
Generative Modeling by PRISM

Taisuke Sato

Tokyo Institute of Technology, Ookayama Meguro Tokyo Japan,
http://sato-www.cs.titech.ac.jp/

Abstract. PRISM is a probabilistic extension of Prolog. It is a high
level language for probabilistic modeling capable of learning statistical
parameters from observed data. After reviewing it from various view-
points, we examine some technical details related to logic programming,
including semantics, search and program synthesis.

1 Introduction

Generative modeling is a way of probabilistic modeling that describes a gener-
ating process of an outcome in a sample space. It has however different nuances
in different fields. In statistics it is oftentimes used in the context of Bayesian
inference, which (hierarchically) assumes prior distributions on parameters. In
ML(machine learning), it means defining joint distributions p(x, y) where x is
an input and y an output in contrast to discriminative modeling, which defines
conditional distributions p(y | x) for the same x and y. Or in statistical natu-
ral language processing, it usually refers to language modeling by probabilistic
grammars such as HMMs (hidden Markov models) and PCFGs (probabilistic
context free grammars). Here we add another nuance; by generative modeling
we mean a specification of a sampling process by a probabilistic program for a
given distribution.

Traditionally probabilistic models have been specified by mathematical for-
mulas (equations) and graphs like BNs (Bayesian networks) and MRFs (Markov
random fields) and programming languages were not considered as a specifi-
cation language of probabilistic models. If, however, it becomes possible to use
programs as probabilistic models, we will have much more flexibility in modeling
because of the availability of various data structures (strings, trees, graphs) and
program constructs (such as composition, if-then-else and recursion), and also
a uniform mechanism (Turing machine). In addition, the expressive power of a
high level programming language will reduce the coding effort to a minimum.
So it seems beneficial to design a programming language and programs which
denote probabilistic models. Indeed there are already a plethora of such propos-
als, in particular in a subfield of machine learning called PLL (probabilistic logic
learning) originating in LP(logic programming)/ILP(inductive logic program-
ming) [1–12] and SRL(statistical relational learning) originating in uncertainty
reasoning by BNs [13–24].

II

In this talk, we examine PRISM1[2, 5], a probabilistic extension of Prolog
aiming at generative modeling by probabilistic logic programs. We will however
focus on the relationship between PRISM and LP and applications to machine
learning are not treated.

2 Three viewpoints

We can see PRISM from three points of view.

[LP view] PRISM is a probabilistic extension of Prolog2.
Syntactically a PRISM program DB = F ∪R is a Prolog program such that
F is a set of probabilistic atoms called msw atoms (see below) and R is a set
of definite clauses whose head contains no msw atom. We use msw(i,X) to
simulate a probabilistic choice named i (ground term) which returns in X a
value probabilistically chosen from finite outcomes associated with i. Proba-
bilities of msw atoms being true are called parameters. Semantically PRISM’s
declarative semantics, the distribution semantics , defines a probability mea-
sure PDB (· | θ) on Herbrand models having parameters θ associated with msw

atoms. It subsumes the least model semantics of definite clause programs.
Practically what PRISM can do but Prolog cannot do is parameter learn-
ing. PRISM programs can learn θ from data and change their probabilistic
behavior.

[ML view] PRISM is a high level language for probabilistic modeling.
It is an outcome of PLL/SRL research, but unlike graphical models, it uses
logical rules such as definite clauses or sometimes normal clauses to define
distributions. Here is a short list of machine learning facilities supported by
PRISM.3

Sampling: For the program DB = F ∪ R, sample(G) executes G (atom)
exactly as a Prolog goal using clauses in R except msw(i,X)which returns
a probabilistically chosen value (ground term) in X.

Search: probf(G) returns, by searching for all SLD proofs for G with re-
spect to DB , a boolean formula E1 ∨ . . . ∨ En such that Ei ∧ R ⊢ G

(1 ≤ i ≤ n). Each Ei is a conjunction of ground msw atoms and called
an explanation for G. G ⇔ E1 ∨ . . . ∨ En holds with probability one in
terms of PDB (·).

