Program extraction from quantified decision trees
(Extended abstract)

Taisuke Sato
Tokyo Institute of Technology
sato@mi.cs.titech.ac.jp

1 Introduction

There are two approaches in the top-down construction
of first order decision trees that use definite or normal
clauses. The covering approach [5, 3] builds one clause
at a time that covers part of positive examples, and
repeats this process until no positive examples remain
uncovered. The divide-and-conquer approach [1, 2] on
the other hand divides the given examples into smaller
subsets recursively to get ones explaining positive ex-
amples.

While the divide-and-conquer approach is conceptu-
ally simple, and dividing examples by a literal 1s a di-
rect extension of the propositional case, there does not
seem to be much work on such approach in ILP. Quin-
lan [5] employed division by a literal but within the
covering approach. Bostrom and Idestam-Almquist [2]
adopted division by unfolding, not by a literal. Bloc-
keel and De Raedt [1] used division by a literal but
without tuple extension and their synthesized clauses
have a ground head to represent a class name.

In this paper, we propose a new divide-and-conquer
approach to ILP to synthesize logic programs. It is

based on the construction of quantified decision trees

explained in the next section. Our approach is thought
to be a logical refinement of FOIL [5] in which exis-
tentially quantified negative literals are used as well as
existentially quantified positive literals. The synthe-
sized clauses may include universally quantified for-
mulas in their body but can further be compiled into
definite clauses with disequality constraints by First

Order Compiler [6].

2 Quantified decision trees

The basic idea of quantified decision trees (QDTs) is
the same as that of FOIL. The difference lies in the
fact that we allow for existentially quantified negative
literals when tuples are divided and extended. A quan-
tified decision tree for a predicate p(z) is a tree in which
the root node is a most general atom' representing a
clause head, and is connected via the top edge to a
binary subtree below it, representing the clause body.
In the subtree, each node is labeled with a literal, or
labeled “Positive”, “Negative” or “Mixed” when they
are leaves. A set of tuples representing positive and

negative examples is attached to each edge. A tuple ¢

1For an n-ary predicate p, a most general atom is one that has
the form p(z) = p(X1,..., Xn) where X;s are distinct variables.

is labeled + if it is a positive example or - otherwise.
By construction, t is always an extension of some tu-
ple ¢’ in the initial tuple set attached to the top edge.
When such relationship holds, we call ¢ the founder
of t. Founders represent original positive and nega-
tive examples, and our purpose is to generate logical
descriptions of the founders (particularly of the posi-
tive ones). An example of quantified decision tree is
shown in Figure 1. It illustrates a process of divid-
ing and extending positive and negative examples of
subset (4,B) representing the subset relationship (&
is a subset of B, using lists as sets). mem(C,B) says C is

a member of Prolog list B. We will extract a runnable

program from the tree in Section 3.

subset (A,B)

(top edge)
1 mem (C,B)
¢1 (T T \
mem (C,A) ! Negative!
/
S 0,
! \ .
' Negative! Tlist (A)
T T T T
\\ Negative/\

Figure 1: An example of a quantified decision tree

We now describe an algorithm for constructing
quantified decision trees. Suppose positive and neg-
ative examples of a predicate p(z) are given as a set of

tuples Ty in such a way that a tuple ¢ € Ty labeled +

(resp. -) represents a positive example (resp. a nega-
tive example) of p(z). A quantified decision tree QDT
for p(z) is constructed from Ty as follows. In the se-
quel, T* (resp. T~) denotes the set of tuples labeled
+ (resp. -) in a set of tuples T. We assume a list S
of literals usable for tuple division is given together
with their positive and negative ground instances as
background knowledge BK. We also assume some stop-
ping condition is specified beforehand to avoid wasting

time.

QDT construction algorithm

Initialization:
Create a root node and label it with a most gen-
eral atom p(z);
For every tuple £ in Ty, define itself as its founder;
Create an outgoing edge (top edge) from the root
as the current edge;
Attach Ty to the current edge;

T = To;

Recursion on edge:
Let T be a set of tuples attached to the current
edge;
Put T =THuT—;
If Tt = 0, create a leaf labeled “Negative” and
return;
It T— = 0, create a leaf labeled “Positive” and
return;
If neither 7't nor T~ is empty, and the stopping

condition 1s satisfied, create a leaf node labeled

“Mixed” and return; Otherwise

Literal selection:
By using BK, and based on some criterion
for literal selection?; select a best literal L[y]
from S where y is a set of new variables. We

call y new variables.

Node creation:
Create a node at the end of the current edge,

and label it with L[y].

Tuple division and extension:
Divide 7" by 3y L[y] into T" and T";
where T! (resp. T") is a set of tuples satis-
fying (resp. failing to satisfy) 3y L[y];
Extend tuples in 7" with the value of y taking

from BK while inheriting their founders;

Tuple deletion:
If tuples ¢t € T% and ¢/ € 7" have a common

founder, keep t and delete #';

Edge creation:
Create an outgoing left edge and attach 77;
Create an outgoing right edge and attach 77

Recurse on both edges;

At Tuple deletion step, some tuples are deleted.
This may look strange but necessary for the reason be-
low. When new variables y are introduced at a node
N by a literal L[y], they are assumed implicitly ex-

istentially quantified, and we associate with the left

°We use a criterion used in ID3 [4].

child node a tuple descriptor, a formula describing tu-
ples, of the form 3z, y (¢[x] A L]z, y]) where x are new
variables introduced until N. It reflects the fact that
tuples attached to the edge to the left child give vari-
able bindings to x and those bindings are extended to
y. The tuple descriptor of the right child node on the
other hand will be of the form Va,y (¢[z] — - L[z, y])
which says that no tuple can give variable bindings to
x that can be extended to y so that L[z, y] is satisfied.

