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ABSTRACT
One crucial issue in genetic programming (GP) is how to
acquire promising building blocks efficiently. In this paper,
we propose a GP method (called GPTM, GP with Tree Min-
ing) which protects the subtrees repeatedly appearing in su-
perior individuals. Currently GPTM utilizes a FREQT-like
efficient data mining method to find such subtrees. GPTM
is evaluated by three benchmark problems, and the results
indicate that GPTM is comparable to or better than POLE,
one of the most advanced probabilistic model building GP
methods, and finds the optimal individual earlier than the
standard GP and POLE.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artifi-
cial Intelligence]: Problem Solving, Control Methods, and
Search

General Terms
Algorithms, Performance, Experimentation

Keywords
genetic programming, building blocks, frequent subtree min-
ing, probabilistic model building genetic programming

1. INTRODUCTION
Genetic programming (GP) [10] is known as a powerful

tool for optimization and problem solving, and has been ap-
plied to a wide variety of applications. One of the most
crucial issues in GP is how to acquire and preserve promis-
ing building blocks efficiently [1, 8, 10, 11, 13, 16]. For this
purpose, we propose GPTM (GP with Tree Mining), a GP
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Figure 1: Examples of a subtree (surrounded by a
dashed line) of a chromosome tree.

method which first identifies the subtrees repeatedly appear-
ing in the chromosomes of superior individuals (ones with
very high fitness), and then protects them against undesir-
able crossover operations. To find such subtrees, we take a
data mining approach where the target dataset is the chro-
mosomes of superior individuals, and introduce an efficient
subtree mining algorithm based on FREQT [3]. Using this
mining algorithm, we can find subtrees like Fig. 1 (a) as well
as Fig. 1 (b). Whereas some previous methods [8, 10, 11, 16]
including the automatically defined functions covers the lat-
ter case, i.e. all nodes below a certain node (Y in Fig. 1 (b))
will be encapsulated, we aim to identify building blocks in a
more flexible form. For instance, let us consider X1 and X2

in Fig. 1 (a) as IF-THEN-ELSE functions. That is, we have
X1 = IF_C1 and X2 = IF_C2, where C1 and C2 refer to
some conditions. Also, let x be a terminal symbol that indi-
cates taking some action A. Then, the subtree in Fig. 1 (a)
says “do A if ¬C1 ∧C2 holds.” Provided that this statement
is a building block for the target problem, the GP system
would be able to proceed further, delaying to think about
the suitable actions for the other cases. Additionally, using
subtree mining algorithms, building blocks can be identified
independently of the positions in the chromosome.

Of course, the search performance is also important. A re-
cent approach to acquire/preserve building blocks is proba-
bilistic modeling building GP (PMBGP). Like GPTM, PM-
BGP methods see the chromosomes of superior individu-
als as data, to which statistical techniques are applied. In
this paper, we compare GPTM with the standard GP and a
PMBGP method called POLE (Program Optimization with
Linkage Estimation) [6], on three benchmark problems.

The rest of this paper is organized as follows. First, Sec-
tion 2 describes GPTM, the proposed method. We then re-
port the results of the comparative evaluation in Section 3.
Section 4 concludes this paper with mentioning future work.
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Figure 2: Outline of GPTM.

2. PROPOSED METHOD
The proposed method, GPTM, is outlined in Fig. 2. This

figure indicates that GPTM basically follows the standard
GP workflow, but is augmented with two steps called the
mining step and the protection step. In the mining step,
GPTM first selects a small fraction of individuals with higher
fitness as superior individuals, as done in the truncate selec-
tion, and then runs a subtree mining algorithm for find-
ing frequent subtrees (hopefully, promising building blocks)
from the superior individuals. The number of superior in-
dividuals is specified in advance. Using the terminology of
the data mining literature, we hereafter use the term pat-
tern to refer to a subtree treated in GPTM. Then, in the
protection step, to avoid undesirable crossover operations,
the crossover probabilities of parents are modified based on
the extracted patterns. In the sequel, we describe the two
augmented steps in turn, following some preliminaries.

