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A Frequency-based Stochastic Blockmodel

Kenichi Kurihara ∗ Yoshitaka Kameya † Taisuke Sato ‡

Abstract: We propose a frequency-based infinite relational model (FIRM), which takes
into account the frequency of relation whereas stochastic blockmodels ignore frequency.
We also derive a variational inference method for the FIRM to apply to a large dataset.
Experimental results show that the FIRM gives better clustering results than a stochastic
blockmodel on a dataset which has the frequency of relation.
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1 Introduction

Recently in machine learning, relational learning has
received a great deal of attention, for example, to find
social roles in social network. While the stochastic
blockmodel has been popular for such relational learn-
ing in sociology, it is now widely used for various appli-
cations including clustering proteins, discovering con-
cepts, etc [9, 13].

Infinite relational models (IRMs) [9, 13] are stochas-
tic blockmodels exploiting the Dirichlet process [6, 2]
so that we do not need to determine the number of clus-
ters a priori. Stochastic blockmodels of mixed mem-
bership (SBMM) are also stochastic blockmodels that
model multiple observation of tables [1].

In this paper, we propose a frequency-based infi-
nite relational model (FIRM). The FIRM takes into
account the frequency of relation, which is statisti-
cally informative but ignored by stochastic blockmod-
els. Our model generalizes the IRM and can also ob-
serve multiple tables as the SBMM. To apply the FIRM
to a large dataset, we also derived a variational in-
ference algorithm for the FIRM. Experimental results
show the FIRM gives better clustering results than the
IRM on a dataset which has the frequency of relation.

2 Stochastic Blockmodels

Stochastic blockmodels are proposed for social net-
work data in sociology [8]. Fig.1 shows an example
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Figure 1: A toy example of stochastic blockmodels.
Type 1 entities consist of people 1–10, and type 2 en-
tities consist of animals a–j. Black dot indicates that
a person likes an animal. Type 1 and 2 are partitioned
into clusters c11 − c13 and into c21 − c23, respectively.

of stochastic blockmodels. Let’s say we have type 1
entities consisting of people 1–10, type 2 entities con-
sisting of animals a–j and a relation likes(·, ·). The left
hand side of Fig.1 shows which animal each person likes
by black dots. Stochastic blockmodels find clusters of
each type as the right hand side of Fig.1 shows.

More formally, the stochastic blockmodel for one bi-
nary relation between two types is defined as,

p(R, Z1, Z2|η, π1, π2) = p(R|Z1, Z2, η)p(Z1, Z2|π1, π2)

p(R|Z1, Z2, η) =

N1∏
e1=1

N2∏
e2=1

Bernoulli(R(e1, e2); η(z1
e1 , z2

e2)) (1)

p(Z1, Z2|π1, π2) =

Multinomial(Z1; π1)Multinomial(Z2; π2) (2)

where for i = 1, 2, Zi = (zi
1, ..., z

i
Ni), πi = (πi

1, ...π
i
Ki),

zi
n ∈ {1, ..., Ki} and

∑
c πi

c = 1. Note that we can
extend this model to relations involving an arbitrary



number of entities like R(·, ..., ·).
The main task for this model is to infer Z1 and

Z2, i.e. the assignments of entities to clusters. Since
stochastic blockmodels are quite general approach to
relational learning, its extensions have been proposed
in machine learning.

In the following section, we review the recent vari-
ants of stochastic blockmodels.

3 Variants of the Stochastic

Blockmodel

3.1 Infinite Relational Model

Xu et al and Kemp et al. proposed the infinite re-
lational model (IRM) independently in [13] and [9].
Although their inference methods are different, their
models are basically the same. The difference from the
traditional blockmodel is the use of the Dirichlet pro-
cess (DP) [6, 2]. The DP is a non-parametric Bayesian
method which infers the number of clusters for clus-
tering. The DP overcomes a weak point that the tra-
ditional blockmodel requires the number of clusters a
priori. Their model is identical to the stochastic block-
model except that Z1 and Z2 are drawn from the DP
instead of Eq.2,

Z1|γ ∼ DP(Z1; γ), Z2|γ ∼ DP(Z2; γ).

To infer Zi for i = 1, 2, Xu et al. derived a deter-
ministic maximum likelihood method using the mean
field approximation, and Kemp et al. used a simpler
hill-climbing method. Note that the exact inference
of Z1 and Z2 can be carried out using Markov chain
Monte Carlo (MCMC) methods although it may take
long time until convergence.

