
PRISM: A Language for Symbolic-Statistical Modeling�

Taisuke SATOy and Yoshitaka KAMEYAz

Dept. of Computer Science, Tokyo Institute of Technology

2-12-1 Ôokayama Meguro-ku Tokyo

Japan 152

Abstract

We present an overview of symbolic-statistical
modeling language PRISM whose programs are
not only a probabilistic extension of logic pro-
grams but also able to learn from examples with
the help of the EM learning algorithm. As a
knowledge representation language appropriate
for probabilistic reasoning, it can describe var-
ious types of symbolic-statistical modeling for-
malism known but unrelated so far in a sin-
gle framework. We show by examples, to-
gether with learning results, that most popular
probabilistic modeling formalisms, the hidden
Markov model and Bayesian networks, are de-
scribed by PRISM programs.

1 Introduction

We can make programs probabilistic by incorporating
probabilistic elements, which is rather obvious. What is
less obvious would be the existence of a general learn-
ing algorithm for these probabilistic programs. In this
paper, we present an overview of symbolic-statistical
modeling language PRISM (PRogramming In Statistical
Modeling). PRISM was born as the integration of logic
programming and the general learning algorithm with
which programs can change their behaviors, a posteri-
ori, by learning from examples. PRISM is a new type of
programming language designed for symbolic-statistical
modeling of complex objects and the real world.
The theoretical basis of PRISM is �xed point (least

model) semantics and probability theory, but the de-
velopment was spurred by the noticeable success of
HMM (hidden Markov model) in speech recognition (and
their applications to genetic information processing)
[Rabiner 89, Asai et al. 93], a rapid surge of the interest
in statistical methods in NLP (Natural Language Pro-
cessing) [Charniak 93], well-developed uncertainty han-
dling mechanisms in Bayesian networks [Pearl 88] and

�This paper is partly based on a report submitted for
Computational Logic Network news letter.

yemail: sato@cs.titech.ac.jp
zemail: kame@cs.titech.ac.jp

very encouraging results from ILP (Inductive Logic Pro-
gramming) [Muggleton 91]. They are all symbolic sys-
tems able to learn from statistical data.
PRISM o�ers a common vehicle for these diverse re-

search �elds in symbolic-statistical modeling, and also
gives us hopes for building even more complex and intel-
ligent systems. This is because PRISM programs can be
arbitrarily complex (no restriction on the form or size),
and what is more, regardless of the complexity, there
is, at least in theory, a method for PRISM programs to
learn from positive/negative examples. To put it di�er-
ently, we have the possibility of training arbitrarily large
programs so that they behave as we desire.
In the rest of paper, we describe PRISM in stages. We

�rst describe the semantic aspect of PRISM programs in
Section 2, then move to an example in Section 3 where a
program modeling human blood types is presented. Sec-
tion 4 explains learning and the EM (Expectation Max-
imization) algorithm. PRISM as a programming system
is described in Section 5, followed by examples of the
hidden Markov model and Bayesian networks in Section
6. Section 7 contains related work and Section 8 conclu-
sion.

2 PRISM programs and distributional

semantics

PRISM programs are roughly de�ned as logic programs
with a probability distribution given to facts. So we can
compute any recursive functions as a special case of non-
probabilistic facts. To capture PRISM programs mathe-
matically however, we need a probabilistic generalization
of �xed point semantics.
A PRISM program DB is a set of de�nite clauses writ-

ten asDB = F[R where F is a set of facts (unit clauses)
and R is a set of rules (non-unit clauses). In the theo-
retical setting, we always equate clauses with the set of
their ground instances, and allow DB to be countably
in�nite.
What makes PRISM programs di�er from usual logic

programs is a basic joint probability distribution PF given
to F . It means that ground unit clauses A1; A2; . . . be-
longing in F are probabilistically true and the probabil-
ities are determined by the joint probability distribution

PF like PF (A1 = 1; A2 = 0; . . .) = 0:3 etc. Here we con-
sider ground unit clauses as random variables taking 1
(true) or 0 (false).
Sampling from PF determines the set of true facts F 0,

and the least model of F 0
[R determines the truth of

all ground atoms appearing in the original program. On
the basis of this observation, we extend PF to a joint
probability distribution PDB for all (ground) atoms ap-
pearing in DB . We de�ne the denotation of DB as PDB
and call it distributional semantics. Formal treatment of
distributional semantics is found in [Sato 95] where the
existence of a joint probability distribution for in�nitely
many random variables and the measurability of the set
of least models are discussed.
We illustrate how we can extend PF to PDB by

giving a small example. Let fA1; A2g [fB1

A1;B1 A2; B2 A2g and PF (A1 = x1; A2 = x2) be
a program and the associated basic distribution respec-
tively. Suppose we got a sampling from PF which was
hA1 = 1; A2 = 0i in vector notation i.e. the set of true
facts is fA1g.
Imagine then a new program fA1g[fB1 A1; B1