Probability computation: prob(G) computes PDB (G), the probability
of G by PDB (·) whereas chindsight(G,G′) computes the conditional
probability PDB (G′ | G) of a subgoal G′ that occurs in a proof of G.

Viterbi inference: viterbif(G) returns the most probable explanation
for G together with its probability.

Parameter learning: PRISM provides MLE(maximum likelihood estima-
tion), MAP(maximum a posteriori) estimation for parameter leaning and

1 http://sato-www.cs.titech.ac.jp/prism/index.html
2 Currently PRISM is built on top of B-Prolog (http://www.probp.com/).
3 See the PRISM manual for the complete list of available predicates.

III

VB (variational Bayes) for hyper parameter learning (priors are Dirichlet
distributions). These are available through learn/1 built-in predicate.

Model selection: To help structure learning, PRISM has special built-in
predicates to compute criteria for model selection. They include BIC
(Bayes information criterion), CS (Cheeseman-Stutz) score and VFE
(variational free energy).

The primary benefit of PRISM modeling from the ML point of view is the
ease of probabilistic modeling. We have only to write a program by a high
level language and use it. There is no need for a laborious chain of deriving
a learning algorithm, designing a data structure and implementing and de-
bugging them. The result is a significant saving of time and energy. This is
especially true when we attempt to develop a new model while going through
cycles of probabilistic modeling. Think of developing some variants of HMMs
for example. Once we write a basic HMM program, it is relatively easy to
modify it. If the modified model goes wrong, just rewrite the program. We
are free of implementing similar algorithms for similar HMMs all over again
from scratch.

[AI view] PRISM is a system for statistical abduction.

PRISM performs search, computation and learning, all necessary elements of
AI, in a unified manner under the distribution semantics. They are seamlessly
integrated as statistical abduction [25]. In logical abduction, we abduce an
explanation E for an observed goal G by search, using background knowledge
B, such that E ∧ B ⊢ G and E ∧ B is consistent. Usually E is restricted
to a conjunction of special atoms called abducibles. In statistical abduction,
we further assume a distribution on abducibles and learn their probabilities
from data. By doing so we can select E having the highest probability as
the best explanation for G. In PRISM’s case, the set R of definite clauses
in a program DB = F ∪ R corresponds to B and msws in F play the role of
abducibles.

Here is a small PRISM program.

values_x(p1,[rock,paper,scissors],fix@[0.4,0.4,0.2]).

values_x(p2,[rock,paper,scissors],[0.1,0.3,0.6]).

rps(R1,R2):-

msw(p1,X),msw(p2,Y),

(X=Y -> R1=draw,R2=draw

; ((X=rock,Y=paper);(X=paper,Y=scissors);(X=sissors,Y=rock))

-> R1=lose,R2=win

; R1=win,R2=lose).

Fig. 1. Rock-paper-scissors program

IV

This program simulates the rock-paper-scissors game. The first values x/3

clause introduces a probabilistic choice msw(p1,X)with a player p1 and a gesture
X being one of {rock, paper, scissors}, with corresponding parameters (prob-
abilities) 0.4, 0.4 and 0.2 for each. “fix@” means parameters associated with p1

do not change by learning. The second clause is understood similarly but the
parameters, 0.1, 0.3 and 0.6, are temporarily set and changeable by learning.
The last clause plays the rock-paper-scissors game. It first calls msw(p1,X) to
probabilistically choose a gesture X for p1 and similarly Y for p2 by msw(p2,Y).
It then determines win, lose or draw by comparing X and Y.

?- prism(rock_paper_scissors).

...

?- get_samples(1000,rps(R1,R2),Gs),learn(Gs).

...

#em-iterations: 0.......(79) (Converged: -1091.799641688)

Statistics on learning:

Graph size: 18

Number of switches: 2

Number of switch instances: 6

Number of iterations: 79

Final log likelihood: -1091.799641688

Total learning time: 0.004 seconds

Explanation search time: 0.000 seconds

?- show_sw.

