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Abstract

In this paper, we investigate loopy BP (belief propagation) which

is at the crossroads of Bayesian networks, statistical physics and

error correction decoding. It is a method of computing exact

and approximate marginals based on a minimization of varia-

tional free energy, and o�ers a quite powerful means for oth-

erwise computationally intractable problems. We re-examine its

theoretical background, the Kikuchi approximation, and propose

Cluster BP, a mild generalization of loopy BP that can compute

some class of Kikuchi approximations. We also propose Cluster

CCCP as a convergent version of Cluster BP to compute local

minima of Kikuchi approximations.
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1 Introduction

In this paper, we investigate1 loopy BP (belief propagation) which is at
the crossroads of Bayesian networks, statistical physics and error correction
decoding. It is a method of computing exact and approximate marginals
based on the minimization of variational free energy, and o�ers a quite
powerful means for otherwise computationally intractable problems.

Loopy BP came out of the study of Bayesian networks2 [13, 3, 5]. Pearl
proposed the BP (belief propagation) algorithm for computing marginal dis-
tributions [12]. It is a message passing algorithm that propagates messages
(probability distributions) over a Bayesian network. When the network is
singly connected, i.e. no loop appears when viewed as an undirected graph,
it computes exact marginals in time linear in the size of the network [12].3

As BP is just a local message passing algorithm, it is applicable even when
the network contains loops (hence the name \loopy BP"), though at the
risk of non-convergence. Historically while what loopy BP does was obscure
in the case of loopy networks, experiments revealed that it is very versa-
tile and e�ective, and sometimes can give remarkably good approximate
marginals especially when used for error correction decoding [8, 10, 18]. It
was not until recently that Yedidia et al. discovered that what loopy BP
actually does is computing a stationary point of a certain quantity known
as the Bethe approximation to the free energy in statistical physics [19].
The Bethe approximation is just one of the possible approximations to the
free energy. Yedidia et al. proposed GBP (generalized BP), a new message
passing algorithm that yields, when it converges, a stationary point of the
Kikuchi approximation which is more complicated but more accurate than
the Bethe approximation as a generalization of the Bethe approximation
[9, 19].4 Yuille proposed an alternative to GBP, CCCP double-loop algo-
rithm5, that is guaranteed to converge to local minima of the Bethe and
Kikuchi approximations. This convergence property is achieved by his new
optimizing technique for the class of functions decomposable as a sum of
convex and concave functions [21].

While loopy BP is only able to compute stationary points of Bethe
approximations, it is simple and e�cient. Contrastingly GBP and CCCP
for Kikuchi approximations are quite general but rather complex. In this

1Our investigation is motivated by PRISM, a general symbolic-statistical mod-
eling language which we have been developing for years [14, 16, 17]. It is based on
a rigorous mathematical semantics and enables one to build a complex statistical
model as a PRISM program and e�ciently learn parameters embedded in the pro-
gram through the graphical EM algorithm [15, 17]. The computational e�ciency
is achieved however by restricting programming style so that it complies with as-
sumptions of probability computation employed by PRISM. We are seeking for a
general yet robust method of probability computation to realize more freedom of
PRISM programming.

2A Bayesian network is a �nite directed acyclic graph representing probabilis-
tic causal relationships between random variables. Vertices are random variables
which are connected by directed edges from parent vertices to child vertices. A
conditional distribution p(X = x j Y1 = y1; : : : ; Ym = ym) (m � 0) is associ-
ated with each vertex X and its parents Y1; : : : ; Ym. The graph de�nes a joint
distribution as a product of these conditional distributions.

3For Bayesian networks which are not singly connected, the junction tree al-
gorithm [7] is available to e�ciently compute marginal distributions.

4Descriptions of the Bethe and Kikuchi approximations in this paper are largely
due to [19].

5\CCCP" stands for the Concave-Convex Procedure.
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paper, we take an intermediate approach. Keeping the simplicity of loopy
BP, we extend it to the Cluster BP algorithm allowing messages to con-
tain more than one variable so that it can compute Kikuchi approximations
when a certain condition is satis�ed. Furthermore, to remove the possibil-
ity of non-convergence, we derive the Cluster CCCP algorithm following
Yuille's convex-concave decomposition. It always converges and gives the
same result as the Cluster BP algorithm.

In the sequel, we �rst quickly review the problem to be solved. We
then introduce the Kikuchi approximation in a slightly generalized form by
dropping the requirement that clusters used in the approximation must be
closed under intersection. We also introduce a class of undirected labeled
graphs called cluster graphs. After these preparations, two new algorithms,
Cluster BP and Cluster CCCP, are proposed which run on cluster graphs.
Both compute stationary points of (generalized) Kikuchi approximations
but the latter is convergent and guaranteed to compute a local minimum.
The reader is assumed to be familiar with Bayesian networks and the junc-
tion tree algorithm [4, 3].

2 Preliminaries

2.1 Variable free energy

We assume a discrete random vector X = (X1; : : : ; Xn) of n dimension is
given and has a joint distribution p(x) = p(x1; : : : ; xn) such that

� p(x) is always positive, p(x) > 0 for any x.