3.2 Stochastic Blockmodels of Mixed

Membership

Airoldi et al. proposed stochastic blockmodels of
mixed membership (SBMM) in [1]. Although their
model is a relational version of a mixed membership
model [5], it can also be seen as a blockmodel that
accepts multiple observations. Remembering Fig.1,
stochastic blockmodels partition just one observation
of a table of a relation. The SBMM also partitions
types, but handle the multiple observations of a ta-
ble. For example, chemical reactions of proteins can

vary for each observation. Stochastic blockmodels han-
dle only a single trial of the experiment, whereas the
SBMM can model an arbitrary number of trials.

However, it only accepts multiple “tables”, i.e. each
relation must be observed the same number of times.
Let’s say that we have type 1 = {1, 2, ..., } and type
2 = {a, b, ...}. If we observe R(1, a) three times, other
relations must be observed three times as well in the
SBMM. We also note that the SBMM only model data
consisting of a single type, for example, R : protein ×
protein → {1, 0}.

The condition of observing each relation the same
times is too restrictive in some cases, for example, mod-
ification relation in natural language and causality in
medical data, etc. We propose a more flexible model
that accepts unevenly distributed observation in the
following section.

4 Frequency-based Infinite Rela-

tional Model

4.1 General Definition

We propose a frequency-based infinite relational model
(FIRM), which is a generative model of relation. Re-
lations sampled from the FIRM are i.i.d., which allows
us to observe relations different times for each relation.
We introduce discrete distributions to draw entities,

e1|u1∼Multinomial(e1; u1), e2|u2∼Multinomial(e2; u2).

Let D be a dataset, D = {(e1
i , e

2
i )|i = 1, ..., m}. The

probability of D given other variables is,

p(D|u1, u2, Z1, Z2, η) =
m∏

i=1

u1
e1

i
u2

e2
i
η(z1

e1
i
, z2

e2
i
)R(e1

i ,e2
i )

(1 − η(z1
e1

i
, z2

e2
i
))1−R(e1

i ,e2
i ).

where m is the number of observations, and Z1 and
Z2 are drawn from the DP as the IRM. Note that the
FIRM is identical to the IRM when D = {R(e1, e2)|e1 =
1, ..., N1, e2 = 1, ..., N2}. Therefore, the FIRM gener-
alizes the IRM. Moreover, the FIRM can also model
multiple tables as the SBMM.

We are interested in inferring Z1 and Z2. This can
be done by Markov chain Monte Carlo (MCMC) meth-
ods. However, it is well known that DP inference by
MCMC is too slow to apply to a large dataset. There-
fore, we utilize a variational inference for the FIRM. A



variational inference for the Dirichlet process (VDP)
has been proposed in [4]. Although the FIRM is not a
simple DP mixture, we can derive a variational infer-
ence for the FIRM. We will briefly review VDP first.

4.2 Variational Dirichlet Process

Variational inference methods are alternatives to sam-
pling methods for Bayesian learning [3, 7] especially
in the context of large-scale problems. Blei and Jor-
dan have applied a variational inference for the DP
[4] in the stick-breaking (SB) representation [12]. The
SB representation introduces new random parameters
v = (v1, ...). The DP in the SB representation is rep-
resented as,

vt|α ∼ Beta(vt; 1, α), for t = 1, ...

ηt|G0 ∼ G0, for t = 1, ...

zi|v ∼ Multinomial(zi; π(v)), for i = 1, ..., m

xi|zi, η ∼ p(xi|ηzi), for i = 1, ..., m

where ηt is the parameter of the tth component, πt(v) =
vt

∏t−1
s=1(1 − vs), and zi and xi are the ith assignment

and observation, respectively.
VDP infers q(Z, η, v) as an approximate posterior,

p(Z, η,v|X), assuming the following factorization,

q(Z, η,v) =
T−1∏
t=1

q(vt)
T∏

t=1

q(ηt)
m∏

i=1

q(zi), (3)

where T is a truncation level. At truncation level T , we
assume p(vT = 1) = 1 and q(vT ) = 1. This assumption
leads to πt = 0 for all t > T . Therefore, the infinite
mixture boils down to a finite mixture. Note that if we
set T large enough, the approximation is quite good in
practice.

Using Jensen’s inequality, we find a bound of p(X),

p(X) ≥ E

[
log

p(X, Z, η, v)
q(Z, η, v)

]
q(Z,η,v)

(4)

where E[f(x)]g(x) =
∫

dx g(x)f(x). The approximate
posterior, q, is derived by taking variation of Eq.4 and
setting to zero.