Switch p1: rock (p: 0.4000) paper (p: 0.4000) scissors (p: 0.2000)

Switch p2: rock (p: 0.0641) paper (p: 0.3466) scissors (p: 0.5892)

?- viterbif(rps(win,lose)).

rps(win,lose) <= msw(p1,rock) & msw(p2,scissors)

Fig. 2. Learning session

Fig. 2 is a sample learning session (predicates used there are all built-ins). We
first load the program in Fig. 1 on a file rock paper scissors.psm by prism/1.
We then generate learning data Gs = [rps(win, lose), rps(draw, draw), . . .] by
get samples/3 which sampled rps(R1,R2) 1,000 times4. learn(Gs) internally
invokes a built-in EM algorithm to estimate parameters. The learning is com-
pleted after 79 iterations. The estimated values are shown by show sw/0. Using
the learned parameters, we compute by viterbif/1 the most probable gestures
that cause rps(win,lose), i.e. p1 wins and p2 loses. They are rock for p1 and
scissors for p2 with log-probability -2.1972.

4 p1 wins 343 times, p2 wins 375 times, draw 282 times.

V

3 Inside PRISM: three topics

As mentioned before, PRISM can be seen from three points of view. In this
section we pick up the LP view and look into some details of three topics which
illustrate how PRISM is connected to LP. They are semantics [2, 5], tabling [26]
and program synthesis [27].

3.1 Probabilistic semantics

The distribution semantics of PRISM is a probabilistic generalization of the least
model semantics in LP. It defines a probability measure on the set of Herbrand
models. Let DB = F ∪ R be a PRISM program. Also let msw1, msw2, . . . be an
enumeration of the msw atoms in F . We identify an infinite 0-1 vector ωF =
(x1, x2, . . .) where xi ∈ {0, 1} with a Herbrand model that assigns msw1 = x1,
msw2 = x2, . . . where 1 means true and 0 false. Let PF (·) be an arbitrary base

measure on such ωF s such that for a choice named i with possible outcomes
{v1, . . . , vk}, PF (·) makes {msw(i,v1), . . . , msw(i,vk)} exhaustive and mutually
exclusive. That is PF (msw(i,v1) ∨ · · · ∨ msw(i,vk)) = 1 and PF (msw(i,vh) ∧
msw(i,vh′)) = 0 (h 6= h′). It is straightforward to construct such PF (·).

We now extend the PF (·), using the mechanism of the least Herbrand model
construction, to a probability measure PDB (·) for the whole DB . Let ωF ′ be a
sample from PF (·) and F ′ the set of msw atoms made true by ωF ′ . Construct
the least Herbrand model M(F ′∪R) of the definite program F ′∪R. It uniquely
determines the truth value of every ground atom and by construction every
ground atom is a measurable function of ωF ′ with respect to PF (·). It follows
from this fact and Kolmogorov’s extension theorem that we can extend PF (·)
to the probability measure PDB (·) on the set of possible Herbrand models for
DB . PDB (·) is the denotation of DB in the distribution semantics [5]. If PF (·)
puts all probability mass on a single interpretation F ′, PDB puts all probability
mass on the least model M(F ′ ∪ R) also. Hence we can say the distribution
semantics is a probabilistic generalization of the least model semantics. Hereafter
for intuitiveness, we identify PDB (·) with an infinite joint distribution PDB (A1 =
x1, A2 = x2, . . .) on the probabilistic ground atoms A1, A2, . . . in the Herbrand
base of DB where xi ∈ {0, 1}, when appropriate.

We remark that our semantics (probability measure on possible models, or
worlds) is not new. Fenstad proved a representation theorem forty years ago [28].
It states that if we assign probabilities P (ϕ) to closed formulas ϕ in a countable
language L without equality, respecting Kolmogorov’s axioms for probability
while satisfying P (ϕ) = 1 if ⊢ ϕ and P (ϕ) = P (φ) if ⊢ ϕ ⇔ φ, P (ϕ) is given as
an integration

P (ϕ) =

∫
Ω

ϕ(ω)µ(dω)

VI

where µ(·) is a probability measure on a certain set Ω of models related to L and
ϕ(ω) = 1 if a model ω ∈ Ω satisfies ϕ, else 05. What is semantically new here
is that we construct such µ(·) = PDB (·) concretely from a logic program DB so
that PDB (G) is computable for a goal G. We point out some unique features of
the distribution semantics.

