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Summary

Clustering word co-occurrences has been studied to discover latent concepts. Previous work has
applied the semantic aggregate model (SAM), and reports that discovered clusters seem semantically signif-
icant. The SAM assumes a co-occurrence arisen from one latent concept. This assumption seems moderately
natural to make clusters of co-occurrences. However, to analyze latent concepts more deeply, the assumption
may be too restrictive. We propose to make clusters independently for each part of speech. For example,
we make adjective clusters and noun clusters form adjective–noun co-occurrences while the SAM builds
clusters of adjective–noun pairs. This would lead to more specific clusters than the SAM.

In this paper, we propose a frequency-based infinite relational model (FIRM) for word co-occurrences.
The FIRM is similar to the infinite relational model (IRM) proposed in statistical relational learning. Our
model differs in the use of frequency. Since the IRM is proposed for clustering relation, it ignores multiple
observations. We also derive variational inference methods for these models to apply to a large dataset.
Experimental results show that the FIRM gives better clustering results than the IRM in terms of the high
resolution compared to the SAM.

1. Introduction

Clustering word co-occurrences has been studied to

discover latent concepts. Pereira et al. write dis-

covered clusters seem semantically significant [Pereira

93]. Mochihashi and Matsumoto experimentally dis-

cover meaning by clusters [Mochihashi 02]. Nakagawa

et al. have proposed metaphor understanding based

on word co-occurrence clustering [Nakagawa 06]. In

these studies, the semantic aggregate model (SAM)

has been applied, which assumes a co-occurrence is

from one latent concept. This assumption seems mod-

erately natural to make clusters of co-occurrences.

However, to analyze latent concepts more deeply, the

assumption may be too restrictive.

The goal of this study is to discover more spe-

cific clusters as concepts than the semantic aggregate

model (SAM). We propose to make clusters indepen-

dently for each part of speech (POS). For example,

we make adjective clusters and noun clusters form

adjective–noun co-occurrences while the SAM builds

clusters of adjective–noun pairs. This would lead to

more specific clusters than the SAM.

Recently, relational learning has received a great

deal of attention∗1, for example, to find social roles

in social network data. The stochastic blockmodel

is a well-known model for relational learning in soci-

ology. Kemp et al. have proposed an infinite rela-

tional model (IRM) [Kemp 06], which is a stochastic

blockmodel exploiting the the Dirichlet process (DP)

[Ferguson 73, Antoniak 74]. The IRM partitions each

type into clusters, and the number of clusters are es-

timated by the Dirichlet process.

Word co-occurrences can also be regarded as re-

∗1 Recent workshops on statistical relational learning,
• http://kdl.cs.umass.edu/srl2003/
• http://www.cs.umd.edu/projects/srl2004/
• http://www.cs.umd.edu/projects/srl2006/
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Fig. 1 Graphical representation of Semantic Aggregate
Model.

lation. Suppose adjective a and noun n makes a

co-occurrence, put R(a,n) = 1, otherwise R(a,n) = 0.

Therefore, it is straightforward to apply relational

models to word co-occurrences. Although the SAM

models latent concepts of pairs of words, relational

models directly discover latent concepts of POS, which

are more specific latent concepts than that of the

SAM.

In this paper, we propose a frequency-based infinite

relational model (FIRM) for word co-occurrences. The

FIRM is similar to the IRM. Our model differs in the

use of frequency. Since the IRM is proposed for clus-

tering relation, it does not take into account multi-

ple observations, which are statistically informative.

We also derive variational inference methods for these

models to apply to one million datacases. Since it

has experimentally been shown that the SAM makes

clusters that are consistent with psychological exper-

iments [Nakagawa 06], we evaluate the FIRM and

the IRM using the SAM as the gold standard. Ex-

perimental results show that the FIRM gives better

clustering results than the IRM in terms of the high

resolution compared to the SAM.

2. Semantic Aggregate Model

We briefly review the semantic aggregate model,

which has been applied to clustering of word co-occurrence

[Pereira 93, Mochihashi 02, Nakagawa 06]∗2. The se-

mantic aggregate model (SAM) [Mochihashi 02] is a

generative probability model for word co-occurrences,

in which it is considered that a co-occurrence of two

words comes from concepts we implicitly have. Let c

be a concept, w and w′ be words. The SAM assumes

the following factorization of p(c,w,w′),

p(w,w′, c) = p(w|c)p(w′|c)p(c). (1)

Figure 1 graphically depicts the SAM. p(w|c) and p(c)

can be seen as parameters of the SAM. Given these

∗2 Pereira et al. put different parameters on w and w′ in
Figure 1, but Mochihashi and Matsumoto used the same
parameter set.

