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ABSTRACT

In this paper, we describe Semantic Aggregate Model (SAM),
a generative probability model for word co-occurrences. We
also reformulate its statistical learning algorithm, and present
an experimental result using a Japanese corpus. The result
shows that SAM effectively extracts relevant words to some
aspects of our concepts.

1. INTRODUCTION

In the last decade, with the spread of world wide web and
large-scaled linguistic corpora, much work for text analysis,
such as corpus linguistics, information retrieval, text cate-
gorization, and information extraction, has been explored.
In text analysis, probability models are often adopted for
the reasons such as robustness to the uncertainties in text,
comprehensibility in understanding the results of the task,
and so on. For example, naive Bayes models are one of the
most popular text classifiers.

Semantic Aggregate Model (SAM) [1] is a generative
probability model for word co-occurrences, in which it is
considered that a co-occurrence of two words is arisen at
the mediation by some concept we implicitly have. On the
other hand, in Iwayama et al.’s computational model for un-
derstanding metaphors [2], several relevant words form an
attribute (or a property) of our concepts. So, by using SAM,
there is a chance to find a probabilistic relationship between
our concepts and their attributes.

In this paper, we first describe SAM in detail, and then
reformulate the Expectation-Maximization (EM) algorithm [3]
for SAM, in both cases of maximum likelihood (ML) esti-
mation and maximum a posteriori (MAP) estimation. We
also show an experimental result using a word co-occurrence
data of considerably large size, which are extracted from a
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Japanese corpus. This result presents an interesting perspec-
tive that SAM provides us an effective way to find relevant
words for some attributes of our concepts.

2. SEMANTIC AGGREGATE MODEL

Formally, SAM is described as follows. First, � is a set of
possible context classes.1 We also define a vocabulary � as
a set of possible words. Then, � ��� �� � �� is a joint prob-
ability that two words � and � � (���� � �) occur under
some context class � � �. It is assumed, in a generative
manner, that we first choose some context �, and then, ac-
cording to �, choose words � and � � independently (i.e. �
and �� are conditionally independent given �), and from this
assumption, � ��� �� ��� can be factorized as follows:

� ��� �� ��� � � ���� ������ ������� (1)

Basic probabilities � ��� and � ����� can be seen as param-
eters of SAM. The assumption we made above is graphi-
cally shown as a Bayesian network in Fig. 1. From the view
point of statistical modeling, SAM is a special case of dis-
crete mixture models or naive Bayes models, but there is a
difference that we use a common parameter set for � �����
and � ������.

If we know all parameters in SAM, for each word �, we
can compute the membership distribution � ����� over �:

� ����� �
� ���� �����

� ���
�

� ���� ������
� � ���� �����

�

(2)

This distribution indicates how often the context � has been
occurred when we find the word �. So, in terms of such
an underlying context, the membership distribution may al-
low us to capture some conceptual characteristic of the word
�. From this intuition, the similarity between words �
and �� can be measured by Æ���� �� � ����������, where

1A context class may correspond to an attribute of our concepts, which
is introduced in Iwayama et al.’s model.
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Fig. 1. Graphical representation of Semantic Aggregate
Model (excerpted from [1]).

�������� is the Kullback-Liebler divergence: ������ �� ��
� � ����� ��� � �����

� ������ .

3. THE EM ALGORITHM FOR SAM

Before computing the statistical measures above, we need
to estimate the parameters � ��� and � ����� from a corpus
at hand. In observation, however, we cannot see the under-
lying context � for a word co-occurrence (i.e. � is hidden).
This implies that, from a corpus, we only know ����� ��,
the number of co-occurrences of � and � �.2 In many of
such situations, we can use the Expectation-Maximization
algorithm for ML estimation, instead of the so-called rel-
ative frequency method. In ML estimation, we attempt to
find parameters that maximize the log-likelihood:

� �
�

������ ������� ���� ������ � (3)

where � ������ is the probability of a word co-occurrence,
and is computed from the model:

� ������ �
�

��� � ��� �� ��� (4)

�
�

� � ���� ������ ��� ��� � (5)

The EM algorithm for SAM is specified in Fig. 2. In the
algorithm, the parameters of SAM are iteratively updated
until the (log-)likelihood converges. After convergence, we
consider the last updated parameters to be an ML estimate
which we would like to find. In E-step, we compute two
types of expectations 	��� and 	����� under the current
parameters. The former is an expected count of a context
� being occurred, and the latter is an expected count of
a word � being occurred when the context � is occurred.
In M-step, we update the parameters using these expected
counts. � is the total number of occurrences, that is, � ��

���� �������. In Appendix A, we briefly describe the
derivation of the EM algorithm for SAM.3

2������� should be obtained with no duplications. For example,
������� is the number of times that � occurs in advance of �� in the
text.

