
Yet more efficient EM learning for parameterized logic
programs by inter-goal sharing
Yoshitaka Kameya� and Taisuke Sato� and Neng-Fa Zhou�

Abstract. In previous research, we presented a dynamic-
programming-based EM (expectation-maximization) algorithm for
parameterized logic programs, which is based on the structure shar-
ing with tabled search. It is also shown that this general framework
achieves the same time complexity as that of the specialized algo-
rithms. The efficiency is brought by sharing common (partial) paths
in the derivation tree for a given goal, but such sharing is incom-
plete in the sense that it is not allowed to share the paths appearing
in different derivation trees. In this paper, we introduce a general
idea called ‘inter-goal sharing’ where different goals can share the
common derivation paths. Inter-goal sharing achieves the full shar-
ing of derivation paths and hence makes EM learning more compact
and efficient in practical cases. Experimental results with both artifi-
cial and real linguistic data show that the proposed method runs 2-6
times more compactly and faster than the previous approach.

1 Introduction

To build an AI system that deals with uncertainty, one promising way
is to integrate domain knowledge seamlessly with well-founded sta-
tistical techniques. Since it seems not easy to describe such domain
knowledge only with propositional languages, researches on the inte-
gration between first-order logic and probability [2, 4, 8, 10, 13, 15]
have been paid much attention in the last decade. In particular, based
on the distribution semantics, a probabilistic extension of least model
semantics of logic programs, we proposed parameterized logic pro-
grams, called PRISM (programming in statistical modeling) pro-
grams [15], each of which represents a probability distribution pa-
rameterized with basic probabilities (called parameters) of choices.
In PRISM, we model a sequential process of probabilistic choices,
which leads to our observation. Inversely, from a collection of ob-
servations (i.e. training data), we can find the maximum likelihood
(ML) estimate of such parameters by considering all sequences of
choices for each observation, and by applying the EM (expectation-
maximization) algorithm [5], as is done for hidden Markov models
(HMMs) or probabilistic context-free grammars (PCFGs) [15]. Each
observation is here called a (top) goal, and a sequence of choices
leading to a goal can be seen as an explanation path for the goal.

In recent work, we proposed an efficient framework for EM learn-
ing of PRISM programs, which combines tabled search (memo-
ization) technique [19, 22, 23] for logic programs and a dynamic-
programming-based EM algorithm called the graphical EM (gEM)
algorithm. The efficiency is brought by sharing common (partial)
paths in the derivation tree for a given goal, and by designing the

� Tokyo Institute of Technology, kameya@mi.cs.titech.ac.jp
� Tokyo Institute of Technology and CREST, sato@mi.cs.titech.ac.jp
� The City University of New York, zhou@sci.brooklyn.cuny.edu

gEM algorithm to run on this compact shared structure. However,
it can be said that such sharing is incomplete in the sense that it is
not allowed to share the paths appearing in the derivation trees for
different goals. So the redundancies will grow as we attempt to col-
lect a larger set of observations to ensure the statistical reliability of
estimated parameters. A motivative example is given in Section 2.

In this paper, we present a general idea called inter-goal sharing
where different goals can share common derivation paths. Inter-goal
sharing achieves the full sharing of derivation paths and hence makes
EM learning more compact and efficient in practical cases. In ad-
dition, we give a simple implementation of inter-goal sharing for
PRISM programs, which can be justified in both logical and prob-
abilistic senses. Finally we show the experimental results with two
typical and widely-applied statistical language models, i.e. HMMs
and PCFGs. For both artificial and real linguistic data it is found that
the proposed EM algorithm runs 2-6 times more compactly and faster
than the previous approach.

