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Abstract. We review a logic-based modeling language PRISM and re-
port recent developments including belief propagation by the generalized
inside-outside algorithm and generative modeling with constraints. The
former implies PRISM subsumes belief propagation at the algorithmic
level. We also compare the performance of PRISM with state-of-the-
art systems in statistical natural language processing and probabilistic
inference in Bayesian networks respectively, and show that PRISM is
reasonably competitive.

1 Introduction

The objective of this chapter is to review PRISM,1 a logic-based modeling lan-
guage that has been developed since 1997, and report its current status.2

PRISM was born in 1997 as an experimental language for unifying logic
programming and probabilistic modeling [1]. It is an embodiment of the distri-
bution semantics proposed in 1995 [2] and the first programming language with
the ability to perform EM (expectation-maximization) learning [3] of parame-
ters in programs. Looking back, when it was born, it already subsumed BNs
(Bayesian networks), HMMs (hidden Markov models) and PCFGs (probabilis-
tic context free grammars) semantically and could compute their probabilities.3

However there was a serious problem: most of probability computation was expo-
nential. Later in 2001, we added a tabling mechanism [4, 5] and “largely solved”
this problem. Tabling enables both reuse of computed results and dynamic pro-
gramming for probability computation which realizes standard polynomial time
probability computations for singly connected BNs, HMMs and PCFGs [6].

Two problems remained though. One is the no-failure condition that dictates
that failure must not occur in a probabilistic model. It is placed for mathemat-
ical consistency of defined distributions but obviously an obstacle against the
use of constraints in probabilistic modeling. This is because constraints may be
1 http://sato-www.cs.titech.ac.jp/prism/
2 This work is supported in part by the 21st Century COE Program ‘Framework

for Systematization and Application of Large-scale Knowledge Resources’ and also
in part by Ministry of Education, Science, Sports and Culture, Grant-in-Aid for
Scientific Research (B), 2006, 17300043.

3 We assume that BNs and HMMs in this chapter are discrete.
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unsatisfiable thereby causing failure of computation and the failed computation
means the loss of probability mass. In 2005, we succeeded in eliminating this
condition by merging the FAM (failure-adjusted maximization) algorithm [7]
with the idea of logic program synthesis [8].

The other problem is inference in multiply connected BNs. When a Bayesian
network is singly connected, it is relatively easy to write a program that simu-
lates πλ message passing [9] and see the correctness of the program [6]. When,
on the other hand, the network is not singly connected, it has been customarily
to use the junction tree algorithm but how to realize BP (belief propagation)4

on junction trees in PRISM has been unclear.5 In 2006 however, it was found
and proved that BP on junction trees is a special case of probability computa-
tion by the IO (inside-outside) algorithm generalized for logic programs used in
PRISM [10].

As a result, we can now claim that PRISM uniformly subsumes BNs, HMMs
and PCFGs at the algorithmic level as well as at the semantic level. All we need to
do is to write appropriate programs for each model so that they denote intended
distributions. PRISM’s probability computation and EM learning for these pro-
grams exactly coincides with the standard algorithms for each model, i.e. the
junction tree algorithm for BNs [11, 12], the Baum-Welch (forward-backward)
algorithm for HMMs [13] and the IO algorithm for PCFGs [14] respectively.

This is just a theoretical statement though, and the actual efficiency of prob-
ability computation and EM learning is another matter which depends on imple-
mentation and should be gauged against real data. Since our language is at an
extremely high level (predicate calculus) and the data structure is very flexible
(terms containing variables), we cannot expect the same speed as a C implemen-
tation of a specific model. However due to the continuing implementation efforts
made in the past few years, PRISM’s execution speed has greatly improved to the
point of being usable for medium-sized machine learning experiments. We have
conducted comparative experiments with Dyna [15] and ACE [16–18]. Dyna is
a dynamic programming system for statistical natural language processing and
ACE is a compiler that compiles a Bayesian network into an arithmetic circuit to
perform probabilistic inference. Both represent the state-of-the-art approach in
each field. Results are encouraging and demonstrate PRISM’s competitiveness
in probabilistic modeling.

That being said, we would like to emphasize that although the generality and
descriptive power of PRISM enables us to treat existing probabilistic models
uniformly, it should also be exploited for exploring new probabilistic models.
One such model, constrained HMM s that combine HMMs with constraints, is
explained in Section 5.

In what follows, we first look at the basics of PRISM [6] in Section 2. Then in
Section 3, we explain how to realize BP in PRISM using logically described junc-

4 We use BP as a synonym of the part of the junction tree algorithm concerning
message passing.

5 Contrastingly it is straightforward to simulate variable elimination for multiply con-
nected BNs [6].
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tion trees. Section 4 deals with the system performance of PRISM and contains
comparative data with Dyna and ACE. Section 5 contains generative modeling
with constraints made possible by the elimination of the no-failure condition.
Related work and future topics are discussed in Section 6. We assume the reader
is familiar with logic programming [19], PCFGs [20] and BNs [9, 21].

2 The Basic System

2.1 Programs as distributions

One distinguished characteristic of PRISM is its declarative semantics. For self-
containedness, in a slightly different way from that of [6], we quickly define the
semantics of PRISM programs, the distribution semantics [2], which regards
programs as defining infinite probability distributions.

Overview of the distribution semantics: In the distribution semantics, we
consider a logic program DB which consists of a set F of facts (unit clauses)
and a set R of rules (non-unit definite clauses). That is, we have DB = F ∪ R.
We assume the disjoint condition that there is no atom in F unifiable with the
head of any clause in R. Semantically DB is treated as the set of all ground
instances of the clauses in DB . So in what follows, F and R are equated with
their ground instantiations. In particular F is a set of ground atoms. Since our
language includes countably many predicate and function symbols, F and R are
countably infinite.

We construct an infinite distribution, or to be more exact, a probability
measure PDB

6 on the set of possible Herbrand interpretations [19] of DB as the
denotation of DB in two steps.

Let a sample space ΩF (resp. ΩDB ) be all interpretations (truth value as-
signments) for the atoms appearing in F (resp. DB). They are so called the
“possible worlds” for F (resp. DB). We construct a probability space on ΩF and
then extend it to a larger probability space on ΩDB where the probability mass
is distributed only over the least Herbrand models made from DB . Note that
ΩF and ΩDB are uncountably infinite. We construct their probability measures,
PF and PDB respectively, from a family of finite probability measures using
Kolmogorov’s extension theorem.7

6 A probability space is a triplet (Ω,F , P ) where Ω is a sample space (the set of pos-
sible outcomes), F a σ-algebra which consists of subsets of Ω and is closed under
complementation and countable union, and P a probability measure which is a func-
tion from sets F to real numbers in [0, 1]. Every set S in F is said to be measurable
by P and assigned probability P (S).

7 Given denumerably many, for instance, discrete joint distributions satisfying a cer-
tain condition, Kolmogorov’s extension theorem guarantees the existence of an in-
finite distribution (probability measure) which is an extension of each component
distribution [22].
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Constructing PF : Let A1, A2, . . . be an enumeration of the atoms in F . A
truth value assignment for the atoms in F is represented by an infinite vector
of 0s and 1s in such way that i-th value is 1 when Ai is true and 0 otherwise.
Thus the sample space, F ’s all truth value assignments, is represented by a set
of infinite vectors ΩF =

∏∞
i=1{0, 1}i.

We next introduce finite probability measures P
(n)
F on Ω

(n)
F =

∏n
i=1{0, 1}i

(n = 1, 2, . . .). We choose 2n real numbers p
(n)
ν for each n such that 0 ≤ p

(n)
ν ≤ 1

and
∑

ν∈Ω
(n)
F

p
(n)
ν = 1. We put P

(n)
F ({ν}) = p

(n)
ν for ν = (x1, . . . , xn) ∈ Ω

(n)
F ,

which defines a finite probability measure P
(n)
F on Ω

(n)
F in an obvious way. p

(n)
ν =

p
(n)
(x1,...,xn) is a probability that Ax1

1 ∧· · ·∧Axn
n is true where Ax = A (when x = 1)

and Ax = ¬A (when x = 0).
We here require that the compatibility condition below hold for the p

(n)
ν s:

∑
xn+1∈{0,1} p

(n+1)
(x1,...,xn,xn+1)

= p
(n)
(x1,...,xn) .

It follows from the compatibility condition and Kolmogorov’s extension theo-
rem [22] that we can construct a probability measure on ΩF by merging the
family of finite probability measures P

(n)
F (n = 1, 2, . . .). That is, there uniquely

exists a probability measure PF on the minimum σ-algebra F that contains
subsets of ΩF of the form

[Ax1
1 ∧ · · · ∧ Axn

n ]F
def= {ν | ν = (x1, x2, . . . , xn, ∗, ∗, . . .) ∈ ΩF , ∗ is either 1 or 0}

such that PF is an extension of each P
(n)
F (n = 1, 2, . . .):

PF ([Ax1
1 ∧ · · · ∧ Axn

n ]F ) = p
(n)
(x1,...,xn) .

In this construction of PF , it must be emphasized that the choice of P
(n)
F is

arbitrary as long as they satisfy the compatibility condition.
Having constructed a probability space (ΩF ,F , PF ), we can now consider

each ground atom Ai in F as a random variable that takes 1 (true) or 0 (false).
We introduce a probability function PF (A1 = x1, . . . , An = xn) = PF ([Ax1

1 ∧
· · · ∧ Axn

n ]F ). We here use, for notational convenience, PF both as the probabil-
ity function and as the corresponding probability measure. We call PF a base
distribution for DB .

Extending PF to PDB : Next, let us consider an enumeration B1, B2, . . . of
atoms appearing in DB . Note that it necessarily includes some enumeration of F .
Also let ΩDB =

∏∞
j=1{0, 1}j be the set of all interpretations (truth assignments)

for the Bis and MDB (ν) (ν ∈ ΩF ) the least Herbrand model [19] of a program
R ∪ Fν where Fν is the set of atoms in F made true by the truth assignment ν.
We consider the following sets of interpretations for F and DB , respectively:

[By1
1 ∧ · · · ∧ Byn

n ]F
def= {ν ∈ ΩF | MDB(ν) |= By1

1 ∧ · · · ∧ Byn
n },

[By1
1 ∧ · · · ∧ Byn

n ]DB

def= {ω ∈ ΩDB | ω |= By1
1 ∧ · · · ∧ Byn

n }.
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We remark that [·]F is measurable by PF . So define P
(n)
DB (n > 0) by:

P
(n)
DB ([By1

1 ∧ · · · ∧ Byn
n ]DB ) def= PF ([By1

1 ∧ · · · ∧ Byn
n ]F ).

