
Program extraction from quanti�ed decision trees

(Extended abstract)

Taisuke Sato

Tokyo Institute of Technology

sato@mi.cs.titech.ac.jp

1 Introduction

There are two approaches in the top-down construction

of �rst order decision trees that use de�nite or normal

clauses. The covering approach [5, 3] builds one clause

at a time that covers part of positive examples, and

repeats this process until no positive examples remain

uncovered. The divide-and-conquer approach [1, 2] on

the other hand divides the given examples into smaller

subsets recursively to get ones explaining positive ex-

amples.

While the divide-and-conquer approach is conceptu-

ally simple, and dividing examples by a literal is a di-

rect extension of the propositional case, there does not

seem to be much work on such approach in ILP. Quin-

lan [5] employed division by a literal but within the

covering approach. Bostr�om and Idestam-Almquist [2]

adopted division by unfolding, not by a literal. Bloc-

keel and De Raedt [1] used division by a literal but

without tuple extension and their synthesized clauses

have a ground head to represent a class name.

In this paper, we propose a new divide-and-conquer

approach to ILP to synthesize logic programs. It is

based on the construction of quanti�ed decision trees

explained in the next section. Our approach is thought

to be a logical re�nement of FOIL [5] in which exis-

tentially quanti�ed negative literals are used as well as

existentially quanti�ed positive literals. The synthe-

sized clauses may include universally quanti�ed for-

mulas in their body but can further be compiled into

de�nite clauses with disequality constraints by First

Order Compiler [6].

2 Quanti�ed decision trees

The basic idea of quanti�ed decision trees (QDT s) is

the same as that of FOIL. The di�erence lies in the

fact that we allow for existentially quanti�ed negative

literals when tuples are divided and extended. A quan-

ti�ed decision tree for a predicate p(z) is a tree in which

the root node is a most general atom1 representing a

clause head, and is connected via the top edge to a

binary subtree below it, representing the clause body.

In the subtree, each node is labeled with a literal, or

labeled \Positive", \Negative" or \Mixed" when they

are leaves. A set of tuples representing positive and

negative examples is attached to each edge. A tuple t

1For an n-ary predicate p, a most general atom is one that has
the form p(z) = p(X1; : : : ; Xn) where Xis are distinct variables.

is labeled + if it is a positive example or - otherwise.

By construction, t is always an extension of some tu-

ple t0 in the initial tuple set attached to the top edge.

When such relationship holds, we call t0 the founder

of t. Founders represent original positive and nega-

tive examples, and our purpose is to generate logical

descriptions of the founders (particularly of the posi-

tive ones). An example of quanti�ed decision tree is

shown in Figure 1. It illustrates a process of divid-

ing and extending positive and negative examples of

subset(A,B) representing the subset relationship (A

is a subset of B, using lists as sets). mem(C,B) says C is

a member of Prolog list B. We will extract a runnable

program from the tree in Section 3.

Negative

PositiveNegative

Negative

subset (A,B)

mem (C,B)

mem (C,A)

list (A)
2

ϕ

3ϕ

1ϕ

(top edge)

Figure 1: An example of a quanti�ed decision tree

We now describe an algorithm for constructing

quanti�ed decision trees. Suppose positive and neg-

ative examples of a predicate p(z) are given as a set of

tuples T0 in such a way that a tuple t 2 T0 labeled +

(resp. -) represents a positive example (resp. a nega-

tive example) of p(z). A quanti�ed decision tree QDT

for p(z) is constructed from T0 as follows. In the se-

quel, T+ (resp. T�) denotes the set of tuples labeled

+ (resp. -) in a set of tuples T . We assume a list S

of literals usable for tuple division is given together

with their positive and negative ground instances as

background knowledge BK. We also assume some stop-

ping condition is speci�ed beforehand to avoid wasting

time.