2.1 Preliminaries
The subtree mining algorithm used in the mining step is

an adaptation of FREQT [3] to our purpose. Throughout
this paper, we use F and T respectively for the set of func-
tion symbols and the set of terminal symbols in the problem
domain. In the mining algorithm, the chromosome of an in-
dividual is considered as a labeled ordered tree, where nodes
are labeled with the symbols from F ∪T , and the occurrence
order among siblings cannot be ignored. The chromosome
trees of superior individuals are bundled up to a single la-
beled ordered tree D, called the data tree, whose root node is
labeled with a dummy symbol, say R, not included in F ∪T .
We also give indices from 1 to |D| to the nodes in D in the
preorder. For example, Fig. 3 (a) shows a data tree D for
two individuals, where F = {A, B} and T = {x}, and the
arity of A (resp. B) is 2 (resp. 1). In D, each of child trees of
the root node, i.e. subtrees comprised of nodes {2, 3, . . . , 8}
and nodes {9, 10, . . . , 16}, corresponds to the chromosome
of an individual.

A pattern is also a labeled ordered tree, which has labels
from F ∪ T ∪ {∗}. In Fig. 3 (a), we have two examples of a
pattern, S1 and S2. It is seen that the pattern S1 appears
three times (i.e. as subtrees {2, 3, 4}, {5, 6, 7} and {9, 10,
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Figure 3: (a) A data tree and a pattern. (b) (p, a, `)-
expansion and (c) its examples.

11}) in D, whereas pattern S2 does not appear in D at all.
Hereafter a node is called a don’t-care node if it is labeled
with ∗, or called a proper node otherwise. The size of a
pattern is defined as the number of proper nodes included
in the pattern.

To adapt the notions from FREQT to the GP system,
two points should be taken into account. First, for exam-
ple, while the original FREQT does not distinguish S1 and
S2, we need to distinguish them. This is of course because
the positions of arguments are often essential to the func-
tions in the domain. On the other hand, to realize rightmost
expansion, one of key notions of FREQT (described later),
comprehensibly, we will use S1, not S′

1, as a representation
of a pattern.1 The second point to note is that the arity for
each function is known in advance.

2.2 Finding frequent patterns

2.2.1 Rightmost expansion
In problems of finding frequent patterns from data, we

usually specify σmin , a positive integer often called the min-
imum support. Then, many of well-known mining algorithms
try to find efficiently the patterns which appear σ times in
D where σ ≥ σmin . The mining step of GPTM also does this
by generating possible patterns incrementally with counting
their occurrences. The incremental procedure for pattern
generation is called rightmost expansion. In a rightmost ex-
pansion, for some k ≥ 1, we grow a k-pattern (a pattern
of size k) S to a (k + 1)-pattern S′ by attaching a (proper)
node to the rightmost path.

1Precisely speaking, if a pattern S has a proper node v and
v’s right siblings are all don’t-care nodes, then we will re-
move these right siblings of v from S. Also if the children
of a proper node in S are all don’t-care nodes, then we will
remove these children from S.



To be more concrete, let us see Fig. 3 (b), where we are
creating a new pattern from the pattern S by adding a node
z, labeled with ` ∈ F ∪ T . S has the rightmost leaf v, and z
is being added as a child of the p-th ancestor of v, say y, on
the rightmost path (the path from the root to v). Besides,
in the mining step, a node in the pattern S is also annotated
a number of (both proper and don’t-care) children included
in S. In the figures, a node which has a label ` and has a
children in the pattern of interest is denoted by ©̀[a]. As a
special case, a node with a terminal label ` ∈ T is always
considered to have 0 children. Then, let us note that the
node y in Fig. 3 (b) already has a′ children, and suppose
that the function labeled at y is n-ary. After z added as the
a-th child2 of y (a′ < a ≤ n), the number of children of y will
be updated to a, and don’t-care nodes will be filled between
w and z. We call this procedure a a (p, a, `)-expansion for
S. Fig. 3 (c) shows three instances of a (p, a, `)-expansion
for pattern S3. Note that the newly attached node z is the
rightmost leaf of the new pattern S′.