It is easily seen from the definition of [·]F that [By1
1 ∧ · · · ∧ Byn

n ∧ Bn+1]F and
[By1

1 ∧ · · · ∧ Byn
n ∧ ¬Bn+1]F form a partition of [By1

1 ∧ · · · ∧ Byn
n ]F , and hence

the following compatibility condition holds:
∑

yn+1∈{0,1} P
(n+1)
DB (

[
By1

1 ∧ · · · ∧ Byn
n ∧ B

yn+1
n+1

]
DB

) = P
(n)
DB ([By1

1 ∧ · · · ∧ Byn
n ]DB ).

Therefore, similarly to PF , we can construct a unique probability measure PDB

on the minimum σ-algebra containing open sets of ΩDB
8 which is an exten-

sion of P
(n)
DB and PF , and obtain a (-n infinite) joint distribution such that

PDB (B1 = y1, . . . , Bn = yn) = PF ([By1
1 ∧ · · · ∧ Byn

n ]F ) for any n > 0. The dis-
tribution semantics is the semantics that considers PDB as the denotation of
DB . It is a probabilistic extension of the standard least model semantics in logic
programming and gives a probability measure on the set of possible Herbrand
interpretations of DB [2, 6].

Since [G] def= {ω ∈ ΩDB | ω |= G} is PDB -measurable for any closed formula
G built from the symbols appearing in DB , we can define the probability of G
as PDB ([G]). In particular, quantifiers are numerically approximated as we have

limn→∞ PDB ([G(t1) ∧ · · · ∧ G(tn)]) = PDB ([∀xG(x)]),
limn→∞ PDB ([G(t1) ∨ · · · ∨ G(tn)]) = PDB ([∃xG(x)]),

where t1, t2, . . . is an enumeration of all ground terms.
Note that properties of the distribution semantics described so far only as-

sume the disjoint condition. In the rest of this section, we may use PDB (G)
instead of PDB ([G]). Likewise PF (Ai1 =1, Ai2 =1, . . .) is sometimes abbreviated
to PF (Ai1 , Ai2 , . . .).

PRISM programs: The distribution semantics has freedom in the choice of
P

(n)
F (n = 1, 2, . . .) as long as they satisfy the compatibility condition. In PRISM

which is an embodiment of the distribution semantics, the following requirements
are imposed on F and PF w.r.t. a program DB = F ∪ R:

– Each (ground) atom in F takes the form msw(i, n, v),9 which is interpreted
that “a switch named i randomly takes a value v at the trial n.” For each
switch i, a finite set Vi of possible values it can take is given in advance.10

– Each switch i chooses a value exclusively from Vi, i.e. for any ground terms i
and n, it holds that PF (msw(i, n, v1), msw(i, n, v2)) = 0 for every v1 
= v2 ∈ Vi

and
∑

v∈Vi
PF (msw(i, n, v)) = 1.

8 Each component space {0, 1} of ΩDB carries the discrete topology.
9 msw is an abbreviation for multi-ary random switch.

10 The intention is that {msw(i, n, v) | v ∈ Vi} jointly represents a random variable Xi

whose range is Vi. In particular, msw(i, n, v) represents Xi = v.
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– The choices of each switch made at different trials obey the same distribu-
tion, i.e. for each ground term i and any different ground terms n1 
= n2,
PF (msw(i, n1, v)) = PF (msw(i, n2, v)) holds. Hence we denote PF (msw(i, ·, v))
by θi,v and call it as a parameter of switch i.

– The choices of different switches or different trials are independent. The
joint distribution of atoms in F is decomposed as

∏
i,n PF (msw(i, n, vi1) =

xn
i1, . . . , msw(i, n, viKi) = xn

iKi
), where Vi = {vi1, vi2, . . . , viKi}.

The disjoint condition is automatically satisfied since msw/3, the only predicate
for F , is a built-in predicate and cannot be redefined by the user.

To construct PF that satisfies the conditions listed above, let A1, A2, . . . be
an enumeration of the msw atoms in F and put N

(m)
i,n

def= {k | msw(i, n, vik) ∈
{A1, . . . , Am}}. We have {A1, . . . , Am} =

⋃
i,n{msw(i, n, vik) | k ∈ N

(m)
i,n }. We

introduce a joint distribution P
(m)
F over {A1, . . . , Am} for each m > 0 which is

decomposed as∏
i,n:N

(m)
i,n �=φ

P
(m)
i,n

(∧
k∈N

(m)
i,n

msw(i, n, vik) = xn
ik

)
where

P
(m)
i,n

⎛
⎜⎝

∧

k∈N
(m)
i,n

msw(i, n, vik) = xn
ik

⎞
⎟⎠

def=

⎧⎪⎨
⎪⎩

θi,vik
if xn

ik = 1, xn
ik′ = 0 (k′ 
= k)

1 − ∑
k∈N

(m)
i,n

θi,vik
if xn

ik = 0 for every k ∈ N
(m)
i,n

0 otherwise.

P
(m)
F obviously satisfies the second and the third conditions. Besides the compat-

ibility condition holds for the family P
(m)
F (m = 1, 2, . . .). Hence PDB is definable

for every DB based on {P (m)
F | m = 1, 2, . . .}.

We remark that the msw atoms can be considered as a syntactic specialization
of assumables in PHA (probabilistic Horn abduction) [23] or atomic choices in
ICL (independent choice logic) [24] (see also Chapter 9 in this volume), but
without imposing restrictions on modeling itself. We also point out that there
are notable differences between PRISM and PHA/ICL. First unlike PRISM,
PHA/ICL has no explicitly defined infinite probability space. Second the role of
assumptions differs in PHA/ICL. While the assumptions in Subsection 2.2 are
introduced just for the sake of computational efficiency and have no role in the
definability of semantics, the assumptions made in PHA/ICL are indispensable
for their language and semantics.

Program example: As an example of a PRISM program, let us consider a
left-to-right HMM described in Fig. 1. This HMM has four states {s0, s1, s2, s3}
where s0 is the initial state and s3 is the final state. In each state, the HMM
outputs a symbol either ‘a’ or ‘b’. The program for this HMM is shown in Fig. 2.
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s1 s2 s3

{a,b} {a,b} {a,b}

s0

{a,b}

Fig. 1. Example of a left-to-right HMM with four states.

The first four clauses in the program are called declarations where target(p/n)
declares that the observable event is represented by the predicate p/n, and
values(i, Vi) says that Vi is a list of possible values the switch i can take (a
values declaration can be seen as a ‘macro’ notation for a set of facts in F ).
The remaining clauses define the probability distribution on the strings generated
by the HMM. hmm(Cs) denotes a probabilistic event that the HMM generates
a string Cs. hmm(T, S,Cs ′) denotes that the HMM, whose state is S at time T ,
generates a substring Cs ′ from that time on. The comments in Fig. 2 describe
a procedural behavior of the HMM as a string generator. It is important to
note here that this program has no limit on the string length, and therefore it
implicitly contains countably infinite ground atoms. Nevertheless, thanks to the
distribution semantics, their infinite joint distribution is defined with mathemat-
ical rigor.

target(hmm/1).

values(tr(s0),[s0,s1]).

values(tr(s1),[s1,s2]).

values(tr(s2),[s2,s3]).

values(out(_),[a,b]).

hmm(Cs):- hmm(0,s0,Cs).

hmm(T,s3,[C]):- msw(out(s3),T,C). % If at the final state:

% output a symbol and then terminate.

hmm(T,S,[C|Cs]):- S\==s3, % If not at the final state:

msw(out(S),T,C), % choose a symbol to be output,

msw(tr(S),T,Next), % choose the next state,

T1 is T+1, % Put the clock ahead,

hmm(T1,Next,Cs). % and enter the next loop.

Fig. 2. PRISM program for the left-to-right HMM, which uses msw/3.

One potentially confusing issue in our current implementation is the use
of msw(i, v), where the second argument is omitted from the original definition
for the sake of simplicity and efficiency. Thus, to run the program in Fig. 2 in
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practice, we need to delete the second argument in msw/3 and the first argument
in hmm/3, i.e. the ‘clock’ variables T and T1 accordingly. When there are multiple
occurrences of msw(i, v) in a proof tree, we assume by default that their original
second arguments differ and their choices, though they happened to be the same,
v, are made independently.11 In the sequel, we will use msw/2 instead of msw/3.

2.2 Realizing generality with efficiency

Explanations for observations: So far we have been taking a model-theoretic
approach to define the language semantics where an interpretation (a possible
world) is a fundamental concept. From now on, to achieve efficient probabilistic
inference, we take a proof-theoretic view and introduce the notion of explanation.
Let us consider again a PRISM program DB = F ∪R. For a ground goal G, we
can obtain G ⇔ E1 ∨E2 ∨ · · · ∨EK by logical inference from the completion [25]
of R where each Ek (k = 1, . . . , K) is a conjunction of switches (ground atoms
in F ). We sometimes call G an observation and call each Ek an explanation for
G. For instance, for the goal G = hmm([a, b, b, b, b, a]) in the HMM program, we
have six explanations shown in Fig. 3.

E1 = m(out(s0), a) ∧ m(tr(s0), s0) ∧ m(out(s0), b) ∧ m(tr(s0), s0) ∧ m(out(s0), b)

∧ m(tr(s0), s1) ∧ m(out(s1), b) ∧ m(tr(s1), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s3)

∧ m(out(s3), a)

E2 = m(out(s0), a) ∧ m(tr(s0), s0) ∧ m(out(s0), b) ∧ m(tr(s0), s1) ∧ m(out(s1), b)

∧ m(tr(s1), s1) ∧ m(out(s1), b) ∧ m(tr(s1), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s3)

∧ m(out(s3), a)

...

E6 = m(out(s0), a) ∧ m(tr(s0), s1) ∧ m(out(s1), b) ∧ m(tr(s1), s2) ∧ m(out(s2), b)

∧ m(tr(s2), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s3)

∧ m(out(s3), a)

Fig. 3. Six explanations for hmm([a, b, b, b, b, a]). Due to the space limit, the predicate
name msw is abbreviated to m.