� p(x) is presented as a product of positive functions  �(x�) called
potentials.

p(x) = �
Y
�2P

 �(x�) (1)

=
1

Z
e�E(x)

where

E(x)
def
=

X
�2P

� ln �(x�) (2)

Z
def
= ��1 (3)

=
X
x

Y
�2P

 �(x�)

Here � is a normalizing constant and Z is a partition function. E(x) is
considered to be the \energy" of a state x. We call each i (1 � i � n)
a variable index. Let � denote a sub-vector of (1; : : : ; n), the vector of
all variable indecies, and P be a collection of such sub-vectors. x� then
stands for a sub-vector of (x1; : : : ; xn) corresponding to �. For instance, if
x = (x1; x2; x3; x4) and � = (2; 4), we have x� = (x2; x4). For convenience,
we identify a sub-vector � = (i1; : : : ; ik) (1 � k � n) with the set fi1; : : : ; ikg
like � = (2; 4) = f2; 4g. Because both notations are mutually convertible,
such treatment does not cause confusion.

A non-empty subset � of f1; : : : ; ng is called a cluster and if � is in P, it
is referred to as a potential cluster. When � and � are clusters, so are �\�,
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� [ � and � n �. Operations on clusters re
ect on vectors. For example,
put � = f1; 2;3g and � = f2; 3;4g. Then x�\� = xf2;3g = (x2; x3) and
x�n� = xf1g = x1. A � B means A is a proper subset of B whereas A � B

means A � B or A = B.
We de�ne the variational free energy F (b) w.r.t. the energy E(x) by

F (b)
def
= (average energy)� (entropy)

=
X
x

b(x)E(x) +
X
x

b(x) ln b(x) (4)

where b(�) is a test distribution. Because F (b) =
P

x b(x) ln
�
b(x)
p(x)

�
� lnZ

and the Kullback-Leibler divergence
P

x
b(x) ln

�
b(x)
p(x)

�
is non-negative and

zero only when b(�) = p(�), F (b) takes a minimum value if and only if
b(�) = p(�). In other words, we have an equation p = argminb F (b).

Suppose a distribution p(x) is given by (1). For the variational free
energy F (b), we can de�ne its approximation, the Kikuchi approximation
FK(fb�g) such that F (b) � FK(fb�g).6 Combining the Kikuchi approx-
imation with p = argminb F (b), we obtain an approximation scheme for
marginal distributions fp�(x�)g of p(x):

fp�g � argminfb�gFK(fb�g):

We read this equation from right to left and calculate approximate marginal
distributions fp�g by minimizing the functional FK(fb�g) with respect to
fb�g as variational variables. In view of the signi�cance of computing
marginals in many �elds including pattern recognition, natural language
processing, robotics, bioinformatics, coding theory etc on one hand and
the di�culty of their exact computation on the other hand, it is quite im-
portant to develop e�cient algorithms for computing argminfb�gFK(fb�g).
The objective of this paper is to propose such algorithms while preserving
the simplicity of BP.

2.2 The Kikuchi approximation

In this subsection, we introduce the Kikuchi approximation [9, 19] in a
slightly generalized form. Let P be a set of potential clusters appearing in
(1). For P we introduce another set U of clusters such that

� for any � in P, there exists the smallest � 2 U that includes �, i.e.
� � � and if �0 � � then � 0 � � for any �0 2U.7

U is called a set of clusters for P. We consider U as a partially ordered set
ordered by set inclusion ordering. Let B be the set of maximal clusters in
U. If U is generated from B by taking all possible non-empty intersections
of elements in B, i.e. U = f�1 \ : : : \ �h j �i 2 B;0 < h; 1 � i � hg, a
cluster in U is called a Kikuchi cluster, and U a set of Kikuchi clusters for
P.

We associate an overcounting number a� with a cluster � in U which
is inductively de�ned from maximal clusters as follows[9, 19].

6b�(x�) (resp. p�(x�) ) denotes a marginal distribution of b(x) (resp. p(x))
marginalized to x�.

7This condition is trivially satis�ed by putting U = P, but for the sake of
freedom of approximations, we prefer to introduce U independently of P.
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(
a�

def
= 1 if � is maximal in U

a�
def
= 1 �

P
�:���;�2U a� o.w.

By de�nition X
�:�2U;���

a� = 1 for 8� 2 U:

Introduce E+
� (x�)

def
= � ln �(x�) and transform the average energyP

x b(x)E(x) using the above property of overcounting numbers as follows.

X
x

b(x)E(x) =
X
x

b(x)
X

�:�2P

E+
� (x�)

=
X

�:�2P

X
x�

b�(x�)E
+
� (x�)

=
X

�:�2P

0
@ X
�2U;���

a�

1
AX

x�

b�(x�)E
+
� (x�)

=
X
�2U

a�
X
x�

b�(x�)E�(x�) (5)

Here b�(x�)
def
=

P
x[n]n�

b(x) ([n] = f1; : : : ; ng) is a marginal distribu-

tion and E�(x�)
def
=
P

�:�2P;���E
+
� (x�) is the energy of cluster �. Now

the average energy is expressed as a linear combination of average cluster
energies. It is unfortunate that a similar transformation of the entropy
S = �

P
x b(x) ln b(x) is impossible because of non-linearity of the entropy

function. Yet we can derive its approximation as a linear combination of
cluster entropies. First introduce S�, the entropy of a cluster � by

S�
def
= �

X
x�

b�(x�) ln b�(x�):

Inductively de�ne S+� from minimal elements of U by(
S+�

def
= S� if � is minimal in U

S+�
def
= S� �

P
�:���;�2U S

+
� o.w.