2 Background

2.1 PRISM programs

We start by explaining PRISM language with a small program exam-
ple of an hidden Markov model (HMM) [3, 12]. A detailed descrip-
tion of PRISM is given in [15]. A PRISM program shown in Fig-
ure 1 represents an HMM which has two states �s0,s1� and outputs
a symbol ‘a’ or ‘b’ at each state. To define a probability distribution,
PRISM provides a built-in predicate msw/2.4 A ground atom msw(�,
�)means that a multi-outcome switch � takes a value � with the prob-
ability ���� , by which we can represent a probabilistic choice iden-
tified by � which results in �. For each �, the second argument � of
msw/2 comes from a set �� of ground terms, and

�
����

���� � �
holds. Each �� is given by a built-in predicate value/2 as shown
in Figure 1 (e.g. �tr(�) � ���� ���). In the rest of the paper,
a ‘switch’ refers to a ground atom of msw/2. Also we assume that
all trials of msw/2 are independent, following the current version of
PRISM implementation [24]. In Figure 1, a procedural reading of the
HMM program as a string generator is given as comments.

2.2 Efficient EM learning with tabling

The EM algorithm is a well-known class of numerical algorithms
for ML estimation of a probability model with a hidden structure.
In the case of PRISM programs, explanation paths are hidden from
the observations (i.e. top goals). This situation requires an EM algo-
rithm to get the ML estimation of the parameters ���� of switches.

� In this paper, we use the notation �/� for a predicate � with arity �.

s0 s1a, b a, b

a, b

a, b

values(init,[s0,s1]). % for initial state dist.
values(out(_),[a,b]). % for output dist.
values(tr(_),[s0,s1]). % for transition dist.

hmm(L):- % To generate a string L,
msw(init,S), % Set initial state to S
hmm(1,S,L). % Enter the loop (clock=1)

hmm(T,S,[C|L]):- T=<3, % Loop:
msw(out(S),C), % Output C at state S
msw(tr(S),Next), % Transit S -> Next
T1 is T+1, % Put the clock ahead
hmm(T1,Next,L). % Continue the loop

hmm(T,_,[]):- T>3. % Finish the loop

Figure 1. A two-state HMM (above) and its PRISM program (below).

Specifically for HMMs, an efficient EM algorithm is known as the
forward-backward or the Baum-Welch algorithm [3, 12]. As easily
seen from Figure 1, PRISM programs are a generalization of HMMs
in expressivity, so we need an EM algorithm for PRISM programs
which is general but still runs as fast as specialized EM algorithms
(e.g. the Baum-Welch algorithm). Previous papers (e.g. [15]) show
that a framework with a combination of tabled search and the graph-
ical EM (gEM) algorithm fulfills this requirement.5 Roughly speak-
ing, in tabled search, a subgoal is tabled (memorized) with the answer
when it is proved, and the tabled subgoals behave as already known
facts when they are called again. Hence the derivation paths for dif-
ferent calls of a subgoal will be shared. We use a data structure, called
explanation graphs, which intermediates between tabled search and
the gEM algorithm. That is, given a PRISM program and a multi-set
of observed goals � � ���� � � � � �� �, an explanation graph for ��

hmm([a,b,a])
� � hmm(1,s0,[a,b,a]), msw(init,s0) �
� � hmm(1,s1,[a,b,a]), msw(init,s1) �

hmm(1,s0,[a,b,a])
� � hmm(2,s0,[b,a])�, msw(out(s0),a), msw(tr(s0),s0) �
� � hmm(2,s1,[b,a]), msw(out(s0),a), msw(tr(s0),s1) �

hmm(1,s1,[a,b,a])
� � hmm(2,s0,[b,a])�, msw(out(s1),a), msw(tr(s1),s0) �
� � hmm(2,s1,[b,a]), msw(out(s1),a), msw(tr(s1),s1) �

hmm(2,s0,[b,a])�
� � hmm(3,s0,[a]), msw(out(s0),b), msw(tr(s0),s0) �
� � hmm(3,s1,[a]), msw(out(s0),b), msw(tr(s0),s1) �

hmm(2,s1,[b,a])
� � hmm(3,s0,[a]), msw(out(s1),b), msw(tr(s1),s0) �
� � hmm(3,s1,[a]), msw(out(s1),b), msw(tr(s1),s1) �

hmm(3,s0,[a])
� � msw(out(s0),a), msw(tr(s0),s0) �
� � msw(out(s0),a), msw(tr(s0),s1) �

hmm(3,s1,[a])
� � msw(out(s1),a), msw(tr(s1),s0) �
� � msw(out(s1),a), msw(tr(s1),s1) �

Figure 2. An explanation graph for a single goal hmm([a,b,a]).

