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Abstract. PRISM is a new type of symbolic-statistical

modeling language which integrates logic programming and

learning seamlessly2. It is designed for the symbolic-statistical

modeling of complex phenomena such as genetics and eco-

nomics where logical/social rules and uncertainty interact,

thus expected to be a valuable tool for scienti�c discovery.

In this paper, we �rst give a detailed account of PRISM

at propositional logic level. Then we concentrate, instead of

looking over various �elds, on one subject, the inheritance

mechanism of blood types. We show with experimental results

that various theories of blood type inheritance are described

as PRISM programs. Finally we suggest possible extensions

of PRISM. The reader is assumed to be familiar with logic

programming [8].

1 Introduction

Scienti�c discovery goes through a cycle of collecting obser-

vations, building a hypothesis and verifying it one way or

another. Oftentimes, observations are given as numbers and

a hypothesis is expressed as a mathematical formula. When

observations include non-numeric aspects such as causal rela-

tionship among events however, we need a symbol manipula-

tion language to be able to express our hypotheses. We also

need to cope with noise or uncertainty in the observations

that is inevitable in the real world.

PRISM is a formal knowledge representation language

for modeling scienti�c hypotheses about discrete phenomena

which are governed by rules and probabilities [18, 19]. It is

also a programming language containing both logical elements

and probabilistic elements. Syntactically PRISM programs

are just an extension of logic programs in which the set of

facts in a program has a probability distribution.

Semantically though, PRISM programs have a probabilis-

tic version of possible worlds semantics (termed distributional

semantics [18]) de�ned on a certain probability space (of in�-

nite dimension). Distributional semantics extends a standard

�xed point semantics and views a PRISM program as speci-

fying an in�nite joint distribution for all possible �xed points.3
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2 An overview of PRISM was presented in [19]. It was based on
the �rst implementation of PRISM and programming examples
were chosen from various �elds.

3 In logic programming, the (least) �xed point of a program is the
set of all ground atoms provable from the program.

Although PRISM has the ability of computing all com-

putable functions, it must be emphasized that it is not just

another programming language but a programming language

with learning ability, and it is this learning ability that distin-

guishes PRISM from other existing programming languages

[19].

When given goals, i.e. conjunctive ground atoms which ex-

press our observations together with a program that models

them, PRISM tries to maximize the probability of the goals,

by �rst identifying the relevant facts through backward rea-

soning from the goals, and then adjusting the statistical pa-

rameters associated with the facts, by a learning algorithm

based on the EM algorithm [20]. Although our learning is

just parameter learning by MLE (Maximum Likelihood Esti-

mate) applied to computer programs, and already found in,

for instance, HMM (hidden Markov model) in speech recog-

nition and their applications to genetic information process-

ing [17, 2], the point is that unlike the case of HMM where

the underlying model is restricted to probabilistic automata

(type 3 grammars in the Chomsky hierarchy), PRISM ap-

plies MLE to the whole class of programs (type 0 grammars),

and hence it covers not only HMMs but other well-known

symbolic-statistical model such as Bayesian network [14] and

PCFG (Probabilistic Context Free Grammars) [3].

After getting parameter learning done, we let the program

compute, through forward reasoning from the learned distri-

bution and facts, probabilities of atoms that represent phe-

nomena we are interested in. This way PRISM provides us

with a tool to build a symbolic model of probabilistic phenom-

ena and, after statistical tests, allows us to calculate reliable

values of probabilities of their behaviors for the purposes of

prediction.

In the rest of this paper, we �rst explain what PRISM is

like in detail (this is because the combination of symbolic ex-

ecution and statistical learning looks new to the reader), then

proceed to describing a series of examples of scienti�c theories

taken from the area of blood gene inheritance. We begin by a

simple one, an ABO blood type program, then proceed to more

complex ones, for instance, the interplay of a social structure

and the genetic inheritance mechanism found in the Kariera

tribe which lived 80 years ago in the west Australia [21]. Fi-

nally we suggest future directions such as rule extraction from

data which can be made possible by extending PRISM. The

reader is assumed to be familiar with logic programming [8].

ECAI 98 Workshop Programme.