For every � 2 U, we have

S� =
X

�:���;�2U

S+� :

Accordingly if we assume S �
P

�2U S
+
� ,

8 we see

S �
X
�2U

S+�

=
X
�2U

0
@ X

�2U;���

a�

1
A S+�

=
X
�2U

a�S�: (6)

8This assumption is justi�ed empirically in statistical physics. The reader is
advised to see [9] for the development of the Kikuchi approximation.
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Putting (5) and (6) together, the variational free energy F (b) is approxi-
mated as follows.

F (b) =
X
x

b(x)E(x) +
X
x

b(x) ln b(x)

�
X
�2U

a�

 X
x�

b�(x�)E�(x�) +
X
x�

b�(x�) ln b�(x�)

!

We de�ne the generalized 9 Kikuchi approximation ~FK(fb�g) for F (b) by

~FK(fb�g)
def
=

X
�2U

a�

 X
x�

b�(x�)E�(x�) +
X
x�

b�(x�) ln b�(x�)

!

=
X
�2U

a�
X
x�

b�(x�) ln

�
b�(x�)

��(x�)

�
(7)

where

��(x�)
def
= e�E�(x�)

= exp

0
@ X
�:�2P;���

�E+
� (x�)

1
A

=
Y

�:�2P;���

 �(x�): (8)

When U is a set of Kikuchi clusters for P, ~FK(fb�g) is identical to
the Kikuchi approximation de�ned in [19]. The Bethe approximation is a
special case of the Kikuchi approximation where U is a union of clusters B
of the form fi; jg (i 6= j) and a set of intersections f�1 \ �2 j �1; �2 2 Bg.

3 Cluster graphs

Just like Pearl's BP runs on Bayesian networks and the junction tree al-
gorithm runs on junction trees, our new algorithms, Cluster BP and Clus-
ter CCCP, run on cluster graphs which can be seen as a generalization of
junction trees to graphs and also can be seen as a re�nement of \junction
graphs" [2] with a partial ordering over clusters and a suitable condition
for computing the Kikuchi approximation. From here on for brevity, we
interchangeably use n1 � � �nh for cluster fn1; : : : ; nhg like 123 for f1; 2;3g.

Let U be a set of clusters for P. A labeled undirected graph GU is said
to be a cluster graph for U if vertices and edges are labeled by clusters in
U as follows and if there is such a graph, we say U has a cluster graph.10

� Every maximal element in U appears exactly once in GU as a label
of a vertex.

9The term \generalized" is added to make clear the distinction between the
Kikuchi approximation de�ned in [19] and the one de�ned here which does not
require U to be closed under intersection.

10
U may not have a cluster graph. For instance U1 =

f1467; 2457; 3567; 47; 57; 67g has a cluster graph but U2 = U1 [ f7g has
no cluster graph. If the Hasse diagram HU of U is a tree, then HU is a
cluster graph for U. In general however, �nding an e�cient algorithm for the
construction of cluster graphs is a future research topic.
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� Suppose vertices v1 and v2 are respectively labeled �1 and �2. The
edge connecting v1 and v2, if any, is labeled � � �1 \ �2 (� 6= ;).
When the equality � = �1 \ �2 holds for every label on an edge, we
say GU is regular.

� The tree condition is satis�ed: for every � 2 U, the subgraph of GU
consisting only of the vertices and edges whose label include � is a
tree.

Please note that we allow the same cluster to occur (as a label) more than
once in a cluster graph. So vertices and edges can be labeled by a common
cluster. By the way it is obvious that junction trees are cluster graphs such
that nodes are cliques and the tree condition is satis�ed.

We have a look at examples of cluster graphs.

(A) The tree condition
  satisfied w.r.t. 

(B) The tree condition
  violated w.r.t. 

24 14

12
34
23
4 34

12
4

13
4

23

5 8

14 18

12
34
23
5

12
34

16
8

14
78

58
9

AU BU

Figure 1: The left graph (A) satis�es the tree condition w.r.t. UA.
The right graph (B) violates the tree condition w.r.t. UB.

