunction
of msw atoms which corresponds to the product of conditional probabilities. Note that we
intentionally identify random variables X1, . . . , XN with logical variables X1, . . . , XN for
convenience.

Proposition 5.5 DBG denotes the same distributions as G.

(Proof) Let 〈x1, . . . , xN 〉 be a realization of the random vector 〈X1, . . . , XN 〉. It holds by
construction that

PDBG
(bn(x1,. . .,xN)) =

N∏
h=1

Pmsw(msw(par(i,ui),once,xi))

=
N∏

h=1

PG(Xi = xi | Πi = ui)

= PG(x1, . . . , xN). Q.E.D.

In the case of G1 in Figure 12, the program becomes57

bn(A,B,C,D,E,F) :- msw(par(’A’,[]),once,A), msw(par(’B’,[]),once,B),
msw(par(’C’,[A]),once,C), msw(par(’D’,[A,B]),once,D),
msw(par(’E’,[D]),once,E), msw(par(’F’,[D]),once,F).

57. ′A′, ′B′, . . . are Prolog constants used in place of integers.

429

Sato & Kameya

and the left-to-right sampling execution gives a sample realization of the random vector
〈 A, B, C, D, E, F 〉. A marginal distribution is computed from bn(x1,. . .,xN) by adding a new
clause to DBG. For example, to compute PG1(c, d), we add bn(C,D):- bn(A,B,C,D,E,F)
to DBG1 (let the result be DB′

G1
) and then compute PDB′

G1
(bn(c,d)) which is equal to

PG1(c, d) because

PDB′
G1

(bn(c,d)) = PDBG1
(∃ a, b, e, f bn(a,b,c,d,e,f))

=
∑

a,b,e,f

PDBG1
(bn(a,b,c,d,e,f))

= PG1(c, d).

Regrettably this computation corresponds to (22), not to the factorization (23). Efficient
probability computation using factorization is made possible by carrying out summations
in a proper order.

We next sketch by an example how to carry out specified summations in a specified
order by introducing new clauses. Suppose we have a joint distribution P (x, y, z, w) =
φ1(x, y)φ2(y, z, w)φ3(x, z, w) such that φ1(x, y), φ2(y, z, w) and φ3(x, z, w) are respectively
computed by atoms p1(X,Y), p2(Y,Z,W) and p3(X,Z,W). Suppose also that we hope to
compute the sum

P (x) =
∑
y

φ1(x, y)

(∑
z,w

φ2(y, z, w)φ3(x, z, w)

)
in which we first eliminate z, w and then y. Corresponding to each elimination, we introduce
two new predicates, q(X,Y) to compute φ4(x, y) =

∑
z,w φ2(y, z, w)φ3(x, z, w) and p(X) to

compute P (x) =
∑

y φ1(x, y)φ4(x, y) as follows.

p(X) :- p1(X,Y), q(X,Y).
q(X,Y) :- p2(Y,Z,W), p3(X,Z,W).

Note that the clause body of q/2 contains Z and W as (existentially quantified) local variables
and the clause head q(X,Y) contains variables shared with other atoms. In view of the
correspondence between

∑
and ∃, it is easy to confirm that this program realizes the

required computation. It is also easy to see by generalizing this example, though we do
not prove here, that there exists a parameterized logic program that carries out the given
summations in the given order for an arbitrary Bayesian network, in particular we are
able to simulate VE (variable elimination, Zhang & Poole, 1996; D’Ambrosio, 1999) in our
approach.

Efficient computation of marginal distributions is not always possible but there is a
well-known class of Bayesian networks, singly connected Bayesian networks, for which there
exists an efficient algorithm to compute marginal distributions by message passing (Pearl,
1988; Castillo et al., 1997). We here show that when the graph is singly connected, we can
construct an efficient tabled Bayesian network program DBGτ assigning a table predicate
to each node. To avoid complications, we explain the construction procedure informally
and concentrate on the case where we have only one interested variable. Let G be a singly

430

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

connected graph. First we pick up a node U whose probability PG(u) is what we seek. We
construct a tree Gτ with the root node U from G, by letting other nodes dangling from U .
Figure 14 shows how G1 is transformed to a tree when we select node B as the root node.

Transformed graph G
τ
1

A

C

E F

D

B

Figure 14: Transforming G1 to a tree

Then we examine each node in Gτ one by one. We add for each node X in the graph a
corresponding clause to DBGτ whose purpose is to visit all nodes connected to X except the
one that calls X. Suppose we started from the root node U1 in Figure 15 where evidence
u is given, and have generated clause (24). Now we proceed to an inner node X (U1 calls
X). In the original graph G, X has parent nodes {U1, U2, U3} and child nodes {V1, V2}. U3

is a topmost node in G.

Tree Gτ

U1

X

V2
V1U3

U2

Figure 15: General situation

For node X in Figure 15, we add clause (25). When it is called from the parent node
U1 with U1 being ground, we first generate possible values of U2 by calling val U2(U2),
and then call call X U2(U2) to visit all nodes connected to X through U2. U3 is similary
treated. After visiting all nodes in G connecting to X through the parent nodes U2 and
U3 (nodes connected to U1 have already been visited), the value of random variable X is
determined by sampling the msw atom jointly indexed by ’X’ and the values of U1, U2 and

431

Sato & Kameya

U3. Then we visit X’s children, V1 and V2. For a topmost node U3 in the original graph,
we add clause (26).

tbn(U1) :- msw(par(’U1’,[]),once,U1), call U1 X(U1). (24)

call U1 X(U1) :- val U2(U2), call X U2(U2),

val U3(U3), call X U3(U3),

msw(par(’X’,[U1,U2,U3]),once,X),

call X V1(X), call X V2(X). (25)

call X U3(U3) :- msw(par(’U3’,[]),once,U3). (26)

Let DBGτ be the final program containing clauses like (24), (25) and (26). Apparently
DBGτ can be constructed in time linear in the number of nodes in the network. Also
note that successive unfolding (Tamaki & Sato, 1984) of atoms of the form call ...(·)
in the clause bodies that starts from (24) yields a program DB′

G similar to the one in
Figure 13 which contains msw atoms but no call ...(·)’s. As DBGτ and DB′

G define the
same distribution,58 it can be proved from Proposition 5.5 that PG(u) = PDB′

G
(bn(u)) =

PDBGτ (tbn(u)) holds (details omitted). By the way, in Figure 15 we assume the construction
starts from the topmost node U1 where the evidence u is given, but this is not necessary.
Suppose we change to start from the inner node X. In that case, we replace clause (24)
with call X U1(U1) :- msw(par(’U1’,[]),once,U1) just like (26). At the same time we
replace the head of clause (25) with tbn() and add a goal call X U1(u) to the body
and so on. For the changed program DB′′

Gτ , it is rather straightforward to prove that
PDB′′

Gτ (tbn()) = PG(u) holds. It is true that the construction of the tabled program
DBGτ shown here is very crude and there is a lot of room for optimization, but it suffices
to show that a parameterized logic program for a singly connected Bayesian network runs
in O(|V |) time where V is the set of nodes.

To estimate time complexity of OLDT search w.r.t. DBGτ , we declare tbn and every
predicate of the form call ...(·) as table predicate and verify the five conditions on the
applicability of the graphical EM algorithm (details omitted). We now estimate the time
complexity of OLDT search for the goal ←tbn(u) w.r.t. DBGτ .59 We notice that calls occur
according to the pre-order scan (parents – the node – children) of the tree Gτ , and calls
to call Y X(·) occur val(Y) times. Each call to call Y X(·) invokes calls to the rest of
nodes, X’s parents and X’s children in the graph Gτ except the caller node, with diffrent
set of variable instantiations, but from the second call on, every call only refers to solutions
stored in the solution table in O(1) time. Thus, the number of added computation steps in

58. Since distribution semantics is based on the least model semantics, and because unfold/fold transforma-
tion (Tamaki & Sato, 1984) preserves the least Herbrand model of the transformed program, unfold/fold
transformation applied to parameterized logic programs preserves the denotation of the transformed
program.

59. DBGτ is further transformed for the OLDT interpreter to collect msw atoms like the case of the HMM
program.

432

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

OLDT search by X is bounded from above, by constant O(val(U1)val(U2)val(U3)val(X))
in the case of Figure 15. As a result OLDT time is proportional to the number of nodes
in the original graph G (and so is the size of the support graph) provided that the number
of edges connecting to a node, and that of values of a random variable are bounded from
above. So we have

Proposition 5.6 Let G be a singly connected Bayesian network defining distribution PG,
V the set of nodes, and DBGτ the tabled program derived as above. Suppose the number of
edges connecting to a node, and that of values of a random variable are bounded from above
by some constant. Also suppose table access can be done in O(1) time. Then, OLDT time
for computing PG(u) for an observed value u of a random variable U by means of DBGτ is
O(|V |) and so is time per iteration required by the graphical EM algorithm. If there are T
observations, time complexity is O(|V |T).