Fig. 2 A toy example of the infinite relational model (IRM).
The IRM partitions type 1 (1–10) into clusters c11 −
c13 and type 2 (a–j) into c21 − c23.

parameters, we can compute the membership distri-

bution p(c|w),

p(c|w) =
p(c)p(w|c)

p(w)
=

p(c)p(w|c)
∑

c p(c)p(w|c)
. (2)

This membership distribution indicates how often con-

text c occurs when word w occurs. Therefore, the

membership distribution may allow us to capture con-

ceptual characteristics of word w. For example, we

can use the following similarity measure between word

w and word w′,

δ(w,w′) = e−KL(w||w′), (3)

where KL(w||w′) is the Kullback–Liebler divergence,

KL(w||w′) =
K

∑

c=1

p(c|w) log
p(c|w)

p(c|w′)
. (4)

Nakagawa et al. conducted psychological exper-

iments on the clustering results by the SAM, and

showed that the clusters are consistent with the of

psychological experiments [Nakagawa 06]. Therefore,

we evaluate co-occurrence models by comparing with

the SAM as the gold standard.

3. Infinite Relational Model

Kemp et al. proposed the infinite relational model

(IRM) in the context of statistical relational learning

[Kemp 06]. The IRM is a general model to partition

types into clusters. Figure 2 is a toy example. The

left hand side matrix shows relation R : (type 1)×

(type 2) → {0,1} (each black and white dot shows

R(·, ·) = 1 and R(·, ·) = 0, respectively). Given rela-

tion R as an input, the IRM makes clusters like the

right hand side matrix in Figure 2. In this example,

type 1 is partitioned into cluster c11–c13, and type 2

is also partitioned into cluster c21–c23. For example,

type 1, type 2 and R can be a set of people, a set of
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animals and predicate “like”, i.e. R(i, j) = 1 means

person i likes animal j. Although Figure 2 uses only

one relation over type 1 and type 2, the IRM can

handles the arbitrary number of relations over the ar-

bitrary number of types.

We apply the IRM to word co-occurrence cluster-

ing. The dataset we use consists of adjective–noun

pairs. Therefore, we consider a relation between ad-

jectives and nouns, R : {adjectives}× {nouns}→ {0,1}.

If adjective–noun pair (a,n) exists in a dataset, R(a,n) =

1, otherwise R(a,n) = 0. Kemp et al. writes that

they ignore missing relation whereas we regard them

as negative relations, i.e. R(a,n) = 0. This is because

the number of observed adjective–noun pairs is quite

smaller than that of possible pairs∗3

The IRM for adjective–noun co-occurrence is mod-

eled by,

ZA|γ ∼ DP(γ) (5)

ZN |γ ∼ DP(γ) (6)

η(tA, tN )|β ∼ Beta(β,β) (7)

R(a,n)|zA
a , zN

n ,η ∼ Bernoulli(η(zA
a , zN

n )), (8)

where ZA and ZN are assignments∗4 of adjectives and

nouns, respectively,

ZA = {zA
a |a ∈ A}, 1 ≤ zA

a ≤ T A

ZN = {zN
n |n ∈ N}, 1 ≤ zN

n ≤ T N

and DP is the Dirichlet process [Ferguson 73, Anto-

niak 74]. Using the Dirichlet process, the IRM does

not need to specify the number of clusters whereas the

traditional stochastic blockmodel requires the number

of clusters. Note that we can express p(R|ZA,ZN ,η)

as

p(R|ZA,ZN ,η) =
∏

a∈A

∏

n∈B

η(zA
a , zN

n )R(a,n)

(1− η(zA
a , zN

n ))1−R(a,n).

(9)

The inference of ZA and ZN can be carried out

using Markov chain Monte Carlo (MCMC) methods

to sample from the posterior on cluster assignments

p(ZA,ZN |R). Kemp et al. simply infer the best par-

tition ZA and ZN by hill climbing [Kemp 06].

∗3 Our dataset has 210,605 distinct pairs consisting of 1,291
adjectives and 3,705 nouns. The number of possible pairs
is 4,783,155. Therefore, 210,605 distinct pairs are just 4.4%
of possible pairs.