2.2.2 Counting the rightmost occurrences
Furthermore, to find frequent patterns, it is also required

to count the occurrences of patterns. For each pattern S,
we first compute a set RMO(S) of rightmost occurrences of
S in the given data tree D. A rightmost occurrence of S in
a data tree D is referred to by the index of the node in D
that matches with the rightmost leaf of S. In Fig. 3 (a), for
example, the rightmost leaf of pattern S1 is the node with
label x, and hence RMO(S1) = {4, 7, 11}. RMO(S), the
rightmost occurrences of a pattern S, is computed when S
is created. Let us consider the case where S is created by a
(p, a, `)-expansion from the base pattern S0. Then, RMO(S)
is computed as {φD(i, p, a) | v ∈ RMO(S0), L(φD(i, p, a)) =
`}, where φD(i, p, a) (resp. L(φD(i, p, a))) is the index (resp.
the label) of the a-th child node of the p-th ancestor of the
node indexed by i in the data tree D. Also, for a pattern S of
size 1 whose only node has a label `0, RMO(S) is computed
as the set of indices of the nodes labeled with `0 in the
data tree D. In Fig. 3 (a), the rightmost occurrences of the
pattern created by (2, 2, A)-expansion from S1 is {5, 12}.
The number of occurrences of S, denoted by σ(S), is finally
obtained as the size of RMO(S).

2.2.3 Pattern enumeration
Fig. 4 illustrates the process of enumerating all frequent

patterns appearing in the data tree D in Fig. 3 (a), given
σmin = 2. We start from all patterns of size 1, consisting
only of one node with a function label. In the figure, a di-
rected edge annotated with (p, a, `) indicates an application
of a (p, a, `)-expansion. Also, for each pattern S, RMO(S)
and σ(S) are written below S. We basically try all possible
(p, a, `)-expansions from patterns of smaller size to patterns
of larger size, but for the infrequent patterns (a pattern S
is said to be infrequent if σ(S) < σmin), we can stop the
further expansions.3 In Fig. 4, these infrequent patterns are
represented with shaded nodes. On the other hand, we can
see that there are 12 frequent patterns, in which (A (B x)

(A ∗ ∗)) is the largest pattern (the size is 4).

2The enumeration of children is one-based and left-to-right.
3Let S′ be a pattern created from S by a (p, a, `)-expansion.
Then, it is easily seen that a larger pattern S′ is also infre-
quent since σ(S′) ≤ σ(S), and hence the further expansions
from S will always be unfruitful.
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Figure 4: Frequent patterns found by GPTM.

2.2.4 Adjusting the minimal support
The last thing we consider for the mining step of GPTM

is how to set a suitable value to σmin , the minimum support.
Unfortunately, as is well-known, it is not easy. That is, too
small σmin will cause a flood of frequent patterns, whereas
with too large σmin , we can find nothing. Besides, in con-
sidering the adaptation to the GP system, the suitable σmin

might be changed in the middle of the evolution. Currently,
GPTM automatically finds a suitable value for σmin at the
cost of extra computation.

Specifically, we first prepare four control parameters —
the maximum size ξmax and the minimum size ξmin of pat-
terns, and the maximum number ζmax and the minimum
number ζmin of frequent patterns at the maximum size ξmax .
Namely, we only try to find frequent patterns of size ξ such
that ξmin ≤ ξ ≤ ξmax . Using ζmax and ζmin , we adjust the
minimum support σmin by the following procedure:

1. Set σ
(0)
min as a sufficiently small number. Let t := 0.

2. Run the mining process described above with σ
(t)
min .

3. If the number ζ of the found frequent patterns satisfies



ζmin ≤ ζ ≤ ζmax , then finish the whole mining step

of GPTM. Otherwise, set σ
(t+1)
min under some updating

strategy, let t := t + 1, and go to the step 2.

In updating σmin , we first repeat σ
(t+1)
min := 2σ

(t)
min until ζ <

ζmin . Once we have ζ < ζmin , we let σ
(t+1)
min := (σ

(t)
min +

σ
(t−1)
min )/2, and hereafter, using a binary search, we seek σmin

with which the number ζ of frequent patterns at maximum
size falls into [ζmin , ζmax ]. Surely this procedure would be
time-consuming in that we need to run the mining process
(Step 2) iteratively. However, we would like to note that
the mining process is efficient itself and that the number of
superior individuals is not so large.

2.3 Protecting frequent patterns
After finding frequent patterns, in the protection step,

GPTM tries to protect these patterns in a soft way. That is,
it modifies the crossover probabilities to make these frequent
patterns less likely to be destroyed and more likely to be
inherited to the next generation. Formally, the procedure
is described as follows. For a (sub)tree or pattern S, we
define U(S) as a set of nodes in S, and root(S) as the root
node of S. Also, for a pattern S′ of S, let Uanc(S

′) be

the ancestral nodes of S′, and let Uinside(S
′)

def
= U(S′) \

{root(S′)}. These definitions are illustrated in Fig. 5 (a),
where a frequent pattern consists of shaded nodes. Then,
provided that we find N distinct frequent patterns S′

1, S′
2,

. . . , S′
N in a chromosome tree C, we define the root node

set Vroot(C)
def
= {root(S′

i) | i = 1, 2, . . . , N}, the ancestral

node set Vanc(C)
def
= ∪N

i=1Uanc(S
′
i) and the inside node set

Vinside(C)
def
= ∪N

i=1Uinside(S
′
i).