O(|V |) is the time complexity required to compute a marignal distribution for a singly
connected Bayesian network by a standard algorithm (Pearl, 1988; Castillo et al., 1997),
and also is that of the EM algorithm using it. We therefore conclude that the graphical
EM algorithm is as efficient as a specialzed EM algorithm for singly connected Bayesian
networks.60 We must also quickly add that the graphical EM algorithm is applicable to
arbitrary Bayesian networks,61 and what Proposition 5.6 says is that an explosion of the
support graph can be avoided by appropriate programming in the case of singly connected
Bayesian networks.

To summarize, the graphical EM algorithm, a single generic EM algorithm, is proved to
have the same time complexity as specialized EM algorithms, i.e. the Baum-Welch algorithm
for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected
Bayesian networks that have been developed independently in each research field.

Table 1 summarizes the time complexity of EM learning using OLDT search and the
graphical EM algorithm in the case of one observation. In the first column, “sc-BNs”
represents singly connected Bayesian networks. The second column shows a program to use.
DBh is an HMM proram in Subsection 4.7, DBg′ a PCFG program in Subsection 5.3 and
DBGτ a transformed Bayesian network program in Subsection 5.5, respectively. OLDT time
in the third column is time for OLDT search to complete the search of all t-explanations.
gEM in the fourth column is time in one iteration taken by the graphical EM algorithm
to update parameters. We use N , M , L and V respectively for the number of states in
an HMM, the number of nonterminals in a PCFG, the length of an input string and the
number of nodes in a Bayesian network. The last column is a standard (specialized) EM
algorithm for each model.

60. When a marginal distribution of PG for more than one variable is required, we can construct a similar
tabled program that computes marginal probabilities still in O(|V |) time by adding extra-arguments
that convey other evidence or by embedding other evidnece in the program.

61. We check the five conditions with DBG in Figure 13. The uniqueness condition is obvious as sampling
always uniquely generates a sampled value for each random variable. The finite support condition is
satisfied because there are only a finite number of random variables and their values. The acyclic support
condition is immediate because of the acyclicity of Bayesian networks. The t-exclusiveness condition and
the independent condition are easy to verify.

433

Sato & Kameya

Model Program OLDT time gEM Specialized EM

HMMs DBh O(N2L) O(N2L) Baum-Welch
PCFGs DBg′ O(M3L3) O(M3L3) Inside-Outside
sc-BNs DBGτ O(|V |) O(|V |) (Castillo et al., 1997)
user model O(|OLDT tree|) O(|support graph|)

Table 1: Time complexity of EM learning by OLDT search and the graphical EM algorithm

5.6 Modeling Language PRISM

We have been developing a symbolic-statistical modeling laguage PRISM since 1995 (URL
= http://mi.cs.titech.ac.jp/prism/) as an implementation of distribution semantics
(Sato, 1995; Sato & Kameya, 1997; Sato, 1998). The language is intented for modeling
complex symbolic-statistical phenomena such as discourse interpretation in natural language
processing and gene inheritance interacting with social rules. As a programming language,
it looks like an extension of Prolog with new built-in predicates including the msw predicate
and other special predicates for manipulating msw atoms and their parameters.

A PRISM program is comprised of three parts, one for directives, one for modeling and
one for utilities. The directive part contains declarations such as values, telling the system
what msw atoms will be used in the execution. The modeling part is a set of non-unit definite
clauses that define the distribution (denotation) of the program by using msw atoms. The
last part, the utility part, is an arbitary Prolog program which refers to predicates defined
in the modeling part. We can use in the utility part learn built-in predicate to carry out
EM learning from observed atoms.

PRISM provides three modes of execution. The sampling execution correponds to a
random sampling drawn from the distribution defined by the modeling part. The second
one computes the probability of a given atom. The third one returns the support set for a
given goal. These execution modes are available through built-in predicates.

We must report however that while the implementation of the graphical EM algorithm
with a simpified OLDT search mechanism has been under way, it is not completed yet. So
currently, only Prolog search and learn-naive(DB,G) in Section 4 are available for EM learn-
ing though we realized, partially, structrure sharing of explanations in the implemention
of learn-naive(DB,G). Putting computational efficiecy aside however, there is no problem
in expressing and learning HMMs, PCFGs, pseudo PCSGs, Bayesian networks and other
probailistic models by the current version. The learning experiments in the next section
used a parser as a substitute for the OLDT interpreter, and the independently implemented
graphical EM algorithm.

6. Learning Experiments

After complexity analysis of the graphical EM algorithm for popular symbolic-probabilistic
models in the previous section, we look at an actual behavior of the graphical EM algorithm
with real data in this section. We conducted learning experiments with PCFGs using two

434

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

corpora which have contrasting characters, and compared the performance of the graphical
EM algorithm against that of the Inside-Outside algorithm in terms of time per iteration
(= time for updating parameters). The results indicate that the graphical EM algorithm
can outperform the Inside-Outside algorithm by orders of magnigude. Detalis are reported
by Sato, Kameya, Abe, and Shirai (2001). Before proceeding, we review the Inside-Outside
algorithm for completeness.

6.1 The Inside-Outside Algorithm

The Inside-Outside algorithm was proposed by Baker (1979) as a generalization of the
Baum-Welch algorithm to PCFGs. The algorithm is designed to estimate parameters for a
CFG grammar in Chomsky normal form containing rules expressed by numbers like i → j, k
(1 ≤ i, j, k ≤ N for N nonterminals, where 1 is a starting symbol). Suppose an input
sentence w1, . . . , wL is given. In each iteration, it first computes in a bottom up manner
inside probabilities e(s, t, i) = P (i ∗⇒ ws, . . . , wt) and then computes outside probabilities
f(s, t, i) = P (S ∗⇒ w1, . . . , ws−1 i wt+1, . . . , wL) in a top-down manner for every s, t and
i (1 ≤ s ≤ t ≤ L, 1 ≤ i ≤ N). After computing both probabilities, parameters are
updated by using them, and this process iterates until some predetermined criterion such
as a convergence of the likelihood of the input sentence is achieved. Although Baker did
not give any analysis of the Inside-Outside algorithm, Lari and Young (1990) showed that it
takes O(N3L3) time in one iteration and Lafferty (1993) proved that it is the EM algorithm.

While it is true that the Inside-Outside algorithm has been recognized as a standard EM
algortihm for training PCFGs, it is notoriously slow. Although there is not much literature
explicitly stating time required by the Inside-Outside algorithm (Carroll & Rooth, 1998;
Beil, Carroll, Prescher, Riezler, & Rooth, 1999), Beil et al. (1999) reported for example
that when they trained a PCFG with 5,508 rules for a corpus of 450,526 German subordi-
nate clauses whose average ambiguity is 9,202 trees/clause using four machines (167MHz
Sun UltraSPARC×2 and 296MHz Sun UltraSPARC-II×2), it took 2.5 hours to complete
one iteration. We discuss later why the Inside-Outside algorithm is slow.

6.2 Learning Experiments Using Two Corpora

We report here parameter learning of existing PCFGs using two corpora of moderate size
and compare the graphical EM algorithm against the Inside-Outside algorithm in terms
of time per iteration. As mentioned before, support graphs, input to the garphical EM
algorithm, were generated by a parser, i.e. MSLR parser.62 All measurements were made
on a 296MHz Sun UltraSPARC-II with 2GB memory under Solaris 2.6 and the threshold
for an increase of the log likelihood of input sentences was set to 10−6 as a stopping criterion
for the EM algorithms.

In the experiments, we used ATR corpus and EDR corpus (each converted to a POS
(part of speech)-tagged corpus). They are similar in size (about 10,000) but contrasting in
their characters, sentence length and ambiguity of their grammars. The first experiment
employed ATR corpus which is a Japanese-English corpus (we used only the Japanese part)
developed by ATR (Uratani, Takezawa, Matsuo, & Morita, 1994). It contains 10,995 short

62. MSLR parser is a Tomita (Generalized LR) parser developed by Tanaka-Tokunaga Laboratory in Tokyo
Institute of Technology (Tanaka, Takezawa, & Etoh, 1997).

435

Sato & Kameya

conversational sentences, whose minimum length, average length and maximum length are
respectively 2, 9.97 and 49. As a skeleton of PCFG, we employed a context free grammar
Gatr comprising 860 rules (172 nonterminals and 441 terminals) manually developed for
ATR corpus (Tanaka et al., 1997) which yields 958 parses/sentence.