Intuitively finding explanations simulates the behavior of an HMM as a string
analyzer, where each explanation corresponds to a state transition sequence. For
example, E1 indicates the transitions s0 → s0 → s0 → s1 → s2 → s3. It
follows from the conditions on PF of PRISM programs that the explanations
11 As a result P (msw(i, v) ∧ msw(i, v)) is computed as {P (msw(i, v))}2 which makes the

double occurrences of the same atom unequivalent to its single occurrence. In this
sense, the current implementation of PRISM is not purely logical.
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hmm([a, b, b, b, b, a]) ⇔ hmm(0, s0, [a, b, b, b, b, a])

hmm(0, s0, [a, b, b, b, b, a]) ⇔ m(out(s0), a) ∧ m(tr(s0), s0) ∧ hmm(1, s0, [b, b, b, b, a])

∨ m(out(s0), a) ∧ m(tr(s0), s1) ∧ hmm(1, s1, [b, b, b, b, a])

hmm(1, s0, [b, b, b, b, a]) ⇔ m(out(s0), b) ∧ m(tr(s0), s0) ∧ hmm(2, s0, [b, b, b, a])

∨ m(out(s0), b) ∧ m(tr(s0), s1) ∧ hmm(2, s1, [b, b, b, a])‡
hmm(2, s0, [b, b, b, a]) ⇔ m(out(s0), b) ∧ m(tr(s0), s1) ∧ hmm(3, s1, [b, b, a])

hmm(1, s1, [b, b, b, b, a]) ⇔ m(out(s1), b) ∧ m(tr(s1), s1) ∧ hmm(2, s1, [b, b, b, a])‡
∨ m(out(s1), b) ∧ m(tr(s1), s2) ∧ hmm(2, s2, [b, b, b, a])

hmm(2, s1, [b, b, b, a])† ⇔ m(out(s1), b) ∧ m(tr(s1), s1) ∧ hmm(3, s1, [b, b, a])

∨ m(out(s1), b) ∧ m(tr(s1), s2) ∧ hmm(3, s2, [b, b, a])

hmm(3, s1, [b, b, a]) ⇔ m(out(s1), b) ∧ m(tr(s1), s2) ∧ hmm(4, s2, [b, a])

hmm(2, s2, [b, b, b, a]) ⇔ m(out(s2), b) ∧ m(tr(s2), s2) ∧ hmm(3, s2, [b, b, a])

hmm(3, s2, [b, b, a]) ⇔ m(out(s2), b) ∧ m(tr(s2), s2) ∧ hmm(4, s2, [b, a])

hmm(4, s2, [b, a]) ⇔ m(out(s2), b) ∧ m(tr(s2), s3) ∧ hmm(5, s3, [a])

hmm(5, s3, [a]) ⇔ m(out(s3), a)

Fig. 4. Factorized explanations for hmm([a, b, b, b, b, a]).

E1, . . . , E6 are all exclusive to each other (i.e. they cannot be true at the same
time), so we can compute the probability of G by PDB (G) = PDB (

∨6
k=1 Ek) =∑6

k=1 PDB (Ek). This way of probability computation would be satisfactory if the
number of explanations is relatively small, but in general it is intractable. In fact,
for left-to-right HMMs, the number of possible explanations (state transitions)
is T−2CN−2, where N is the number of states and T is the length of the input
string.12

Efficient probabilistic inference by dynamic programming: We know
that there exist efficient algorithms for probabilistic inference for HMMs which
run in O(T ) time — forward (backward) probability computation, the Viterbi
algorithm, the Baum-Welch algorithm [13]. Their common computing strategy
is dynamic programming. That is, we divide a problem into sub-problems re-
cursively with memoizing and reusing the solutions of the sub-problems which
appear repeatedly. To realize such dynamic programming for PRISM programs,
we adopt a two-staged procedure. In the first stage, we run tabled search to find

12 This is because in each transition sequence, there are (N−2) state changes in (T −2)
time steps since there are two constraints — each sequence should start from the
initial state, and the final state should appear only once at the last of the sequence.
For fully-connected HMMs, on the other hand, it is easily seen that the number of
possible state transitions is O(NT ).
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m(tr(s1),s1)

m(tr(s1),s2)

m(tr(s0),s1)

m(tr(s0),s0)

m(tr(s0),s1)

m(out(s3),a)

hmm([a,b,b,b,b,a]):

hmm(0,s0,[a,b,b,b,b,a])

m(out(s0),a)

m(out(s0),b)

m(out(s1),b)

m(out(s2),b)

m(out(s0),a)

m(out(s0),b)

m(out(s1),b)

m(out(s2),b)

m(out(s0),b)

m(out(s1),b)

m(out(s2),b)

m(out(s1),b)

m(out(s1),b)

m(tr(s0),s1)
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Fig. 5. Explanation graph

all explanations for an observation G, in which the solutions for a subgoal A
are registered into a table so that they are reused for later occurrences of A. In
the second stage, we compute probabilities while traversing an AND/OR graph
called the explanation graph for G, extracted from the table constructed in the
first stage.13

For instance from the HMM program, we can extract factorized iff formulas
from the table as shown in Fig. 4 after the tabled search for hmm([a, b, b, b, b, a]).
Each iff formula takes the form A ⇔ E′

1 ∨ · · · ∨ E′
K where A is a subgoal (also

called a tabled atom) and E′
k (called a sub-explanation) is a conjunction of sub-

goals and switches. These iff formulas are graphically represented as the expla-
nation graph for hmm([a, b, b, b, b, a]) as shown in Fig. 5

As illustrated in Fig. 4, in an explanation graph sub-structures are shared
(e.g. a subgoal marked with † is referred to by two subgoals marked with ‡).
Besides, it is reasonably expected that the iff formulas can be linearly ordered
with respect to the caller-callee relationship in the program. These properties
conjunctively enable us to compute probabilities in a dynamic programming
fashion. For example, with an iff formula A ⇔ E′

1 ∨ · · · ∨ E′
K such that E′

k =
Bk1∧Bk2∧· · ·∧BkMk

, PDB (A) is computed as
∑K

k=1

∏Mk

j=1 PDB (Bkj) if E′
1, . . . ,

E′
6 are exclusive and Bkj are independent. In the later section, we call PDB (A)

the inside probability of A. The required time for computing PDB (A) is known
to be linear in the size of the explanation graph, and in the case of the HMM
program, we can see from Fig. 5 that it is O(T ), i.e. linear in the length of the

13 Our approach is an instance of a general scheme called PPC (propositionalized prob-
ability computation) which computes the sum-product of probabilities via proposi-
tional formulas often represented as a graph. Minimal AND/OR graphs proposed in
[26] are another example of PPC specialized for BNs.
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input string. Recall that this is the same computation time as that of the forward
(or backward) algorithm. Similar discussions can be made for the other types of
probabilistic inference, and hence we can say that probabilistic inference with
PRISM programs is as efficient as the ones by specific-purpose algorithms.

Assumptions for efficient probabilistic inference: Of course, our effi-
ciency depends on several assumptions. We first assume that obs(DB), a count-
able subset of ground atoms appearing in the clause head, is given as a set
of observable atoms. In the HMM program, we may consider that obs(DB) =
{hmm([o1, o2, . . . , oT ]) | ot ∈ {a, b}, 1 ≤ t ≤ T, T ≤ Tmax} for some arbitrary finite
Tmax. Then we roughly summarize the assumptions as follows (for the original
definitions, please consult [6]):

Independence condition:
For any observable atom G ∈ obs(DB), the atoms appearing in the sub-
explanations in the explanation graph for G are all independent. In the
current implementation of msw(i, v), this is unconditionally satisfied.

Exclusiveness condition:
For any observable atom G ∈ obs(DB), the sub-explanations for each sub-
goal of G are exclusive to each other. The independence condition and the
exclusiveness condition jointly make the sum-product computation of prob-
abilities possible.

Finiteness condition:
For any observable atom G ∈ obs(DB), the number of explanations for G is
finite. Without this condition, probability computation could be infinite.

Uniqueness condition:
Observable atoms are exclusive to each other, and the sum of probabilities
of all observable atoms is equal to unity (i.e.

∑
G∈obs(DB) PDB (G) = 1). The

uniqueness condition is important especially for EM learning in which the
training data is given as a bag of atoms from obs(DB) which are observed
as true. That is, once we find Gt as true at t-th observation, we immediately
know from the uniqueness condition that the atoms in obs(DB) other than
Gt are false, and hence in EM learning, we can ignore the statistics on
the explanations for these false atoms. This property underlies a dynamic-
programming-based EM algorithm in PRISM [6].

Acyclic condition:
For any observable atom G ∈ obs(DB), there is no cycle with respect to the
caller-callee relationship among the subgoals for G. The acyclicity condition
makes dynamic programming possible.

It may look difficult to satisfy all the conditions listed above. However, if we
keep in mind to write a terminating program that generates the observations
(by chains of choices made by switches), with care for the exclusiveness among
disjunctive paths, these conditions are likely to be satisfied. In fact not only
popular generative models such as HMMs, BNs and PCFGs but unfamiliar ones
that have been little explored [27, 28] can naturally be written in this style.
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Further issues: In spite of the general prospects of generative modeling, there
are two cases where the uniqueness condition is violated and the PRISM’s se-
mantics is undefined. We call the first one “probability-loss-to-infinity,” in which
an infinite generation process occurs with a non-zero probability.14 The second
one is called “probability-loss-to-failure,” in which there is a (finite) generation
process with a non-zero probability that fails to yield any observable outcome.
In Section 5, we discuss this issue, and describe a new learning algorithm that
can deal with the second case.

Finally we address yet another view that takes explanation graphs as Boolean
formulas consisting of ground atoms.15 From this view, we can say that tabled
search is a propositionalization procedure in the sense that it receives first-order
expressions (a PRISM program) and an observation G as input, and generates
as output a propositional AND/OR graph. In Section 6, we discuss advantages
of such a propositionalization procedure.

3 Belief propagation

3.1 Belief propagation beyond HMMs

In this section, we show that PRISM can subsume BP (belief propagation).
What we actually show is that BP is nothing but a special case of generalized
IO (inside-outside) probability computation16 in PRISM applied to a junction
tree expressed logically [6, 10]. Symbolically we have

BP = the generalized IO computation + junction tree.

As far as we know this is the first link between BP and the IO algorithm. It
looks like a mere variant of the well-known fact that BP applied to HMMs equals
the forward-backward algorithm [31] but one should not miss the fundamental
difference between HMMs and PCFGs.

Recall that an HMM deals with fixed-size sequences probabilistically gener-
ated from a finite state automaton, which is readily translated into a BN like
the one in Fig. 6 where Xi’s stand for hidden states and Yi’s stand for out-
put symbols respectively. This translation is possible solely because an HMM
14 The HMM program in Fig. 2 satisfies the uniqueness condition provided the proba-

bility of looping state transitions is less than one, since in that case the probability
of all infinite sequence becomes zero.

15 Precisely speaking, while switches must be ground, subgoals can be an existentially
quantified atom other than a ground atom.

16 Wang et al. recently proposed the generalized inside-outside algorithm for a language
model that combines a PCFG, n-gram and PLSA (probabilistic latent semantic
analysis) [29]. It extends the standard IO algorithm but seems an instance of the gEM
algorithm used in PRISM [30]. In fact such combination can be straightforwardly
implemented in PRISM by using appropriate msw switches. For example an event of
a preterminal node A’s deriving a word w with two preceding words (trigram), u
and v, under the semantic content h is represented by msw([u,v,A,h],w).