� Furthermore, more specifically to PCFGs, we can use a sophisticated CFG
parsers instead of the interpreters of logic programming systems. It is re-
ported in [14] that, with a moderately ambiguous CFG skeleton [20, 21], the
gEM algorithm runs faster than the Inside-Outside algorithm (a specialized
EM algorithm for PCFGs) by orders of magnitude.

is extracted from the table used in the search of explanations for ��
(� � � � �). Then the gEM algorithm runs on these explanation
graphs to estimate ���� .

Using the terminology in [24], explanation graphs are formulated
as follows. A explanation path for a tabled subgoal 	 is defined as
�	 �
� where
 is a set of tabled subgoals or switches. An expla-
nation path corresponds to an instance of a clause where all tabled
subgoals or switches in
 appear in the body of the clause. 	 is called
the root of the path. An explanation tree ��	 � for a tabled subgoal 	
is a set of possible explanation paths for 	 (is also called the root
of the tree). An explanation graph for a goal �� (� � � � �) is now
defined as a pair ���� �� where �� is an ordered set �	�� � � � � 	��

�
of distinct roots, and �� should be acyclic, i.e. it should hold that
�� � 	� and that if � � �� and �	�� �
� is an explanation path
for 	�� then 	� does not appear in
. This acyclicity among roots is
guaranteed by topological sorting based on the calling relationship.

Figure 2 illustrates an explanation graph for a single goal
hmm([a,b,a]) in the HMM program. It can be found that struc-
ture sharing is made, by seeing two tabled subgoals labeled by ‘	’
refer to an explanation tree rooted by the one with ‘
’. Also, the guar-
antee of the acyclicity allows us to make a dynamic programming ap-
proach to EM learning. From the description of the gEM algorithm
given in [15], it is easy to find that the algorithm runs in linear time
of �

��

���

�
����

�
	����	��
���

�
�,6 the total size of expla-
nation graphs. Notice here that the gEM algorithm runs slower as �
becomes larger (i.e. the training data grows). This can arise a prob-
lem when we prepare a large data to ensure the statistical reliability
of estimated parameters. Also it may be more severe that the size of
required memory is also ���, so there would be cases where the
gEM algorithm does not work on the computers at hand.

3 Inter-goal sharing

The purpose of this paper is to improve the capacity of tabled
search and the gEM algorithm by preventing the growth of expla-
nation graphs in practical cases. For such improvement, we intro-
duce the idea of inter-goal sharing, which attempts to share the sub-
goals among top goals ��, whereas in previous work, the structure
sharing is separately made for each top goal (i.e. intra-goal shar-
ing). For instance, let us see Figure 2 and consider another top
goal hmm([b,b,a]). Then it can be easily seen that the subgoal
hmm(2,s0,[b,a]) occurs in the derivation path of both top goals
hmm([a,b,a]) and hmm([b,b,a]), and can be shared.

Fortunately for PRISM programs, it is quite easy to derive an al-
gorithm which implements inter-goal sharing. First of all, suppose
that a PRISM program and observed goals � � ���� ��� � � � � �� �
is given and let us rename the logical variables in �� so that there
is no variable appearing in more than one goal from �. Then, with a
new predicate pseudo goal/0, inter-goal sharing will be done by
only adding a clause

pseudo goal:- ��,��,...,��. (�)

to the original program and regarding pseudo goal as a single ob-
served goal. In tabled search, if the subgoals appearing in the search
for �� is shared by any succeeding sibling ��� (� � ��), we can say
inter-goal sharing is made between �� and ��� . Also, it is easy to
show the topological sorting from pseudo goal naturally resolves
�� (� � � � �) into a single (large) ordered set � of distinct roots
(notice that � can be considered as being common to �).