Because the Inside-Outside algorithm only accepts a CFG in Chomsky normal form, we
converted Gatr into Chomsky normal form G∗

atr. G∗
atr contains 2,105 rules (196 nonter-

minals and 441 terminals). We then divided the corpus into subgroups of similar length
like (L = 1, 2), (L = 3, 4), . . . , (L = 25, 26), each containing randomly chosen 100 sentences.
After these preparations, we compare at each length the graphical EM algorithm applied to
Gatr and G∗

atr against the Inside-Outside algorithm applied to G∗
atr in terms of time per

iteration by running them until convergence.

10

20

30

40

50

60

0 5 10 15 20 25

(sec)

L

I-O

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

(sec)

L

I-O
gEM (original)

gEM (Chomsky NF)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25

(sec)

L

gEM (original)
gEM (Chomsky NF)

Figure 16: Time per iteration : I-O vs. gEM (ATR)

Curves in Figure 16 show the learning results where an x-axis is the length L of an input
sentence and a y-axis is average time taken by the EM algorithm in one iteration to update
all parameters contained in the support graphs generated from the chosen 100 sentences
(other parameters in the grammar do not change). In the left graph, the Inside-Outside
algorithm plots a cubic curve labeled “I-O”. We omitted a curve drawn by the graphical
EM algorithm as it drew the x-axis. The middle graph magnifies the left graph. The curve
labeled “gEM (original)” is plotted by the graphical EM algorithm applied to the original
grammar Gatr whereas the one labeled “gEM (Chomsky NF)” used G∗

atr. At length 10, the
average sentence length, it is measured that whichever grammar is employed, the graphical
EM algorithm runs several hundreds times faster (845 times faster in the case of Gatr
and 720 times faster in the case of G∗

atr) than the Inside-Outside algorithm per iteration.
The right graph shows (almost) linear dependency of updating time by the graphical EM
algorithm within the measuared sentence length.

Although some difference is anticipated in their learning speed, the speed gap between
the Inside-Outside algorithm and the graphical EM algorithm is unexpectedly large. The
most conceivable reason is that ATR corpus only contains short sentences and Gatr is not

436

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

much ambiguous so that parse trees are sparse and generated support graphs are small,
which affects favorably the perforamnce of the graphical EM algorithm.

We therefore conducted the same experiment with another corpus which contains much
longer sentences using a more ambiguous grammar that generates dense parse trees. We
used EDR Japanese corpus (Japan EDR, 1995) containing 220,000 Japanese news article
sentences. It is however under the process of re-annotation, and only part of it (randomly
sampled 9,900 sentences) has recently been made available as a labeled corpus. Compared
with ATR corpus, sentences are much longer (the average length of 9,900 sentences is 20,
the minimum length 5, the maximum length 63) and a CFG grammar Gedr (2,687 rules,
converted to Chomsky normal form grammar G∗

edr containing 12,798 rules) developed for
it is very ambiguous (to keep a coverage rate), having 3.0 × 108 parses/sentence at length
20 and 6.7 × 1019 parses/sentence at length 38.

0

1000

2000

3000

4000

5000

6000

5 10 15 20 25 30 35 40

(sec)

L

I-O

0

2

4

6

8

10

5 10 15 20 25 30 35 40

(sec)

L

I-O
gEM (original)

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35 40

(sec)

L

gEM (original)

Figure 17: Time per iteration : I-O vs. gEM (EDR)

Figure 17 shows the obtained curves from the experiments with EDR corpus (the graph-
ical EM algorithm applied to Gedr vs. the Inside-Outside algorithm applied to G∗

edr) under
the same condition as ATR corpus, i.e. plotting average time per iteration to process 100
sentences of the designated length, except that the plotted time for the Inside-Outside al-
gorithm is the average of 20 iterations whereas that for the graphical EM algorithm is the
average of 100 iterations. As is clear from the middle graph, this time again, the graphical
EM algorithm runs orders of magnitude faster than the Inside-Outside algorithm. At aver-
age sentence length 20, the former takes 0.255 second whereas the latter takes 339 seconds,
giving a speed ratio of 1,300 to 1. At sentence length 38, the former takes 2.541 seconds but
the latter takes 4,774 seconds, giving a speed ratio of 1,878 to 1. Thus the speed ratio even
widens compared to ATR corpus. This can be explained by the mixed effects of O(L3),
time complexity of the Inside-Outside algorithm, and a moderate increase in the total size
of support graphs w.r.t. L. Notice that the right graph shows how the total size of support
graphs grows with sentence length L as time per iteration by the graphical EM algorithm
is linear in the total size of support graphs.

437

Sato & Kameya

Since we implemented the Inside-Outside algorithm faithfully to Baker (1979), Lari and
Young (1990), there is much room for improvement. Actually Kita gave a refined Inside-
Outside algorithm (Kita, 1999). There is also an implementation by Mark Johnson of the
Inside-Outside algorithm down-loadable from http://www.cog.brown.edu/%7Emj/. The
use of such implementations may lead to different conclusions. We therefore conducted
learning experiments with the entire ATR corpus using these two implementations and
measured updating time per iteration (Sato et al., 2001). It turned out that both imple-
mentations run twice as fast as our naive implementation and take about 630 seconds per
iteration while the graphical EM algorithm takes 0.661 second per iteration, which is still
orders of magnitude faster than the former two. Regrettably a similar comparison using
the entire EDR corpus available at the moment was abandoned due to memory overflow
during parsing for the construction of support graphs.

Learning experiments so far only compared time per iteration which ignore extra time
for search (parsing) required by the graphical EM algorithm. So a question naturally arises
w.r.t. comparison in terms of total learning time. Assuming 100 iterations for learning
ATR corpus however, it is estimated that even considering parsing time, the graphical
EM algorithm combined with MSLR parser runs orders of magnitude faster than the three
implementations (ours, Kita’s and Johnson’s) of the Inside-Outside algorithm (Sato et al.,
2001). Of course this estimation does not directly apply to the graphical EM algorithm
combined with OLDT search, as the OLDT interpreter will take more time than a parser
and how much more time is needed depends on the implementaiton of OLDT search.63

Conversely, however, we may be able to take it as a rough indication of how far our approach,
the graphical EM algorithm combined with OLDT search via support graphs, can go in the
domain of EM learning of PCFGs.

6.3 Examing the Performance Gap

In the previous subsection, we compared the performance of the graphical EM algorithm
against the Inside-Outside algorithm when PCFGs are given, using two corpora and three
implementations of the Inside-Outside algorithm. In all experiments, the graphical EM
algorithm considerably outperformed the Inside-Outside algorithm despite the fact that
both have the same time complexity. Now we look into what causes such a performance
gap.

Simply put, the Inside-Outside algorithm is slow (primarily) because it lacks parsing.
Even when a backbone CFG grammar is explicitly given, it does not take any advantage of
the constraints imposed by the grammar. To see it, it might help to review how the inside
probability e(s, t, A), i.e. P(nonterminal A spans from s-th word to t-th word) (s ≤ t), is
calculated by the Inside-Outside algorithm for the given grammar.

e(s, t, A) =
∑

B,C s.t. A→BC in the grammar

r=t−1∑
r=s

P(A → BC)e(s, r, B)e(r + 1, t, C)

Here P(A → BC) is a probability associated with a production rule A → BC. Note that for
a fixed triplet (s, t, A), it is usual that the term P(A → BC)e(s, r, B)e(r+1, t, C) is non-zero

63. We cannnot answer this question right now as the implementation of OLDT search is not completed.

438

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

only for a relatively small number of (B,C, r)’s determined from successful parses and the
rest of combinations always give 0 to the term. Nonetheless the Inside-Outside algorithm
attempts to compute the term in every iteration for all possible combinations of B, C and
r and this is repeated for every possible (s, t, A), resulting in a lot of redundancy. The same
kind of redundancy occurs in the computation of outside probability by the Inside-Outside
algorithm.

The graphical EM algorithm is free of such redundancy because it runs on parse trees (a
parse forest) represented by the support graph.64 It must be added, on the other hand, that
superiority in learning speed of the graphical EM algorithm is realized at the cost of space
complexity because while the Inside-Outside algorithm merely requires O(NL2) space for
its array to store probabilities, the graphical EM algorithm needs O(N3L3) space to store
the support graph where N is the number of nonterminals and L is the sentence length.
This trade-off is understandable if one notices that the graphical EM algorithm applied
to a PCFG can be considered as partial evaluation of the Inside-Outside algorithm by the
grammar (and the introduction of appropriate data structure for the output).

Finally we remark that the use of parsing as a preprocess for EM learning of PCFGs is
not unique to the graphical EM algorithm (Fujisaki, Jelinek, Cocke, Black, & Nishino, 1989;
Stolcke, 1995). These approaches however still seem to contain redundancies compared with
the graphical EM algorithm. For instance Stolcke (1995) uses an Earley chart to compute
inside and outside probability, but parses are implicitly reconstructed in each iteration
dynamically by combining completed items.