XIII
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X1 X2 Xn

Fig. 6. BN for an HMM

has a finite number of states. Once HMMs are elevated to PCFGs however, a
pushdown automaton for an underlying CFG has infinitely many stack states
and it is by no means possible to represent them in terms of a BN which has
only finitely many states. So any attempt to construct a BN that represents a
PCFG and apply BP to it to upgrade the correspondence between BP and the
forward-backward algorithm is doomed to fail. We cannot reach an algorithmic
link between BNs and PCFGs this way.

We instead think of applying IO computation for PCFGs to BNs. Or more
precisely we apply the generalized IO computation, a propositionally reformu-
lated IO computation for PRISM programs [6], to a junction tree described
logically as a PRISM program. Then we can prove that what the generalized IO
computation does for the program is identical to what BP does on the junction
tree [10], which we explain next.

3.2 Logical junction tree

Consider random variables X1, . . . , XN indexed by numbers 1, . . . , N . In the
following we use Greek letters α, β, . . . as a set of variable indices. Put α =
{n1, . . . , nk} (⊆ {1, . . . , N}). We denote by Xα the set (vector) of variables
{Xn1 , . . . , Xnk

} and also by the lower case letter xα the corresponding set (vec-
tor) of realizations of each variable in Xα.

A junction tree for a BN defining a distribution PBN (X1 = x1, . . . , XN =
xN ) =

∏N
i=1 PBN (Xi = xi | Xπ(i) = xπ(i)), abbreviated to PBN (x1, . . . , xN ),

where π(i) denotes the indices of parent nodes of Xi, is a tree T = (V, E)
satisfying the following conditions [11, 12, 32].

– A node α (∈ V ) is a set of random variables Xα. An edge connecting Xα

and Xβ is labeled by Xα∩β . We use α instead of Xα etc to identify the node
when the context is clear.

– A potential φα(xα) is associated with each node α. It is a function consist-
ing of a product of zero or more CPTs (conditional probability tables) like
φα(xα) =

∏
{j}∪π(j)⊆α PBN (Xj = xj | Xπ(j) = xπ(j)). It must hold that∏

α∈V φα(xα) = PBN (x1, . . . , xN ).
– RIP (running intersection property) holds which dictates that if nodes α and

β have a common variable in the tree, it is contained in every node on the
path between α and β.
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Fig. 7. Bayesian network BN0 and a junction tree for BN0

After introducing junction trees, we show how to encode a junction tree T in
a PRISM program. Suppose a node α has K (K ≥ 0) child nodes β1, . . . , βK and
a potential φα(xα). We use a node atom ndα(Xα) to assert that the node α is
in a state Xα and δ to denote the root node of T . Introduce for every α ∈ V Wα

(weight clause for α) and Cα (node clause for α), together with the top clause
Ctop by

Wα : weightα(Xα) ⇐ ∧
PBN (xj|xπ(j))∈φα

msw(bn(j, Xπ(j)), Xj)
Cα : ndα(Xα) ⇐ weightα(Xα) ∧ ndβ1(Xβ1) ∧ · · · ∧ ndβK (XβK )

Ctop : top ⇐ ndδ(Xδ).

Here the Xj’s denote logical variables, not random variables (we follow Prolog
convention). Wα encodes φα as a conjunction of msw(bn(j, Xπ(j)), Xj)s represent-
ing CPT PBN (Xj = xj | Xπ(j) = xπ(j)). Cα is an encoding of the parent-child
relation in T . Ctop is a special clause to distinguish the root node δ in T .

Since we have (βi \ α) ∩ (βj \ α) = φ if i 
= j thanks to the RIP of T , we can
rewrite X(

SK
i=1 βi)\α, the set of variables appearing only in the right hand-side

of Cα, to a disjoint union
⋃K

i=1 Xβi\α. Hence Cα is logically equivalent to

ndα(Xα) ⇐
weightα(Xα) ∧ ∃Xβ1\αndβ1(Xβ1) ∧ · · · ∧ ∃XβK\αndβK (XβK ). (1)

Let FT be the set of all ground msw atoms of the form msw(bn(i, xπ(i)), xi).
Give a joint distribution PFT (·) over FT so that PFT (msw(bn(i, xπ(i)), xi)), the
probability of msw(bn(i, xπ(i)), xi) being true, is equal to PBN (Xi = xi | Xπ(i) =
xπ(i)).

Sampling from PFT (·) is equivalent to simultaneous independent sampling
from every PBN (Xi = xi | Xπ(i) = xπ(i)) given i and xπ(i). It yields a set S of
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true msw atoms. We can prove however that S uniquely includes a subset SBN =
{msw(bn(i, xπ(i)), xi) | 1 ≤ i ≤ N} that corresponds to a draw from the joint
distribution PBN (·).

Finally define a program DBT describing the junction tree T as a union
FT ∪ RT having the base distribution PFT (·):

DBT = FT ∪ RT where RT = {Wα, Cα | α ∈ V } ∪ {Ctop}. (2)

Consider the Bayesian network BN0 and a junction tree T0 for BN0 shown
in Fig. 7. Suppose evidence X1 = a is given. Then RT0 contains node clauses
listed in Fig. 8.

RT0

8>>>><
>>>>:

top ⇐ nd{4,5}(X4, X5)
nd{4,5}(X4, X5) ⇐ msw(bn(5, []), X5) ∧ msw(bn(4, [X5]), X4) ∧ nd{2,4}(X2, X4)
nd{2,4}(X2, X4) ⇐ msw(bn(2, [X4]), X2) ∧ nd{1,2}(X1, X2) ∧ nd{2,3}(X2, X3)
nd{2,3}(X2, X3) ⇐ msw(bn(3, [X2]), X3)
nd{1,2}(X1, X2) ⇐ msw(bn(1, [X2]), X1) ∧ X1 = a

Fig. 8. Logical description of T0.

3.3 Computing generalized inside-outside probabilities

After defining DBT which is a logical encoding of a junction tree T , we demon-
strate that the generalized IO probability computation for DBT with a goal top
by PRISM coincides with BP on T . Let PDBT

(·) be the joint distribution defined
by DBT . According to the distribution semantics of PRISM, it holds that for
any ground instantiations xα of Xα,

PDBT
(weightα(xα)) = PDBT

(∧
PBN (xj |xπ(j))∈φα

msw(bn(j, xπ(j)), xj)
)

(3)

=
∏

PBN (xj|xπ(j))∈φα
PF (msw(bn(j, xπ(j)), xj)) (4)

=
∏

PBN (xj|xπ(j))∈φα
PBN (xj | xπ(j))

= φα(xα).

In the above transformation, (3) is rewritten to (4) using the fact that condi-
tional distributions {PFT (xj | xπ(j))} contained in φα are pairwise different and
msw(bn(j, xπ(j)), xj)) and msw(bn(j′, xπ(j′)), xj′ )) are independent unless j = j′.
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We now transform PDBT
(ndα(xα)). Using (1), we see it holds that between

the node α and its children β1, . . . , βK

PDBT
(ndα(xα))

= φα(xα) · PDBT

(∧K
i=1 ∃xβi\αndβi(xβi)

)

= φα(xα) · ∏K
i=1 PDBT

(∃xβi\αndβi(xβi)
)

(5)

= φα(xα) · ∏K
i=1

∑
xβi\α

PDBT
(ndβi(xβi)). (6)

The passage from (5) to (6) is justified by Lemma 3.3 in [10]. We also have

PDBT
(top) = 1 (7)

because top is provable from S ∪ RT where S is an arbitrary sample obtained
from PFT .

Let us recall that in PRISM, two types of probability are defined for a ground
atom A. The first one is inside(A), the generalized inside probability of A, defined
by inside(A) def= PDB (A). It is just the probability of A being true. (6) and (7)
give us a set of recursive equations to compute generalized inside probabilities
of ndα(xα) and top in a bottom-up manner [6].

The second one is the generalized outside probability of A with respect to a
goal G, denoted by outside(G ; A), which is more complicated than inside(A),
but can also be recursively computed in a top-down manner using generalized
inside probabilities of other atoms [6]. We here simply list the set of equations
to compute generalized outside probabilities with respect to top in DBT . We
describe the recursive equation between a child node βj and its parent node α
in (9).

outside(top ; top) = 1 (8)
outside(top ; ndβj (xβj ))

=
∑

xα\βj

⎛
⎝φα(xα) · outside(top ; ndα(xα))

K∏
i�=j

∑
xβi\α

inside(ndβi(xβi))

⎞
⎠ . (9)

3.4 Marginal distribution

The important property of generalized inside and outside probabilities is that
their product, inside(A) · outside(G ; A), gives the expected number of occur-
rences of A in a(-n SLD) proof of G from msws drawn from PF . In our case
where A = ndα(xα) and G = top, each node atom occurs at most once in an
SLD proof of top. Hence inside(A) · outside(top ; A) is equal to the probability
that top has a(-n SLD) proof containing A from RT ∪ S where S is a sample
from PFT . In this proof, not all members of S are relevant but only a subset
SBN (x1, . . . , xN ) = {msw(bn(i, xπ(i)), xi) | 1 ≤ i ≤ N} which corresponds to a
sample (x1, . . . , xN ) from PBN (and vice versa) is relevant. By analyzing the
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proof, we know that sampled values xα of Xα appearing in SBN is identical to
those in A = ndα(xα) in the proof. We therefore have

inside(A) · outside(top ; A)
= Probability of sampling SBN (x1, . . . , xN ) from PFT such that

SBN (x1, . . . , xN ) ∪ RT � A

= Probability of sampling (x1, . . . , xN ) from PBN (·) such that
SBN (x1, . . . , xN ) ∪ RT � A

= Probability of sampling (x1, . . . , xN ) from PBN (·) such that
(x1, . . . , xN )α = xα in A = ndα(xα)

= Probability of sampling xα from PBN (·)
= PBN (xα).

When some of the Xi’s in the BN are observed and fixed as evidence e, a
slight modification of the above derivation gives inside(A) · outside(top ; A) =
PBN (xα, e). We summarize this result as a theorem.

Theorem 1. Suppose DBT is the PRISM program describing a junction tree T
for a given BN. Let e be evidence. Also let α be a node in T and A = ndα(xα)
an atom describing the state of the node α. We then have

inside(A) · outside(top ; A) = PBN (xα, e).

3.5 Deriving BP messages

We now introduce messages which represent messages in BP value-wise in terms
of inside-outside probabilities of ground node atoms. Let nodes β1, . . . , βK be
the child nodes of α as before and γ be the parent node of α in the junction tree
T . Define a child-to-parent message by

msgα	γ(xα∩γ) def=
∑

xα\γ
inside(ndα(xα))

=
∑

xα\γ
PDBT

(ndα(xα)).