3In the original description [1] of M-step, the constants ��� and ���
are omitted. Indeed these constants are negligible in the computation of
E-step or the membership distribution (Eq. 2), but when the EM algorithm
is extended to the case of MAP estimation, they cannot be ignored (See
Equations 8 and 9).

1. Randomly initialize the parameters � ��� and � �����.

2. Iterate the following two steps alternately until� con-
verges (i.e. the difference between the current � and
the last one is less than 
):

E(xpectation)-step:

� �������� ��
� ������ ������� ����
� � ������ ������� ���

	��� ��
�

���� �������� ��������

	����� ��
�

�� �������� ��������

	
�

��� ������ ��� ������� ��

M(aximization)-step:

� ��� �� 	�����

� ����� �� �
�	������	���

Fig. 2. The EM algorithm for SAM

When the number of parameters are increased compared
to the size of data, the problem of data sparseness (or zero-
frequency) arises. To avoid this problem, from a Bayesian
point of view, we adopt MAP estimation instead of ML es-
timation. Let � be the vector of parameters in SAM, and �
be a training data from which we obtain ����� ��. We also
introduce a prior distribution � ��� for �, and consider the
likelihood � as � �����, the distribution of � given the pa-
rameter �. Then, from Bayes’s theorem, it is easy to see that
a posteriori distribution � �����, the probability distribution
of � given �, is computed as:

� ����� �
� ������ ����
� ������ ����

� � ������ ���� (6)

MAP estimation is to find the parameters � that maximizes
a posteriori distribution � �����. We assume here that � ���
follows the Dirichlet distribution:

� ��� � �
�

���

�
� ����

�
��� � ������

��
� (7)

where � is a normalizing constant, and �, � � are the hyper-
parameters of this Dirichlet distribution. From these set-
tings, we obtain the EM algorithm for MAP estimation, by
replacing M-step’s formulas in Fig. 2 with the followings: 4

� ��� ��
	��� 	 �

� 	 ����
(8)

� ����� ��
	����� 	 ��


	��� 	 ����� �
(9)

4In iteration of E-step and M-step, we should check the convergence of
a posteriori distribution � �����, not the likelihood � �����.



�� �� ��

adj. � � ������ noun ��
� ������� adj. � � ������ noun ��

� ������� adj. � � ������ noun ��
� �������

deliberate 0.99530 stance 0.73869 beautiful 0.95468 tune 0.74472 large 0.98943 site 0.87093
clear 0.97878 reply 0.71988 brave 0.90716 harmony 0.67884 vast 0.97669 range 0.75925
positive 0.90652 statement 0.68155 light 0.90443 medieval time 0.64022 narrow 0.92767 view 0.73006
strong 0.88882 response 0.68151 elegant 0.88915 melody 0.63640 gloomy 0.89550 stadium 0.69015
flexible 0.88234 attitude 0.66893 plain 0.88651 dance 0.58823 flat 0.85147 national land 0.62448

Table 1. The membership distribution under the estimated parameters.

It should be noticed that � and �� can be considered as the
counts ‘by default,’ which are added unconditionally to the
expected counts 	��� and	�����, respectively. Thus we can
prevent the parameters from being estimated to zero, even
for sparse data.

4. EXPERIMENTAL RESULT

The word co-occurrence data used in the experiment 5 is ex-
tracted from Mainichi newspaper 1993–2002. In extraction,
CaboCha, a Japanese dependency structure analyzer, is used
to find syntactic dependency pairs, such as adjective-noun
pairs. Each syntactic dependency pair is then considered as
a word co-occurrence.

Table 1 shows the membership distribution � ����� un-
der the parameters � ��� and � �����, which are estimated
from word co-occurrence data of adjective-noun pairs. In
the co-occurrence data, the total number of words (adjec-
tives and nouns) and co-occurrences are 17,453 and 458,970,
respectively. The number of context classes is fixed to 50,
and constants �, �� and 
 in the EM algorithm are set to ���,
��� and ����, respectively.

Table 1 picks up adjectives and nouns which have top
5 highest membership probabilities for three typical context
classes ��, �� and ��. Note that, for every co-occurrence
pair ������, we fix � as an adjective, and � � as a noun.6

From Eq. 2, for a fixed context class �, the magnitude of
� ����� indicates the significance of � ����� compared to
� ��� (the unconditional or ‘averaged’ distribution for �,
since � ��� �

�
� � ���� �����). Hence we can say each

word in Table 1 is closely relevant to the corresponding
context class. According to our usual readings for words,
it seems that the context classes ��, �� and �� correspond to
‘attitude,’ ‘beauty’ and ‘vastness,’ respectively. Several re-
lated words are also cleanly extracted for the other context
classes.

5The experiment we described here is conducted by Asuka Terai and
Masanori Nakagawa (Tokyo Institute of Technology).