2 The basic idea of PRISM

2.1 Modeling and forward reasoning

A PRISM program DB is written as F [R where F is a set

of unit clauses and R is a set of de�nite clauses4. One salient

feature of PRISM is that F is given a probability distribu-

tion. We call it a basic distribution (of the DB).

The purpose of PRISM programs is to represent computa-

tional models of our observations by logical statistical means.

The R part is used to describe logical rules working behind

the observations whereas the F part models their uncertainty

as a probability distribution. Our assumption is that what we

observe is representable as an instance of some clause head in

the program.

Suppose, for example, we observe phenomena concerning

our health, say a headache and a fever. We know from ex-

perience that drinking too much causes a headache while a

cold causes a headache and a fever simultaneously. If we use

ground atom H for having a headache, F for having a fever,

D for drinking too much and C for a cold, respectively, our

causal knowledge about headaches and fever is formalized as

DB listed below5.

DB = F [R

F = fD;Cg

R = fH ( D;H ( C;F ( Cg

We also know that drinking too much has little to do with a

cold, logically speaking. We therefore, instead of further seek-

ing for a logical relationship between them, just introduce a

joint probability distribution (basic distribution) PF for them.

hx1; x2i PF (D = x1; C = x2)

h0; 0i 0:72

h1; 0i 0:18

h0; 1i 0:08

h1; 1i 0:02

Here we think of ground atoms as random variables taking on

1 when they are true and 0 when they are false, and we use xi

for the value of an atom. The basic distribution is extended

to a one for all ground atoms D;C;H and F in the program

by taking the i� de�nition of DB [8]

i�(DB) = fH , D _ C;F , Cg

and then by calculating the truth values of H and F from

those of D and C6. For example, when D is true and C is

false, H is true and F is false. This forward reasoning gives

rise to the following joint distribution PDB for hD;C;H; F i

where yi denotes the sampled value of H or F .

4 To be precise, the program has three parts, the modeling part,
the utility part and the control directives. We are talking here
only about the modeling part for simplicity.

5 We assume that rules in R are always correct.
6 The use of the i� de�nition is justi�able because our semantics,
distributional semantics, is a probabilistic generalization of the
least model semantics of logic programs in which the i� de�nition
always holds. See [8, 18]

hx1; x2; y1; y2i PDB(D = x1; C = x2;

H = y1; F = y2)

h0; 0; 0; 0i 0:72

h1; 0; 1; 0i 0:18

h0; 1; 1; 1i 0:08

h1; 1; 1; 1i 0:02

others 0:0

Once this distribution is obtained, we are able to calculate

whatever statistics we want. If we are interested in the joint

distribution of H and F , it becomes

hy1; y2i PDB(H = y1; F = y2)

h0; 0i 0:72

h1; 0i 0:18

h0; 1i 0:0

h1; 1i 0:10

:

This tells us for instance the probability of simultaneously

having a headache (H) and a fever (F ) is 0:10.

2.2 Backward reasoning and statistical
parameters

In the previous example, PF was given a priori. In reality how-

ever, constructing reliable PF is a major problem. We show

that this can be done by statistical learning based on the com-

bination of backward reasoning and the EM algorithm [20] as

follows.

First we suppose, to make matters simple that drinking too

much and having a cold are statistically independent events.

So we write PF (D = x1; C = x2) = PF (D = x1)PF (C = x2).

Second, we introduce statistical parameters �i (i = 1; 2) such

that PF (D = 1) = �1 and PF (C = 1) = �2.

Now suppose we have observed, randomly, the state of

headache (H) and a fever (F ) three times and have recorded

them as h:H;:F i, hH;:F i and hH;F i. The probability of

these observations happening is PDB(H = 0; F = 0)PDB(H =

1; F = 0)PDB(H = 1; F = 1). We express this probability in

terms of �1 and �2 by using backward reasoning.

Take for example PDB(H = 0; F = 0), the probability of

simultaneously having no headache and no fever. Since distri-

butional semantics allows us to logically reduce H to D _ C

and F to C respectively (this is backward reasoning), the

probability of hH = 0; F = 0i, i.e. that of :H ^ :F is equal

to the probability of :(D _C) ^ :C (, :D ^ :C), which is

(1 � �1)(1 � �2). Likewise, the probability of hH = 1; F = 0i

is �1(1 � �2) and that of hH = 1; F = 1i is �2. Accordingly,

PDB(H = 0; F = 0)PDB(H = 0; F = 1)PDB(H = 1; F = 1) is

calculated as (1� �1)�1(1� �2)
2�2.