7. Related Work and Discussion

7.1 Related Work

The work presented in this paper is at the crossroads of logic programming and probability
theory, and considering an enormous body of work done in these fields, incompleteness is
unavoidable when reviewing related work. Having said that, we look at various attempts
made to integrate probability with computational logic or logic programming.65 In review-
ing, one can immediately notice there are two types of usage of probability. One type,
constraint approach, emphasizes the role of probability as constraints and does not nec-
essarily seek for a unique probability distribution over logical formulas. The other type,
distribution approach, explicitly defines a unique distribution by model theoretical means
or proof theoretical means, to compute various probabilities of propositions.

A typical constraint approach is seen in the early work of probabilistic logic by Nilsson
(1986). His central problem, “probabilistic entailment problem”, is to compute the upper
and lower bound of probability P(φ) of a target sentence φ in such a way that the bounds
are compatible with a given knowledge base containing logical sentences (not necessarily
logic programs) annotated with a probability. These probabilities work as constraints on

64. We emphasize that the difference between the Inside-Outside algorithm and the graphical EM algorithm
is solely computational efficiency, and they converge to the same parameter values when starting from the
same initial values. Linguistic evaluations of the estimated parameters by the graphical EM algorithm
are also reported by Sato et al. (2001).

65. We omit literature leaning strongly toward logic. For logic(s) concerning uncertainty, see an overview
by Kyburg (1994).

439

Sato & Kameya

the possible range of P(φ). He used the linear programming technique to solve this problem
that inevitably delimits the applicability of his approach to finite domains.

Later Lukasiewicz (1999) investigated the computational complexity of the probabilistic
entailment problem in a slightly different setting. His knowledge base comprises statements
of the form (H | G)[u1, u2] representing u1 ≤ P(H | G) ≤ u2. He showed that inferring
“tight” u1, u2 is NP-hard in general, and proposed a tractable class of knowledge base called
conditional constraint trees.

After the influential work of Nilsson, Frish and Haddawy (1994) introduced a deduc-
tive system for probabilistic logic that remedies “drawbacks” of Nilsson’s approach, that
of computational intractability and the lack of a proof system. Their system deduces a
probability range of a proposition by rules of probabilistic inferences about unconditional
and conditional probabilities. For instance, one of the rules infers P (α | δ) ∈ [0 y] from
P (α∨β | δ) ∈ [x y] where α,β and δ are propositional variables and [x y] (x ≤ y) designates
a probability range.

Turning to logic programming, probabilistic logic programming formalized by Ng and
Subrahmanian (1992) and Dekhtyar and Subrahmanian (1997) was also a constraint ap-
proach. Their program is a set of annotated clauses of the form A : µ ← F1 : µ1, . . . , Fn : µn

where A is an atom, Fi (1 ≤ i ≤ n) a basic formula, i.e. a conjunction or a disjunction of
atoms, and µj (0 ≤ j ≤ n) a sub-interval of [0, 1] indicating a probability range. A query
← ∃ (F1 : µ1, . . . , Fn : µn) is answered by an extension of SLD refutation. On formalization,
it is assumed that their language contains only a finite number of constant and predicate
symbols, and no function symbol is allowed.

A similar framework was proposed by Lakshmanan and Sadri (1994) under the same syn-
tactic restrictions (finitely many constant and predicate symbols but no function symbols)
in a different uncertainty setting. They used annotated clauses of the form A

c← B1, . . . , Bn

where A and Bi (1 ≤ i ≤ n) are atoms and c = 〈[α, β], [γ, δ]〉, a confidence level, represents
a belief interval [α, β] (0 ≤ α ≤ β ≤ 1) and a doubt interval [γ, δ] (0 ≤ γ ≤ δ ≤ 1), which
an expert has in the clause.

As seen above, defining a unique probability distribution is of secondary or no concern
to the constraint approach. This is in sharp contrast with Bayesian networks as the whole
discipline rests on the ability of the networks to define a unique probability distribution
(Pearl, 1988; Castillo et al., 1997). Researchers in Bayesian networks have been seeking for
a way of mixing Bayesian networks with a logical representation to increase their inherently
propositional expressive power.

Breese (1992) used logic programs to automatically build a Bayesian network from a
query. In Breese’s approach, a program is the union of a definite clause program and a set
of conditional dependencies of the form P(P | Q1 ∧ · · · ∧ Qn) where P and Qis are atoms.
Given a query, a Bayesian network is constructed dynamically that connects the query and
relevant atoms in the program, which in turn defines a local distribution for the connected
atoms. Logical variables can appear in atoms but no function symbol is allowed.

Ngo and Haddawy (1997) extended Breese’s approach by incorporating a mechanism
reflecting context. They used a clause of the form P(A0 | A1, . . . , An) = α ← L1, . . . , Lk,
where Ai’s are called p-atoms (probabilistic atoms) whereas Lj ’s are context atoms disjoint
from p-atoms, and computed by another general logic program (satisfying certain restric-

440

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

tions). Given a query, a set of evidence and context atoms, relevant ground p-atoms are
identified by resolving context atoms away by SLDNF resolution, and a local Bayesian net-
work is built to calculate the probability of the query. They proved the soundness and
completeness of their query evaluation procedure under the condition that programs are
acyclic66 and domains are finite.

Instead of defining a local distribution for each query, Poole (1993) defined a global dis-
tribution in his “probabilistic Horn abduction”. His program consists of definite clauses and
disjoint declarations of the form disjoint([h1:p1,...,hn:pn]) which specifies a probabil-
ity distribution over the hypotheses (abducibles) {h1, . . . , hn}. He assigned probabilities to
all ground atoms with the help of the theory of logic programming, and furthermore proved
that Bayesian networks are representable in his framework. Unlike previous approaches, his
language contains function symbols, but the acyclicity condition imposed on the programs
for his semantics to be definable seems to be a severe restriction. Also, probabilities are not
defined for quantified formulas.

Bacchus et al. (1996) used a much more powerful first-order probabilistic language than
clauses annotated with probabilities. Their language allows a statistically quantified term
such as ‖ φ(x)|θ(x) ‖x to denote the ratio of individuals in a finite domain satisfying φ(x)∧
θ(x) to those satisfying θ(x). Assuming that every world (interpretation for their language)
is equally likely, they define the probability of a sentence ϕ under the given knowledge

base KB as the limit limN→∞

(
#worldsτ

N (ϕ∧KB)

#worldsτ
N (KB)

)
where #worldsτ

N (χ) is the number of

possible worlds containing N individuals satisfying χ, and τ parameters used in judging
approximations. Although the limit does not necessarily exist and the domain must be finite,
they showed that their method can cope with difficulties arising from “direct inference” and
default reasoning.

In a more linguistic vein, Muggleton (1996, and others) formulated SLPs (stochastic
logic programs) procedurally, as an extension of PCFGs to probabilistic logic programs.
So, a clause C, which must be range-restricted,67 is annotated with a probability p like
p : C. The probability of a goal G is the product of such ps appearing in its refutation but
with a modification such that if a subgoal g can invoke n clauses, pi : Ci (1 ≤ i ≤ n) at
some refutation step, the probability of choosing k-th clause is normalized to pk/

∑n
i=1 pi.

More recently, Cussens (1999, 2001) enriched SLPs by introducing a special class of
log-linear models for SLD refutations w.r.t. a given goal. He for example considers all
possible SLD refutations for the most general goal ← s(X) and defines probability P(R)
of a refutation R as P(R) = Z−1 exp (

∑
i λiν(R, i)). Here λi is a number associated with

a clause Ci and ν(R, i) is a feature, i.e. the number of occurrences of Ci in R. Z is the
normalizing constant. Then, the probability assigned to s(a) is the sum of probabilities of
refutation for ←s(a).

66. The condition says that every ground atom A must be assigned a unique integer n(A) such that n(A) >
n(B1), . . . , n(Bn) holds for any ground instance of a clause of the form A ← B1, . . . , Bn. Under this
condition, when a program includes p(X) ← q(X, Y), we cannot write recursive clauses about q such as
q(X, [H|Y]) ← q(X, Y).

67. A syntactic property that variables appearing in the head also appear in the body of a clause. A unit
clause must be ground.

441

Sato & Kameya

7.2 Limitations and Potential Problems

Approaches described so far have more or less similar limitations and potential problems.
Descriptive power confined to finite domains is the most common limitation, which is due
to the use of the linear programming technique (Nilsson, 1986), or due to the syntactic
restrictions not allowing for infinitely many constant, function or predicate symbols (Ng
& Subrahmanian, 1992; Lakshmanan & Sadri, 1994). Bayesian networks have the same
limitation as well (only a finite number of random variables are representable).68 Also there
are various semantic/syntactic restrictions on logic programs. For instance the acyclicity
condition imposed by Poole (1993) and Ngo and Haddawy (1997) prevents the unconditional
use of clauses with local variables, and the range-restrictedness imposed by Muggleton
(1996) and Cussens (1999) excludes programs such as the usual membership Prolog program.