QDT construction algorithm

Initialization:

Create a root node and label it with a most gen-

eral atom p(z);

For every tuple t in T0, de�ne itself as its founder;

Create an outgoing edge (top edge) from the root

as the current edge;

Attach T0 to the current edge;

T = T0;

Recursion on edge:

Let T be a set of tuples attached to the current

edge;

Put T = T+ [T�;

If T+ = ;, create a leaf labeled \Negative" and

return;

If T� = ;, create a leaf labeled \Positive" and

return;

If neither T+ nor T� is empty, and the stopping

condition is satis�ed, create a leaf node labeled

\Mixed" and return; Otherwise

Literal selection:

By using BK, and based on some criterion

for literal selection2, select a best literal L[y]

from S where y is a set of new variables. We

call y new variables.

Node creation:

Create a node at the end of the current edge,

and label it with L[y].

Tuple division and extension:

Divide T by 9y L[y] into T l and T r;

where T l (resp. T r) is a set of tuples satis-

fying (resp. failing to satisfy) 9y L[y];

Extend tuples in T l with the value of y taking

from BK while inheriting their founders;

Tuple deletion:

If tuples t 2 T l and t0 2 T r have a common

founder, keep t and delete t0;

Edge creation:

Create an outgoing left edge and attach T l;

Create an outgoing right edge and attach T r ;

Recurse on both edges;

At Tuple deletion step, some tuples are deleted.

This may look strange but necessary for the reason be-

low. When new variables y are introduced at a node

N by a literal L[y], they are assumed implicitly ex-

istentially quanti�ed, and we associate with the left

2We use a criterion used in ID3 [4].

child node a tuple descriptor, a formula describing tu-

ples, of the form 9x; y (�[x]^L[x; y]) where x are new

variables introduced until N . It re
ects the fact that

tuples attached to the edge to the left child give vari-

able bindings to x and those bindings are extended to

y. The tuple descriptor of the right child node on the

other hand will be of the form 8x; y (�[x]! :L[x; y])

which says that no tuple can give variable bindings to

x that can be extended to y so that L[x; y] is satis�ed.

Suppose there are two extended tuples, one being

t satisfying L[x; y] and the other t0 having the same

founder as t but no extension at N . In such case, since

the descriptor associated with the right child node is

refuted by the very existence of t, and will never be

a correct description of the founder of t0, there is no

need to keep t0.

3 Program extraction

Let QDT be a quanti�ed decision tree constructed for

p(z). We extract a logic program from it. First of all,

we label binary edges with literals, and then by gath-

ering those literals on a path from the root to a leaf

labeled \Positive," we synthesize the clause body de-

scribing positive examples of the top node (head atom

in the clause).

Program extraction algorithm

Labeling edges:

For every internal node N in QDT, do as follows.

Let L[y] be a selected literal used to make child

nodes at N . Label the edge to the left child (resp.

right child) with L[y] (resp. :L[y]) and call it a

left literal (resp. right literal).

Tuple descriptor:

Let N0 be the root node of the binary subtree of

QDT. Associate true with N0 as a tuple descrip-

tor. For every non-leaf node N below N0, do as

follows. Let l1; : : : ; lm be left literals labeling the

edges from N0 down to N , and L[y] and :L[y]

respectively be the left literal and the right literal

labeling outgoing edges from N , where y is a set

of new variables introduced at N . Let x be a set

of all new variables introduced from N0 down to

N . Put

'l = 9x; y (
m^

k=1

lk ^ L[y])

'r = 8x; y (
m^

k=1

lk ! :L[y])

and associate 'l (resp. 'r) with the left child

(resp. right child) as tuple descriptors.

Synthesis:

Let N0 be as above. For every path � from N0 to

a leaf node NP labeled \Positive," do as follows.