Besides, in GPTM, we consider that a crossover opera-
tion only produces one child tree, as illustrated in Fig. 5
(b). Then, the parent tree whose root node is inherited by
its child is called the maternal tree, and the other parent
tree is called the paternal tree. Let us denote the crossover
probability at a node v by pcross(v). GPTM picks up two
individuals (e.g. by a tournament selection) from the popu-
lation, and performs a crossover operation at a node v with
the probability p′

cross(v), which has been modified as follows:

For the maternal tree Cm:

• Let V1 be a set of nodes to be protected, and V2 be a set

of nodes to be unprotected. That is, V1
def
= Vroot(Cm)∪

Vinside(Cm) ∪ Vanc(Cm), and V2
def
= U(Cm) \ V1(Cm).

• For a node v1 ∈ V1, discount the crossover probability
using p′

cross(v1) := γ · pcross(v1), where 0 < γ < 1.
Let πm be the total discounted probability mass, i.e.

πm
def
= (1 − γ)

P

v1∈V1
pcross(v1).

• Distribute the probability mass πm to the nodes in V2,
i.e. let p′

cross(v2) := pcross(v2) + πm
|V2|

for each v2 ∈ V2.

• Normalize the modified probabilities, i.e. let p′
cross(v) :=

1
P

v′∈U(Cm) p′
cross (v

′)p
′
cross(v) for each v ∈ U(Cm).

For the paternal tree Cp:

• Let W1, W2 and W3 be a set of nodes to be neutral, of
nodes to be protected, and of nodes to be unprotected,

respectively. That is, W1
def
= Vanc(Cp) \ Vroot(Cp),
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W2
def
= U(Cp) \ (Vroot(Cp) ∪ Vanc(Cp)), and W3

def
=

Vroot(Cp).

• For a node v1 ∈ W1, we do not modify its crossover
probability, i.e. let p′

cross(v1) := pcross(v1).

• For a node v2 ∈ W2, discount the crossover probability
using p′

cross(v2) := γ · pcross(v2), where 0 < γ < 1.
Let πp be the total discounted probability mass, i.e.

πp
def
= (1 − γ)

P

v2∈W2
pcross(v2).

• Distribute the probability mass πp to the nodes in W3,
i.e. let p′

cross(v3) := pcross(v3) +
πp

|W3|
for each v3 ∈ W3.

• Normalize the modified probabilities.

The constant γ above is hereafter called the discount rate.
Now, let us see Fig. 5 (b) again, and consider the patterns

comprised of shaded nodes as the frequent patterns. By
the modifications of crossover probabilities above, we can
find that the frequent patterns in the maternal tree will be
less likely to be destroyed, and the frequent patterns in the
paternal tree will be more likely to be inherited by its child.

2.4 Depth-dependent crossover
Although the modification of crossover probabilities seems

to accelerate the evolution, the risk of being trapped un-
wanted local optima should increase, since unpromising code
fragments also tend to be fixed in an early stage of evolution.
To get out of this dilemma, the current GPTM also adopts
the depth-dependent crossover [9] as an option.

In a usual crossover operation in GP, we set the crossover
probabilities as uniform. We refer to such a crossover op-
eration as the uniform crossover. In the depth-dependent
crossover, on the other hand, the crossover probabilities are
exponentially decreased with respect to the depths of the
corresponding nodes. Roughly speaking, with the depth-
dependent crossover, shallow nodes are more often chosen,
and hence we have more chance to escape from the local
optima. To be specific, for a node v, we first set pcross(v)
proportional to 1

2d · 1
|Ld| , where d is the depth of v and Ld

is a set of nodes at the depth d. We then modify pcross(v)
to p′

cross(v) following the procedure in the previous section,



Initialize individuals

Evaluate individuals

Select individuals

Generate new individuals
by sampling the learned model

Learn the underlying probabilistic model

Repeat for
the next
generation

Termination condition(s) satisfied? Terminate
YESNO

Figure 6: Outline of PMBGP methods.