2.3 MLE and the EM algorithm

To statistically learn reliable values of �1 and �2 from the

observations, we appeal to the principle of maximizing the

probability of what we observed, i.e. MLE (Maximum Like-

lihood Estimate). So, we maximize (1 � �1)�1(1� �2)
2�2 by

choosing appropriate �1 and �2, in this case �1 = 1=2 and
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�2 = 1=3.

Unfortunately, generally speaking, MLE is a complex opti-

mization problem and there is no easy way to calculate the

parameter values giving the optimum, especially when there

are a large number of random variables. So when designing

PRISM , we decided to be satis�ed with a local maximum,

and to apply the EM algorithm [20] to a class of basic distri-

butions of very simple type (the EM algorithm is an iterative

algorithm for MLE which �ts particularly well when some

data are missing).

Note that we have a kind of data missing situation in which

we observe only atoms that appear as a clause head but facts

(sampled according to the basic distribution PF ) are never

known, i.e. missing. We thus applied the EM algorithm to this

data missing situation and derived a new learning algorithm

for our MLE problems [18].

This new learning algorithm can apply to any logic pro-

grams as long as each observation (ground atom) has a �nite

number of explanations (proofs) from the DB7.

Getting back to the observation of H and F , if we have a

large number of random samples of H and F , reliable values

of �1 and �2 are obtainable by applying the MLE (our EM

learning algorithm) to the observed samples. And once these

reliable values have been obtained, we can calculate probabil-

ities such as PDB(H = 1 j F = 1).

2.4 PRISM programming

PRISM programming has the following four steps.

(1) Modeling We build a logical-statistical model, assum-

ing a basic distribution over facts.

(2) Learning Given (random) observations as ground atoms,

we adjust parameters associated with the basic distribution

by the EM learning algorithm.

(3) Testing After learning, we check our model against the

observations by statistical tests.

(4) Calculation (Prediction) We use our model to calcu-

late various statistics, for instance, for predication.

Various built-in predicates are available for these steps. To

write a basic distribution in the modeling step, we use bsw/3

and msw/3. bsw(coin,2,1) for instance behaves as a random

binary switch named coin which is true (resp. false) if and

only if sampling coin at 2nd time returns 1 (resp. 0). Like-

wise msw(<name>,<time>,<value>) acts as a random multi-

ple switch. These atoms are statistically independent random

variables8.

PRISM associates a statistical parameter with each bsw

(and msw) atom as the probability of the atom being true.

Let � be such a statistical parameter for bsw(coin, ,1). It

means Prob(bsw(coin, ,1)) = � which also implicitly means

7 This restriction seems reasonable. In the real world, it is usual
that we don't need to consider in�nitely many causes of phenom-
ena in question.

8 To be exact, if their names are di�erent, they are independent. If
they have the same name but di�erent times, they are independent
but identically distributed.

Prob(bsw(coin, ,0)) = 1� � because only two values, 1 and

0, are allowed in the third argument of the bsw atom. Statis-

tical parameters are set manually by a built-in predicate or

are adjusted in the learning step by the EM algorithm.

In the learning step, the user is required to prepare teacher

data in the form of ground atoms. They must be randomly

sampled ones. Presently, two built-in predicates, learn/0 and

learn/1, are available. learn/0 is used when teacher data

are stored on a �le, while learn/1 is used when teacher data

are supplied as a list of ground atoms. They all execute the

EM learning algorithm until saturation by repeatedly adjust-

ing statistical parameters associated with bsw/3 and msw/3

atoms in a program to achieve a local maximum of the prob-

ability of the conjunction of teacher atoms.

For the testing and calculation steps, prob/2 and cprob/3

are available as built-in predicates. prob(<f>,<p>) is used to

calculate the probability p of the positive boolean formula f.

cprob(<f-1>,<f-2>,<p>) is used for the conditional proba-

bility p of f-1 when f-2 is true.

We now look at concrete PRISM programs. We show how-

ever only the modeling part of them, omitting the utility part

and the control directives as they are of secondary importance

compared to the modeling part.