There is another type of problem, the possibility of assigning conflicting probabilities
to logically equivalent formulas. In SLPs, P(A) and P(A ∧ A) do not necessarily coincide
because A and A∧A may have different refutations (Muggleton, 1996; Cussens, 1999, 2001).
Consequently in SLPs, we would be in trouble if we naively interpret P(A) as the probability
of A’s being true. Also assigning probabilities to arbitrary quantified formulas seems out of
scope of both approaches to SLPs.

Last but not least, there is a big problem common to any approach using probabilities:
where do the numbers come from? Generally speaking, if we use n binary random variables in
a model, we have to determine 2n probabilities to completely specify their joint distribution,
and fulfilling this requirement with reliable numbers quickly becomes impossible as n grows.
The situation is even worse when there are unobservable variables in the model such as
possible causes of a disease. Apparently parameter learning from observed data is a natural
solution to this problem, but parameter learning of logic programs has not been well studied.

Distribution semantics proposed by Sato (1995) was an attempt to solve these problems
along the line of the global distribution approach. It defines a distribution (probability
measure) over the possible interpretations of ground atoms for an arbitrary logic program
in any first order language and assigns consistent probabilities to all closed formulas. Also
distribution semantics enabled us to derive an EM algorithm for the parameter learning of
logic programs for the first time. As it was a naive algorithm however, dealing with large
problems was difficult when there are exponentially many explanations for an observation
like HMMs. We believe that the efficiency problem is solved to a large extent by the
graphical EM algorithm presented in this paper.

7.3 EM Learning

Since EM learning is one of the central issues in this paper, we separately mention work
related to EM learning for symbolic frameworks. Koller and Pfeffer (1997) used in their
approach to KBMC (knowledge-based model construction) EM learning to estimate pa-
rameters labeling clauses. They express probabilistic dependencies among events by defi-
nite clauses annotated with probabilities, similarly to Ngo and Haddawy’s (1997) approach,
and locally build a Bayesian network relevant to the context and evidence as well as the

68. However, RPMs (recursive probability models) proposed by Pfeffer and Koller (2000) as an extension
of Bayesian networks allow for infinitely many random variables. They are organized as attributes of
classes and a probability measure over attribute values is introduced.

442

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

query. Parameters are learned by applying to the constructed network the specialized EM
algorithm for Bayesian networks (Castillo et al., 1997).

Dealing with a PCFG by a statically constructed Bayesian network was proposed Pyna-
dath and Wellman (1998), and it is possible to combine the EM algorithm with their method
to estimate parameters in the PCFG. Unfortunately, the constructed network is not singly
connected, and time complexity of probability computation is potentially exponential in the
length of an input sentence.

Closely related to our EM learning is parameter learning of log-linear models. Rie-
zler (1998) proposed the IM algorithm in his approach to probabilistic constraint pro-
gramming. The IM algorithm is a general parameter estimation algorithm from incom-
plete data for log-linear models whose probability function P(x) takes the form P(x) =
Z−1 exp (

∑n
i=1 λiνi(x)) p0(x) where (λ1, . . . , λn) are parameters to be estimated, νi(x) the

i-th feature of an observed object x and Z the normalizing constant. Since a feature can
be any function of x, the log-linear model is highly flexible and includes our distribution
Pmsw as a special case of Z = 1. There is a price to pay however; the computational cost
of Z. It requires a summation over exponentially many terms. To avoid the cost of exact
computation, approximate computation by a Monte Carlo method is possible. Whichever
one may choose however, learning time increases compared to the EM algorithm for Z = 1.

The FAM (failure-adjusted maximization) algorithm proposed by Cussens (2001) is an
EM algorithm applicable to pure normalized SLPs that may fail. It deals with a special
class of log-linear models but is more efficient than the IM algorithm. Because the statistical
framework of the FAM is rather different from distribution semantics, comparison with the
graphical EM algorithm seems difficult.

Being slightly tangential to EM learning, Koller et al. (1997) developed a functional
modeling language defining a probability distribution over symbolic structures in which
they showed “cashing” of computed results leads to efficient probability computation of
singly connected Bayesian networks and PCFGs. Their cashing corresponds to the compu-
tation of inside probability in the Inside-Outside algorithm and the computation of outside
probability is untouched.

7.4 Future Directions

Parameterized logic programs are expected to be a useful modeling tool for complex symbolic-
statistical phenomena. We have tried various types of modeling, besides stochastic gram-
mars and Bayesian networks, such as the modeling of gene inheritance in the Kariera tribe
(White, 1963) where the rules of bi-lateral cross-cousin marriage for four clans interact with
the rules of genetic inheritance (Sato, 1998). The model was quite interdisciplinary, but
the flexibility of combining msw atoms by means of definite clauses greatly facilitated the
modeling process.

Although satisfying the five conditions in Section 4

• the uniqueness condition (roughly, one cause yields one effect)

• the finite support condition (there are a finite number of explanations for one obser-
vation)

• the acyclic support condition (explanations must not be cyclic)

443

Sato & Kameya

• the t-exclusiveness condition (explanations must be mutually exclusive)

• the independence condition (events in an explanation must be independent)

for the applicability of the graphical EM algorithm seems daunting, our modeling experi-
ences so far tell us that the modeling principle in Section 4 effectively guides us to successful
modeling. In return, we can obtain a declarative model described compactly by a high level
language whose parameters are efficiently learnable by the graphical EM algorithm as shown
in the preceding section.

One of the future directions is however to relax some of the applicability conditions,
especially the uniqueness condition that prohibits a generative model from failure or from
generating multiple observable events. Although we pointed out in Section 4.4 that the MAR
condition in Appendix B adapted to our semantics can replace the uniqueness condition and
validates the use of the graphical EM algorithm even when a complete data does not uniquely
determine the observed data just like the case of “partially bracketed corpora” (Pereira &
Schabes, 1992), we feel the need to do more research on this topic. Also investigating
the role of the acyclicity condition seems theoretically interesting as the acyclicity is often
related to the learning of logic programs (Arimura, 1997; Reddy & Tadepalli, 1998).

In this paper we only scratched the surface of individual research fields such as HMMs,
PCFGs and Bayesian networks. Therefore, there remains much to be done about clarifying
how experiences in each research field are reflected in the framework of parameterized logic
programs. For example, we need to clarify the relationship between symbolic approaches
to Bayesian networks such as SPI (Li, Z. & D’Ambrosio, B., 1994) and our approach.
Also it is unclear how a compiled approach using the junction tree algorithm for Bayesian
networks can be incorporated into our approach. Aside from exact methods, approximate
methods of probability computation specialized for parameterized logic programs must also
be developed.

There is also a direction of improving learning ability by introducing priors instead of ML
estimation to cope with data sparseness. The introduction of basic distributions that make
probabilistic switches correlated seems worth trying in the near future. It is also important
to take advantage of the logical nature of our approach to handle uncertainty. For example,
it is already shown by Sato (2001) that we can learn parameters from negative examples
such as “the grass is not wet” but the treatment of negative examples in parameterized
logic programs is still in its infancy.

Concerning developing complex statistical models based on the “programs as distribu-
tions” scheme, stochastic natural language processing which exploits semantic information
seems promising. For instance, unification-based grammars such as HPSGs (Abney, 1997)
may be a good target beyond PCFGs because they use feature structures logically de-
scribable, and the ambiguity of feature values seems to be expressible by a probability
distribution.

Also building a mathematical basis for logic programs with continuous random variables
is a challenging research topic.

444

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

8. Conclusion

We have proposed a logical/mathematical framework for statistical parameter learning of
parameterized logic programs, i.e. definite clause programs containing probabilistic facts
with a parameterized probability distribution. It extends the traditional least Herbrand
model semantics in logic programming to distribution semantics, possible world semantics
with a probability distribution over possible worlds (Herbrand interpretations) which is
unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs
and Bayesian networks.

We also have presented a new EM algorithm, the graphical EM algorithm in Section 4,
which learns statistical parameters from observations for a class of parameterized logic pro-
grams representing a sequential decision process in which each decision is exclusive and
independent. It works on support graphs, a new data structure specifying a logical relation-
ship between an observed goal and its explanations, and estimates parameters by computing
inside and outside probability generalized for logic programs.

The complexity analysis in Section 5 showed that when OLDT search, a complete tabled
refutation method for logic programs, is employed for the support graph construction and
table access is done in O(1) time, the graphical EM algorithm, despite its generality, has
the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for
HMMs, the Inside-Outside algorithm for PCFGs and the one for singly connected Bayesian
networks that have been developed independently in each research field. In addition, for
pseudo probabilistic context sensitive grammars with N nonterminals, we showed that the
graphical EM algorithm runs in time O(N4L3) for a sentence of length L.