Suppose there are two extended tuples, one being
t satisfying L[z,y] and the other ¢’ having the same
founder as ¢ but no extension at N. In such case, since
the descriptor associated with the right child node is
refuted by the very existence of ¢, and will never be
a correct description of the founder of t/, there is no

need to keep t'.

3 Program extraction

Let QDT be a quantified decision tree constructed for
p(z). We extract a logic program from it. First of all,
we label binary edges with literals, and then by gath-
ering those literals on a path from the root to a leaf
labeled “Positive,” we synthesize the clause body de-
scribing positive examples of the top node (head atom

in the clause).

Program extraction algorithm ———

Labeling edges:
For every internal node N in QDT, do as follows.

Let L[y] be a selected literal used to make child

nodes at N. Label the edge to the left child (resp.
right child) with L[y] (resp. —L[y]) and call it a

left literal (vesp. right literal).

Tuple descriptor:
Let Ny be the root node of the binary subtree of
QDT. Associate true with Ny as a tuple descrip-
tor. For every non-leaf node N below Ny, do as
follows. Let Iy, ... 1, be left literals labeling the
edges from Ny down to N, and L[y] and —L[y]
respectively be the left literal and the right literal
labeling outgoing edges from N, where y is a set

of new variables introduced at N. Let x be a set

of all new variables introduced from Ny down to

N. Put
er = Fo,y (N ALY
k=1
or = Yo,y (/\ Ik — ~L[y))
k=1

and associate ¢; (resp.) with the left child

(resp. right child) as tuple descriptors.

Synthesis:
Let Ny be as above. For every path # from Nj to
a leaf node Np labeled “Positive,” do as follows.
Let ¢p be the tuple descriptor associated with
, r, those associated with the nodes

NPa Prise--

on 7 that are a right child node. Put
Uzl = epApr, A App,

Construct such ¥[z] for each “Positive” node and

let them be Wq[z],..., ¥k[z]. Put

p(2)

& UzZ]A L ATK[Z]

In the case of the subset(A,B) example, descriptors

in Figure 1 become

¢1 = JC—mem(C,B)
¢3 = VC(—mem(C,B) — —mem(C,4))
¢ = VYC(-mem(C,B) — ——1list(4))

We therefore get the following clause:

subset(4,B) & @1 ApaAps

Simplification assuming there always exists an element

that does not belong to a given list (1) and 4 is a list

(p3) yields

subset(4,B) < VC(mem(C,4) — mem(C,B))

which exactly describes the subset relationship ex-

pressed by (Prolog) lists.
4 First Order Compiler

Since the clause obtained in Section 3 contains a uni-
versally quantified goal, and hence not executable di-
rectly. It is however an example of first order clauses
[6], and compilable, automatically by the First Order
Compiler [6], into a Prolog program with disequality
constraints. The First Order Compiler is a program
transformation system designed for the synthesis of
runnable logic programs from first order clauses whose
body can be an arbitrary first order formula. The com-
pilation is based on unfolding/folding transformation

applied to universal continuation forms representing

continuation passing style computation of logic pro-
grams.
Running the First Order Compiler for the following

first order clauses

subset(4,B):- all([X], (mem(X,A) —> mem(X,B))).

mem(X, [X|Y]).

mem(X, [HIY]):-mem(X,Y).

gives,

subset(4,B):- closure_memO(A,f0(B)).
closure_memO(A,B):-

(\+ A=[c|D] ; A=[CID],cont(C,B)),
(\+ A=[E|F]

cont (A,f0(B)):- mem(A,B).

Here \+ A=[C|D] is a Prolog substitute for for
VC,D (&4 # [CID]) which works correctly when 4 is
ground. If we know A is a list, the above program

reduces to a more familiar subset program:

subset(4,B):- closure_memO(A,f0(B)).
closure_memO(A,B):-—

(4=01

; A=[CID],cont(C,B),closure_mem0(D,B)).

cont (A,f0(B)):- mem(A,B).

5 Discussion

We have implemented a quantified decision tree gen-
erator on Prolog. The implementation is very naive,
and in the early stage of development. The example

in Figure 1 was generated from 412 positive examples

; A=[E|F],closure_memO(F,B)).

and 4212 automatically generated negative examples
of subset(A,B). We have tried some other synthesiz-
ing examples such as max(M,L) predicate (an integer M
is the maximum element in the list L) and sort(L,M)
(M is the sorted list of L), in which tuple division (and
extension) by existentially quantified negative literals
were effective and lead to the success of program syn-
thesis. It is apparent however that various improve-
ments including the optimization of program extrac-
tion in Section 3 are necessary and the feasibility of

this approach should be tested on further examples.

Acknowledgments We greatly thank Mr.Kusama
and Mr.Miyagawa for the implementation and im-

provement of the first working QDT generator.

References

[1] Blockeel H. and De Raedt,L., Top-down induction
of first-order logical decision trees, Artificial Intel-

ligence, 101, pp.285-297, 1998.

[2] Bostrom,H. and Idestam-Almquist,P., Induction
of Logic Programs by Example-Guided Unfolding,

J. Logic Comput., 40(2-3), pp.159-183, 1999.

[3] Muggleton, S., Inverse entailment and PROGOL,

New Generation Computing 13, pp.245-286, 1995.

[4 Quinlan,J.R., Induction of Decision Trees, Ma-

chine Learning, 1, pp.81-106, 1986.

[5] Quinlan,J.R., Learning Logical Definitions from

Relations, Machine Learning, 5, pp.239-266, 1990.

[6] Sato,T., First Order Compiler: A Determinstic
Logic Program Synthesis Algorithm, J. of Sym-

bolic Computation, 8, pp.605-627, 1989.