∗4 In this paper, the Dirichlet process is represented in the
stick-breaking representation [Sethuraman 94]. Therefore,
we use labels in stead of partitions. See [Griffiths 05] their
definitions.

Fig. 3 A conceptual image of the relational clustering and
clustering by the SAM. CSAM = {SAM1, ...,SAM5} is

the clusters by the SAM. CA = {I, ..., IV} and CN =
{1, ...,6} are clusters of adjective and nouns by the a

relational model. CSAM is divided into the cells of
CA and CN .

4. Semantic Aggregate Model and Re-

lational Models

The semantic aggregate model (SAM) models la-

tent clusters of word co-occurrences as concepts. The

SAM implicitly makes an assumption that words in

one co-occurrence have the same latent concept. For

example, when a pair consists of an adjective and

a noun, the assumption means that adjectives and

nouns have the same concepts, see Figure 1. How-

ever, adjectives and nouns should have the different

sets of concepts, intuitively.

Relational models like the IRM discovers latent clus-

ters in each types. Therefore, in the case of word

co-occurrences, it discovers latent clusters of part of

speech (POS), e.g. adjective clusters and noun clus-

ters from adjective–noun co-occurrences.

Let CSAM be the set of clusters discovered by the

SAM and CA and CN be the sets of adjective and

noun clusters by a relational model. We expect that

clusters by a relational model achieves higher resolu-

tion on CSAM as an example in Figure 3 shows. In

Figure 3, CSAM is a subset of the product set of CA

and CN , CSAM ⊂ CA ×CN . Using relational clus-

ters CA and CN , cluster SAM1 is described as a co-

occurrence cluster consisting of noun cluster II and

adjective clusters 1 and 3, SAM1 = ({II},{1,3}). Al-

though this is just an example, we can say that a rela-

tional method discovered more specific clusters than

the SAM in Figure 3. To achieve this, we improve the

IRM for word co-occurrence in the following section.
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5. Clustering of Word Co-occurrences

with Frequency-based IRM

5・1 Frequency-based Infinite Relational Model

Although co-occurrence data has frequencies of co-

occurrences, the infinite relational model (IRM) ig-

nores frequency. This is because the IRM is pro-

posed to find clusters over binary relations. However,

word co-occurrence should not be a binary relation

but should allow multiple observations.

We propose a frequency-based infinite relational model

(FIRM). The FIRM allows multiple observations of

the same co-occurrence. Its generative model is de-

scribed as,

a|uA ∼ Multinomial(uA) (10)

n|uN ∼ Multinomial(uN ) (11)

ZA|γ ∼ DP(γ) (12)

ZN |γ ∼ DP(γ) (13)

η(tA, tN )|β ∼ Beta(β,β) (14)

(a,n)|zA
a , zN

n ,η ∼ Bernoulli(η(zA
a , zN

n )). (15)

(a,n) denotes a co-occurrence. Since co-occurrences

are generated by Bernoulli, co-occurrences may fail.

Generative models with failure have been studied in

[Cussens 01, Sato 04]. Instead of the exact inference

with failure, we simplify this model like,

p(D|ZA,ZN ,η) =
∏

a∈A

∏

n∈N

u
A
eA

i

u
N
eN

i

η(zA
a , zN

n )f(a,n)

(1− η(zA
a , zN

n ))I(f(a,n)=0),

(16)

where D is a training dataset, f(a,n) is the number

of observations of co-occurrence (a,n) and I(·) is the

indicator function.

As we will see later, the word co-occurrence dataset

is too huge to apply MCMC to. Therefore, we utilize

a variational inference for the FIRM. A variational

inference for Dirichlet process (VDP) has been pro-

posed in [Blei 06]. They empirically showed that the

variational inference was much more efficient than a

DP sampler. Although the FIRM is not a simple DP

mixture, we can derive a variational inference for the

FIRM as we explain in the next section.

5・2 Variational Dirichlet Process

Variational inference methods are alternatives to

sampling methods for Bayesian learning [Attias 00,

Ghahramani 00] especially in the context of large-

scale problems. Blei and Jordan have applied a vari-

ational inference for Dirichlet process [Blei 06] in the

stick-breaking (SB) representation [Sethuraman 94].

The SB representation introduces random parameters

v = (v1, ...). The Dirichlet process in the SB represen-

tation is represented as,

vt|α ∼ Beta(1,α), for t = 1, ...