The equation (6) for generalized inside probability is rewritten in terms of child-
to-parent message as follows.

msgα	γ(xα∩γ) =
∑

xα\γ
PDBT

(ndα(xα))

=
∑

xα\γ

(
φα(xα) · ∏K

i=1 msgβi	α(xβi∩α)
)

. (10)

Next define a parent-to-child message from the parent node α to the j-th
child node βj by

msgα	βj(xα∩βj )
def= outside(top ; ndβj (xβj )).
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Note that outside(top ; ndβj (xβj )) looks like a function of xβj , but in reality it
is a function of xβj ’s subset, xα∩βj by (9). Using parent-to-child messages, we
rewrite the equation (9) for generalized outside probability as follows.

msgα	βj (xα∩βj )
= outside(top ; ndβj (xβj ))

=
∑

xα\βj

⎛
⎝φα(xα) · msgγ	α(xγ∩α)

K∏
i�=j

msgβi	α(xβi∩α)

⎞
⎠ . (11)

When α is the root node δ in T , since outside(top ; top) = 1, we have

msgδ	βj(xδ∩βj ) =
∑

xδ\βj

⎛
⎝φδ(xδ) ·

K∏
i�=j

msgβi	α(xβi∩α)

⎞
⎠ . (12)

The equations (10), (11) and (12) are identical to the equations for BP on T
(without normalization) where (10) specifies the collecting evidence step and
(11) and (12) specify the distributing evidence step respectively [12, 11, 33]. So
we conclude

Theorem 2. The generalized IO probability computation for DBT describing a
junction tree T with respect to the top goal top by (2) coincides with BP on T .

Let us compute some messages in the case of the program in Fig. 8.

msg{4,5}	{2,4}(X4) = outside(top ; nd(X2, X4))
=

∑
X5

PDBT0
(nd(X4, X5))

=
∑

X5
PBN 0(X4 | X5)PBN 0(X5)

= PBN 0(X4)
msg{1,2}	{2,4}(X2) = inside(nd(X1 = a, X2))

= PDBT0
(nd(X1 = a, X2))

= PBN 0(X1 = a | X2)
msg{2,3}	{2,4}(X2) =

∑
X3

inside(nd(X2, X3))
=

∑
X3

PDBT0
(nd(X2, X3))

=
∑

X3
PBN 0(X3 | X2)

= 1

Using these messages we can confirm Theorem 1.

inside(nd(X2, X4)) · outside(top ; nd(X2, X4))
= PBN 0(X2 | X4) · msg{4,5}	{2,4}(X4) · msg{1,2}	{2,4}(X2) · msg{2,3}	{2,4}(X2)
= PBN 0(X2 | X4) · PBN 0(X4) · PBN 0(X1 = a | X2) · 1
= PBN 0(X1 = a, X2, X4).
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Theorem 2 implies that computation of generalized IO probabilities in PRISM
can be used to implement the junction tree algorithm. If we do so, we will first
unfold a junction tree to a boolean combination of ground node atoms and msw
atoms which propositionally represents the junction tree and then compute re-
quired probabilities from that boolean combination. This approach is a kind
of propositionalized BN computation, a recent trend in the Bayesian network
computation [17, 26, 34, 35] in which BNs are propositionally represented and
computed. We implemented the junction tree algorithm based on generalized IO
probability computation. We compare the performance of our implementation
with ACE, one of the propositionalized BN computation systems in the next
section.

4 Performance data

In this section we compare the computing performance of PRISM with two
recent systems, Dyna [15] and ACE [16–18]. Unlike PRISM, they are not a
general-purpose programming system that came out of research in PLL (prob-
abilistic logic learning) or SRL (statistical relational learning). Quite contrary
they are developed with their own purpose in a specific domain, i.e. statistical
NLP (natural language processing) in the case of Dyna and fast probabilistic
inference for BNs in the case of ACE. So our comparison can be seen as one be-
tween a general-purpose system and a specific-purpose system. We first measure
the speed of probabilistic inference for a PCFG by PRISM and compare it with
Dyna.

4.1 Computing performance with PCFGs

Dyna system: Dyna17 is a high-level declarative language for probabilistic
modeling in NLP [15]. The primary purpose of Dyna is to facilitate various
types of dynamic programming found in statistical NLP such as IO probability
computation and Viterbi parsing to name a few. It is similar to PRISM in the
sense that both can be considered as a probabilistic extension of a logic pro-
gramming language but PRISM takes a top-down approach while Dyna takes
a bottom-up approach in their evaluation. Also implementations differ. Dyna
programs are compiled to C++ code (and then to native code18) while PRISM
programs are compiled to byte code for B-Prolog.19 We use in our experiment
PRISM version 1.10 and Dyna version 0.3.9 on a PC having Intel Core 2 Duo
(2.4GHz) and 4GB RAM. The operating system is 64-bit SUSE Linux 10.0.

17 http://www.dyna.org/
18 In this comparison, we added --optimize option to the dynac command, a batch

command for compiling Dyna programs into native code.
19 http://www.probp.com/
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Fig. 9. Comparison between PRISM and Dyna on the speed of PCFG-related inference
tasks

Computing sentence probability and Viterbi parsing: To compare the
speed of various PCFG-related inference tasks, we have to prepare benchmark
data, i.e. a set of sentences and a CFG (so-called a tree-bank grammar [36]) for
them. We use the WSJ portion of Penn Treebank III20 which is widely recognized
as one of the standard corpora in the NLP community [37].

We converted all 49,208 raw sentences in the WSJ sections 00–24 to POS
(part of speech) tag sequences (the average length is about 20.97) and at the
same time extract 11,534 CFG rules from the labeled trees. These CFG rules are
further converted to Chomsky normal form21 to yield 195,744 rules with 5,607
nonterminals and 38 terminals (POS tags). Finally by giving uniform probabil-
ities to CFG rules, we obtain a PCFG we use in the comparison.

Two types of PRISM program are examined for the derived PCFG. In the for-
mer, which is referred to as PRISM-A here, an input POS tag sequence t1, . . . , tN
is converted into a set of ground atoms {input(0, t1, 1), . . . , input(N−1, tN , N)}
and supplied (by the “assert” predicate) to the program. Each input(d−1, t, d)
means that the input sentence has a POS tag t is at position d (1 ≤ d ≤ N).
The latter type, referred to as PRISM-D, is a probabilistic version of definite
clause grammars which use difference lists. Dyna is closer to PRISM-A since in
Dyna, we first provide the items equivalent to the above ground atoms to the
chart (the inference mechanism of Dyna is based on a bottom-up chart parser).
Compared to PRISM-A, PRISM-D incurs computational overhead due to the
use of difference list.

20 http://www.ldc.upenn.edu/
21 We used the Dyna version of the CKY algorithm presented in [15].
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We first compared time for computing the probability of a sentence (POS tag
sequence) w.r.t. the derived PCFG using PRISM and Dyna. The result is plotted
in Fig. 9 (left). Here X-axis shows sentence length (up to 24 by memory limitation
of PRISM) and Y-axis shows the average time for probability computation22 of
randomly picked up 10 sentences. The graph clearly shows PRISM runs faster
than Dyna. Actually at length 21 (closest to the average length), PRISM-A runs
more than 10 times faster than Dyna.

We also conducted a similar experiment on Viterbi parsing, i.e. obtaining the
most probable parse w.r.t. the derived CFG. Fig. 9 (right) show the result, where
X-axis is the sentence length and Y-axis is the average time for Viterbi parsing
of randomly picked up 10 sentences. This time PRISM-A is slightly slower than
Dyna until length 13 but after that PRISM-A becomes faster than Dyna and
the speed gap seems steadily growing.

One may notice that Dyna has a significant speed-up in Viterbi parsing
compared to sentence probability computation while in PRISM the computa-
tion time remains the same between these two inference tasks. This is because,
in Viterbi parsing, Dyna performs a best-first search which utilizes a priority-
queue agenda. On the other hand, the difference between PRISM-A and Dyna
in sentence probability computation indicates the efficiency of PRISM’s basic
search engine. Besides, not surprisingly, PRISM-D runs three times slower than
PRISM-A at the average sentence length.

Thus in our experiment with a realistic PCFG, PRISM, a general-purpose
programming system, runs faster than or competitively with Dyna, a specialized
system for statistical NLP. We feel this is somewhat remarkable. At the same
time though, we observed PRISM’s huge memory consumption which might be
a severe problem in the future.23

4.2 Computing performance with BNs

Next we measure the speed of a single marginal probability computation in BNs
by PRISM programs DBT described in Section 3.2 (hereafter called junction-tree
PRISM programs) and compare it with ACE [16–18].

ACE24 is a software package to perform probabilistic inference in a BN in
three steps. It first encodes the BN by CNF propositionally, then transforms the
CNF to yet another form d-DNNF (deterministic, decomposable negation normal
form) and finally extracts from the d-DNNF, a graph called AC (arithmetic
circuit). An AC is a directed acyclic graph in which nodes represent arithmetic
operations such as addition and multiplication. The extracted AC is used to
22 In the case of PRISM, the total computation time is the sum of the time for con-

structing the explanation graph and the time for computing the inside probability.
23 In an additional experiment using another computer with 16GB memory, we could

compute sentence probability for all of randomly picked up 10 sentences of length
43, but the sentences longer than 43 causes thrashing. It should be noted, however,
that the PRISM system did not crash as far as we observed.

24 http://reasoning.cs.ucla.edu/ace/
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Table 1. Comparison between PRISM and ACE on the average computation time [sec]
for single marginal probabilities.

Junction-tree PRISM ACE
Network #Nodes Trans. Cmpl. Run Cmpl. Read Run

Asia 8 0.1 0.03 0 0.53 0.14 0.02
Water 32 1.57 1.79 0.38 1.87 0.5 0.8
Mildew 35 6.48 11.2 12.5 4.27 1.95 3.42
Alarm 37 0.34 0.2 0.01 0.33 0.18 0.13
Pigs 441 2.52 9.38 5.38 2.48 0.57 1.95
Munin1 189 1.93 2.54 n/a (1) 2242 0.51 n/a (2)
Munin2 1,003 7.61 85.7 15 9.94 1.0 6.07
Munin3 1,044 8.82 70.3 15.9 8.12 0.95 4.11
Munin4 1,041 8.35 90.7 408 11.2 0.97 6.64

compute the marginal probability, given evidence. In compilation, we can make
the resulting Boolean formulas more compact than a junction tree by exploiting
the information in the local CPTs such as determinism (zero probabilities) and
parameter equality, and more generally, CSI (context-specific independence) [38].