To compare actual performance of the graphical EM algorithm against the Inside-
Outside algorithm, we conducted learning experiments with PCFGs in Section 6 using two
real corpora with contrasting characters. One is ATR corpus containing short sentences for
which the grammar is not much ambiguous (958 parses/sentence), and the other is EDR
corpus containing long sentences for which the grammar is rather ambiguous (3.0 × 108

at average sentence length 20). In both cases, the graphical EM algorithm outperformed
the Inside-Outside algorithm by orders of magnitude in terms of time per iteration, which
suggests the effectiveness of our approach to EM learning by the graphical EM algorithm.

Since our semantics is not limited to finite domains or finitely many random variables
but applicable to any logic programs of arbitrary complexity, the graphical EM algorithm is
expected to give a general yet efficient method of parameter learning for models of complex
symbolic-statistical phenomena governed by rules and probabilities.

Acknowledgments

The authors wish to thank three anonymous referees for their comments and suggestions.
Special thanks go to Takashi Mori and Shigeru Abe for stimulating discussions and learning
experiments, and also to Tanaka-Tokunaga Laboratory for kindly allowing them to use
MSLR parser and the linguistic data.

445

Sato & Kameya

Appendix A. Properties of PDB

In this appendix, we list some properties of PDB defined by a parameterized logic program
DB = F ∪ R in a countable first-order language L.69 First of all, PDB assigns consistent
probabilities70 to every closed formula φ in L by

PDB(φ) def= PDB({ω ∈ ΩDB | ω |= φ})

while guaranteeing continuity in the sense that

limn→∞ PDB(φ(t1) ∧ · · · ∧ φ(tn)) = PDB(∀xφ(x))
limn→∞ PDB(φ(t1) ∨ · · · ∨ φ(tn)) = PDB(∃xφ(x))

where t1, t2, . . . is an enumeration of ground terms in L.

The next proposition, Proposition A.1, relates PDB to the Herbrand model. To prove
it, we need some terminology. A factor is a closed formula in prenex disjunctive normal
form Q1 · · ·QnM where Qi (1 ≤ i ≤ n) is either an existential quantification or a universal
quantification and M a matrix. The length of quantifications n is called the rank of the
factor. Define Φ as a set of formulas made out of factors, conjunctions and disjunctions.
Associate with each formula φ in Φ a multi-set r(φ) of ranks by

r(φ) =

∅ if φ is a factor with no quantification

{n} if φ is a factor with rank n
r(φ1)] r(φ2) if φ = φ1 ∨ φ2 or φ = φ1 ∧ φ2.

Here] stands for the union of two multi-sets. For instance {1, 2, 3}]{2, 3, 4} = {1, 2, 2, 3, 3, 4}.
We use the multi-set ordering in the proof of Proposition A.1 because the usual induction
on the complexity of formulas does not work.

Lemma A.1 Let φ be a boolean formula made out of ground atoms in L. PDB(φ) =
PF ({ν ∈ ΩF | MDB(ν) |= φ}).

(Proof) We have only to prove the lemma about a conjunction of atoms of the form Dx1
1 ∧

· · · ∧ Dxn
n (xi ∈ {0, 1}, 1 ≤ i ≤ n).

PDB(Dx1
1 ∧ · · · ∧ Dxn

n) = PDB({ω ∈ ΩDB | ω |= Dx1
1 ∧ · · · ∧ Dxn

n })
= PDB(D1 = x1, . . . , Dn = xn)
= PF ({ν ∈ ΩF | MDB(ν) |= Dx1

1 ∧ · · · ∧ Dxn
n }) Q.E.D.

Proposition A.1 Let φ be a closed formula in L. PDB(φ) = PF ({ν ∈ ΩF | MDB(ν) |= φ}).

69. For definitions of ΩF , PF , MDB(ν), ΩDB , PDB and others used below, see Section 3.
70. By consistent, we mean probabilities assigned to logical formulas respect the laws of probability such as

0 ≤ P (A) ≤ 1, P (¬A) = 1 − P (A) and P (A ∨ B) = P (A) + P (B) − P (A ∧ B).

446

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

(Proof) Recall that a closed formula has an equivalent prenex disjunctive normal form
that belongs to Φ. We prove the proposition for formulas in Φ by using induction on the
multi-set ordering over {r(φ) | φ ∈ Φ}. If r(φ) = ∅, φ has no quantification. So the
proposition is correct by Lemma A.1. Suppose otherwise. Write φ = G[Q1Q2 · · ·QnF]
where Q1Q2 · · ·QnF indicates a single occurrence of a factor in G.71 We assume Q1 = ∃x
(Q1 = ∀x is similarly treated). We also assume that bound variables are renamed to avoid
name clash. Then G[∃xQ2 · · ·QnF] is equivalent to ∃xG[Q2 · · ·QnF] in light of the validity
of (∃xA) ∧ B = ∃x(A ∧ B) and (∃xA) ∨ B = ∃x(A ∨ B) when B contains no free x.

PDB(φ) = PDB(G[Q1Q2 · · ·QnF])
= PDB(∃xG[Q2 · · ·QnF [x]])
= lim

k→∞
PDB(G[Q2 · · ·QnF [t1]] ∨ · · · ∨ G[Q2 · · ·QnF [tk]])

= lim
k→∞

PDB(G[Q2 · · ·QnF [t1] ∨ · · · ∨ Q2 · · ·QnF [tk]])

= lim
k→∞

PF ({ν ∈ ΩF | MDB(ν) |= G[Q2 · · ·QnF [t1] ∨ · · · ∨ Q2 · · ·QnF [tk]]})

(by induction hypothesis)
= PF ({ν ∈ ΩF | MDB(ν) |= ∃xG[Q2 · · ·QnF [x]]})
= PF ({ν ∈ ΩF | MDB(ν) |= φ}) Q.E.D.

We next prove a theorem on the iff definition introduced in Section 4. Distribution
semantics considers the program DB = F ∪ R as a set of infinitely many ground definite
clauses such that F is a set of facts (with a probability measure PF) and R a set of rules,
and no clause head in R appears in F . Put

head(R) def= {B | B appears in R as a clause head}.

For B ∈ head(R), let B ← Wi (i = 1, 2, . . .) be an enumeration of clauses about B in R.
Define iff (B), the iff (if-and-only-if) form of rules about B in DB72 by

iff (B) def= B ↔ W1 ∨ W2 ∨ · · ·

Since MDB(ν) is a least Herbrand model, the following is obvious.

Lemma A.2 For B in head(R) and ν ∈ ΩF , MDB(ν) |= iff (B).

Theorem A.1 below is about iff (B). It states that at general level, both sides of the iff
definition p(x) ↔ ∃y1(x = t1 ∧ W1) ∨ · · · ∨ ∃yn(x = tn ∧ Wn) of p(·) coincide as random
variables whenever x is instantiated to a ground term.

Theorem A.1 Let iff (B) = B ↔ W1∨W2∨· · · be the iff form of rules about B ∈ head(R).
PDB(iff (B)) = 1 and PDB(B) = PDB(W1 ∨ W2 ∨ · · ·).

71. For an expression E, E[γ] means that γ may occur in the specified positions of E. If γ1 ∨γ2 in E[γ1 ∨γ2]
indicates a single occurrence of γ1 ∨γ2 in a positive boolean formula E, E[γ1 ∨γ2] = E[γ1]∨E[γ2] holds.

72. This definition is different from the usual one (Lloyd, 1984; Doets, 1994) as we are here talking at ground
level. W1 ∨ W2 ∨ · · · is true if and only if one of the disjuncts is true.

447

Sato & Kameya

(Proof)

PDB(iff (B)) = PDB({ω ∈ ΩDB | ω |= B ∧ (W1 ∨ W2 ∨ · · ·)})
+PDB({ω ∈ ΩDB | ω |= ¬B ∧ ¬(W1 ∨ W2 ∨ · · ·)})

= lim
k→∞

PDB({ω ∈ ΩDB | ω |= B ∧
k∨

i=1

Wi})

+ lim
k→∞

PDB({ω ∈ ΩDB | ω |= ¬B ∧ ¬
k∨

i=1

Wi})

= lim
k→∞

PF ({ν ∈ ΩF | MDB(ν) |= B ∧
k∨

i=1

Wi})

+ lim
k→∞

PF ({ν ∈ ΩF | MDB(ν) |= ¬B ∧ ¬
k∨

i=1

Wi})

(Lemma A.1)
= PF ({ν ∈ ΩF | MDB(ν) |= iff (B)})
= PF (ΩF) (Lemma A.2)
= 1

It follows from PDB(iff (B)) = 1 that

PDB(B) = PDB(B ∧ iff (B)) = PDB(W1 ∨ W2 ∨ · · ·). Q.E.D.