– PDB (·) is an infinite joint distribution on countably many random atoms. It

is definable, unconditionally, for any DB . Other PLL formalisms often place
restrictions on DB such as acyclicity [1, 8] and range-restrictedness [6, 9, 3]
for their distributions to be definable. SRL formalisms attempting to define
infinite distributions also have restrictions on their programs [29, 21, 30].

– Probabilistic grammars such as HMMs and PCFGs that define finite stochas-
tic processes but whose length is unbounded are formally captured by PRISM
programs with the distribution semantics. Thanks to the rigor of the distri-
bution semantics, it is even possible to write a PRISM program defining
prefix probabilities for a given PCFG, though their computation requires an
infinite sum and cannot be handled by the current PRISM system6 [31].

– The distribution semantics is parameterized with a non-probabilistic seman-
tics M used to extend the base measure PF (·). That is, if we choose as M
the greatest model semantics instead of the least model semantics, we will
have another distribution, which is always definable but not necessarily com-
putable, giving non-zero probability to infinite recursion. M may be stable
model semantics [32, 11] or well-founded semantics [33, 8]. In such cases, we
will have distributions for normal probabilistic logic programs.

3.2 Tabling and dynamic programming

In PRISM the probability PDB (G) of an atom G is computed by first reducing
G logically to a disjunction E1 ∨ . . . ∨ En of explanations and then computing
PDB (G) by PDB (G) =

∑n

i=1
PDB (Ei), PDB (Ei) =

∏hi

k=1
θi,k where Ei = mswi,1∧

· · · ∧ mswi,hi
and θi,k is the parameter of mswi,k (1 ≤ k ≤ hi). A computational

barrier here is that usually there are exponentially many explanations. In the
case of parsing where G represents a sentence and Ei a parse tree, it is not
rare to have millions of parse trees. One standard way to avoid such intractable
computation is applying DP (dynamic programming) to E1∨. . .∨En that factors
out common probability computations. But the real problem is not DP but how
to realize it without constructing E1 ∨ . . . ∨ En.

Our solution to this problem is tabling, or memoizing, which is a general
technique to record what has been computed and reuse it later, thereby saving
repeated computation. In addition, tabling has the side-effect of stopping infi-
nite recursion. This makes it possible to write a DCG grammar containing left
recursive rules such as NP → NP S. LP has a long history of tabling [34–38, 26]

5 The actual Fenstad’s theorem is more complicated than stated here. We show the
case of closed formulas for simplicity.

6 Prefix probabilities can be computed by matrix operations [31].

VII

7 and what we have found through the development of PRISM is that tabling is
well-suited, or vital to probability computation in machine learning.

By introducing tabling for all explanations search for a goal G, we can obtain
a boolean formula, equivalent to G ⇔ E1 ∨ . . . ∨ En, as a descendingly ordered
list of equivalences G ⇔ W0, A1 ⇔ W1, . . . , AM ⇔ WM such that Ai (1 ≤
i ≤ M), a tabled goal appearing in a proof of G, represents a subexpression
occurring multiple times in the explanations E1, . . . , En and Wi is a conjunction
of msw atoms and tabled goals in the lower layers. We consider this list as a
graph whose node are atoms and call it an explanation graph for G. In the
explanation graph, G is a root node and subgraphs (tabled goals) at one layer
are shared by subgraphs at higher layers. Hence probability computation (sum-
product computation) applied to it naturally becomes DP. Thus we can realize
DP by tabling while avoiding the construction of E1∨. . .∨En. We encode the DP
process as the g-IO (generalized IO) algorithm working on explanation graphs.
It is a generic routine in PRISM to compute probabilities [5].

The effect of tabling is decisive. The g-IO algorithm simulates known stan-
dard probability computation/learning algorithms with the same time complex-
ity; O(N2L) for the Baum-Welch algorithm used in HMMs [39] where N is the
number of states, L input length, O(N3L3) for the Inside-Outside algorithm
used in PCFGs in Chomsky normal form [40] where N is the number of symbols
and L sentence length and O(N) for Pearl’s πλ message passing [41] used in
the probability computation of singly connected BNs where is N the number of
nodes in a BN [5].