(b) (c)X1

X2

X4 X5 X6 X7

X3

(a)

X2

X4 X5 X6 X7

X3

X1

X2

X4 X5 X6 X7

X3

X1

Figure 7: Bayesian network on a probabilistic pro-
totype tree.

except that the discounted probability mass (πm or πp) is
also distributed decreasingly according to the depths.

3. BENCHMARK EVALUATIONS
In this section, we report the results of comparative eval-

uation with three benchmark problems — symbolic regres-
sion, artificial ants for the Santa-Fe trail, and the royal tree
problem. The building blocks in the last problem has an
apparent regularity in their structures, while the building
blocks in the former two seem not. Before showing the re-
sults, we first describe briefly a probabilistic model building
GP method, POLE, used in the evaluation.

3.1 Probabilistic model building GP
Fig. 6 shows a typical workflow in PMBGP methods. PM-

BGP methods no longer have genetic operations, and instead
each has a (parametric) probabilistic model by which new
populations are generated. In each evolutionary loop, the
model is learned from the superior individuals, and gener-
ates a new population by sampling. By this strategy, we
can expect that the probabilistic model turns to approxi-
mate well the distribution of superior individuals, and that
the biases in this approximated distribution leads to a for-
mation of building blocks.

There have been two classes of PMBGP methods in which
the difference is the underlying probabilistic model. The for-
mer class uses a Bayesian network (BN) on the data struc-
ture called a probabilistic prototype tree (PPT) [14], and
POLE belongs to this class. The latter (e.g. [15]) uses proba-
bilistic grammars. Fig. 7 gives examples of a BN on a PPT,
where dashed lines indicate the edges of a PPT, and arcs
with solid lines indicate the edges of a Bayesian network
on the PPT. A PPT is an n-ary complete tree in which n
is the maximum arity of the functions in the problem do-
main. In sampling, along with the edge directions in the
BN, function/terminal symbols in the chromosome are de-
termined one by one. The parameters in the BN are the
local probabilities among a child (e.g. X6 in Fig. 7 (c)) and
its parents (X1 and X3), and they are learned according to

Table 1: Settings common to all problems.
Method Control parameter Value

Initialization method Grow
Common to Probability of selecting
all methods function symbols in Grow 0.9

# of elites 1
# of runs 50

GP/GPTM Selection method tournament
Mutation probability 0.05

GPTM # of superior individuals 50

the number of occurrences of function/terminal symbols in
the chromosomes of superior individuals.

Fig. 7 (a) is a probabilistic model used in PIPE (Proba-
bilistic Incremental Program Evolution) [14], where the BN
has no edges, i.e. all function/terminal symbols are deter-
mined independently of each other. EDP (Estimation-of-
Distribution Programming) [17] considers BNs in a fixed
form as depicted in Fig. 7 (b). POLE can be seen as the
most advanced BN-based PMBGP methods, since it allows
an arbitrary form of the BN structure such as Fig. 7 (c),
except that the edges should be directed from ancestors to
descendants, or from left siblings to right siblings.

The most characteristic feature of POLE is to learn the
BN structure, as well as the parameters, using the K2 algo-
rithm.4 For computational efficiency, on the other hand, we
put a restriction that the number of undirected edges in the
base PPT between a parent and its child in the BN, which
are connected by a directed edge, cannot be longer than β
(> 0) [7]. That is, β works as a control parameter for POLE
which limits the range of possible parents in the BN. Also, to
get statistically reliable parameters from a limited number
of superior individuals, POLE adopts maximum a posteriori
(MAP) estimation, where we use δ as the default count.

3.2 Settings and implementations
For benchmark evaluations, control parameters were con-

figured as shown in Table 1 and Table 2. For symbolic regres-
sion and artificial ants, the depth-dependent crossover (Sec-
tion 2.4) did not work well, so we used the uniform crossover
instead. The default count δ in POLE is chosen based on
the best fitness value of the last generation, averaged on
50 runs. POLE and GPTM were implemented by extend-
ing GPsys-2b (ftp://cs.ucl.ac.uk/genetic/gp-code/), a
Java-based GP system by A. Qureshi. We also extended
GPsys-2b so that the standard GP can deal with both the
uniform crossover and the depth-dependent crossover.5

3.3 Results

3.3.1 Symbolic regression
In symbolic regression, we aim to obtain an approximate

function f ′(x) for a given function f(x). We are even un-
aware of the existence of building blocks, but we expect this
problem to exhibit the general performance of GPTM. Fol-

4POLE adopts the Bayesian Information Criterion (BIC) to
choose the most plausible BN structure.
5In the old implementation of GPTM, the depth-dependent
crossover was only incorporated in part. We also reconfig-
ured the control parameters for GPTM. As a result, the
evaluation results reported in this paper are rather different
from the ones in our previous reports.