We then prove a proposition useful in probability computation. Let ψDB(B) be the
support set for an atom B introduced in Section 4 (it is the set of all explanations for B). In
the sequel, B is a ground atom. Write ψDB(B) = {S1, S2, . . .} and

∨
ψDB(B) = S1∨S2∨· · ·73

Define a set ΛB by
ΛB

def= {ω ∈ ΩDB | ω |= B ↔
∨

ψDB(B)}.

Proposition A.2 For every B ∈ head(R), PDB(ΛB) = 1 and PDB(B) = PDB(
∨

ψDB(B)).

(Proof) We first prove PDB(ΛB) = 1 but the proof exactly parallels that of Theorem A.1
except that W1 ∨W2 ∨ · · · is replaced by S1 ∨S2 ∨ · · · using the fact that B ↔ S1 ∨S2 ∨ · · ·
is true in every least Herbrand model of the form MDB(ν). Then from PDB(ΛB) = 1, we
have

PDB(B) = PDB(B ∧ (B ↔
∨

ψDB(B)))

= PDB(
∨

ψDB(B)). Q.E.D.

Finally, we show that distribution semantics is a probabilistic extension of the traditional
least Herbrand model semantics in logic programming by proving Theorem A.2. It says that
the probability mass is distributed exclusively over possible least Herbrand models.

Define Λ as the set of least Herbrand models generated by fixing R and varying a subset
of F in the program DB = F ∪ R. In symbols,

73. For a set K = {E1, E2, . . .} of formulas,
∨

K denotes a (-n infinite) disjunction E1 ∨ E2 ∨ · · ·

448

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

Λ def= {ω ∈ ΩDB | ω = MDB(ν) for some ν ∈ ΩF }.

Note that as Λ is merely a subset of ΩDB, we cannot conclude PDB(Λ) = 1 a priori, but the
next theorem, Theorem A.2, states PDB(Λ) = 1, i.e. distribution semantics distributes the
probability mass exclusively over Λ, i.e. possible least Herbrand models.

To prove the theorem, we need some preparations. Recalling that atoms outside head(R)∪
F have no chance of being proved from DB, we introduce

Λ′ def= {ω ∈ ΩDB | ω |= ¬D for every ground atom D 6∈ head(R) ∪ F}.

For a Herbrand interpretation ω ∈ ΩDB, ω|F (∈ ΩF) is the restriction of ω to those atoms
in F .

Lemma A.3 Let ω ∈ ΩDB be a Herbrand interpretation.
ω = MDB(ν) for some ν ∈ ΩF iff ω ∈ Λ′ and ω |= B ↔

∨
ψDB(B) for every B ∈ head(R).

(Proof) Only-if part is immediate from the property of the least Herbrand model. For
if-part, suppose ω satisfies the right hand side. We show that ω = MDB(ω|F). As ω and
MDB(ω|F) coincide w.r.t. atoms not in head(R), it is enough to prove that they also give
the same truth values to atoms in head(R). Take B ∈ head(R) and write

∨
ψDB(B) =

S1 ∨ S2 ∨ · · · Suppose ω |= B ↔ S1 ∨ S2 ∨ · · · Then if ω |= B, we have ω |= Sj for some j,
thereby ω|F |= Sj , and hence MDB(ω|F) |= Sj , which implies MDB(ω|F) |= B. Otherwise
ω |= ¬B. So ω |= ¬Sj for every j. It follows that MDB(ω|F) |= ¬B. Since B is arbitrary,
we conclude that ω and MDB(ω|F) agree on the truth values assigned to atoms in head(R)
as well. Q.E.D.

Theorem A.2 PDB(Λ) = 1.

(Proof) From Lemma A.3, we have

Λ = {ω ∈ ΩDB | ω = MDB(ν) for some ν ∈ ΩF }
= Λ′ ∩

⋂
B∈head(R)

ΛB.

PDB(ΛB) = 1 by Proposition A.2. To prove PDB(Λ′) = 1, let D1, D2, . . . be an enumeration
of atoms not belonging to head(R) ∪ F . They are not provable from DB = F ∪ R, and
hence false in every least Herbrand model MDB(ν) (ν ∈ ΩF). So

PDB(Λ′) = lim
m→∞

PDB({ω ∈ ΩDB | ω |= ¬D1 ∧ · · · ∧ ¬Dm})

= lim
m→∞

PF ({ν ∈ ΩF | MDB(ν) |= ¬D1 ∧ · · · ∧ ¬Dm})

= PF (ΩF) = 1.

Since a countable conjunction of measurable sets of probability measure one has also
probability measure one, it follows from PDB(ΛB) = 1 for every B ∈ head(R) and PDB(Λ′) =
1 that PDB(Λ) = 1. Q.E.D.

449

Sato & Kameya

Appendix B. The MAR (missing at random) Condition

In the original formulation of the EM algorithm by Dempster et al. (1977), it is assumed
that there exists a many-to-one mapping y = χ(x) from a complete data x to an incomplete
(observed) data y. In the case of parsing, x is a parse tree and y is the input sentence and x
uniquely determines y. In this paper, the uniqueness condition ensures the existence of such
a many-to-one mapping from explanations to observations. We however sometimes face a
situation where there is no such many-to-one mapping from complete data to incomplete
data but nonetheless we wish to apply the EM algorithm.

This dilemma can be solved by the introduction of a missing-data mechanism which
makes a complete data incomplete. The missing-data mechanism, m, has a distribution
gφ(m | x) parameterized by φ and y, the observed data, is described as y = χm(x). It says
x becomes incomplete y by m. The correspondence between x and y, i.e. {〈x, y〉 | ∃m(y =
χm(x))} naturally becomes many-to-many.

Rubin (1976) derived two conditions on gφ (data are missing at random and data are
observed at random) collectively called the MAR (missing at random) condition, and showed
that if we assume a missing-data mechanism behind our observations that satisfies the MAR
condition, we may estimate parameters of the distribution over x by simply applying the
EM algorithm to y, the observed data.

We adapt the MAR condition to parameterized logic programs as follows. We keep a
generative model satisfying the uniqueness condition that outputs goals G such as parse
trees. We further extend the model by additionally inserting a missing-data mechanism
m between G and our observation O like O = χm(G) and assume m satisfies the MAR
condition. Then the extended model has a many-to-many correspondence between expla-
nations and observations, and generates non-exclusive observations such that P (O∧O′) > 0
(O 6= O′), which causes

∑
O P (O) ≥ 1 where P (O) =

∑
G:∃m O=χm(G) PDB(G). Thanks to

the MAR condition however, we are still allowed to apply the EM algorithm to such non-
exclusive observations. Put it differently, even if the uniqueness condition is seemingly
destroyed, the EM algorithm is applicable just by (imaginarily) assuming a missing-data
mechanism satisfying the MAR condition.

References

Abney, S. (1997). Stochastic attribute-value grammars. Computational Linguistics, 23 (4),
597–618.

Arimura, H. (1997). Learning acyclic first-order horn sentences from entailment. In
Proceedings of the Eighth International Workshop on Algorithmic Learning Theory.
Ohmsha/Springer-Verlag.

Bacchus, F., Grove, A., Halpern, J., & Koller, D. (1996). From statistical knowledge bases
to degrees of belief. Artificial Intelligence, 87, 75–143.

Baker, J. K. (1979). Trainable grammars for speech recognition. In Proceedings of Spring
Conference of the Acoustical Society of America, pp. 547–550.

450

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

Beil, F., Carroll, G., Prescher, D., Riezler, S., & Rooth, M. (1999). Inside-Outside estimation
of a lexicalized PCFG for German. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics (ACL’99), pp. 269–276.

Breese, J. S. (1992). Construction of belief and decision networks. Computational Intelli-
gence, 8 (4), 624–647.

Carroll, G., & Rooth, M. (1998). Valence induction with a head-lexicalized PCFG. In Pro-
ceedings of the 3rd Conference on Empirical Methods in Natural Language Processing
(EMNLP 3).

Castillo, E., Gutierrez, J. M., & Hadi, A. S. (1997). Expert Systems and Probabilistic
Network Models. Springer-Verlag.

Charniak, E., & Carroll, G. (1994). Context-sensitive statistics for improved grammati-
cal language models. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI’94), pp. 728–733.

Chi, Z., & Geman, S. (1998). Estimation of probabilistic context-free grammars. Compu-
tational Linguistics, 24 (2), 299–305.

Chow, Y., & Teicher, H. (1997). Probability Theory (3rd ed.). Springer.

Clark, K. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.), Logic and
Databases, pp. 293–322. Plenum Press.

Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms. The MIT Press.

Cussens, J. (1999). Loglinear models for first-order probabilistic reasoning. In Proceedings of
the 15th Conference on Uncertainty in Artificial Intelligence (UAI’99), pp. 126–133.