We picked up benchmark data from Bayesian Network Repository (http://
www.cs.huji.ac.il/labs/compbio/Repository/).The network size ranges from
8 nodes to 1,044 nodes. In this experiment, PRISM version 1.11 and ACE 2.0
are used and run by a PC having AMD Opteron254(2.8GHz) with 16GB RAM
on SUSE 64bit Linux 10.0. We implemented a Java translator from an XMLBIF
network specification to the corresponding junction-tree PRISM program.25 For
ACE, we used the default compilation option (and the most advanced) -cd06
which enables the method defined in [18].

Table 1 shows time for computing a single marginal P (Xi|e).26 For junction-
tree PRISM, the columns “Trans.,” “Cmpl.,” and “Run” mean respectively the
translation time from XMLBIF to junction-tree PRISM, the compilation time
from junction-tree PRISM to byte code of B-Prolog and the inference time. For
ACE, the column “Cmpl.” is compile time from an XBIF file to an AC wheres
the column “Read” indicates time to load the compiled AC onto memory. The
column “Run” shows the inference time. n/a (1) and n/a (2) in Munin1 means
PRISM ran out of memory and ACE stopped by run time error respectively.

When the network size is small, there are cases where PRISM runs faster
than ACE, but in general PRISM does not catch up to ACE. One of the possible
reasons might be that while ACE thoroughly exploits CSI in a BN to optimize
computation, PRISM performs no such optimization when it propositionalizes
25 In constructing a junction-tree, the elimination order basically follows the one speci-

fied in a *.num file in the repository. If such a *.num file does not exist, we used MDO
(minimally deficient order). In this process, entries with 0 probabilities in CPTs are
eliminated to shrink CPT size.

26 For ACE, the computation time for P (Xi | e) is averaged on all variables in the
network. For junction-tree PRISM, since it sometimes took too long a time, the
computation time is averaged on more than 50 variables for large networks.
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a junction tree to an explanation graph. As a result, explanation graphs used
by PRISM are thought to have much more redundancy than AC used by ACE.
Translation to an optimized version of junction-tree PRISM programs using CSI
remains as future work.

The results of two benchmark tests in this section show that PRISM is now
maturing and reasonably competitive with state-of-the-art implementations of
existing models in terms of computing performance, considering PRISM is a
general-purpose programming language using general data structure – first order
terms. We next look into another aspect of PRISM, PRISM as a vehicle for
exploring new models.

5 Generative modeling with constraints

5.1 Loss of probability mass

Probabilistic modeling in PRISM is generative. By generative we mean that a
probabilistic model describes a sequential process of generating an outcome in
which nondeterminacy is resolved by a probabilistic choice (using msw/2 in the
case of PRISM). All of BNs, HMMs and PCFGs are generative in this sense.

A generative model is described by a generation tree such that each node
represents some state in a generation process. If there are k possible choices at
node N and if the i-th choice with probability pi > 0 (1 ≤ i ≤ k,

∑k
i=1 pi = 1)

causes a state transition from N to a next state N ′
i , there is an edge from N to

N ′
i . Note that we neither assume the transition is always successful nor the tree

is finite. A leaf node is one where an outcome o is obtained. P (o), the probability
of the outcome o is that of an occurrence of a path from the root node to a leaf
generating o. The generation tree defines a distribution over possible outcomes
if

∑
o∈obs(DB) P (o) = 1 (tightness condition [39]).27

Generative models are intuitive and popular but care needs to be taken to
ensure the tightness condition.28 There are two cases in which the danger of vio-
lating the tightness condition exists. The first case is probability-loss-to-infinity.
It means infinite computations occur and the probability mass assigned to them
is non-zero.29 In fact this happens in PCFGs depending on parameters associated
with CFG rules in a grammar [39, 40].

The second case is probability-loss-to-failure which occurs when a transition
to the next state fails. Since the probability mass put on a choice causing the
transition is lost without producing any outcome, the total sum of probability
mass on all outcomes becomes less than one. Probability-loss-to-failure does not
27 The tightness condition is part of the uniqueness condition introduced in Section 2

[6].
28 We call distributions improper if they do not satisfy the tightness condition.
29 Recall that mere existence of infinite computation does not necessarily violate the

tightness condition. Take a PCFG {p : S → a, q : S → SS} where S is a start
symbol, a a terminal symbol, p + q = 1 and p, q ≥ 0. If q > 0, infinite computations
occur, but the probability mass assigned to them is 0 as long as q ≤ p.
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happen in BNs, HMMs or PCFGs but can happen in more complex modeling
such as probabilistic unification grammars [41, 42]. It is a serious problem because
it prevents us from using constraints in complex probabilistic modeling, the
inherent target of PRISM. In the sequel, we detail our approach to generative
modeling with constraints.

5.2 Constraints and improper distributions

We first briefly explain constraints. When a computational problem is getting
more and more complex, it is less and less possible to completely specify every
bit of information flow to solve it. Instead we specify conditions an answer must
meet. They are called constraints. Usually constraints are binary relations over
variables such as equality, ordering, set inclusion and so on. Each of them is just
a partial declarative characterization of an answer but their interaction creates
information flow to keep global consistency.

Constraints are mixed and manipulated in a constraint handling process,
giving the simplest form as an answer just like a polynomial equation is solved
by reduction to the simplest (but equivalent) form. Sometimes we find that
constraints are inconsistent and there is no answer. When this happens, we stop
the constraint handling process with failure.

Allowing the use of constraints significantly enhances modeling flexibility as
exemplified by unification grammars such as HPSGs [43]. Moreover since they are
declarative, they are easy to understand and easy to maintain. The other side of
the coin however is that they can be a source of probability-loss-to-failure when
introduced to generative modeling as they are not necessarily satisfiable. The
loss of probability mass implies

∑
o∈obs(DB) P (o) < 1, an improper distribution,

and ignoring this fact would destroy the mathematical meaning of computed
results.

5.3 Conditional distributions and their EM learning

How can we deal with such improper distributions caused by probability-loss-
to-failure? It is apparent that what we can observe is an outcome o of some
successful generation process specified by our model and thus should be inter-
preted as an realization of a conditional distribution, P (o | success) where
success denotes the event of generating some outcome.

Let us put this argument in the context of distribution semantics and let
q(·) be a target predicate in a program DB = F ∪ R defining the distribu-
tion PDB (·). Clauses in R may contain constraints such as X < Y in their
body. The event success is representable as ∃X q(X) because the latter says
there exists some outcome. Our conditional distribution is therefore written
as PDB (q(t) | ∃X q(X)). If R in DB satisfies the modeling principles stated
in Subsection 5.1, which we assume hereafter, it holds that PDB (∃X q(X)) =∑

q(t)∈obs(DB) PDB (q(t)) where obs(DB) is the set of ground target atoms prov-
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able from DB , i.e. obs(DB) = {q(t) | DB � q(t)}. Consequently we have

PDB (q(t) | success) =
PDB (q(t))

PDB (∃X q(X))
=

PDB (q(t))∑
q(t′)∈obs(DB) PDB (q(t′))

.

So if there occurs probability-loss-to-failure, what we should do is to nor-
malize PDB (·) by computing PDB (success) =

∑
q(t′)∈obs(DB) PDB (q(t′)). The

problem is that this normalization is almost always impossible. First of all there
is no way to compute PDB (success), the normalizing constant, if obs(DB) is in-
finite. Second even if obs(DB) is finite, the computation is often infeasible since
there are usually exponentially many observable outcomes and hence so many
times of summation is required.

We therefore abandon unconditional use of constraints and use them only
when obs(DB) is finite and an efficient computation of PDB (success) is possible
by dynamic programming. Still, there remains a problem. The gEM (graphical
EM) algorithm, the central algorithm in PRISM for EM learning by dynamic
programming, is not applicable if failure occurs because it assumes the tightness
condition. We get around this difficulty by merging it with the FAM algorithm
(failure-adjusted maximization) proposed by Cussens [7]. The latter is an EM
algorithm taking failure into account.30.

Fortunately the difference between the gEM algorithm and the FAM algo-
rithm is merely that the latter additionally computes expected counts of msw
atoms in a failed computation of q(X) (∃X q(X)). It is therefore straightfor-
ward to augment the gEM algorithm with a routine to compute the required
expected counts in a failed computation, assuming a failure program is available
which defines failure predicate that represents all failed computations of q(X)
w.r.t. DB . The augmented algorithm, the fgEM algorithm [8], works as the FAM
algorithm with dynamic programming and implemented in the current PRISM.

So the last barrier against the use of constraints is the construction of a
failure program. Failure must be somehow “reified” as a failure program for
dynamic programming to be applicable. However how to construct it is not
self-evident because there is no mechanism of recording failure in the original
program DB . We here apply FOC (first order compiler), a program synthesis
algorithm based on deductive program transformation [44]. It can derive, though
not always, automatically a failure program from the source program DB for the
target predicate q(X) [8]. Since the synthesized failure program is a usual PRISM
program, PDB (failure) is computed efficiently by dynamic programming.

In summary, in our approach, generative modeling with constraints is possible
with the help of the fgEM algorithm and FOC, provided that a failure program

30 The FAM algorithm [7] assumes there occur failed computations before an outcome
is successfully generated. It requires to count the number of occurrences of each
msw atom in the failed computation paths but [7] does not give how to count them.
Usually there are exponentially many failure paths and naive computation would
take exponential time. We solved this problem by merging FAM with gEM’s dynamic
programming.
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is successfully synthesized by FOC and the computation tree (SLD tree) for
failure is finite (and not too large). We next look at some examples.

5.4 Agreement in number

A small example: We here take a small example of generative modeling with
constraints and see its EM learning.

values(subj,[sg,pl]). % introduce msw/2 named sbj and obj

values(obj,[sg,pl]). % with outcomes = {sg,pl}

target(agree/1).

agree(A):-

msw(subj,A), % flip the coin subj

msw(obj,B), % flip the coin obj

A=B. % equality constraint

Fig. 10. agree program describing agreement in number

A program in Fig. 10 models agreement in number in some natural language
using two biased coins subj and obj. values clauses declare we use multi-ary
random switches msw(a,v) and msw(b,v) where v is sg or pl. target(agree/1)
declares a target predicate and what we observe are atoms of the form agree(·).

For a top-goal :-sample(agree(X)) which starts a sampling of the defined
distribution for agree/1, msw(subj, A) is executed simulating coin tossing of subj
which probabilistically instantiates A either to sg or pl. Similarly for msw(obj, B).
Hence an outcome is one of {agree(sg), agree(pl)} and it is observable only
when both coins agree (see the equality constraint A=B). When the two coins
disagree, A=B fails and we have no observable outcome from this model.