4.3 Variational Inference for FIRM

Let W = (Z1, Z2, v1, v2, η, u1, u2), which is a set
of hidden variables. We are interested in inferring the
posterior distribution, p(W |D). Using a variational in-
ference, we approximate the posterior as q(W ). First,

we make the following bound of p(D),

p(D) ≥ E

[
log

p(D, W )
q(W )

]
q(W )

. (5)

To make the approximate posterior, q, tractable, we
assume the following factorization,

q(W ) =q(Z1)q(Z2)q(v1)q(v2)q(η)q(u1)q(u2). (6)

The joint distribution of the FIRM is factorized as
follows,

p(D, W ) =p(D|Z1, Z2, η)p(Z1|v1)p(Z2|v2)

× p(v1)p(v2)p(η)p(u1)p(u2). (7)

We put the following priors into Eq.7.

p(η(t1, t2)) = Beta(η(t1, t2); β, β)

p(Z1|v) =
N1∏
e=1

π1
z1

e
, p(Z2|v) =

N2∏
e=1

π2
z2

e

p(v1
t1) = Beta(v1

t1 ; 1, γ), p(v2
t2) = Beta(v2

t2 ; 1, γ)

p(u1) = Dirichlet(u1; α1
0), p(u2) = Dirichlet(u2; α2

0)

Taking the variation of Eq.5, we will find the approxi-
mate posterior, q1,

q(v1
t ) = Beta(v1

t ; γ1
1,t, γ

1
2,t)

q(v2
t ) = Beta(v2

t ; γ2
1,t, γ

2
2,t)

q(η(t1, t2)) = Beta(η(t1, t2); τ1,t1,t2 , τ2,t1,t2)

q(z1
e) ∝ expE[log p(R, Z1, Z2, η, v1, v2)]q(Z1¬e,Z2,η,v1,v2)

q(z2
e) ∝ expE[log p(R, Z1, Z2, η, v1, v2)]q(Z1,Z2¬e,η,v1,v2),

where

γ1
1,t1 = 1 + m1

t1 , γ1
2,t1 = γ +

T 1∑
j=1

m1
j

γ2
1,t2 = 1 + m2

t2 , γ2
2,t2 = γ +

T 2∑
j=1

m2
j

m1
t1 =

N1∑
e=1

q(z1
e = t1), m2

t2 =
N2∑
e=1

q(z2
e = t2)

τ1,t1,t2 = β +
m∑

i=1

q(z1
e1

i
= t1)q(z2

e2
i

= t2)I(R(e1
i , e

2
i ) = 1)

τ2,t1,t2 = β +
m∑

i=1

q(z1
e1

i
= t1)q(z2

e2
i

= t2)I(R(e1
i , e

2
i ) = 0).

1We notice that q(u1) and q(u2) are equal to p(u1|D) and
p(u2|D). Therefore, it is easy to derive them. We omit them
here to save space.



Note that we set the truncation level of type 1 clusters
and type 2 clusters to T 1 and T 2, respectively, and
that I(·) is the indicator function.

We have derived a variational inference algorithm
for the FIRM. We also apply the variational inference
for the IRM in experiments while it is quite similar to
derive the variational IRM.

5 Experimental Results

In this section, we experimentally show that the FIRM
works better than the IRM on a dataset including
multiple observations. We use a word co-occurrence
dataset extracted from Mainichi newspaper 1993–2002
by CaboCha, a Japanese dependency structure ana-
lyzer. The dataset has more than one million adjective–
noun pairs consisting of 210,605 distinct pairs, 1,291
adjectives and 3,705 nouns. Note that we cannot apply
stochastic blockmodels of mixed membership to this
dataset due to the violation of its strict assumption
on frequency. We apply the FIRM and the IRM to
this dataset to make clusters of adjectives and nouns2.
Since the dataset does not have labels, we apply an-
other word co-occurrence clustering called semantic ag-
gregate model (SAM) [10]. Because it is verified by
psychological experiments that clusters discovered by
the SAM are consistent with humans’ intuitions [11],
we evaluate the FIRM and the IRM using the SAM
clusters as correct labels,

We call adjective type 1 and noun type 2, and distin-
guish them in superscript like N1 and N2. For both
of the IRM and the FIRM, we set truncation levels
T 1 and T 2 to 80 and 120, and set α, β, γ and δ to
1.0, 0.1, 1.0 and 1.0, respectively. This experiment
was repeated 30 times. Each run of the experiment
took less than 5 minutes. The best results of 30 tri-
als in terms of the free energy are depicted in Fig.2
and Fig.3 with the most likely Z1 and Z2, which max-
imize q(Z1) and q(Z2). Each row corresponds to one
adjective, and each column corresponds to one noun.
Clusters are ordered in descending order of the size,

2Co-occurrence data has only positive data, i.e. R(e1, e2) = 1
because we can not observe pairs of words which do not make co-
occurrences. In other words, we can observe only co-occurrences
existing in a dataset. Let D be a dataset consisting of positive
data. We use the following dataset D′,

D′ = D ∪ {R(e1, e2) = 0|R(e1, e2) = 1 /∈ D}. (8)

Table 1: Clusters that are not discovered by the SAM
but discovered by relational models.

adjective cluster new, good, different,...
noun cluster thing, object, place,...

i.e. the top-most and left-most clusters are the largest
clusters. Each black dot represents the existence of an
adjective-noun co-occurrence. Therefore, dense cells
signify the strength of the relations between adjective
clusters and noun clusters.