3 ABO blood type program

Our �rst example is about ABO blood type [5, 6]. Let us ex-

plain modeling, sampling and learning in PRISM with this

example.

We already know that a child inherits genes, one from each

parent, and the pair (genotype) determines the child's blood

type (phenotype). In the case of ABO blood type, three genes

(a, b and o) are involved; if the child inherits b from the

father and o from the mother, his/her blood type is B and

so on (see Figure 1). We also know that the inheritance

is by chance. That is, for a randomly sampled child, which

gene is inherited from his/her parent is probabilistic, and the

inheritance from the father and that from the mother are

statistically independent.

3.1 Modeling

This inheritance mechanism that models random mating [6]

is succinctly described as a PRISM program in Figure 2.

Practically speaking, PRISM programs are just Prolog

programs with special built-in predicates. So, the upper case

letters X,Y and P are logical variables and the rest are con-

stants. More importantly, PRISM execution follows Prolog

convention9. top-to-bottom, clause-wise, and left-to-right goal-

wise. Although it happens that this program is non-recursive,

PRISM allows for recursion (see an HMM program in [19])10.

9 PRISM has three execution modes: sampling mode, answer with
probability mode and answer with formula mode. We are focusing
on the sampling mode here.

10 Recursion introduces an in�nite number of random variables,
even in such a simple case as modeling a Bernoulli sequence,
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Figure 1. ABO blood type model

blood_type(a):- (gtype(a,a); gtype(a,o); gtype(o,a)).

blood_type(b):- (gtype(b,b); gtype(b,o); gtype(o,b)).

blood_type(o):- gtype(o,o).

blood_type(ab):- (gtype(a,b); gtype(b,a)).

gtype(X,Y):- gene(father,X),gene(mother,Y).

gene(P,a):- msw(gene,P,a).

gene(P,b):- msw(gene,P,b).

gene(P,o):- msw(gene,P,o).

Figure 2. ABO blood type program

The declarative content of this program seems self-evident.

We have only to note that blood type(a) says a child has

blood type a, gtype(X,Y) says a child has the genotype <X,Y>

and gene(P,a) says gene a is inherited from P. The last three

clauses use msw atoms. In the current case, msw(gene,P,V)

stands for a statistically independent and identically distributed

ternary random switch named gene such that V takes on one

of fa, b, og as a sampled value at Pth time. If P = father

and V = a, it means the child happened to inherit gene a from

father.

3.2 Sampling execution

Putting declarative content aside, there is a little intricacy in

operational semantics. Although PRISM has three execution

modes, we pay attention only to the sampling execution.

which necessitates the construction of a probability space with
an in�nite dimension [18].

In general, the sampling execution of a PRISM program

DB = F [R is stated as the sampling of DB as a (countably

in�nite) random vector de�ned by distributional semantics

[18]11. However, since our random variables are just the name-

sake of ground atoms, we state a sampling process in terms

of ground atoms for the sake of intuitiveness.

The sampling process starts with that of PF , the basic dis-

tribution over F . In the blood type example, F consists of

msw(gene, ,a), msw(gene, ,b) and msw(gene, ,o). PRISM

implicitly associates two statistic parameters, �1 and �2 as

follows. They are initialized before computation by a built-in

predicate.

atom prob.

msw(gene, ,a) �1
msw(gene, ,b) �2
msw(gene, ,o) 1� �1 � �2

3.3 Top-down execution as sampling

A sampling of PF determines a set of true ground atoms

F 0 � F , and the least model of F 0 [ R determines all truth

values of ground atoms appearing in DB. Thus, all ground

atoms are sampled.

This sampling process suggests bottom-up computation;

�rst sample all bws/3 or msw/3 ground atoms (even if there are

in�nitely many of them) and then with the set of true atoms,

compute the least model. This is however not very amenable

to Prolog on top of which PRISM is currently implemented.

So while adopting Prolog's top-down execution order, we let

PRISM pretend that the sampling from PF has been done

before any computation starts and results are stored some-

where for retrieval.