Table 2: Settings for three benchmark problems.
Method Control parameter Ant SymReg: fa SymReg: fb SymReg: fc Royal tree

Population size 500 200 5000
Common # of generations 50 1000 100

Max. tree depth 7 6 6
GP/GPTM Selection method tournament tournament tournament

Tournament size 7 7 7
GP Crossover operation uniform uniform depth-dep.

GPTM Size of frequent patterns (ξmax/ξmin ) 2/5 5/5 3/3
# of freq. patterns at max. size (ζmax/ζmin ) 10/50 5/20 5/20
Discount rate γ 0.9 0.5 0.9 0.9 0.3
Crossover operation uniform uniform uniform/depth-dep.

POLE Selection method truncate truncate truncate
Truncate probability 0.2 0.2 0.2
Default count δ 0.001 1.0 1.0 0.1 0.5
Range β of possible parents 4 4 4 4 2

lowing [17], we use the following three target functions:
8

<

:

fa(x) = (2 − 0.3x) sin(2x) cos(3x) + 0.01x2

fb(x) = x cos(x) sin(x)(sin 2(x) cos(x) − 1)
fc(x) = x3 cos(x) sin(x)e−x(sin 2(x) cos(x) − 1)

The function and terminal symbols are given as {Add, Sub,
Mul, Div, Sin, Cos} and {x, 0.05, 0.10, 0.15, . . . , 1.00},
respectively. For each individual, we compute a (raw) fitness
value by 1000−50

P30
j=1 |f(xj)−f ′(xj)|, where xj = 0.2(j−

1). The fitness value takes 1000 at maximum though it can
be negative. The settings of control parameters basically
follow [17], and in POLE, the default count δ was chosen
from 0.05, 0.1, 0.5, 1.0 and 5. The results are shown in
Fig. 8. GPTM works best for functions fb and fc, while
POLE works best for fa. Except that the standard GP
succeeded to find the exact definition of fb in a run, GPTM
works as an improvement of the standard GP.

3.3.2 Artificial ants for the Santa-Fe trail
In the artificial ant problem, an ant walks around on a

32×32 toroidal grid to eat 89 pieces of foods. These foods
are placed on an irregular trail, called the Santa-Fe trail,
which has gaps. The ant is only allowed to move in 400
time steps. The (raw) fitness is the number of pieces of foods
eaten by the ant. For the ants with the same fitness, simpler
one is preferred. The population size and the number of
generations were set following [10]. The default count δ for
POLE was chosen from 0.0005, 0.001, 0.005, . . . , 5.

The results is shown in Fig. 9, where the meanings of x-
axis and y-axis of the graphs are the same as those in Fig. 8.
We can read from the graphs that the methods except POLE
succeeded to find an optimal ant, i.e. an ant which ate all
pieces of foods on the trail. The difference between GP and
GPTM on the average performance is small, but the proba-
bility of success, the relative frequency of runs that achieved
to find an optimal ant until the last (50th) generation, in
GPTM is as twice as that in GP. The simplest optimal ant
obtained through 50 runs of GPTM is illustrated in Fig. 10.
This ant turns around clockwise, and moves forward if there
is a food ahead. Otherwise, i.e. if there is no food around,
it moves forward in the original direction. Surely this ant
is not versatile (since it only checks the squares adjacent to
the current square), but is rather reasonable. In the run
which obtained the ant in Fig. 10, GPTM extracted a pat-
tern (If_Food_Ahead Move *), continuously from the first
generation to the last generation. This partial IF-THEN-

ELSE pattern is very simple but seems useful in most cases
(i.e. at any position in the chromosome) for the artificial
ant problem. Also, this pattern appears three times in the
optimal ant shown in Fig. 10, and can be seen as a simple
instance of a building block discussed in Section 1.