A2;B2 A2g and its least model fA1; B1g. This model
determines the truth of B1 and B2 as hB1 = 1; B2 = 0i.
In this way, B1 and B2 become random variables via
the least model, and a truth value vector hx1; x2i for
hA1; A2i sampled from PF uniquely determines the truth
value vector hy1; y2i of hB1; B2i. We denote this func-
tional relationship by 'DB (hx1; x2i) = hy1; y2i. Then
PDB(B1 = y1; B2 = y2) is calculated by 'DB from PF
as follows.1

PDB(B1 = y1; B2 = y2)
=
P

'DB (hx1;x2i)=hy1;y2i
PF (A1 = x1; A2 = x2)

In the learning phase, as seen in Section 4, we read
the above equation the other way around, and adjust
PF to maximize PDB (B1 = y1; B2 = y2), the probability
of producing what we observe.

3 A blood type example

As a typical symbolic-statistical model, we present a
blood type program. It is very like a Prolog program
and as usual, variables begin with upper case letters. We
hope that the following comments will help the reader
understand the program.

1. This program describes how one's blood type
(bloodtype/1) is determined from the genes in-
herited from the parents. It happens to be non-
recursive but there is no problem in writing recur-

1This equation says, in the case of positive observations,
say hB1 = 1; B2 = 1i, the probability is the sum of those joint
probabilities PF (A1 = x1; A2 = x2) such that

hA1 = x1; A2 = x2i [
fB1 A1; B1 A2; B2 A2g ` B1 ^B2

where hA1 = x1; A2 = x2i denotes the set of true atoms, i.e.
atoms having xi = 1 (i = 0; 1).

Blood type program� �

gene(P,a):- bsw(1,P,1).

% Sample binary_switch_1,

% and if it is on, give gene a. Else

gene(P,b):- bsw(1,P,0),bsw(2,P,1).

% sample binary_switch_2. If it is on,

gene(P,o):- bsw(1,P,0),bsw(2,P,0).

% give gene b. Else give gene o.

bloodtype(X):- % genotype G=[Y,Z]

genotype(Y,Z), % determines

G=[Y,Z], % phenotype X.

((G=[a,a]; G=[a,o]; G=[o,a]), X=a

;(G=[b,b]; G=[b,o]; G=[o,b]), X=b

; G=[o,o], X=o

;(G=[a,b]; G=[b,a]), X=ab).

genotype(X,Y):- % gene X(Y) is inherited

gene(father,X), % from father(mother).

gene(mother,Y).

� �

sive PRISM programs (see HMM program in Sec-
tion 6.2).

2. bloodtype/1 calls genotype/2 which in turn calls
gene/2. First two predicates have probability dis-
tributions determined from that of gene/2. The
distribution of gene/2 is arbitrary but must be such
that for P instanciated to father or mother, one of
fgene(P,a), gene(P,b), gene(P,o)g is exclusively
true.

3. To let gene/2 predicate have an appropriate
probability distribution, we use a built-in predi-
cate bsw/3, representing a random binary switch.
bsw(ID,N,R) says that sampling a random binary
switch named ID gives the result R (0 or 1) at Nth
sample2. The probability of bsw(�,�,1) being true is
called a parameter and PRISM programs containing
only bsw/3 predicate as built-in probabilistic pred-
icates are called BS programs3.

4. Sampling all bsw/3 atoms determines which ground
bsw/3 atom is true, thereby determines which
ground gene/2 atom is true. Non-unit clauses to-
gether with these true ground atoms jointly de-
termine the truth of the remaining atoms, i.e.
genotype/2 and blood bloodtype/1. In this way,
we get a sampling from the joint probability distri-
bution for all ground atoms.

4 Learning

The above program is a faithful representation of ge-
netic knowledge concerning how one's blood type is
determined. It is a computational model (runnable)

2
bsw(ID,N,R) is called BS atom in [Sato 95].