The left graph (A) in Figure 1 is a cluster graph for UA = f1234; 2356;
589; 1478; 168; 14; 18; 23; 1; 5; 8g. It is regular. The maximal clusters are
BA = f1234; 2356; 589; 1478; 168g. Since their intersections yield UA, UA

is a set of Kikuchi clusters for P = BA. Associated overcounting numbers
are a1234 = � � � = a168 = 1 for the maximal clusters, a23 = a5 = a8 =
a14 = a18 = �1 and a1 = 0 for the rest. We check the tree condition. For
example the subgraph comprised of vertices and edges that include cluster
23 is a tree. Similarly, the one containing 1, though it does not appear
as a label, is also a tree and so on. So (A) satis�es the tree condition.
The right graph (B) however does not satis�es the tree condition w.r.t. UB

= f124; 234; 134; 14; 24; 34; 4g because all vertices and edges include 4 and
they form a loop. (B) is not a cluster graph for UB (instead it is a cluster
graph for U0

B = UB n f4g).

(C) (D)

4

24

3414

4
4 44

24 3414

4 4

4

Figure 2: Cluster graphs with a multiple occurrence of the same label

In Figure 2 both (C) and (D) are cluster graphs for the same cluster set
UC = f14; 24; 34; 4g.
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We next prove a proposition that states the relationship between the
tree condition and overcounting numbers.

Proposition 3.1

Let GU be a cluster graph for U and a� an overcounting number of � 2U.
Also let V (�) and E(�) respectively be

V (�)
def
= the number of vertices whose label is �

E(�)
def
= the number of edges whose label is �.

We have a� = V (�)� E(�).

(Proof) By induction the size of clusters. Suppose � is a maximal cluster.
Then there is exactly one vertex labeled � whereas there is no edge labeled
� by the tree condition. So V (�) � E(�) = 1 = a�. Now suppose the
proposition holds for all � � �.

a� = 1 �
X

�:���2U

a�

= 1 �
X

�:���2U

(V (�)� E(�))

=

(
the number of edges
whose label properly
include �

)
�

(
the number of vertices
whose label properly
include �

)
+ 1

Recalling that the following holds

by the tree condition

V (�) +

(
the number of vertices
whose label properly
include �

)

= E(�) +

(
the number of edges
whose label properly
include �

)
+ 1

= V (�)�E(�) Q.E.D.

Proposition 3.2

Suppose U has a cluster graph.
Then for every � 2U, a� � 0 if � is not maximal in U.

(Proof) Let � be a non-maximal element in U. There is a maximal � 2
U such that � � �. If no vertex bears � as a label, then a� � 0 by
Proposition 3.1. Suppose otherwise and a vertex v is labeled by �. Due to
the tree condition, there is a path connecting v and w where w is the vertex
labeled by �. Let u, �0 and 
 respectively be a vertex on the path adjacent
to v, its label and the label of the edge connecting u and v. We have � � �0

and � � 
 because all vertices and edges on the path have a label containing
�. On the other hand, due to the labeling condition, 
 � �\�0 = �. Hence

 = �. We may assume �0 6= � (o.w. we merge u and v and their labels
�0). So there is a map from the vertex v labeled � and its edge labeled �
connecting to an adjacent node whose label is not �. Consequently, from
Proposition 3.1, we conclude a� � 0. Q.E.D.

We remark that \overcounting numbers of non-maximal clusters are not
positive" is a necessary condition for the tree condition but not a su�cient
condition.
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4 Cluster BP

In this section, we derive an iterative algorithm, Cluster BP, running on
cluster graphs which computes a stationary point of the generalized Kikuchi
approximation by exchanging messages between vertices in a cluster graph.

4.1 Deriving Cluster BP

We restate our assumptions and notational conventions.

� A joint distribution p(x) = �
Q

�2P  �(x�) is speci�ed by using
potential clusters P and potentials  �(x�). Potentials are always
positive. We aim is to e�ciently compute approximate marginals
fp�(x�)g byminimizing the generalized Kikuchi approximation ~FK(fb�g)
de�ned by (7).

� U is a set of clusters for P. ��(x�) is the �'s potential de�ned by

��(x�)
def
=
Q

�:�2P;���  �(x�).

� GU is a cluster graph for U. We denote by V (resp. E) the set of
vertices (resp. edges) in GU , and by v (resp. by e) the cluster labeling
a vertex v 2 V (resp. the cluster labeling an edge e 2 E).

Now back to the generalized Kikuchi approximation ~FK(fb�g). We
rewrite it using Proposition 3.1 as follows.

~FK(fb�g) =
X
�2U

a�
X
x�

b�(x�) ln

�
b�(x�)

��(x�)

�

=
X
�2U

(V (�)� E(�))
X
x�

b�(x�) ln

�
b�(x�)

��(x�)

�

=
X
�2U

V (�)
X
x�

b�(x�) ln

�
b�(x�)

��(x�)

�

�
X
�2U

E(�)
X
x�

b�(x�) ln

�
b�(x�)

��(x�)

�

=
X
v2V

X
xv

bv(xv) ln

�
bv(xv)

�v(xv)

�
�
X
e2E

X
xe

be(xe) ln

�
be(xe)

�e(xe)

�

Note the last equation is expressed solely in terms of marginal distributions
fbv(xv); be(xe)g that correspond to labels of vertices and edges in GU .

We minimize ~FK(fb�g) as a functional over fbv(xv); be(xe)g to obtain
approximate marginals but the minimization must be carried out under two
constraints.

Distribution:
P

xv
bv(xv) = 1 for every vertex v.