3.3.3 Royal trees
In the royal tree problem [12], the optimal chromosome

tree is obtained by building up the code fragments in bottom-
up, and from this nature, this problem can be considered
as suitable to measure the efficiency in collecting building
blocks. A program for the royal tree problem consists of
the functions symbols A, B, . . . and the terminal symbols x,
y, . . . . The arities of functions increase one by one in the
alphabetical order (i.e. the arities of A, B, . . . are 1, 2, . . . ,
respectively) of the function labels. In royal trees, we use a
notion of ‘perfect’ trees. A perfect tree is a complete tree
such that every function node has a label which is the imme-
diate successor of the child node’s label in the alphabetical
order, except that every node labeled with A has a leaf node
x. For instance, the trees (i), (ii) and (iii) in Fig. 11 are
perfect trees, while the tree (iv) is not.

The (raw) fitness value is a score computed by the proce-
dure as follows. The score of a tree is the score of its root
node. At each function node n, we take a weighted sum s
of the scores of its child trees. In this summation, if a child
tree tc of n is a perfect tree, we add the tc’s score multiplied
by the full bonus (= 2) to s. Even when tc is not a per-
fect tree, if the root label of tc is the immediate predecessor
of n’s label, the score of tc multiplied by the partial bonus
(= 1) is added to s. If both conditions fail to be satisfied,
we add the tc’s score multiplied by the penalty (= 1/3) to s.
The score of n is basically given as the weighted sum s, but
if the tree rooted at n is a perfect tree, the score of n is then
multiplied by the complete bonus (= 2). Also, to each leaf
node, we give a score 1 if the label is x, and give 0 otherwise.
Fig. 11 also shows the score of each tree. We see that the fit-
ness grows exponentially (only) if the subtrees are correctly
built in bottom-up. In the evaluation, we used five function
symbols {A, B, C, D, E} and three terminal symbols {x, y,
z}. The optimal fitness is 122,880 (≈ 105.09), the score of
the perfect tree whose root label is E. The settings of control
parameters are shown in Table 2. In GPTM, we used the
depth-dependent crossover. In POLE, the default count δ
was chosen from 0.1, 0.5 and 1, and the range β of possible
parents was restricted to 2 due to the memory space.
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Figure 8: Results for symbolic regression problems. Above: Transition of the best fitness value, averaged on
50 runs. — x-axis: generation, y-axis: fitness value. Below: Cumulative number of successful runs given a
threshold, at the 1000th generation — x-axis: threshold fitness value (say, x), y-axis: number of runs where
the best individual achieved a fitness greater than or equal to the threshold x.

Fig. 12 shows the results, where the meanings of x-axis
and y-axis of the graphs are the same as those in Fig. 8.
In the graphs, ‘uniform’ (resp. ‘depth-dep.’) indicates the
use of the uniform (resp. the depth-dependent) crossover.
The results tell us that GPTM found the optimal individual
earlier than the standard GP. POLE also found the optimal
individual on 19 runs, but from Fig. 12 (a), it should require
more time to find the optimal individual on all runs (this
observation also applies to the result for the artificial ant
problem). We can also see that, in the royal tree problem,
the depth-dependent crossover is quite effective for GPTM.
Indeed, GPTM with the uniform crossover often trapped in
a locally optimal individual, i.e. the perfect tree of depth 5,
whose root label is ‘D’ and whose score is 6,144 (≈ 103.79).

4. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new GP system, called GPTM,

which utilizes a subtree mining algorithm for finding build-
ing blocks in the superior individuals. GPTM is expected
to identify position-independent building blocks in a flexible
form such as IF-THEN-ELSE structures. The experimen-
tal results show that GPTM is superior to the standard GP
in most cases, and is comparable to or better than POLE,
one of the most advanced probabilistic model building GP
methods. Also GPTM tends to find the optimal individual
earlier than the other methods.

To our knowledge, GPTM is a first attempt to combine
GP and an efficient data mining technique, so there is much
room for improvement. For example, the discount rate is
currently set to be constant, but it seems not so adequate
since the quality of frequent patterns tends to be poor in an
early stage of evolution. So the scheduled adjusting of the
discount rate, like [5] proposed for mutation probabilities
in genetic algorithms (GAs), seems to be important. To

incorporate well-developed heuristics [8, 13] or to give weight
to the maximal frequent patterns (found by the techniques
such as [4]) is another possible improvement. In a broader
context, it seems that GAs can benefit from the basic idea
presented in this paper. That is, a sophisticated sequential
data mining (motif mining) algorithm such as [2] would be
likely to improve the performance of GAs.
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