With this in mind, let us trace a computation process start-

ing from a call to gtype(b,o). Like Prolog, the call unique

invokes the clause for gtype/2 with instantiations X=b and

Y=o, and a call to subgoal gene(father,b) occurs which then

invokes gene/2 clauses in turn from top-to-bottom. When the

topmost clause gene(P,a):- msw(gene,P,a) is invoked with

P instantiated to father, a call to msw(gene, , ) takes place

for the �rst time. PRISM samples the truth value of the

atom, or more precisely, it samples a random variable whose

name is gene and whose value is one of a, b or o. If the sam-

pled value is b, PRISM memorizes msw(gene,father,b) as

the result of the sampling at the time father.

This sampling determines msw(gene,father,a) to be false

as side e�ect (any later call to it will fail). So the second clause

gene(P,b):- msw(gene,P,b) is invoked with P = father. The

call to msw(gene,father,b) ensues and succeeds becausePRISM

remembers that msw(gene,father,b) was true on the �rst

sampling. This success completes the goal gene(father,b).

11 In the formal setting, we always consider DB as representing the
in�nite set of ground instantiations of clauses in DB.
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PRISM then tackles the second subgoal gene(mother,o).

This subgoal eventually causes a second sampling of the ran-

dom variable gene, because time stamp mother is di�erent

from father used before. If this sampling returns o, gene(mother,o)

will be exclusively true, resulting in the success of the call to

gtype(b,o). Else gene(mother,o) will fail and so will gtype(b,o).

This way we are able to sample the truth value of ground

atom gtype(b,o). When goals contains variables, uni�cation

occurs as usual, and when goals succeed, we will have variable

bindings (answer substitutions) just like Prolog.

3.4 Learning and testing

Suppose that we randomly observed people's blood types and

obtained the following table12.

atom count ratio

blood type(a) 195 0.390

blood type(b) 97 0.194

blood type(o) 159 0.318

blood type(ab) 49 0.098

(total) 500 1.000

Table 1. Sample observations

For the ABO blood type program to be a good scienti�c

model, the probability distribution speci�ed by the program

should be close to the observed distribution. Hence, we adjust

statistical parameters associated with msw/3 that determine

the probabilities of gene(P,a), gene(P,o) and gene(P,b) so

that the resulting distribution gets closer to the above table.

The adjustment is carried out by statistical learning based

on the EM algorithm [20, 18]. We run the command learn/1

with the list of ground atoms that represent our observations

as follows.

| ?- learn([blood_type(a),blood_type(a),

blood_type(o),blood_type(b),...]).

learn/1 starts the EM learning algorithm, and iteratively

adjusts parameters associated with msw/3 to maximize the

probability of blood type(a) ^ blood type(a) ^ blood type(o)

^ blood type(b) . . . After 11 iterations, the learning stopped.

Table 2 shows learned parameter values.

Finally, the distribution of blood type/1 speci�ed by these

parameters is computed by prob/2 built-in predicate, giving

Table 3.

Since the Table 3 is just a theoretically computed distri-

bution, we need to check by the �-square method how well

it �ts what we observed, i.e. Table 1. By calculation, we get

�2 = 0:6545. For degrees of freedom 1 (we have two parame-

ters �1 and �2), this happens with probability > 0:4. So Table

3 cannot be rejected, which indirectly supports, together with

Table 2, the correctness of ABO blood type program that pro-

duced it.

12 This data set is generated by a program. It reects the blood type
distribution in Japan. The ratio is almost A:B:O:AB = 4:2:3:1.

atom parameter learned value

msw(gene, ,a) �1 0.2835

msw(gene, ,b) �2 0.1580

msw(gene, ,o) 1� �1 � �2 0.5585

(total) 1.0000

Table 2. Learned parameters

atom computed prob.

blood type(a) 0.3970

blood type(b) 0.2015

blood type(o) 0.3119

blood type() 0.0896

(total) 1.0000

Table 3. Computed probabilities

4 Blood type model for children of cousin
parents

When parents are cousins, we have to take the fact into ac-

count to build a proper model of genetic inheritance of blood

genes. This is because a child has the chance of inheriting

copies of the same gene from one of the grand-grand parents

(see Figure 3). The probability of its happening is calculated

as 1=16 and is called a coe�cient of inbreeding [5].

child

siblings

cousins motherfather

Figure 3. Cousin model

Figure 4 is part of a program that models the blood

type inheritance mechanism for children of cousin parents.

child of cousin(a) says that a child of cousin parents has

a blood gene a and cousin(X,Y) says randomly chosen two
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cousins have gene X and Y.

inherit(from(XP),pair(sibling parent,other),1)

describes gene inheritance that occurs between the cousin and

the cousin's parents. XP denotes the cousin's parent who is the

source of gene X. The atom says as the result of gene inheri-

tance at 1st trial, XP becomes, with prob. 1=2, either a sibling

parent or the other non-sibling parent. siblings(X,Y) says

randomly chosen two siblings have gene X and Y respectively.