Also, recently, it is discovered that the celebrated BP (belief propagation)
algorithm used for the probability computation of multiply connected BNs is
nothing but the g-IO algorithm applied to logically described junction trees [42].
In other words, to use BP, we have only to write a program describing a junction
tree8. We may say PRISM subsumes both probabilistic grammars and BNs not
only at the semantic level but also at the probability computation/learning level.

Tabling is useful in Bayesian inference as well. In [43] we introduced the VB
(variational Bayes) approach to PRISM and implemented the VB-EM algorithm
that learns hyper parameters of Dirichlet priors associated with msw atoms, in
a dynamic programming manner using explanation graphs and the slightly ex-
tended g-IO algorithm. Hyper parameter learning is done with the same time
complexity as usual parameter learning because both types of learning use the
same explanation graphs and isomorphic learning algorithms. We test the left-
corner parsing model and the profile-HMM model. Although there is no report
on their hyper parameter learning to our knowledge, all we need to do is to
write a declarative PRISM program for each model, and the rest of the task

7 Our tabling is linear-tabling [26] which does not use a suspend-resume mechanism
for tabled execution of logic programs but iteratively computes answers until they
saturate.

8 The distribution of the PRISM system includes an example of logical junction tree.
Querying the tree with chindsight agg/2 is equivalent to running BP.

VIII

- hyper parameter learning followed by Viterbi inference based on the learned
hyper parameters - is carried out automatically by the PRISM system.

3.3 Log-linear models and logic program synthesis

The last topic is non-generative modeling. Generative modeling, typically PCFGs
to us, assumes no failure in the process of generating an outcome. However
logic programs may fail as we all know. The problem caused by failure to logic-
based probabilistic modeling such as SLPs (stochastic logic programs) [3, 44] and
PRISM [45] is loss of probability mass. If the execution eventually fails after a
probabilistic choice is made, the probability mass put on the choice is lost. As
a result the total sum of probabilities for possible generation processes will be
less than unity, implying that our probability is not mathematically correct.

Suppose there is a PRISM program DB about q(X) which defines a distri-
bution PDB (·). Let t1, . . . , tN be all answer substitutions for the query ?-q(X).
If failure computation occurs during the search for all answers for ?-q(X) and

Z = PDB (∃Xq(X)) =
∑N

i=1
PDB (q(ti)) < 1 happens, we consider a normalized

distribution Z−1PDB (q(X)) over {q(t1), . . . , q(tN)} to recover probability.

However Z−1PDB (q(X)) is a log-linear model9and parameter learning of log-
linear models is known to be much harder than BNs and PCFGs due to the
computation of Z, a normalizing constant. Cussens proposed the FAM (failure-
adjusted maximization) algorithm for parameter learning of SLPs whose com-
putation may fail and hence defines log-linear models [44]. It is an EM algorithm
but requires the computation of “failure probability” 1−Z (Z is the probability
of success computation).

We incorporated the FAM algorithm into PRISM by applying a logic program
synthesis technique to PRISM programs to derive special programs called failure

programs to compute failure probabilities 1 − Z. Given a program DB for the
target goal q(X) which has failed computation paths, we consider another goal
failure⇔ ∀X(q(X) ⇒ false) and synthesize a failure program for this failure
predicate so that ?-failure faithfully traces every failed computation path for
?-q(X) in the original program DB . Under a certain condition10, it can be proved
PDB (failure) = 1−PDB (q(X)) = 1−Z [46]. The point here is not that we can
compute 1 − Z exactly but that we are now able to compute it using DP by
applying tabled search to the synthesized failure program. In [46], an example
of HMMs with constraints which may fail is presented. The synthesized failure
program runs by tabled execution in time linear in the length of input for the
original HMM program.

9 Log-linear models take the form log p(x) =
P

i
wifi(x) where fi(x) is a real-valued

function called feature and wi is a real number called weight. In the case of SLPs,
fi(x) is the number of occurrences of an i-th clause in a refutation x.