3Currently, we admit only the class of BS programs as
PRISM programs. Expanding the class of BS programs is a
future task.

and at the same time, a statistical model, i.e. pro-
vides a probability distribution for bloodtype/1. Since
blood type in the real world has a probability dis-
tribution, our learning task is to approximate it in
terms of PDBfbloodtype(�) = 1g, the distribution for
bloodtype/1 de�ned by our program, by assigning each
binary switch bsw/3 a suitable parameter value.
Let fbloodtype(a), bloodtype(a), bloodtype(b),

bloodtype(o), . . .g be our observations of people's blood
types. Parameters associated with bsw/3 are determined
by a maximum likelihood method; they are calculated as
the ones that maximize the probability of the conjunc-
tion of these observed atoms.
An algorithm we use for maximization is the EM (Ex-

pectation Maximization) algorithm [Tanner 93]. It is
an iterative method in statistics for maximizing likeli-
hood and has been used in various �elds, in particular in
the Baum-Welch learning algorithm for HMMs in speech
recognition [Rabiner 89].
We successfully combined the EM algorithm with

BS programs to derive a general learning algorithm
for BS programs [Sato 95]. It should be empha-
sized that the derived learning algorithm is valid for
the entire class of BS programs, and second that the
class of BS programs seems fairy large. For exam-
ple, it covers Bayesian networks, HMM and PCFG
(Probabilistic Context Free Grammar), currently known
as the most powerful symbolic-statistical formalism in
AI. For more details, see [Asai et al. 93, Charniak 93,
Charniak et al. 93, Pearl 88, Poole 93, Rabiner 89].

 PRISM programming system

PRISM program
write

learned
 parameters

Learning

Built-in User dependent

 Learning phase Execution phase

Sampling

Answer with
 probability

Answer with formula

PRISM program translator

Execution programLearning program

EM routine

User

Figure 1: PRISM programming system

5 PRISM Programming System

PRISM programming goes through three phases: pro-
gramming, learning and execution. Since the learning

Probablistic predicate
Deterministic predicate

(proof tree)Statistical Model:

Control declaration:Utility Program:

- Target declaration

- Data declaration

- learn

- sample, prob, cprob

- set_bsw

bsw/3 bsw/3

Target

PRISM system

Learning phase
Execution phase

Figure 2: A PRISM program

phase and the execution phase require rather di�erent
treatment of an original program, PRISM translates it
into two specialized programs, one for execution and the
other for learning. The latter works in the learning phase
cooperating with the built-in EM learning routine to per-
form maximum likelihood estimate.

5.1 Structure of a PRISM Program

A PRISM program is comprised of three parts, a model,
a utility program and the control declarations (Figure 2).
The model part is just a logic program whose purpose is
to generate possible proof trees of a target atom which
represents our observations. Those trees may or may not
contain special built-in predicate bsw/3. Since bsw/3 is
probabilistic, so can be the target atom, and the problem
is to make the distribution of the target atom as close to
the observed (empirical) distribution as possible. This is
achieved in the learning phase by tuning the parameters
of bsw/3 atoms.
The utility part contains a logic program that makes

use of the distribution PDB with special built-ins such
as learn/0-1 for learning and prob/1-2 and cprob/2-3

for calculation of probabilities. The model part and the
utility part should be conceptually distinguished, but
actually, when combined, they look like just a logic pro-
gram with special built-ins.
The control declarations give information required for

the learning phase. Currently, we have target declara-
tion for specifying a target atom, and data declaration
for specifying a �le containing teacher data (randomly
sampled target atoms).

5.2 Learning phase

The learning phase starts with commands learn/0-1.
Prior to them, we have to specify a target atom by target
declaration, and the data �le by data declaration.

Teacher data are expressed as ground literals contain-
ing the target atom. They are henceforth called goals.
What PRISM does in the learning phase is to adjust sta-
tistical parameters (associated with bsw/3) to maximize
the conjunctive probability of these goals. Presently
for practical reasons, only positive goals are allowed as
teacher data.
PRISM, given the goals in the data �le, builds a ta-

ble to keep the records of the correspondence between
a goal and the conjunctions of bsw/3 atoms that ap-
pear in one of the proof trees of the goal. It means that
PRISM computes all solutions, by top-down exhaustive
search, and hence sometimes becomes computationally
ine�cient compared to specialized algorithms developed
for speci�c tasks. Anyway, after completing the table,
PRISM sets random values (between 0 and 1) to sta-
tistical parameters associated with bsw/3 atoms in the
table. The EM learning routine then starts to update
these parameters iteratively until convergence to attain
the maximum likelihood estimators.