ηt|G0 ∼ G0, for t = 1, ...

zi|v ∼ Multinomial(π(v)), for n = 1, ...,m

xi|zi,η ∼ p(xi|ηzi
), for n = 1, ...,m

where ηt is the parameter of the tth component, πt(v) =

vt

∏t−1
s=1(1− vs), and zi and xi are the ith assignment

and observation, respectively.

VDP infers q(Z,η,v) as an approximate posterior,

p(Z,η,v|X), assuming the following factorization,

q(Z,η,v) =
T−1
∏

t=1

q(vt)
T

∏

t=1

q(ηt)
m
∏

i=1

q(zi), (17)

where T is a truncation level. At truncation level

T , we assume p(vT = 1) = 1 and q(vT ) = 1. This as-

sumption leads to πt = 0 for all t > T . Therefore, the

infinite mixture boils down to a finite mixture. Note

that if we set T large enough, the approximation is

quite good in practice. This is called the truncated

Dirichlet process [Ishwaran 01].

Using Jensen’s inequality, we find a bound of p(X),

p(X) ≥ E

[

log
p(X,Z,η,v)

q(Z,η,v)

]

q(Z,η,v)

(18)

where E[f(x)]g(x) =
∫

dx g(x)f(x).

The approximate posterior, q, is derived by taking

variation of (18) and setting to zero.

5・3 Variational Inference for Frequency-based

IRM

Let W = (ZA,ZN , vA, vN ,η,uA,uN ), which is a set

of hidden variables. We are interested in inferring

the posterior distribution, p(W |D). Using a vari-

ational inference, we approximate the posterior as

q(W ). First, we make the following bound of p(D),

p(D) ≥ E

[

log
p(D,W )

q(W )

]

q(W )

. (19)

To make the approximate posterior, q, tractable,

we assume the following factorization,

q(W ) =q(ZA)q(ZN )q(vA)q(vN )q(η)q(uA)q(uN ).

(20)
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As (10)–(15) show, the joint distribution of the FIRM

is factorized as follows,

p(D,W ) =p(D|ZA,ZN ,η)p(ZA|vA)p(ZN |vN )

× p(vA)p(vN )p(η)p(uA)p(uN ). (21)

We put the following priors into (21).

p(η(tA, tN )) = Beta(η(tA, tN );β,β)

p(ZA|v) =
∏

a∈A

πA
zA

a
, p(ZN |v) =

∏

n∈N

πN
zN

n

p(vA
tA) = Beta(vA

tA ; 1,γ)

p(vN
tN ) = Beta(vN

tN ; 1,γ)

p(uA) = Dirichlet(uA;αA
0 )

p(uN ) = Dirichlet(uN ;αN
0 )

Taking the variation of (19), we will find the approx-

imate posterior, q,

q(vA
t ) = Beta(vA

t ;γA
1,t,γ

A
2,t)

q(vN
t ) = Beta(vN

t ;γN
1,t,γ

N
2,t)

q(η(tA, tN )) = Beta(η(tA, tN );τ1,tA,tN ,τ2,tA,tN )

q(zA
a ) ∝ expE[logp(R,ZA,ZN ,η,vA,vN )]q(ZA

¬a,ZN ,η,vA)

q(zN
n ) ∝ expE[logp(R,ZA,ZN ,η,vA,vN )]q(ZA,ZN

¬n
,η,vN )

q(uA) = Dirichlet(uA;αA)

q(uN ) = Dirichlet(uN ;αN),

where

γA
1,tA = 1 + mA

tA , γA
2,tA = γ +

T A

∑

j=tA+1

mA
j

γN
1,tN = 1 + mN

tN , γN
2,tN = γ +

T N

∑

j=tN +1

mN
j

mA
tA =

∑

a∈A

q(zA
a = tA), mN

tN =
∑

n∈N

q(zN
n = tN )

τ1,tA,tN = β

+
∑

a∈A

∑

n∈N

q(zA
a = tA)q(zN

n = tN )f(a,n)

τ2,tA,tN = β

+
∑

a∈A

∑

n∈N

q(zA
a = tA)q(zN

n = tN )I(f(a,n) = 0)

αA
a = αA

0 +
∑

n∈N

f(a,n), αN
n = αN

0 +
∑

a∈A

f(a,n).