10 Roughly every computation path for q(X) must terminate with finite failure or suc-
cess.

IX

The program synthesis for failure programs is done by FOC (first-order com-
piler) [27]. It is an unfold/fold program transformation system for logic pro-
grams with universally quantified implicational goals ∀y(p(x, y) ⇒ q(y, z))11 in
the clause body. FOC transforms the original PRISM program while considering
the probabilistic semantics of msw atoms into a PRISM program with disequality
constraints.

failure :- not(success). | failure:-closure_success0(f0).

success :- agree(_). | closure_success0(A):-closure_agree0(A).

|

agree(A):- | closure_agree0(_):-

msw(coin(a),A), | msw(coin(a),A),

msw(coin(b),B), | msw(coin(b),B),

A=B. | \+A=B.

Fig. 3. Agreement program (left) and the synthesized failure program (right)

The program in Fig. 3 models probabilistic singular/plural agreement be-
tween nouns and verbs in some hypothetical language. coin(a) determines the
singularity/plurality of a noun with probability 0.4/0.6 respectively and so does
coin(b) for a verb. If they do not agree, the sentence generation fails. failure
predicate on the left hand side is defined as the negation of ∃A agree(A) (success
of agree()). FOC compiles it into the failure program on the right hand side
by removing negation while introducing new predicates closure success/1 and
closure agree0/1 (see [27] for details). As you can see, the compiled program
correctly computes failure probability.

4 Concluding remarks

We have examined PRISM, an extension of Prolog with msw/2 predicate for
probabilistic choice, the distribution semantics, tabled search and generic rou-
tines for probability computation and parameter learning. We have been devel-
oping PRISM for more than a decade, to achieve generality and efficiency for
probabilistic modeling, but there remains a long way to go. The future work
includes an implementation of Gaussian distributions, also that of log-linear
models, and removing some modeling condition (the exclusiveness condition [5])
by the introduction of BDDs.

References

1. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64(1) (1993) 81–129

11 Negation ¬p(x, y) = (p(x, y) ⇒ false) is a special case.

X

2. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP’95). (1995) 715–729

3. Muggleton, S.: Stochastic logic programs. In De Raedt, L., ed.: Advances in
Inductive Logic Programming. IOS Press (1996) 254–264

4. Poole, D.: The independent choice logic for modeling multiple agents under un-
certainty. Artificial Intelligence 94(1-2) (1997) 7–56

5. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

6. Kersting, K., De Raedt, L.: Basic principles of learning bayesian logic programs.
Technical Report Technical Report No. 174, Institute for Computer Science, Uni-
versity of Freiburg (2002)

7. Blockeel, H.: Prolog for Bayesian networks: a meta-interpreter approach. In:
Proceedings of the 2nd International Workshop on Multi-Relational Data Mining
(MRDM’03). (2003) 1–13

8. Vennekens, J., Verbaeten, S., Bruynooghe.M.: Logic programs with annotated
disjunctions. In: Proceedings of the 20th International Conference on Logic Pro-
gramming (ICLP’04). Lecture Notes in Computer Science 3132 (2004) 431–445

9. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical Bayesian networks
and their relation to other probabilistic logical models. In: Proceedings of the 15th
International Conference on Inductive Logic Programming (ILP’05), volume 3625
of Lecture Notes in Computer Science. (2005) 121–135

10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discoverry. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI’07). (2007) 2468–2473

11. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming (TPLP) 9(1) (2009) 57–144

12. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Inductive
Logic Programming - Theory and Applications. Lecture Notes in Computer Sci-
ence. Springer (2008) 1–27

13. Breese, J.S.: Construction of belief and decision networks. Computational Intelli-
gence 8(4) (1992) 624–647

14. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence (IJ-
CAI’97). (1997) 1316–1321

15. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI’99). (1999) 1300–1309

16. Pfeffer, A.: IBAL: A probabilistic rational programming language. In: Proceedings
of the 17th International Conference on Artificial Intelligence (IJCAI’01). (2001)
733–740

17. Jaeger, J.: Complex probabilistic modeling with recursive relational Bayesian net-
works. Annals of Mathematics and Artificial Intelligence 32(1-4) (2001) 179–220

18. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning Probabilistic Models of
Relational Structure. Journal of Machine Learning Research 3 (2002) 679–707

19. Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint logic program-
ming for probabilistic knowledge. In: Proceedings of the 19th Conference on Un-
certainty in Artificial Intelligence (UAI’03). (2003) 517–524

XI

20. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: Prob-
abilistic models with unknown objects. In: Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI’05). (2005) 1352–1359

21. Laskey, K.: MEBN: A logic for open-world probabilistic reasoning. C4I Center
Technical Report C4I06-01, George Mason University Department of Systems En-
gineering and Operations Research (2006)

22. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62 (2006)
107–136

23. Getoor, L., Grant, J.: PRL: A probabilistic relational language. Journal of Machine
Learning 62(1-2) (2006) 7–31

24. Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. MIT
Press, Cambridge, MA (2007)

25. Sato, T., Kameya, Y.: Statistical abduction with tabulation. In Kakas, A., Sadri,
F., eds.: Computational Logic: Logic Programming and Beyond. LNAI 2408,
Springer (2002) 567–587

26. Zhou, N.F., Sato, T., Shen, Y.D.: Linear tabling strategies and optimization.
Theory and Practice of Logic Programming 8(1) (2008) 81–109

27. Sato, T.: First Order Compiler: A deterministic logic program synthesis algorithm.
Journal of Symbolic Computation 8 (1989) 605–627

28. Fenstad, J.E.: Representation of probabilities defined on first order languages.
In Crossley, J.N., ed.: Sets, Models and Recursion Theory. North-Holland (1967)
156–172

29. Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D., Kolobov, A.: Approx-
imate Inference for Infinite Contingent Bayesian Networks. In: Proceedings of
the 10th International Workshop on Artificial Intelligence and Statistics (AIS-
TATS’05). (2005) 1352–1359

30. Domingos, P., Singla, P.: Markov logic in infinite domains. In De Raedt, L.,
Dietterich, T., Getoor, L., Kersting, K., Muggleton, S., eds.: Probabilistic, Logical
and Relational Learning - A Further Synthesis. Number 07161 in Dagstuhl Seminar
Proceedings (2008)

31. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics 21(2) (1995) 165–201

32. Gelfond, M., Lifshcitz, V.: The stable model semantics for logic programming.
(1988) 1070–1080

33. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. The journal of ACM (JACM) 38(3) (1991) 620–650

34. Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Proceedings of the 3rd
International Conference on Logic Programming (ICLP’86). Volume 225 of Lecture
Notes in Computer Science., Springer (1986) 84–98

35. Sagonas, K., Swift, T., Warren, D.: XSB as an efficient deductive database en-
gine. In: Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data. (1994) 442–453

36. Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., Warren, D.: Efficient tabling
mechanisms for logic programs. In: Proceedings of the 12th International Confer-
ence on Logic Programming (ICLP’95), The MIT Press (1995) 687–711

37. Guo, H.F., Gupta, G.: A simple scheme for implementing tabled logic programming
systems based on dynamic reordering of alternatives. In: Proceedings of the 17th
International Conference on Logic Programming, London, UK, Springer-Verlag
(2001) 181–196

XII

38. Sagonas, K., Stuckey, J.: Just enough tabling. In: Proceedings of the 6th ACM
SIGPLAN international conference on Principles and practice of declarative pro-
gramming (PPDP ’04), New York, NY, USA, ACM 78–89

39. Rabiner, L.R., Juang, B.: Foundations of Speech Recognition. Prentice-Hall (1993)
40. Baker, J.K.: Trainable grammars for speech recognition. In: Proceedings of Spring

Conference of the Acoustical Society of America. (1979) 547–550
41. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
42. Sato, T.: Inside-Outside probability computation for belief propagation. In: Pro-

ceedings of the 20th International Joint Conference on Artificial Intelligence (IJ-
CAI’07). (2007) 2605–2610

43. Sato, T., Kameya, Y., Kurihara, K.: Variational bayes via propositionalized prob-
ability computation in prism. Annals of Mathematics and Artificial Intelligence,
to appear.

44. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning
44(3) (Sept. 2001) 245–271

45. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI’97). (1997) 1330–1335

46. Sato, T., Kameya, Y., Zhou, N.F.: Generative modeling with failure in PRISM.
In: Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI’05). (2005) 847–852