Consistency:
P

xvne
bv(xv) = be(xe) for every vertex v and its edge e.11

11For any clusters �; � (� � �), the tree condition guarantees the existence
of a path connecting � and � regardless of whether they label a vertex or not.
Hence, if the consistency holds along this path,

P
x�n�

b�(x�) = b�(x�) must hold

transitively.
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So we introduce a Lagrangian L = FK(fbv(xv); be(xe)g)+C with a constraint
term C.

C
def
=

X
e2E

X
xe

8<
:�ev1(xe)

0
@X
xv1ne

bv1(xv1)� be(xe)

1
A

+�
e
v2(xe)

0
@X
xv2ne

bv2(xv2)� be(xe)

1
A
9=
;+

X
v2V

�v

0
@X

xv

bv(xv)� 1

1
A

One thing must be noted here. Setting the derivatives of L with respect to
fbv(xv); be(xe)g equal to zero does not give an algorithm which exchanges
messages among vertices because L's variational variables correspond to la-
bels of vertices, not to vertices themselves (some vertices may have a com-
mon label). We therefore in
ate variational variables by introducing new
variables fbv(xv); be(xe)g which have one-to-one correspondence to vertices
v and edges e.12 However this change does not a�ect the solution because
the tree condition ensures that those vertices or edges with a common label
will have the same distribution. So our �nal Lagrangian becomes

L0 = ~F 0K + C0

~F 0K =
X
v2V

X
xv

bv(xv) ln

�
bv(xv)

�v(xv)

�
�
X
e2E

X
xe

be(xe) ln

�
be(xe)

�e(xe)

�
(9)

=
X
v2V

X
xv

bv(xv) ln

 
bv(xv)

�0v(xv)

!
�
X
e2E

X
xe

be(xe) ln be(xe) (10)

C0 =
X
e2E

X
xe

8<
:�ev1(xe)

0
@X
xv1ne

bv1(xv1 )� be(xe)

1
A

+�ev2 (xe)

0
@X

xv2ne

bv2(xv2)� be(xe)

1
A
9=
;

+
X
v2V

�v

0
@X

xv

bv(xv) � 1

1
A (11)

Here �evi(xe) (i = 1; 2) is a Lagrange multiplier for the vertex vi connected
by an edge e. It is introduced to ensure the consistency of marginal dis-
tributions associated with vi and e. In the transition from (9) to (10), we
performed an adjustment of potentials to displace potentials from edges,
which is performed nondeterministically as follows (there is a lot of free-
dom).

1. For each edge e, choose a vertex v from those connected by e. We
write v = �(e).

2. Let �uv(xv) be the potential of v and �e(xe) the potential of e. De�ne
the adjusted potential for v by

12If v 6= v0, bv(xv) and bv0 (xv0) are independent variables. If they have a
common label, i.e. v = v0 however, bv(xv) = bv0 (xv0) must hold. The same
applies to edges.
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�0v(xv) =
�v(xv)Q

e:�(e)=v �e(xe)

We say �e(xe) is moved to v.

We show examples. In Figure 3, suppose the potential of edge 23 is moved
to vertex 234, that of edge 4 to vertex 145, that of edge 1 to vertex 123
and that of edge 14 to vertex 145. The adjusted potentials are respectively

�0123(x123) =
�123(x123)
�1(x1)

, �0234(x234) =
�234(x234)
�23(x23)

, �0145(x145) =
�145(x145)

�4(x4)�14(x14)

and �014(x14) = �14(x14).

23 1

12
34
23
4 4

12
3

14
5

14

14

Figure 3: An adjustment of potentials

Now we calculate the derivatives of L0 with respect to fbv(xv); be(xe)g
and put them equal to 0. We here change notations. We use i; j; k for
vertices and denote by (ij) the edge connecting i and j and by ij the cluster
labeling (ij). The results are

bi(xi) = � �0i(xi)
Y

k2N(i)

e��
(ki)
k

(xki)

b(ij)(xij) = �0 e
��

(ij)
i

(xij)e
��

(ij)
j

(xij )

where N (i) is a set of the vertices adjacent to i and �; �0 are normalizing
constants. Applying the distribution and consistency conditions to a pair
of bi(xi) and b(ij)(xij) and introducing

mi .j(xij)
def
= � e

��
(ij)
i

(xij)

we reach the Cluster BP algorithm in Figure 4 that computes stationary
points of generalized Kikuchi approximations. A multi-variate function
mi .j(xij) is considered as a message from vertex i to vertex j. �0i(xi) is

an adjusted potential associated with i. N(i) n j denotes the set N(i) with
the vertex j deleted.

mi .j(xij) = �
X
xinij

�0i(xi)
Y

k2N(i)nj

mk .i(xki) (12)

bi(xi) = �0 �0i(xi)
Y

k2N(i)

mk .i(xki) (13)

Figure 4: Cluster BP
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This algorithm starts with initial messages fmi .j(xij) = 1g and iteratively

updates fmi .j(xij)g by substituting the right hand side of (12) for the

left hand side in�nitely (su�ciently) many times. After all fmi .j(xij)g

converge, i.e. they reach a �xed point satisfying (12), we substitute them
for fmk .i(xki)g in (13) and obtain approximate marginals fbi(xi)g of p(x).