We compare the FIRM with the IRM using two crite-
ria, coverage and purity. We regard clusters discovered
by the SAM as correct labels. Since the SAM found
that the number of clusters is 50, relational models
should also discover the same 50 labels. The coverage3

shows the percentage of labels rediscovered by the re-
lational models. Even when relational models achieve
high coverage, the extent to which each relational clus-
ter contains co-occurrence from one label might be low.
purity4 measures this extent.

We show the distribution of covered SAM clusters in
Fig.4. The FIRM discovered clusters which cover all of
the SAM clusters, i.e. coverage = 100%. On the other
hand, the coverage by the IRM is 86%.

We plot the purity in Fig.5 varying a hyperparame-
ter, β = 1, 0.1 and 0.01. For every β and i, the FIRM
achieved higher purity Si(Z1, Z2) than the IRM.

One may suspect that the better coverage and purity
is simply because the FIRM discovered more clusters

3The coverage shows how many SAM labels are discovered,
whose definition is (#covered SAM clusters) / (#SAM clusters).
Let’s say we are looking at a cell specified by adjective cluster t1

and noun cluster t2, cell(t1, t2). cell(t1, t2) contains adjective–
noun pairs, {(a, n)|a ∈ t1 and n ∈ t2}. We can predict the most
likely SAM cluster for each pair by p(c|a, n). Let d(c, t1, t2) be
the number of pairs in cell(t1, t2) whose most likely SAM cluster
is c. A SAM cluster c is covered if and only if there exist t1 and
t2 such that c = arg maxj d(j, t1, t2).

4The purity is defined for each cell. Cells which have high
purity consist of pairs that have the same most likely SAM clus-
ter. For example, when a cell has purity 0.9, 90% of pairs in
the call has the same most likely SAM cluster (see [14] for more
general definition of the purity). More formally, purity Si(t

1, t2)
is defined as

Si(t
1, t2) =

Pi
j=1 d̃(j, t1, t2)P

j d(j, t1, t2)
for i = 1, ...,K. (9)

where K is the number of clusters of the SAM and d̃ is sorted d
in descending order. We also define the purity of assignments,

Si(Z
1, Z2) =

T1X

t1=1

T2X

t2=1

nP
j d(j, t1, t2)

o
Si(t1, t2)

N1N2
(10)
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Figure 2: Clustering results by the IRM. 13 adjective clusters and 61 noun clusters were discovered.
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Figure 3: Clustering results by the FIRM. 45 adjective clusters and 107 noun clusters were discovered.

than the IRM. It may be the reason, but we emphasize
that the number of clusters was automatically detected
by inference. In other words, taking into account fre-
quency enabled us to discover fine-grained clusters.

For both of the IRM and the FIRM, the purity of
whole assignments was not very high because purity
of some cells are quite small. The reason is that re-
lational models also find clusters that are not discov-
ered by the SAM, like Table 1. We can see that these
words make co-occurrences with many words. There-
fore, these clusters are uninformative for the SAM, and
hence the SAM does not discover them.

6 Conclusion and Future Work

We proposed a frequency-based infinite relational
model (FIRM). The FIRM takes into account the fre-

quency of relation, which is statistically informative
whereas traditional stochastic blockmodels ignore it.
The FIRM closely relates to recent work, infinite rela-
tional models (IRM) by Xu et al. [13] and Kemp et
al. [9], and stochastic blockmodels of mixed member-
ship (SBMM) by Airoldi [1]. Our model generalizes
the IRM and can also observe multiple tables as the
SBMM. To apply the FIRM to a large dataset, we de-
rived a variational inference algorithm for the FIRM.

We experimentally showed that the FIRM achieved
better results than the IRM on a dataset which has
the frequency of co-occurrence relation. We also found
that the FIRM discovered clusters that are consistent
with the ones discovered by the SAM, which was veri-
fied by psychological experiments.

The IRM is initially proposed for relational cluster-
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ing with an arbitrary number of types. Therefore,
it is straight forward to apply the FIRM to feature-
rich datasets like co-occurrences of subject–verb, verb–
objective and adjective–noun. It should be interesting
to see clustering results of such a dataset.
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