Parameter learning by the fgEM algorithm: Given the program in Fig. 10
and a list of observations such as [agree(sg),agree(pl),. . .], we estimate
parameters, i.e. probabilities of each coin showing sg or pl. In what follows, to
simplify notation and discussion, we treat logical variables A and B as random
variables and put parameters by θa = P (A = sg) = P (msw(subj, sg)), θb =
P (B = sg) = P (msw(obj, sg)) and θ = (θa, θb).

Parameters are estimated from the observable distribution P (A | success, θ)
=

∑
B∈{sg,pl} P (agree(A), A = B |θ)/P (success |θ) (hereafter we omit θ when

obvious). Because the normalizing constant P (success) = P (agree(sg)) +
P (agree(pl)) = θaθb + (1 − θa)(1 − θb) is not necessarily equal to unity, the
defined model becomes log-linear.
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Obtaining a failure program: Thanks to the deep relationship between fail-
ure and negation in logic programming, a failure program can be derived auto-
matically by ‘negating’ the target atom in the original program. Let q(X) be a
target atom. We add failure:- ∀ X not(q(X)) to the original program. failure
says that there is no observable outcome of q(X). As it is not executable, we
‘compile’ it using FOC to obtain a negation-free executable program. For the
agree program in Fig. 10 we add two clauses shown in Fig. 11.31

failure :- not(success).

success :- agree( ). % agree( ) = ∃ X agree(X)

Fig. 11. Clauses defining failure

FOC compiles the failure predicate into executable code shown in Fig. 12.
As can be seen, it eliminates negation in Fig. 11 while introducing two new
predicates and one new function symbol.32 We would like to point out that
negation elimination is just one functionality of FOC. It can compile a much
wider class of formulas into executable logic programs.

failure:- closure_success0(f0). % f0 is initial continuation

closure_success0(C):- closure_agree0(C).

closure_agree0(C):-

msw(subj,A),

msw(obj,B),

\+A=B. % \+ is Prolog’s negation

Fig. 12. Compiled failure program

Using the failure program in Fig. 12 we conducted a learning experiment with
artificial data sampled from the agree program. The sample size is 100 and the
original and learned parameters (by fgEM and by gEM) are shown below.

parameters original fgEM gEM
θa 0.4 0.4096 0.48
θb 0.6 0.6096 0.48

As seen clearly, parameters estimated by the gEM algorithm that does not
take failure into account are widely off the mark. Worse yet it cannot even dis-
31 We here decompose failure :- ∀ X not(agree(X)) into two clauses for readability.
32 They convey ‘continuation’ (data representing the remaining computation).

f0 is an initial continuation and bound to C in closure success0(C) and
closure agree0(C).
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tinguish between two parameters. We suspect that such behavior always occurs
when failure is ignored though data is generated from a failure model.

5.5 Constrained HMMs

As an instance of generative modeling with constraints that may fail, we in-
troduce constrained HMMs, a new class of HMMs that have constraints over
the states and emitted symbols [8]. Constraints are arbitrary and can be global
such as the total number of emitted symbols being equal to a multiple of three.
Constrained HMMs define conditional distributions just like CRFs (conditional
random fields) [45] but generatively. Our hope is that they contribute to the
modeling of complex sequence data and will be applied to, say bioinformatics,
computer music etc.

We illustrate constrained HMMs by an example borrowed from [8]. It models
the probabilistic behavior of a person on a diet. The situation is like this. He,
the person, takes lunch at one of two restaurants ‘r0’ and ‘r1’ which he proba-
bilistically chooses at lunch time. He also probabilistically chooses pizza (900) or
sandwich (400) at ‘r0’, and hamburger (500) or sandwich (500) at ‘r1’ (numbers
are calories). He is ordered by his doctor to keep calories for lunch in a week
less than 4000 in total. Furthermore he is asked to record what he has eaten in
a week like [p,s,s,p,h,s,h] and show the record to the doctor. He however
is a smart person and preserves it only when he has succeeded in satisfying the
constraint. Our task is to estimate his behavioral probability from the list of
preserved records.

r1r0

p,s h,s

Fig. 13. HMM for the dieting person

An HMM in Fig. 13 represents the probabilistic behavior of the dieting person
except the constraint on total calories for lunch in a week. A program in Fig. 14 is
a usual HMM program corresponding to Fig. 13 but augmented with a constraint
atom C < 4000 where C stands for accumulated calories. If the accumulated
calories, C, is not less than 4,000 on the seventh day, C < 4000 in the last clause
fails and so does the execution of the program (sampling).

The program looks self-explanatory but we add some comments for readabil-
ity. R is the current restaurant and msw(tr(R),R2) is used for a random choice
of the restaurant next day, R2. Likewise msw(lunch(R),D) stands for a random
choice of dish ‘D’ for lunch at ‘R’. We accumulate calories in C and record the
chosen dish in L. FOC eliminates not in the program and produces a failure
program that runs linearly in the number of days (‘N’).
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failure:- not(success).

success:- chmm(L,r0,0,7).

chmm(L,R,C,N):- N>0,

msw(tr(R),R2), % choose a restaurant

msw(lunch(R),D), % choose lunch

( R = r0,

( D = p, C2 is C+900 % pizza:900, sandwich:400

; D = s, C2 is C+400 ) % hanburger:400, sandwich:500

; R = r1,

( D = h, C2 is C+400

; D = s, C2 is C+500 ) ),

L = [D|L2],

N2 is N-1,

chmm(L2,R2,C2,N2). % recursion for next day

chmm([],_,C,0):- C < 4000. % calories must be < 4,000

Fig. 14. Constrained HMM program

Table 2. Estimated probabilities for the dieting person

sw name original value estimation(average)

tr(r0) r0 (0.7) r1 (0.3) r0 (0.697) r1 (0.303)
tr(r1) r1 (0.7) r0 (0.3) r1 (0.701) r0 (0.299)

lunch(r0) p (0.4) s (0.6) p (0.399) s (0.601)
lunch(r1) h (0.5) s (0.5) h (0.499) s (0.501)

With this synthesized failure program, we conducted a learning experiment
using artificial data sampled from the original program. After setting param-
eters as shown on the left column of original value in Table 2, we generated
500 examples and let the fgEM algorithm estimate parameters from these 500
examples. The right column in Table 2 shows shows averages of 50 experiments.
The result says for example that the probability of msw(tr(r0),r0) be true,
i.e. the probability of visiting the restaurant r0 from r0, is originally 0.7 and
the average of estimation is 0.697. It seems we have reasonably succeeded in
recovering original parameters.

In this section, we explained how to overcome probability-loss-to-failure in
generative modeling and introduced constrained HMMs, a class of HHMs with
constraints, as an application. We also introduced finite PCFGs in [46] as a
preliminary step toward approximate computation of probabilistic HPSGs. They
are PCFGs with a constraint on the size of parse trees and only a finite number
of parse trees are allowed for a sentence. Their unique property is that even if the
original PCFG suffers probability-loss-to-infinity, parameters can be estimated
from the constrained one. We conducted a learning experiment with a real corpus
and observed that the deterioration of parsing accuracy by truncating parse trees
to a certain depth is small [46].



XXX

6 Related work and discussion

There are three distinctive features which jointly characterize PRISM as a logic-
based probabilistic modeling language. They are the distribution semantics [2],
two-staged probability computation, i.e. probability computation combined with
tabled search [6, 47] and EM learning by the fgEM algorithm [8]. Since each topic
has a body of related work of its own, we only selectively state some of them.

6.1 Semantic aspects

First we deal with semantic aspects. When looking back on probabilistic rea-
soning in AI, one can observe at least two research streams. One of them fo-
cuses on the inference of probabilistic intervals, in a deductive style [48–50] or
in a logic programming style [51–54]. The other aims to define distributions.
The latter is further divided, for the sake of explanation, into three groups in
view of how distributions are defined. The first group uses undirected graphical
models [55, 56] and define discriminative models. The second group is based on
directed graphs, i.e. BNs and their combination with KBs (knowledge bases)
called KBMC (knowledge-based model construction) [57–67]. The third group
does not rely on graphs but relies on the framework of logic programming [2,
6, 7, 23, 24, 68–72] to which PRISM belongs, or on the framework of functional
programming [73].

Semantically the most unique feature of PRISM’s declarative semantics, i.e.
the distribution semantics, is that it defines unconditionally a global probability
measure over the set of uncountably many Herbrand interpretations for any
program in a first order language with countably many function and predicate
symbols. In short, it always uniquely defines a global and infinite distribution for
any program, even if it is a looping program such as p(X):-p(X),q(Y) or even
if it contains negation in some clause body [8]. Note that we are not claiming
that PRISM, an embodiment of the distribution semantics, can always compute
whatever probability defined by its semantics. Apparently it is impossible. All
it can do is to compute computable part of the distribution semantics.

Unconditional global distribution: The unconditional existence of global
distributions by the distribution semantics sharply differs from the KBMC ap-
proach. Basically in the KBMC approach, a BN is reconstructed from a KB and
an input every time the input is given. For example in the case of PRMs (prob-
abilistic relational models) [61], when a new record is added to a RDB, a new
BN is constructed. Since different inputs yield different BNs, there is no global
distribution defined by the KB, which makes it difficult to consider observed
data as iid data from the KB.

Our semantics also sharply differs from SLP (stochastic logic programming)
[68, 7] which defines a distribution over SLD proofs, not over Herbrand interpre-
tations. Furthermore for a distribution to be definable in SLP, programs must
satisfy a syntactic condition called “range-restrictedness” which excludes many
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ordinary programs such as the member program. The same range-restrictedness
condition is imposed on BLPs (Bayesian logic programs) [62] and LBNs (logical
Bayesian networks) [67].

Infinite distribution: Concerning infinite distributions (infinite BNs), there
are attempts to construct them from infinitely many BNs. Kersting and De Raedt
showed the existence of infinite BNs defined by BLPs. They assume certain con-
ditions including the acyclicity of the ground level caller-callee relation defined
by a BLP program. Under the conditions, local BNs are constructed for each
ground atom in the least model and distributions defined by them are pasted
together to construct an infinite distribution using the Kolmogorov extension
theorem [65].

Similar conditions were placed when Laskey proposed a probabilistic logic
called MEBN (multi-entity BN) [74]. In MEBN local BNs are defined by schemes
containing logical variables and constraints. Assuming local BNs, when com-
bined, create no infinitely many parents (in terms of the CPT) or ancestors for
each node, the existence of a global infinite distribution satisfying each scheme
is proved by Kolmogorov’s extension theorem.