4.2 Special cases

As cluster graphs are rather arbitrarily de�ned, we should not expect accu-
rate approximations without appropriate restriction on U. Proposition 4.1
is obvious from the derivation of Cluster BP.

Proposition 4.1

Suppose U is a set of Kikuchi clusters and there is a cluster graph GU for
U. Cluster BP running on GU computes a stationary point of the Kikuchi
approximation.

We now look into cases where GU is a tree. In this case observe that
bi(xi) is uniquely determined by (12) and (13) because starting from (13)
and replacing the l.h.s. mi .j(xij) of (12) with the r.h.s., we obtain, in

time linear in the size of the tree, bi(xi) expressed in terms of the sum and
product of adjusted potentials.

Proposition 4.2

Suppose U is closed under intersection13 and has a cluster graph GU which
is a tree. Then marginal distributions computed by Cluster BP using GU are
exact.

(Proof) First of all GU satis�es the so-called junction tree property.14 This
is because if z is in some cluster � 2 U, there is the smallest cluster � 2U

containing z as U is closed under intersection. The tree condition ensures
that vertices and edges whose label include � form a tree. As a result the
junction tree property is satis�ed.

Second, GU must be regular because otherwise there are vertices labeled
� and � respectively, and connected by an edge e whose label is 
 such that

 � � \ �. As � \ � 2 U, there is a path comprised of vertices and
edges whose label include � \ �. The path does not contain the edge e
however, which means that there is a loop containing 
, contradicting the
tree condition.

Thirdly, we can deduce using
P

�:�2U;��� a� = 1 that

Y
�2P

 �(x�) =
Y
�2U

(��(x�))
a�

=
Y
�2U

��(x�)
V (�)

��(x�)E(�)

=

Q
v2V �v(xv)Q
e2E �e(xe)

=
Y
v2V

�0v(xv)

13If �; � 2 U, then � \ � 2 U if � \ � 6= ;. Note that this condition is less
restrictive than the condition that U is a set of Kikuchi clusters. For example
U = f12; 1; 2g is not a set of Kikuchi clusters but closed under intersection.

14If a variable z occurs in the labels of vertices v and v0, there is a path con-
necting v and v0 such that every vertex and edge on the path contains z.
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where ��(x�) is a potential for the cluster �, �0v(xv) an adjusted potential
for v, and V is the set of vertices in GU .

From
Q

�2P  �(x�) =
Q

v2V �
0
v(xv) and the fact that GU is a regu-

lar cluster tree, it is straightforward to prove that marginal distributions
fbi(xi)g de�ned by (12) and (13) are exact (details omitted). Q.E.D.

We state some remarks below. When GU is a junction tree (considering
separators as clusters labeling edges), Cluster BP is equivalent to the cele-
brated junction tree algorithm [7]. Proposition 4.2 covers however also cases
where some clusters are subsets of others thereby GU being not a junction
tree.

Aji and McEliece introduced junction graphs and the Bethe-Kikuchi
approximation to the variational free energy [2]. They showed how an it-
erative message passing algorithm running on junction graphs called the
GDL (generalized distribution law) [1] which is identical to Cluster BP, is
derived from the Bethe-Kikuchi approximation. Their introduction of the
Bethe-Kikuchi approximation however was done intuitively and it remained
unclear under what condition the GDL algorithm computes the Kikuchi ap-
proximation. Let GJ be a junction graph for U. In GJ , edges are labeled by
clusters not necessarily from U and the tree condition is imposed on all but
only singleton clusters regardless of whether U includes singleton clusters
or not. As a result there are cases where the Bethe-Kikuchi approximation
de�ned by GJ does not coincide with the Kikuchi approximation. By im-
posing the tree condition on every cluster in U, we assure that when U is a
set of Kikuchi clusters, any cluster graph for U de�nes the (same) Kikuchi
approximation thereby Cluster BP computing it.

Lastly, suppose U consists of potential clusters and singletons, i.e. U =
P [ ff1g; : : : ; fngg. If GU is a bipartite graph with P on one side and
f1g; : : : ; fng on the other side, connecting fkg with � 2 P containing k,
Cluster BP is reduced to the sum-product algorithm [6].

5 Cluster CCCP

Loopy BP (resp. GBP) can compute stationary points of Bethe approxima-
tions (resp. Kikuchi approximations) but has the risk of non-convergence.
Yuille recently proposed a new approach to the minimization of Bethe and
Kikuchi approximations based on the convex-concave decomposition of a
target function [21]. His algorithm is called the CCCP double-loop algo-
rithm and computes local minima of Bethe and Kikuchi approximations.