We assume that as far as non-sibling parents are concerned,

the distribution of their blood types are determined by ran-

dom mating. In other words, we use the ABO program shown

in Figure 2 as a program to determine the blood type dis-

tribution of non-sibling parents.

child_of_cousin(a):-

(cousin(a,a); cousin(a,o); cousin(o,a)).

child_of_cousin(b):-

(cousin(b,b); cousin(b,o); cousin(o,b)).

child_of_cousin(o):- cousin(o,o).

child_of_cousin(ab):-

(cousin(a,b); cousin(b,a)).

cousin(X,Y):- % randomly chosen two cousins have

% gene X and gene Y

inherit(from(XP),pair(sibling_parent,other),1),

inherit(from(YP),pair(sibling_parent,other),2),

( XP==sibling_parent, YP==sibling_parent,

siblings(X,Y) % randomly chosen two siblings

; ... % have gene X and gene Y

Figure 4. Program for children of cousin parents

After writing down the whole program, we provide it with

parameters in Table 2, i.e. parameters for the blood type

distribution of general people, and calculate the distribution

of blood type for children of cousin parents. This is a predi-

cation step. We compute an unobserved distribution by using

our cousin model. The result is shown in Table 4. The next

step would be comparing these probabilities with observations

of blood types of children whose parents are cousins.

atom prob.

child of cousin(a) 0.3899

child of cousin(b) 0.1988

child of cousin(o) 0.3273

child of cousin(ab) 0.0840

(total) 1.0000

Table 4. Predicted probabilities

5 Yet another blood type theory

Here we describe yet another blood type theory that lost to

ABO blood type theory [6]. This theory, AaBb blood type the-

ory, assumes two loci. Blood type is determined by alleles at

each locus according to Table 5.

type locus-1 locus-2

O aa bb

A A- bb

B aa B-

AB A- B-

Table 5. AaBb blood type theory

Here A,B are dominant genes whereas a,b are recessive

genes. - is a don't care symbol. This theory was once one

of the competing theories for explaining the ABO blood type

[6] but failed to pass a statistical test and eventually was re-

jected. We trace this whole scienti�c process of proposing a

hypothesis, checking it with data, determining acceptance or

rejection, in the framework of PRISM programming.

We �rst write a program shown in Figure 5. Note that

in the program, \-" is represented as an anonymous logical

variable \ ". Next by using the same data, i.e. Table 1 used

for ABO blood type theory, we let it learn statistical parameters

in the program. Then we calculate the distribution of blood

types determined from the learned parameters. Finally we

check them against the observed data Table 1 by �-square

�tting test.

blood_type(o):-

gtype(1,[a,a]),gtype(2,[b,b]).

blood_type(a):-

(gtype(1,['A',_]); gtype(1,[_,'A'])),

gtype(2,[b,b]).

blood_type(b):-

gtype(1,[a,a]),

(gtype(2,['B',_]); gtype(2,[_,'B'])).

blood_type(ab):-

(gtype(1,['A',_]); gtype(1,[_,'A'])),

(gtype(2,['B',_]); gtype(2,[_,'B'])).

gtype(N,[X,Y]):- gene(N,father,X),gene(N,mother,Y).

gene(1,P,G):-(bsw(0,P,1), G=a; bsw(0,P,0), G='A').

gene(2,P,G):-(bsw(1,P,1), G=b; bsw(1,P,0), G='B').

gene('A'):- gene(1,father,'A').

gene(a):- gene(1,father,a).

gene('B'):- gene(2,father,'B').

gene(b):- gene(2,father,b).