5.3 Execution phase

After learning, we run the learned program to check how
it learned or how it behaves. There are three execution
modes, i.e. sampling, answer with probability and answer
with formula.
A special command is used to specify the execution

mode. Sampling is done by the command sample/1.
For example, for query | ?- sample(bloodtype(X))

the system returns the answer X=a, X=b, X=o or
X=ab according to the distribution of bloodtype/1.
The commands prob/2 and cprob/3 are used for the
answer with probability mode; for the query | ?-

prob(bloodtype(a),Prob) we have Prob=0.4 for in-
stance. In the case that the given formula is false with
probability 1 such as bloodtype(a) & bloodtype(b)

we have answer no.
The commands probf/1 and probf/2 give answers

with formula. The formula is a DNF of bsw/3 atoms
which logically explains the given formula. For example,
the answer with formula for bloodtype(a) is

bsw(1,father,1) ^ bsw(1,mother,1)

_ bsw(1,father,1) ^ bsw(1,mother,1) ^ bsw(2,mother,0)

_ . . .

6 Examples

In this section, we present modeling examples by PRISM
programs, together with learning results.

6.1 Blood type

The �rst one is the blood type program in Section 3.
In case of Japan, the ratio of blood types is A:O:B:AB
= 4:3:2:1. We arti�cially generated random data with
this ratio and used them as teacher data for the pro-
gram to estimate the probability distribution of gene/2.
The result is shown in Table 1. Conv shows converged
parameters values of the bsw/3 named ID.

Table 1: Result of estimation

ID Conv

1 0.292

2 0.230

gene(P,a) 0.292

gene(P,b) 0.163

gene(P,o) 0.545

bloodtype(a) 0.404 bloodtype(o) 0.297

bloodtype(b) 0.204 bloodtype(ab) 0.095

6.2 HMM

The hidden Markov model (HMM) [Rabiner 89], which
has long been a basic tool for speech recognition, stands
for a class of �nite state automata in which transition is
probabilistic and an alphabet is emitted on each transi-
tion. What we can observe from outside is only an out-
put string consisting of emitted alphabets while the state
transition is not observable, hence the name of HMM.
Figure 3 is an example of HMM that has a state set
fs0, s1, s2g and output alphabets fa,bg. We can see
from the �gure that the transition probability from s0

to s0 is 0.7 whereas that of s0 to s1 is 0.3. We can
also see that on a transition from s0, a is emitted with
probability 0.2 and b with probability 0.8 etc.
This HMM is described by a PRISM program on next

page (the utility part is not shown). For learning, we
limit the length of output strings to 5 and leave all pa-
rameters associated with bsw/3 unde�ned.
A learning experiment was conducted using 500

teacher data4 generated from the HMM in Figure 3. We
then let the program learn the data placed on the �le
hmm.dat by the PRISM's built-in EM learning routine.
Convergence is judged when an increment of the loga-
rithmic likelihood of the conjunction of all hmm/1 atoms
(teacher data) becomes less than 10�6. The result is
shown in Table 2 (Smp shows original parameter values).
In PRISM, the probabilities of atoms are com-

puted by prob/2 predicate and the probability of
prob(hmm([a,a,b,a,b]),P) is

| ?- prob(hmm([a,a,b,a,b]),P).

P = 0.05477 ?

This experiment exempli�es the expressive power of
PRISM and the learnability of HMMs. It is however

4These data were obtained from running the HMM pro-
gram in sampling mode.

s0

0.2
0.8

1.0

0.7

0.3

0.8

0.9
0.1

0.2

0.3
0.7

1.0

s2s1

a:
b:

a:
b:

a:
b:

Figure 3: An HMM

HMM program� �

hmm(L) :- init(S),hmm(1,S,L).

% Terminate at T=5

hmm(5,S,[Obs]) :- output(5,S,Obs).

hmm(T,S,[Obs|L]) :- T<5,

% Output Obs in state S at time T

output(T,S,Obs),

% Transit from S to Next at time T

trans(T,S,Next),

T1 is T+1,

hmm(T1,Next,L).

% Initial state is s0 with probability 1

init(s0).