Let 'P be the tuple descriptor associated with

NP , 'r1 ; : : : ; 'rh those associated with the nodes

on � that are a right child node. Put

	[z] = 'P ^ 'r1 ^ : : : ^ 'rh

Construct such 	[z] for each \Positive" node and

let them be 	1[z]; : : : ;	K [z]. Put

p(z) , 	1[z] ^ : : : ^	K [z]

In the case of the subset(A,B) example, descriptors

in Figure 1 become

'1 = 9C:mem(C;B)

'2 = 8C(:mem(C;B)! :mem(C; A))

'3 = 8C(:mem(C;B)! ::list(A))

We therefore get the following clause:

subset(A;B) , '1 ^ '2 ^ '3

Simpli�cation assuming there always exists an element

that does not belong to a given list ('1) and A is a list

('3) yields

subset(A; B) , 8C(mem(C; A)! mem(C; B))

which exactly describes the subset relationship ex-

pressed by (Prolog) lists.

4 First Order Compiler

Since the clause obtained in Section 3 contains a uni-

versally quanti�ed goal, and hence not executable di-

rectly. It is however an example of �rst order clauses

[6], and compilable, automatically by the First Order

Compiler [6], into a Prolog program with disequality

constraints. The First Order Compiler is a program

transformation system designed for the synthesis of

runnable logic programs from �rst order clauses whose

body can be an arbitrary �rst order formula. The com-

pilation is based on unfolding/folding transformation

applied to universal continuation forms representing

continuation passing style computation of logic pro-

grams.

Running the First Order Compiler for the following

�rst order clauses

subset(A,B):- all([X],(mem(X,A) -> mem(X,B))).

mem(X,[X|Y]).

mem(X,[H|Y]):-mem(X,Y).

gives,

subset(A,B):- closure_mem0(A,f0(B)).

closure_mem0(A,B):-

(\+ A=[C|D] ; A=[C|D],cont(C,B)),

(\+ A=[E|F] ; A=[E|F],closure_mem0(F,B)).

cont(A,f0(B)):- mem(A,B).

Here \+ A=[C|D] is a Prolog substitute for for

8C;D (A 6= [C|D]) which works correctly when A is

ground. If we know A is a list, the above program

reduces to a more familiar subset program:

subset(A,B):- closure_mem0(A,f0(B)).

closure_mem0(A,B):-

(A=[]

; A=[C|D],cont(C,B),closure_mem0(D,B)).

cont(A,f0(B)):- mem(A,B).

5 Discussion

We have implemented a quanti�ed decision tree gen-

erator on Prolog. The implementation is very naive,

and in the early stage of development. The example

in Figure 1 was generated from 412 positive examples

and 4212 automatically generated negative examples

of subset(A,B). We have tried some other synthesiz-

ing examples such as max(M,L) predicate (an integer M

is the maximum element in the list L) and sort(L,M)

(M is the sorted list of L), in which tuple division (and

extension) by existentially quanti�ed negative literals

were e�ective and lead to the success of program syn-

thesis. It is apparent however that various improve-

ments including the optimization of program extrac-

tion in Section 3 are necessary and the feasibility of

this approach should be tested on further examples.

Acknowledgments We greatly thank Mr.Kusama

and Mr.Miyagawa for the implementation and im-

provement of the �rst working QDT generator.

References

[1] Blockeel,H. and De Raedt,L., Top-down induction

of �rst-order logical decision trees, Arti�cial Intel-

ligence, 101, pp.285-297, 1998.

[2] Bostr�om,H. and Idestam-Almquist,P., Induction

of Logic Programs by Example-Guided Unfolding,

J. Logic Comput., 40(2-3), pp.159-183, 1999.

[3] Muggleton, S., Inverse entailment and PROGOL,

New Generation Computing 13, pp.245-286, 1995.

[4] Quinlan,J.R., Induction of Decision Trees, Ma-

chine Learning, 1, pp.81-106, 1986.

[5] Quinlan,J.R., Learning Logical De�nitions from

Relations,Machine Learning, 5, pp.239-266, 1990.

[6] Sato,T., First Order Compiler: A Determinstic

Logic Program Synthesis Algorithm, J. of Sym-

bolic Computation, 8, pp.605-627, 1989.