Note that we set the truncation level of adjective clus-

ters and noun clusters to T A and T N , respectively.

We have derived the variational inference for the

FIRM. We also apply the variational inference for the

IRM in experiments while it is quite similar to derive

the variational IRM.

Table 1 One cluster discovered by the semantic aggregate
model.

c=11

adjective noun

p(c|w) w p(c|w) w

0.91 blackish 0.98 powder

0.85 red 0.95 t-shirt

0.83 cardinal red 0.95 shirt

0.82 whitish 0.93 ribbon

0.81 yellow 0.93 plastic

0.81 white 0.91 pants

0.80 smooth 0.90 jacket

0.79 blue 0.89 yellow

0.73 black 0.89 car

0.71 halting 0.89 rose

6. Experimental Results

In this section, we see how the FIRM can partition

co-occurrences. We use Mainichi newspaper 1993–

2002 as a dataset. We extract adjective–noun pairs by

CaboCha, a Japanese dependency structure analyzer.

The dataset has more than one million pairs con-

sisting of 210,605 distinct pairs, 1,291 adjectives and

3,705 nouns. First of all, we apply the semantic ag-

gregate model (SAM) [Mochihashi 02]. We compare

the frequency-based infinite relational model (FIRM)

with the infinite relational model (IRM) [Kemp 06]

using the results of the SAM.

We first conducted an experiment using the SAM.

The model is trained by the variational Bayes [Nak-

agawa 06]. We set the number of clusters, K, to 50.

Although results are affected by K, it was verified

by psychological experiments that K = 50 gives well-

organized clusters on this dataset in [Nakagawa 06].

The experiment was repeated 30 times, then we chose

the best result in terms of the free energy. Each trial

of the experiment took less than 15 minutes∗5. One

discovered cluster is shown in Table 1.

Next, we applied relational models. For both of the

IRM and the FIRM, we set truncation level T A and

T N to 80 and 120, and set β to 0.1. This experiment

was repeated 30 times. Each trial of the experiment

took less than 5 minutes. The best results of 30 trials

in terms of the free energy are depicted in Figure 4

and Figure 5 with the most likely ZA and ZN , which

maximize q(ZA) and q(ZN ). Each row is one ad-

jective, and each column is one noun. Clusters are

ordered in descending order, i.e. the top most and

left most clusters are the largest clusters. Each black

∗5 We conducted all experiments on Opteron 254 and Linux
SuSE 10.
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dot represents the existence of an adjective-noun co-

occurrence. Therefore, dense cells show the strength

of the relations between adjective clusters and noun

clusters.

We discuss the results of the IRM and the FIRM

in the next section. Note the results of the SAM is

verified by psychological experiments [Nakagawa 06].

We compare the FIRM with the IRM using the SAM

as the gold standard.

7. Discussion

The goal of this study is to discover more spe-

cific clusters as concepts than the semantic aggregate

model (SAM). Relational models build clusters inde-

pendently for POS. For example, we make adjective

clusters and noun clusters form adjective–noun co-

occurrences while the SAM builds clusters of adjective–

noun pairs. This would lead to more specific clusters

than the SAM.

To see how much the IRM and the FIRM achieve

this goal, we evaluate them by comparing with the

the SAM in terms of coverage and purity.

The coverage shows how many SAM clusters are

discovered, whose definition is (#covered SAM clus-

ters) / (#SAM clusters). Let’s say we are looking at a

cell specified by adjective cluster tA and noun cluster

tN , cell(tA, tN ). cell(tA, tN ) contains adjective–noun

pairs, {(a,n)|a ∈ tA and n ∈ tN}. We can predict the

most likely SAM cluster for each pair by p(c|a,n).

Let d(c, tA, tN ) be the number of pairs in cell(tA, tN )

whose most likely SAM cluster is c. A SAM cluster

c is covered if and only if there exist tA and tN such

that c = argmaxj d(j, tA, tN ).

We show the distribution of covered SAM clusters

in Figure 6. The FIRM discovered clusters which

cover all of the SAM clusters although clusters dis-

covered by the IRM cover 86% of the SAM clusters.