% Transition probability pamameters:

trans(T,s0,s1) :- bsw(1,T,1).

trans(T,s0,s0) :- bsw(1,T,0).

trans(T,s1,s2) :- bsw(2,T,1).

trans(T,s1,s1) :- bsw(2,T,0).

trans(_,s2,s2).

% Output probability parameters:

output(T,s0,a) :- bsw(3,T,1).

output(T,s0,b) :- bsw(3,T,0).

output(T,s1,a) :- bsw(4,T,1).

output(T,s1,b) :- bsw(4,T,0).

output(T,s2,a) :- bsw(5,T,1).

output(T,s2,b) :- bsw(5,T,0).

target(hmm,1).

data('hmm.dat').

� �

not su�cient to claim practical usability of PRISM,
because the practical merit of using HMMs resides in
the availability of three e�cient algorithms for three
basic problems. Namely, the forward-backward algo-
rithm [Rabiner 89] for calculating the probability of a
given string, the Viterbi algorithm [Rabiner 89] for de-
ciding the most likely state transition sequence for the
given string and the Baum-Welch learning algorithm
[Rabiner 89] to estimate the probability parameters of
an HMM. We expect that since PRISM is a general pro-
gramming language, it will not be very di�cult to write
PRISM programs for these algorithms.

Table 2: Result of HMM learning

ID Smp Conv

1 0.60 0.574
2 0.30 0.319
3 0.70 0.672
4 0.20 0.198
5 0.85 0.849

6.3 Bayesian networks

Now we turn to Bayesian networks [Pearl 88]. Bayesian
networks are a knowledge representation language to

tampering fire

alarm

leaving

report

smoke

Figure 4: A Bayesian network

represent statistical dependencies among random vari-
ables. We con�ne ourselves to a case where random
variables are binary, i.e. propositions. Dependencies are
expressed as a directed acyclic graph where nodes repre-
sent propositions and links indicate direct probabilistic
dependencies quanti�ed with probabilities. The graph
as a whole represents a joint probability distribution of
propositions. For example5, In Figure 4, it holds that

P (Tamering;Fire;Alarm;Smoke;Learving ;Report)

= P (Report jLeaving)P (Leaving jAlarm)

P (Alarm jTampering ;Fire)P (Smoke jFire)

P (Fire)P (Tampering)

Following [Poole 93], we describe this Bayesian net-
work as follows:

Bayesian network program� �

target(world,6).

data('world.dat').

% Joint distribution:

world(Ta,Fi,Al,Sm,Le,Re) :-

fire(Fi),tampering(Ta),c_smoke(Sm,Fi),

c_alarm(Al,Fi,Ta),c_leaving(Le,Al),

c_report(Re,Le).

smoke(Sm) :- fire(Fi),c_smoke(Sm,Fi).

alarm(Al) :-

fire(Fi),tampering(Ta),c_alarm(Al,Fi,Ta).

leaving(Le) :- alarm(Al),c_leaving(Le,Al).

report(Re) :- leaving(Le),c_report(Re,Le).

tampering(yes):- bsw(ta,none,1).

tampering(no) :- bsw(ta,none,0).

fire(yes):- bsw(fi,none,1).

fire(no) :- bsw(fi,none,0).

c_smoke(yes,Fi):- bsw(sm(Fi),none,1).

c_smoke(no,Fi) :- bsw(sm(Fi),none,0).

c_alarm(yes,Fi,Ta):- bsw(al(Fi,Ta),none,1).

c_alarm(no,Fi,Ta) :- bsw(al(Fi,Ta),none,0).

c_leaving(yes,Al):- bsw(le(Al),none,1).

c_leaving(no,Al) :- bsw(le(Al),none,0).

c_report(yes,Le):- bsw(re(Le),none,1).

c_report(no,Le) :- bsw(re(Le),none,0).

� �

5This example is taken from [Poole 93].

Table 3: Result of Bayesian learning

ID Smp Conv ID Smp Conv

fi 0.10 0.116 ta 0.15 0.160

sm(yes) 0.95 0.966 sm(no) 0.05 0.054

al(yes,yes) 0.50 0.250 al(yes,no) 0.90 0.880

al(no,yes) 0.85 0.889 al(no,no) 0.05 0.049

le(yes) 0.88 0.898 le(no) 0.01 0.016

re(yes) 0.75 0.769 re(no) 0.10 0.082

An experiment was conducted using 500 teacher data
sampled from the above program with parameter values
shown as Smp in Table 3. Convergence is obtained after
two iterations of the EM learning routine and the con-
verged parameter values are shown as Conv in Table 3.