BLOG (Bayesian logic) proposed by Milch et al. [75] defines a distribution
over possible worlds consisting of objects through an infinite BN. In a BLOG
model (program), objects are generated according to certain statements contain-
ing CPTs. These statements generate structured random variables in conjunction
with their dependency as a local BN. CBNs (contingent BNs) are introduced to
precisely specify such dependency [76]. They are BNs with constraints attached
to edges such that edges are removed when constraints are not satisfied. The
existence of a global distribution satisfying these local BNs is proved when a
CBN satisfies conditions ensuring that every node has finitely many ancestors
and parents.

These approaches all unify infinitely many distributions defined by local BNs,
and hence need conditions to ensure the possibility of their unification. The
distribution semantics of PRISM on the other hand does not attempt to unify
local BNs to construct an infinite distribution. Instead it starts from a simple
infinite distribution (over msw atoms) that surely exists and extends it by way of
fixpoint operation which is always possible, thereby achieving the unconditional
definability of infinite distributions.

Independent vs. dependent choice: In the distribution semantics, PDB , the
distribution defined by a program DB , is parameterized with a base distribu-
tion PF . PRISM implements the simplest PF , a product measure of independent
choices represented by msw atoms like PHA [23], aiming at efficiency of prob-
ability computation. At first one may feel that msw atoms are not enough for
complex modeling because they cannot represent dependent choices. In reality,
however, they can, because the name of an msw switch is allowed to be any
term and hence, one choice msw(s,X) can affect another choice msw(t[X ],Y )
through their common variable X . The realization of dependent choice by this
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“name trick” is used to write a naive BN program and also used to implement
an extension of PCFGs called pseudo context sensitive models [6]. We note that
mutually dependent choices can be implementable by substituting a Boltzmann
machine for PF .

6.2 Probability computation

Two-staged probability computation: The second unique feature of PRISM
is a way of probability computation. To compute a probability PDB (G) of a top-
goal atom (query) G from a distribution PDB defined by a program DB at
the predicate level, we first reduce G by tabled search to an explanation graph
Expl(G) for G such that Expl(G) ⇔ G. Expl(G) is a compact propositional
formula logically equivalent to G and consists of ground user atoms and msw
atoms. Then we compute PDB (Expl(G))(= PDB (G)) as the generalized inside
probability by dynamic programming assuming the exclusiveness of disjuncts
and the independence of conjuncts in Expl(G).

The reduction from a predicate level expression (goal) to a propositional ex-
pression (explanation graph) can have three favorable effects though it sometimes
blows up the size of the final expression. The first one is that of pruning, detect-
ing impossible conditions corresponding to zero probability. The second one is to
be able to explicitly express exclusiveness as a disjunction and independence as a
conjunction. In an attempt by Pynadath and Wellman that formulates a PCFG
by a BN [77], they end up in a very loopy BN partly because zero probability
and exclusiveness are not easy to graphically express in BNs. To state the last
one, we need some terminology.

Value-wise vs. variable-wise: We say that random variables are used variable-
wise in an expression if they are treated uniformly in the expression regardless
of their values. Otherwise we say they are used value-wise. For example BNs are
variable-wise expressions and their standard computation algorithm, BP, is a
variable-wise algorithm because uniform operations are performed on variables
regardless of their values whereas, for instance, d-DNNFs after optimization
used in ACE are value-wise. The point is that value-wise expressions have a
bigger chance of sharing subexpressions (and hence sharing subcomputations in
dynamic programming) than variable-wise expressions because for sharing to oc-
cur in a value-wise expression, it is enough that only some values, not all values of
a random variable, are shared by some subexpressions. Also we should note that
value-wise dependency is always sparser than variable-wise dependency because
0 probability cuts off the chain of value-wise dependency.

Returning to PRISM, in a program, a random variable X is expressed as
a logical variable X in an msw atom like msw(id, X), but a search process in-
stantiates it, differently depending on the context of its use, to ground terms
like msw(id, t1), . . . , msw(id, tn) resulting in a value-wise explanation graph. The
reduction to a value-wise expression is a key step to make possible O(L3) com-
putation of a sentence probability by PRISM [6] where L is the sentence length.
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Moreover, it was empirically shown that for moderately ambiguous PCFGs, the
probability computation by PRISM is much faster than the one by the stan-
dard Inside-Outside algorithm [6]. Another example of value-wise computation
is the left-to-right HMMs shown in Fig. 1. Their direct implementation by a BN
(Fig. 6) would require O(N2) time for probability computation where N is the
number of states though their transition matrix is sparse. Contrastingly PRISM,
exploiting this sparseness by value-wise computation, realizes O(N) computation
as can be seen from Fig. 4.

Propositionalized BNs: It is interesting to note that probability computation
of BNs by way of explanation graphs such as the one in Section 3 agrees with
the emerging trend of “propositionalized BNs” which computes probabilities of
a BN by converting it to a value-wise propositional level formula [17, 34, 35].
For example in [17] Chavira and Darwiche considered a BN as a multi-variate
polynomial composed of binary-random variables representing individual values
of a random variable and compile the BN into an arithmetic circuit. They em-
pirically showed that their approach can efficiently detect and take advantage
of CSI (context-specific independence) [38] in the original BN. McAllester et al.
proposed CFDs (case factor diagrams) which are formulas representing a “fea-
sible” set of assignments for infinitely many propositional variables. They can
compute probabilities of linear Boolean models, a subclass of log-linear mod-
els [34]. In a CFD, subexpressions are shared and probabilities are computed by
dynamic programming, thus realizing cubic order probability computation for
PCFGs. Mateescu and Dechter introduced AND/OR search trees representing
variable elimination of BNs propositionally [26]. Value dependency of nodes in
a BN is expressed as an AND/OR search tree but identical subtrees are merged
to produce a “minimal AND/OR graph” which realizes shared probability com-
putation.

The main difference between PRISM and these approaches is that they ma-
nipulate propositional level expressions and predicate level expressions are out
of concern. In the case of CFDs for example, programming for a PCFG starts
from encoding parse forests of sentences. Contrastingly in PRISM, we do not
encode parse forests but encode the PCFG itself using high level expressions in
predicate logic. A subsequent search process automatically reduces a sentence
to propositional formulas representing parse forests. Our approach thus makes
compatible the ease and flexibility of high level programming and the computa-
tional efficiency in low level probability computation. However hitting the right
balance between generality and efficiency in designing a programming language
is always a difficult problem. PRISM is one extreme aiming at generality. A re-
cent proposal of LOHMMs (logical hidden Markov models) by Kersting et al. [71]
takes an intermediate approach by specializing in a logical extension of HMMs.

Eliminating conditions: Finally we discuss the possibility of eliminating some
conditions in Subsection 2.2. The first candidate is the exclusiveness condition on
disjunctions. It can be eliminated by appealing to general computation schemes
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such as the inclusion-exclusion principle generalizing P (A∨B) = P (A)+P (B)−
P (A ∧ B) and the sum-of-disjoint products generalizing P (A ∨ B) = P (A) +
P (¬A∧B), or BDDs (binary decision diagrams) [78]. ProbLog, seeking efficiency,
uses BDDs to compute probabilities of nonexclusive disjunctions [72]. Although
it seems possible in principle to introduce BDDs to PRISM’s explanation graphs
at the cost of increasing time and memory, details are left as future work.

The second candidate is the acyclicity condition. When eliminated, we might
have a “loopy” explanation graph. Such a graph makes mathematical sense if,
like loopy BP, loopy probability computation guided by the graph converges.
There is a general class of loopy probability computation that looks relatively
simple and useful; prefix computation of PCFGs. Given a string s = w1, . . . , wk

and a PCFG, we would like to compute the probability that s is an initial
string of some complete sentence s = w1, . . . , wk, . . . , wn derived from the PCFG.
There already exists an algorithm for that purpose [79] and we can imagine a
generalized prefix computation in the context of PRISM. We however need to
consider computation cost as the resulting algorithm will heavily use matrix
operations to compute “loopy inside probability.”

6.3 EM learning

The advantage of EM learning by PRISM is made clear when we are given the
task of EM learning for N new probabilistic model classes like BN, HMMs,
PCFGs etc. We write N different programs and apply the same algorithm, the
(f)gEM algorithm, to all of them, instead of deriving a new EM algorithm N
times. The differences in model classes are subsumed by those in their expla-
nation graphs and do not affect the gEM algorithm itself. The cost we have to
pay for this uniformity however is time and space inefficiency due to the use of
predetermined data structure, explanation graphs, for all purposes. For example,
HMMs in PRISM require memory proportional to the input length to compute
forward-backward probabilities while a specialized implementation only needs a
constant space.

Another problem is that when we attempt EM learning of a generative model
with failure, we have to synthesize a failure program that can represent all failed
computation paths of the original program for the model. When models are
variants of HMMs like constrained HMMs in Section 5, this synthesis is always
possible. However for other cases including PCFGs with constraints, the synthe-
sis is future work.

7 Conclusion

PRISM is a full programming language system equipped with rich functionalities
and built-in predicates of Prolog enhanced by three components for probabilistic
modeling. The first one is the distribution semantics [2], a measure theoretical se-
mantics for probabilistic logic programs. The second one is two-staged probability
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computation [6, 47], i.e. generalized IO computation after tabled-search for ex-
planation graphs. The third one is an EM algorithm, the fgEM algorithm [8], for
generative models allowing failure. PRISM not only uniformly subsumes three
representative model classes, i.e. BNs, HMMs, and PCFGs as instances of the
distribution semantics at the semantic level but uniformly subsumes their prob-
ability computation with the same time complexity, i.e. BP on junction trees
for BNs [10], the forward-backward algorithm for HMMs, and IO probability
computation for PCFGs respectively as instances of generalized IO probability
computation for logic programs [6].

Despite the generality of computational architecture, PRISM runs reasonably
fast compared to the state-of-art systems as demonstrated in Section 4 as long
as we accept memory consumption for tabling. We also emphasize that PRISM
facilitates the creation and exploration of new models such as constrained HMMs
as exemplified in Section 5. Hence we believe PRISM is now a viable tool for
prototyping of various probabilistic models.

There remains much to be done. The biggest problem is memory consump-
tion. Currently terms are created dynamically by pointers and every pointer
occupies 64 bits. This is a very costly approach from a computational viewpoint
though it gives us great flexibility. Restricting the class of admissible programs
to make it possible to introduce array is one way to avoid the memory problem.
The second one is to make PRISM more Bayesian. Currently only MAP estima-
tion is possible though we are introducing built-in predicates for BIC [80] and
the Cheeseman-Stutz criterion [81]. Probably we need a more powerful Bayesian
computation such as variational Bayes to cope with data sparseness. Also paral-
lelism is inevitable to break computational barrier. Although an initial step was
taken toward that direction [82], further investigation is needed.
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