Figure 5. AaBb blood type program

The probabilities of gene/1 and blood type/1 computed
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from the learned parameters are summarized in Table 6.

atom prob. atom prob.

gene(A) 0.2845 blood type(a) 0.3455

gene(a) 0.7155 blood type(b) 0.1495

gene(B) 0.1586 blood type(o) 0.3625

gene(b) 0.8414 blood type(ab) 0.1425

(total) 1.0000

Table 6. Computed probabilities for AaBb theory

Comparing the observed data in Table 1 with the com-

puted data in Table 6, we �nd �2 = 19:16486. With degrees

of freedom 1 (again, we have two parameters), this happens

with probability < 0:001. So AaBb theory should be rejected.

6 A case of anthropological study { the
Kariera tribe

To explore the descriptive power of a �rst-order computa-

tional language combined with a statistical learning method,

we take up the Kariera tribe from anthropology where social

rules interact with a genetic inheritance mechanism.

In the beginning of the 20th century, the Kariera tribe lived

along the coast of West Australia which had the territory of

about 3500 square miles. A special type of cross-cousin mar-

riage (bilateral cross-cousin marriage) was a norm in their

society. It states that a husband H and his wife W must be

cousins such that H's father and W's mother are siblings (H

and W are patrilateral cross-cousins), and at the same time

H's mother and W's father are siblings as well (H and W are

matrilateral cross-cousins) [21].

The tribe was divided into four clans 'Palyeri', 'Karimera',

'Banaka' and 'Burung'. 'Palyeri' and 'Karimera' form a mar-

riage pair, and so do 'Banaka' and 'Burung' (Figure 6). A

husband and his wife must come respectively from each of the

paired clans. Their children however belong to the third clan

uniquely determined by the parents' clans.

The blood type inheritance mechanism in this society which

was complicated by the social rules mentioned above can be

described as a PRISM program. We �rst include in the fol-

lowing facts about the Kariera clans.

child('Banaka', parents('Palyeri','Karimera')).

child('Burung', parents('Karimera','Palyeri')).

child('Palyeri', parents('Banaka','Burung')).

child('Karimera',parents('Burung','Banaka')).

Here child(C, parents(FC,MC)) for instance means if the

father's clan is FC and the mother's clan is MC then the child

belongs to clan C. We then add the usual ABO blood pro-

gram (Figure 2) appropriately modi�ed to the Kariera case.

For instance, to say a randomly chosen two individual in

Banaka Burung

Palyeri Karimera

marrige

child

Kariera

Figure 6. Clans in the Kariera tribe

gtype(C,[X,Y],N):-

N>0,

children(C,parents(FC,MC)),

inherit(genes,from(X1,Y1),pair(X,Y),N),

cousins(clan(FC,X1),clan(MC,Y1),N).

clan C has genotype <X,Y> at the N-th generation, we de�ne

gtype(C,[X,Y],N) as follows.

inherit(genes,from(X1,Y1), pair(X,Y), N) says the par-

ents have genes fX1,Y1g as a set and the child's genotype

<X,Y> coincides with either <X1,Y1> or <Y1,X1> with proba-

bility 1=2. cousins(clan(FC,X1),clan(MC,Y1),N) says a ran-

domly chosen two cousins, one (male) in clan FC and the other

(female) in clan MC, have gene X1 and Y1 respectively at the

N-th generation.

Since all married couples are cousins in this society, cousins'

ancestors are also cousins. This brings unbound recursion

through generation into the program. And a su�cient num-

ber of recursion through generations are expected to lead the

blood gene distribution computed by the program to a sta-

ble state. In actual computation however, computational cost

of recursion was so high that recursion depth was limited to 2.

We here describe one of the several learning experiments

with arti�cial data. We �rst randomly sampled 100 ground

blood type/1 atoms (the sampling ratio was A:B:O:AB=4:2:3:1)

and obtained Table 7.

In the learning step, we let the program learn statistical

parameters from this data set in which we assumed the ratio

of clan population is 'Palyeri':'Karimera':'Banaka':'Burung'

= 2:2:1:1. The table Table 8 of probabilities computed from
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atom counts ratio

blood type(a) 34 0.340

blood type(b) 27 0.270

blood type(o) 33 0.330

blood type(ab) 6 0.060

(total) 100 1.000

Table 7. Sample observations

the program using learned parameters (and this passed suc-

cessfully �-square �tting test).

atom prob.

blood type(a) 0.3382

blood type(b) 0.2690

blood type(o) 0.3312

blood type(ab) 0.0616

(total) 1.0000

Table 8. Learned results

Unfortunately, due to the lack of conrete data and for other

reasons, this learning experiment can only be theoretically

meaningful. It however exempli�es that PRISM program-

ming can still work for such complicated phenomena as the

interaction between social rules and a genetic mechanism.