The basic idea is as follows. Suppose a multi-variate function f(x) is
represented as a sum of a convex function and a concave function. For con-
venience we regard this sum, convex-concave decomposition, as a di�erence
of convex functions g(x) and h(x) like f(x) = g(x)�h(x) (note that �h(x)
is concave). By convexity, we have (1 � r)g(x) + rg(x + d) � g(x + rd) for
any real vector d and any real number r (0 < r < 1). By taking the limit
r ! 0, we know g(x + d) � g(x) � (d � 5g(x)) where � denotes an inner
product. Hence we have

g(xn) � g(xn+1) + ((xn � xn+1) � 5g(xn+1))

h(xn+1) � h(xn) + ((xn+1 � xn) � 5h(xn))

from which we obtain a recurrence formula generating a series fxng that
locally minimizes f (x).
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f (xn) = g(xn)� h(xn) � f (xn+1) = g(xn+1)� h(xn+1)
if 5 g(xn+1) = 5h(xn)

When the problem is a minimization of f(x) under linear constrains (ai�x) =
bi (1 � i � h), a similar treatment is possible and we can derive a series
that leads to a solution.

f(xn) � f(xn+1) if

5g(xn+1) = 5h(xn) +
Ph

i=1 ciai for some ci (1 � i � h)

Figure 5: Minimizing f(x) under linear constraints

Since Bethe approximations (resp. Kikuchi approximations) are repre-
sentable as a di�erence of two convex functions (of the form x ln

�
x
a

�
and

x lnx), Yuille applied the above method and derived an iterative algorithm
that is guaranteed to converge and guaranteed to compute local minima of
Bethe approximations (resp. Kikuchi approximations) [21].

We here follow [21] and apply his decomposition method to minimize the
generalized Kikuchi approximation ~FK(fb�g) in (7) or equivalently ~F 0K in
(10) and derive a new algorithm called Cluster CCCP. However, we carefully
choose a decomposition of ~FK(fb�g) so that the resulting Cluster CCCP
becomes a convergent generalization of Cluster BP.

We assume as before a distribution p(x) = �
Q

�2P  �(x�) and a cluster
graph GU for a set of clusters U for P and use V for the set of vertices and
E for the set of edges in GU . When i 2 V is a vertex, i is a cluster labeling
i. Also when (ij) 2 E is an edge connecting i and j, ij is a cluster labeling

the edge (ij). �0i(xi) is an adjusted potential of i. We rewrite ~F 0K in (10) as
follows.

~F 0K =
X
i2V

X
xi

bi(xi) ln

�
bi(xi)

�0i(xi)

�
�
X

(ij)2E

X
xij

b(ij)(xij) ln b(ij)(xij) (14)

=

8<
:
X
i2V

X
xi

bi(xi) ln

�
bi(xi)

�0i(xi)

�
+
X

(ij)2E

X
xij

b(ij)(xij) ln b(ij)(xij)

9=
;

�2
X

(ij)2E

X
xij

b(ij)(xij) ln b(ij)(xij) (15)

We apply the convex-concave decomposition to (15) and derive the Clus-
ter CCCP algorithm that locally minimizes the generalized Kikuchi approx-
imation. The result is displayed in Figure 6.15

The Cluster CCCP algorithm is executed as follows. First we initialize
fbi(xi); �i; �

j

(ij)(xij)g to 1 and sort edges f(ij) j (ij) 2 Eg in some order.

We then enter the inner loop (to satisfy linear constraints). In the loop,
we take an edge (ij) serially and update Lagrange multipliers �j(ij)(xij),

�i(ij)(xij) and �i respectively using (16), (17) and (18) in this order. After

updates for all f(ij) j (ij) 2 Eg are �nished, we enter the next cycle of

15It is possible to apply the convex-concave decomposition to (14) but the re-
sulting algorithm is messier than Cluster CCCP.
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e
2�j

(ij)
(xij ) =

P
xinij

�0i(xi) e
�
P

h2N(i)nj
�h(ih)(xih)

fb(ij)(xij)g2 e
�i
(ij)

(xij)

 
e�(1+�i)

e

!
(16)

e
2�i(ij)(xij ) =

P
xjnij

�0j(xj) e
�
P

h2N(j)ni
�h(jh)(xjh)

fb(ij)(xij)g2 e
�
j

(ij)
(xij )

 
e�(1+�j )

e

!
(17)

e(1+�i) =
X
xi

�0i(xi)e
�
P

h2N(i)
�h
(ih)

(xih) (18)

(Inner loop)

b0(ij)(xij) = fb(ij)(xij)g
2 e

�i
(ij)

(xij)+�
j

(ij)
(xij )+1 (19)

(Outer loop)

Figure 6: Cluster CCCP

the inner loop. We repeat the inner loop until all values of f�i; �
j

(ij)(xij)g

converge (the convergence is assured). After the convergence of the inner
loop, we execute the outer loop (19) once to update b(ij)(xij) to b

0
(ij)(xij).

At each update of the outer loop, the variational free energy decreases.
We iterate this inner loop{outer loop process enough times until the

outer loop converges. After the convergence of the outer loop (again the
convergence is assured), we calculate

b0i(xi) = e�(1+�i)�0i(xi) e
�
P

h2N(i)
�h(ih)(xih) (20)

to obtain approximate marginals b0i(xi) for vertex i.
We check the relationship between Cluster CCCP and Cluster BP.When

the outer loop converges, we have b0(ij)(xij) = b(ij)(xij) from which it follows
that

b(ij)(xij) = e
��i(ij)(xij)��

j

(ij)
(xij)�1:

By substituting this into (16) and (17), and replacing e
��i(ij)(xij) with

mi .j(xij), we reproduce Cluster BP in Figure 4. One may say therefore
that Cluster CCCP is a convergent version of Cluster BP which takes ad-
vantage of information about neighbor points of a stationary point.