6Especially for such co-occurrence data, we can consider another
model [4], in which we have two distinct vocabularies �� and �� (e.g. ad-
jectives and nouns), and probabilities� ����� and � ������ have individual
parameter sets such that

�
����

� ����� �
�
�

����
� ������ � �. [5]

adopts this model in the experiments, and so has slightly different results
from the one in this paper.

5. CONCLUSION AND RELATED WORK

In this paper, we described Semantic Aggregate Model (SAM)
in detail, and reformulated its EM algorithm. SAM is a
comprehensible model for word co-occurrences, and the ex-
perimental result shows that SAM cleanly extracts related
words for some aspects of our concepts. The result is also
expected to be used in further analyses of our concepts.

The problem in the EM algorithm is that it can only find
local ML (or MAP) estimates, and so it is needed to adopt
some promising methods including deterministic annealing
EM (DAEM) algorithm [6] or split-merge EM (SMEM) al-
gorithm [7] to avoid being trapped in ‘bad’ local estimates.
There is also a question of how to determine an appropriate
number of context classes. This can be seen as a problem
of model selection, which is intensively discussed in the last
three decades.
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A. DERIVATION OF THE EM ALGORITHM FOR
SEMANTIC AGGREGATE MODEL

We first describe a general form of the EM algorithm for ML
estimation. Let � be observed data and 	 be missing data
correspond to � .7 Also Q function is defined as follows:

����� ��
def
� 	
���� �	 �������� � ��

�
�

� � �	�� � �� ���� �	 ������� (10)

Then, for � � �� �� 
� � � �, E-step of the EM algorithm is
to compute ���� �����, and M-step is to compute ������ �
��������� �����, where ���� and ���� are the initial pa-
rameters and the parameters obtained after �-th iteration (� �
�� 
� � � �), respectively. It can be shown that ��� �� �� �
���� �� implies � ������ � � �����, and from M-step, we
can say ��������� ����� � ������� �����. Hence it is en-
sured in general that the likelihood � ����� monotonically
increases while updating � by E-step and M-step.

For the EM algorithm specialized for SAM, we consider
the observed data � (which corresponds to � in Section 3)
as a sequence of� independent word co-occurrences �� 	� �

�
	�,

and missing data 	 is a sequence of the corresponding con-
text classes �	. Then the specialized form of Q function is
obtained as:

����� �� �


�

	��

�

����

� ��	��	� �
�
	� �� ���� ��	� �	� �

�
	��

��

�
�

���� ������� 
�

� � ������� �� ��� � ��� �� ����� (11)

(the proof is omitted). Note here that ����� �� is defined
as the number of occurrences of ���� �� in � , and � ��

���� �������. We hereafter abbreviate the parameters
� ��� and � ����� as �� and ���� respectively. Following the
general description of EM, given � � � ���, our goal is now
to find �� � ������ that maximizes ����� ��. This can be
regarded as a constrained optimization problem, where the
constraints are that

�
� �

�
� � � and

�
� ����� � � (� � �),

and so we will use the Lagrange multiplier method. Let us
consider the function:

� ���� � ����� ��� ��
�

� �
�
� � ���

�
� ���

�
� ��

��� � ���
7Since we have a missing part � , it is said that the observed data

� is incomplete, while the pair �� ��� is called complete data. Then
� �� ����� is the likelihood of complete data under the parameters �. Note
here that � ����� is the likelihood in an usual sense.

where � and �� are arbitrary constants. Substituting Eq. 11
and � ��� �� ������ � ����

�
����

�
���� to � ���� above, we have:

� ���� �
�

���� ���� ���
�

� � ����� ��� �� 

���� ��� 	 ��� ��
��� 	 ��� ��

�����

���
�

� �
�
� � ���

�
� ���

�
� �

�
��� � ���

Here, for each � � �, we obtain � �� � 	����� from:

� ����
���

�

� �
��
�

�
���� ���� ���� ����� ��� ��� � � �

and	���
def
�
�

���� �������� �������� ��. Since
�

� �
�
� �

�, � �
�

�	��� holds. It is easy to see
�

�	��� � � , and
hence we finally get:

��� � 	������ (12)

On the other hand, for each � � � and � � � , we obtain
��
��� � 	�������� from:

� ����
���

���

� �
��
���

�
�� ���� ���� ����� ��� �� 	

�
��
���

�
����� ��� ����� �� �� � �� � �

and

	�����
def
�

�
�� �������� �������� ��

	
�

��� ������ ��� ������� �� ���

Since
�

� ��
��� � �, �� �

�
� 	����� holds. It is also

easy to see
�

� 	����� � 
	���, and hence the following is
obtained:

����� � 	������
	���� (13)

The EM algorithm in Fig. 2 is now derived by regarding
the computation of 	��� and 	����� as E-step, and Eqs. 12
and 13 as M-step.