7 Discussion and related work

Modeling is an indispensable step in the process of scienti�c

discovery and PRISM was designed exactly for this purpose

[18, 19].

Since PRISM integrates a general logic programming lan-

guage and the statistical learning by the EM algorithm at

semantic level and at procedural level, not only can it declar-

atively describe and simulate complex phenomena governed

by rules and probabilities, but can learn from data (goals),

and hence, can change the behavior of programs adaptively.

In this paper, we have presented the basic idea of PRISM

and its modeling examples taken from the area of blood gene

inheritance.

It should be mentioned however that PRISM program-

ming tends to be more di�cult as we have to consider logical

meaning and probabilistic relationship at the same time, and

encode them, coherently, into a single program. This means

if we want to verify our program, we need the logical and

statistical veri�cation of the denotation of the program, i.e. a

joint distribution of all ground atoms. Little is known about

such veri�cation however. Despite these di�culties, we have

shown by examples that PRISM can be a valuable tool with

�rst-order descriptive power and learning ability for modeling

complex phenomena from HMM to Bayesian nets [18, 19] to

the ones presented in this paper.

Next step seems diverse. One is rule extraction from a basic

distribution. First we augment PRISM with a more power-

ful class of basic distributions such as Boltzmann distribu-

tions than random switches. We then maximize the probabil-

ity of given goals (random samples) by the Boltzmann ma-

chine learning method [1]. Since the learned distribution re-

ects probabilistic correlations between atoms, we may have

a good chance of extracting logical rules from it.

Another is modeling dynamic temporal phenomena such

as cooperation among agents with logical reasoning ability.

This seems to require an on-line learning mechanism unlike

the current o�-line learning mechanism of PRISM. Research

in the area of reinforcement learning will be of much help.

Last but not least, it is also important to explore new areas

which PRISM modeling can contribute to. We are currently

looking into the possibility of applying PRISM modeling to

the area of marketing.

We state related work.

Ng and Subrahmanian combined (function free) logic pro-

grams with probability ranges (upper and lower bounds) to

express uncertainty [12]. After assigning probability ranges to

atoms in the logic program, they checked if probabilities sat-

isfying those ranges actually exist or not by the technique of

linear programming. The use of linear programming however

con�nes their approach to a �nite domain. Learning was not

considered. Recent development is described in [7].

Probabilistic Horn abduction [15] also combined logic pro-

grams with probabilities, in which Poole showed, for example,

how to express Bayesian networks. His semantics on the other

hand excludes large part of usual logic programs because of

the requirement of acyclicity of programs (programs must be

strati�able by the assignment of integers to ground atoms)

[15]. His recent publication [16] focused on modeling dynamic

behavior such as that of agents and dealt with decision/game

theoretic means based on acyclic logic programs (with nega-

tion as failure). Neither of the frameworks mentioned how to

learn probabilities.

Charniak and Goldman proposed a special language FRAIL3

for construction of Bayesian networks [4]. Although their rules

look much like de�nite clauses annotated with probability de-

pendencies, the semantics is not very clear and no learning

mechanism is provided for their programs.

Hashida [9] proposed a rather general framework for natu-

ral language processing as probabilistic constraint logic pro-

gramming. He assigned probabilities to between literals and

let them denote the degree of the probability of invocation.

He has shown constraints are e�ciently solvable by making

use of these probabilities.

Koller [10] deals with the problem of gene inheritance. Knowl-

edge about gene inheritance is encode by a �rst order language

and then translated into a Bayesian network. The EM learn-

ing algorithm adapted for Bayesian networks is applied to sta-

tistically estimate parameters in the network. It is not clear
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however how to extend this approach to a general program-

ming language with Turing computation power. She also pro-

posed a functional probabilistic programming language [11]

for stochastic processes.
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