6 Related work and discussion

As we pointed out before, the GDL algorithm for Bethe-Kikuchi approx-
imations proposed by Aji and McEliece [2] does not necessarily compute
Kikuchi approximations. To ensure the computation of the latter, we intro-
duced cluster graphs that are similar to junction graphs but more restrictive
in that all clusters must satisfy the tree condition.16 We derived the Cluster

16Note that this does not mean cluster graphs are a subclass of junction graphs.
This is because a cluster set U may lack some or all singleton clusters. For
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BP algorithm from the Kikuchi approximation with the help of the tree con-
dition and proved that when run on a cluster graph (for the set of Kikuchi
clusters), it computes a stationary point of the Kikuchi approximation. We
further proposed Cluster CCCP as a convergent generalization of Cluster
BP though it is not in the style of message passing.

(Generalized) Kikuchi approximations which Cluster BP and Cluster
CCCP can compute are however a proper subset of the ones computed by
a more general method such as GBP [19, 20]. By Proposition 3.2 we know
that Cluster BP does not work for Kikuchi approximations with positive
overcounting numbers for some nonmaximal clusters. For instance look
at again the left graph (B) in Figure 7 (= the right graph (B) in Fig-
ure 1) and UB = f124; 234;134; 14; 24; 34; 4g. UB is the set of Kikuchi
clusters for potential clusters f124; 234; 134g corresponding to the distribu-
tion p(x1234) = � 1(x124) 2(x234) 3(x134). Since the overcounting number
of f4g, the minimum cluster in UB, is 1, there is no cluster graph for UB.
So Cluster BP is not applicable to compute the Kikuchi approximation for
p(x1234).

Nevertheless it is still possible to compute generalized Kikuchi approxi-
mations by Cluster BP. One way is just deleting from the cluster set U the
culprits violating the tree condition. We for example delete f4g from UB.
Then the same graph, (B), is quali�ed as a cluster graph for the deleted
set U0

B = f124; 234; 134; 14; 24; 34g and hence Cluster BP would compute
a generalized Kikuchi approximation de�ned by U0

B. Another one, more
reasonable one, is to modify U a little and at the same time modify the
original graph accordingly so that the modi�ed U has a cluster graph. In
our case we choose one of the clusters, say 34 from UB, and replace it with
3. We also transform the original graph (B) into another graph (B') so that
(B') is a cluster graph for the modi�ed setUB0 = f124; 234; 134; 14; 24; 3; 4g.
See the right graph (B') in Figure 7.17

24 14

12
34
23
4 34

12
4

13
4

24 14

12
34
23
4 3

12
4

13
4

(B) The tree condition
  violated w.r.t. BU

(B’) The tree condition
  satisfied w.r.t. UB’

Figure 7: Turning into a cluster graph for UB0

In this case Cluster BP computes a generalized Kikuchi approximation
de�ned byUB0 using addition and multiplication over six messages. GBP on
the other hand can compute a more accurate approximation, the Kikuchi
approximation de�ned by UB, but requires addition, multiplication and
division over nine messages some of which are listed below.

example, although the right graph (B) in Figure 1 is a cluster graph for U0
B =

f124; 234; 134; 14; 24; 34g, it is not a junction graph for U0
B.

17By this transformation we lose the assurance of the consistency of marginals
between b234 and b134. We cannot expect

P
x2
b234(x234) =

P
x1
b134(x134), be-

cause clusters 234 and 134 have no path conveying information about the corre-
lation of x3 and x4.
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m124!14(x14) = �1

P
x2
 (x124)m234!24(x24)

m24!4(x4)

m234!24(x24) = �2

P
x3
 (x234)m134!34(x34)

m34!4(x4)

m134!34(x34) = �3

P
x1
 (x134)m124!14(x14)

m14!4(x4)
� � �

As indicated by the above example, it seems that there is a trade-o� between
the complexity of the algorithm and the accuracy of the approximation. We
leave it as a future work to investigate how to balance computational burden
against approximation accuracy.18

Pakzad and Anantharam generalized the Kikuchi approximation by al-
lowing Kikuchi clusters to be just a partially ordered set represented by a
Hasse diagram [11]. They proposed to vary the degree of approximation by
a number k in such a way that for every cluster j�j � k,

P
�:��� a� = 1.

7 Conclusion

We have proposed cluster graphs to compute generalized Kikuchi approxi-
mations by Cluster BP using multi-variate messages. It has been shown that
Cluster BP computes when converged the subclass of Kikuchi approxima-
tions for which cluster graphs exist. We also have proposed Cluster CCCP
which is more complicated than Cluster BP but is assured to compute local
minima of generalized Kikuchi approximations.
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