After learning, we can check various probabilities by
using built-in predicates such as prob/2 and cprob/3.
For instance, P (Fire jSmoke ;:Alarm), the probability
of a �re breaking out while smoke is observed but the
alarm is not ringing, is

| ?- cprob(fire(yes),(smoke(yes),alarm(no)),P).

P = 0.27739 ?

7 Related work

PRISM is a general programming language with the abil-
ity of learning, and we don't have many predecessors
with the same character and power. Probably, most di-
rectly related one is Poole's Probabilistic Horn abduction
[Poole 93]. His semantics however excludes large part
of usual logic programs6. Furthermore probabilities are
considered only for �nite cases (no joint distribution for
in�nitely many random variables). Accordingly there is
no way to express Markov chains such as HMMs.

Ng and Subrahmanian proposed Probabilistic Logic
Programming [Ng 92]. Their approach is based on in-
tervals. They assign probability ranges to atoms in the
program and check, using linear programming technique,
if probabilities satisfying those ranges actually exist or
not. The use of linear programming con�nes their ap-
proach to a �nite domain. Neither of Poole's proposal
or Ng and Subrahmanian' proposal mentions learning.

Charniak and Goldman proposed a special lan-
guage FRAIL3 for construction of Bayesian networks
[Charniak et al. 93]. Although their rules look much
like de�nite clauses annotated with probability depen-
dencies, the semantics is not very clear and no learning
mechanism is provided for their programs.

Hashida [Hashida 94] proposed a rather general frame-
work for natural language processing as probabilistic
constraint logic programming. He assigned probabilities
to between literals and let them denote the degree of the
probability of invocation. He has shown constraints are
e�ciently solvable by making use of these probabilities.

6This is due mainly to the acyclicity assumption made in
[Poole 93].

8 Conclusion

We have presented PRISM which is a new modeling lan-
guage for symbolic-statistical phenomena. It not only
has general computing power combined with probabilis-
tic semantics but also has a general learning mechanism
that enables any PRISM program to learn from exam-
ples. Below are two potential application areas.
PRISM programs can de�ne Markov chains such as

HMMs with mathematical rigor. Using this property,
and taking advantage of PRISM's �rst order expressive-
ness, it looks feasible to describe Markov decision pro-
cesses controlled by complex symbolic reasoning. This
might contribute to modeling agents with rich knowl-
edge, interacting and learning one another.
NLP is another promising area because of the obvi-

ous need for describing statistical correlations between
syntactic structures and semantic structures. It is also
noticeable that a large corpus is already available for
learning.
Computation power and learning power should be

uni�ed to give a new dimension to programming. We
hope that PRISM brings us one step closer to the cross-
fertilization of computation and learning.

References

[Asai et al. 93] Asai,K., Hayamizu,S. and Handa,K.,
Prediction of protein secondary structure by the
hidden Markov model, CABIOS 9 No.2 pp141-146,
1993.

[Charniak 93] Charniak,E., Statistical Language Learn-
ing, The MIT Press, 1993.

[Charniak et al. 93] Charniak,E. and Goldman,R.P., A
Language for Construction of Belief Networks,
IEEE PAMI 15 No 3, pp196-208, 1993

[Hashida 94] Hashida,K., Dynamics of Symbol Systems,
NGC 12, pp285-310, 1994.

[Muggleton 91] Muggleton,S., Inductive Logic Program-
ming, NGC 8, pp295-318, 1991.

[Ng 92] Ng,R. and Subrahmanian,V.S., Probabilistic
Logic Programming, Information and Computation
101, pp150-201, 1992.

[Pearl 88] Pearl,J., Probabilistic Reasoning in Intelli-
gent Systems, Morgan Kaufmann, 1988.

[Poole 93] Poole,D., Probabilistic Horn abduction and
Bayesian networks, Arti�cial Intelligence 64, pp81-
129, 1993.

[Rabiner 89] Rabiner,L.R., A Tutorial on Hidden
Markov Models and Selected Applications in Speech
Recognition, Proc. of the IEEE 77, No. 2, pp257-
286, 1989.

[Sato 95] Sato,T., A Statistical Learning Method for
Logic Programs with Distribution Semantics, Proc.
of ICLP 95, pp715-729, 1995.

[Tanner 93] Tanner,M., Tools for Statistical Inference
(2nd ed.), Springer-Verlag, 1986.