Purity is defined for each cell. Cells which have high

purity consist of pairs that have the same most likely

SAM cluster. For example, when a cell has purity

0.9, 90% of pairs in the call has the same most likely

SAM cluster (see [Zhao 01] for more general definition

of the purity). More formally,

Purity Si(tA, tN ) is defined as

Si(t
A, tN ) =

∑i
j=1 d̃(j, tA, tN )

∑

j d(j, tA, tN )
for i = 1, ...,K. (22)

where K is the number of clusters of the SAM and d̃

Table 2 Clusters that are not discovered by the SAM but
discovered by relational models.

adjective cluster new, good, different,...

noun cluster thing, object, place,...

is sorted d in descending order, i.e.

d̃(1, tA, tN ) > d̃(2, tA, tN ) > ... (23)

For example, S1(tA, tN ) is the ratio of pairs that be-

long to the SAM cluster covering cell(tA, tN ), and

S2(tA, tN ) is the ratio of pairs that belong to the cov-

ering cluster or the second largest cluster. We also

define the purity of assignments,

Si(Z
A,ZN) =

T A

∑

tA=1

T N

∑

tN=1

{

∑

j d(j, tA, tN )
}

Si(tA, tN )

|A||N |

(24)

We plot the purity in Figure 7 varying a hyperpa-

rameter , β = 1,0.1 and 0.01. For every β, the FIRM

achieved higher purity over i = 1 to 10.

One may worry that the better coverage and the

purity is because the FIRM discovered more clusters

than the IRM. However, the number of clusters was

given by inference. In other words, taking into ac-

count frequency enabled us to discover more clusters.

For both of the IRM and the FIRM, the purity of

whole assignments was not very high because purity

of some cells are quite small. The reason is that re-

lational models also find clusters that are not discov-

ered by the SAM like Table 2. It is easy to imag-

ine that these words make co-occurrences with many

words. Therefore, these clusters are uninformative for

the SAM, and the SAM does not find them.

We have seen that the FIRM gave better clustering

results than the IRM in terms of the coverage and

the purity. Figure 8 shows a concrete example of the

FIRM. Each cell covers SAM cluster 11 shown in Fig-

ure 1. It seems that the adjectives in Figure 1 are

similar to cluster B in Figure 8. However, we notice

that cells a–A and a–C cluster also belong to SAM

cluster 11. Clearly, the FIRM discovered more spe-

cific clusters than the SAM.

Figure 8 is just one example of results. However, it

is clear that the clustering results give higher resolu-

tion on clusters than the SAM. Moreover, we found

that relational models discover clusters that are not

discovered by the SAM, e.g. Table 2. We strongly

believe that this higher resolution improves inference

of concepts in applications, for example metaphor un-

derstanding proposed in [Nakagawa 06].
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Fig. 4 Clustering results by the IRM. 13 adjective clusters and 61 noun clusters were discovered.

Fig. 5 Clustering results by the FIRM. 45 adjective clusters and 107 noun clusters were discovered.

Fig. 6 Distributions of cells over the SAM clusters. Y axis
shows the ratio of the number of cells that are covered
by each SAM cluster. The IRM and the FIRM covered
43 SAM clusters and 50 SAM clusters, respectively.
The coverage of the IRM and the FIRM is 86% (=
43/50) and 100% (= 50/50).

8. Conclusion and Future Work

We experimentally showed that clustering word co-

occurrences with relational models gives higher res-

olution on word clusters as concepts than a previ-

Fig. 7 Purity Si(ZA,ZN ) varying β.

ously proposed model, the semantic aggregate model

(SAM). To achieve better results, we proposed a frequency-

based infinite relational model (FIRM). we also de-

rived a variational inference methods to apply the

models to a large dataset. Since it has experimentally

been shown that the SAM makes clusters that are

consistent with psychological experiments, we evalu-

ate the FIRM and the IRM using the SAM as the gold

standard. Experimental results show that the FIRM
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Fig. 8 Clusters discovered by the FIRM in Figure 5.
Each cell covers SAM cluster 11. S1(a,A) = 0.81,
S1(a,B) = 0.98 and S1(a,C) = 0.77.

gives better clustering results than the IRM in terms

of the high resolution compared to the SAM. We also

found that relational models also find clusters that

are not discovered by the SAM.

The IRM is initially proposed for relational cluster-

ing with the arbitrary number of types. Therefore, it

is straight forward to apply the FIRM to feature-rich

datasets like co-occurrences of subject–verb, verb–

objective and adjective–noun. It should be interesting

to see clustering results of such a dataset.

In this study, we treated failure in an ad hoc way.

Exact inference with failure remains to be investi-

gated.
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