Cussens, J. (2001). Parameter estimation in stochastic logic programs. Machine Learning,
44 (3), 245–271.

D’Ambrosio, B. (1999). Inference in Bayesian networks. AI Magazine, summer, 21–36.

Dekhtyar, A., & Subrahmanian, V. S. (1997). Hybrid probabilistic programs. In Proceedings
of the 14th International Conference on Logic Programming (ICLP’97), pp. 391–405.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Royal Statistical Society, B39 (1), 1–38.

Doets, K. (1994). From Logic to Logic Programming. The MIT Press.

Flach, P., & Kakas, A. (Eds.). (2000). Abduction and Induction – Essays on Their Relation
and Integration. Kluwer Academic Publishers.

Frish, A., & Haddawy, P. (1994). Anytime deduction for probabilistic logic. Journal of
Artificial Intelligence, 69, 93–122.

Fujisaki, T., Jelinek, F., Cocke, J., Black, E., & Nishino, T. (1989). A probabilistic parsing
method for sentence disambiguation. In Proceedings of the 1st International Workshop
on Parsing Technologies, pp. 85–94.

Japan EDR, L. (1995). EDR electronic dictionary technical guide (2nd edition). Technical
report, Japan Electronic Dictionary Research Institute, Ltd.

451

Sato & Kameya

Kakas, A. C., Kowalski, R. A., & Toni, F. (1992). Abductive logic programming. Journal
of Logic and Computation, 2 (6), 719–770.

Kameya, Y. (2000). Learning and Representation of Symbolic-Statistical Knowledge (in
Japanese). Ph. D. dissertation, Tokyo Institute of Technology.

Kameya, Y., & Sato, T. (2000). Efficient EM learning for parameterized logic programs.
In Proceedings of the 1st Conference on Computational Logic (CL2000), Vol. 1861 of
Lecture Notes in Artificial Intelligence, pp. 269–294. Springer.

Kita, K. (1999). Probabilistic Language Models (in Japanese). Tokyo Daigaku Syuppan-kai.

Koller, D., McAllester, D., & Pfeffer, A. (1997). Effective Bayesian inference for stochas-
tic programs. In Proceedings of 15th National Conference on Artificial Intelligence
(AAAI’97), pp. 740–747.

Koller, D., & Pfeffer, A. (1997). Learning probabilities for noisy first-order rules. In Proceed-
ings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97),
pp. 1316–1321.

Kyburg, H. (1994). Uncertainty logics. In Gabbay, D., Hogger, C., & Robinson, J. (Eds.),
Handbook of Logics in Artificial Intelligence and Logic Programming, pp. 397–438.
Oxford Science Publications.

Lafferty, J. (1993). A derivation of the Inside-Outside Algorithm from the EM algorithm.
Technical report, IBM T.J.Watson Research Center.

Lakshmanan, L. V. S., & Sadri, F. (1994). Probabilistic deductive databases. In Proceedings
of the 1994 International Symposium on Logic Programming (ILPS’94), pp. 254–268.

Lari, K., & Young, S. J. (1990). The estimation of stochastic context-free grammars using
the Inside-Outside algorithm. Computer Speech and Language, 4, 35–56.

Li, Z., & D’Ambrosio, B. (1994). Efficient inference in Bayes networks as a combinatorial
optimization problem. International Journal of Approximate Reasoning, 11, 55–81.

Lloyd, J. W. (1984). Foundations of Logic Programming. Springer-Verlag.

Lukasiewicz, T. (1999). Probabilistic deduction with conditional constraints over basic
events. Journal of Artificial Intelligence Research, 10, 199–241.

Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language Pro-
cessing. The MIT Press.

McLachlan, G. J., & Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley
Interscience.

Muggleton, S. (1996). Stochastic logic programs. In de Raedt, L. (Ed.), Advances in
Inductive Logic Programming, pp. 254–264. IOS Press.

Ng, R., & Subrahmanian, V. S. (1992). Probabilistic logic programming. Information and
Computation, 101, 150–201.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171, 147–177.

Nilsson, N. J. (1986). Probabilistic logic. Artificial Intelligence, 28, 71–87.

452

Parameter Learning of Logic Programs for Symbolic-statistical Modeling

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Pereira, F. C. N., & Schabes, Y. (1992). Inside-Outside reestimation from partially bracketed
corpora. In Proceedings of the 30th Annual Meeting of the Association for Computa-
tional Linguistics (ACL’92), pp. 128–135.

Pereira, F. C. N., & Warren, D. H. D. (1980). Definite clause grammars for language analysis
— a survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence, 13, 231–278.

Pfeffer, A., & Koller, D. (2000). Semantics and inference for recursive probability models. In
Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI’00),
pp. 538–544.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence, 64 (1), 81–129.

Pynadath, D. V., & Wellman, M. P. (1998). Generalized queries on probabilistic context-free
grammars. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20 (1),
65–77.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77 (2), 257–286.

Rabiner, L. R., & Juang, B. (1993). Foundations of Speech Recognition. Prentice-Hall.

Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., & Warren, D. (1995). Efficient tabling
mechanisms for logic programs. In Proceedings of the 12th International Conference
on Logic Programming (ICLP’95), pp. 687–711. The MIT Press.

Reddy, C., & Tadepalli, P. (1998). Learning first-order acyclic horn programs from en-
tailment. In Proceedings of the 15th International Conference on Machine Learning;
(and Proceedings of the 8th International Conference on Inductive Logic Program-
ming). Morgan Kaufmann.

Riezler, S. (1998). Probabilistic Constraint Logic Programming. Ph.D. thesis, Universität
Tübingen.

Rubin, D. (1976). Inference and missing data. Biometrika, 63 (3), 581–592.

Sagonas, K., T., S., & Warren, D. (1994). XSB as an efficient deductive database engine.
In Proceedings of the 1994 ACM SIGMOD International Conference on Management
of Data, pp. 442–453.

Sato, T. (1995). A statistical learning method for logic programs with distribution semantics.
In Proceedings of the 12th International Conference on Logic Programming (ICLP’95),
pp. 715–729.

Sato, T. (1998). Modeling scientific theories as PRISM programs. In Proceedings of ECAI’98
Workshop on Machine Discovery, pp. 37–45.

Sato, T. (2001). Minimum likelihood estimation from negative examples in statistical ab-
duction. In Proceedings of IJCAI-01 workshop on Abductive Reasoning, pp. 41–47.

Sato, T., & Kameya, Y. (1997). PRISM: a language for symbolic-statistical modeling.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI’97), pp. 1330–1335.

453

Sato & Kameya

Sato, T., & Kameya, Y. (2000). A Viterbi-like algorithm and EM learning for statistical
abduction. In Proceedings of UAI2000 Workshop on Fusion of Domain Knowledge
with Data for Decision Support.

Sato, T., Kameya, Y., Abe, S., & Shirai, K. (2001). Fast EM learning of a family of PCFGs.
Titech technical report (Dept. of CS) TR01-0006, Tokyo Institute of Technology.

Shen, Y., Yuan, L., You, J., & Zhou, N. (2001). Linear tabulated resolution based on Prolog
control strategy. Theory and Practice of Logic Programming, 1 (1), 71–103.

Sterling, L., & Shapiro, E. (1986). The Art of Prolog. The MIT Press.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics, 21 (2), 165–201.

Tamaki, H., & Sato, T. (1984). Unfold/fold transformation of logic programs. In Proceedings
of the 2nd International Conference on Logic Programming (ICLP’84), Lecture Notes
in Computer Science, pp. 127–138. Springer.

Tamaki, H., & Sato, T. (1986). OLD resolution with tabulation. In Proceedings of the 3rd
International Conference on Logic Programming (ICLP’86), Vol. 225 of Lecture Notes
in Computer Science, pp. 84–98. Springer.

Tanaka, H., Takezawa, T., & Etoh, J. (1997). Japanese grammar for speech recognition
considering the MSLR method. In Proceedings of the meeting of SIG-SLP (Spoken
Language Processing), 97-SLP-15-25, pp. 145–150. Information Processing Society of
Japan. In Japanese.

Uratani, N., Takezawa, T., Matsuo, H., & Morita, C. (1994). ATR integrated speech and
language database. Technical report TR-IT-0056, ATR Interpreting Telecommunica-
tions Research Laboratories. In Japanese.

Warren, D. S. (1992). Memoing for logic programs. Communications of the ACM, 35 (3),
93–111.

Wetherell, C. S. (1980). Probabilistic languages: a review and some open questions. Com-
puting Surveys, 12 (4), 361–379.

White, H. C. (1963). An Anatomy of Kinship. Prentice-Hall.

Zhang, N., & Poole, D. (1996). Exploiting causal independence in Bayesian network infer-
ence. Journal of Artificial Intelligence Research, 5, 301–328.

454