	 For HMM programs like Figure 1, � � ������ �, where � is the number
of states, and � is the length of an input sequence.

In the context of EM learning (ML estimation), on the other
hand, adding the dummy clause (�) is justified based on the distri-
bution semantics [15]. Firstly, in a PRISM program, we have as-
sumed that all trials of msw/2 are independent (see Section 2.1).
From this and renaming of variables in �, it is obvious that
the goals from � are all independent. Besides, since (�) is a
unique clause for pseudo goal/0, we can think of the head
pseudo goal as logically equivalent to a conjunction of ��, and
hence � �pseudo goal� �

��

���
� ���� (from the independence

assumption among goals). Now it can be concluded that maximizing
� �pseudo goal�, the likelihood of pseudo goal in the modi-
fied program, is equivalent to maximizing

��

���
� ����, the likeli-

hood of � in the original program.

4 Modified EM algorithm

Since the modification of PRISM programs described in the previ-
ous section does not change in both logical and probabilistic senses,
we don’t need to modify the original gEM algorithm [15]. However,
there still remain a redundancy if some goal appears repeatedly in �.
To avoid this, as is usually done, let us consider ������ � � � � ����� as
a set of distinct goals in �, and introduce weights �� as the numbers
of occurrences of ���� in � (� � � � �). Then the redundancy
in � will be removed by recording weights and redefining the clause
for pseudo goal/0 as follows:

pseudo goal:- ����,����,...,����.

Figure 3 shows a modified gEM algorithm taking weights into ac-
count. The central part of the algorithm is the computation of ���� ��,
the expected occurrences of msw(�,�), by which the parameters
���� are repeatedly updated. Compared to the original algorithm,
there are only two places that need to be modified. First, we modify
learn-gEM and GetInsideProbs so that they run on a single (large)
explanation graph. Secondly, GetExpectations is modified so that,
only for each top goal ����, the variable ������ is initialized to
����pseudo goal��������� (the line (b)). Considering the ex-
planation graph obtained by the dummy clause (�), and noting that
��pseudo goal� �

��

���
�����, it can be easily shown that this

initial value is just the sum of outside probabilities of goals in �
each of which is identical to ����, and hence the modified algo-
rithm yields the same result as that of the original algorithm.7 Also
we can see that, in the modified version, the weights are smoothly
accumulated to ���� �� along with the dynamic-programming-based
computation.

5 Experiments

5.1 Hidden Markov models

To show the efficiency of the proposed algorithm, we have conducted
experiments with two widely-applied language models, i.e. HMMs
and PCFGs.8 The HMM program in Figure 1 is used for the experi-
ment. First we sampled sufficiently many goals by PRISM system’s
built-in,9 and fixed them as �
. Then, as a training data for the HMM

� For the further optimization in Figure 3, some might notice that the occur-
rences of the likelihood ���
� in lines (a) and (b) can be canceled. That
is, it is allowed that we simultaneously delete the line (a) and replace the
initial value ��� ��
�	��
���� by ��	��
���� in line (b).

� As for the memory problem, version 1.7 of PRISM (http://sato-
www.cs.titech.ac.jp/prism/), which is build on B-Prolog
(http://www.probp.com/), already adopts inter-goal sharing.

 In sampling, we used the following parameters ���� :

procedure Learn-gEM(�, �) begin
Select some parameters � and let �
 � pseudo goal;
GetInsideProbs(�, �);
�
� �� 	
����
�;
repeat

GetExpectations(�, �);
foreach � � � , � � �� do ���� �� �� ���� ��	���
�; � � � (a)
foreach � � � , � � �� do ���� �� ���� ��	

�
�����

���� ���;

GetInsideProbs(�, �);
��� �� 	
����
�;
� �� � � �

until ��� � ����� � �
end

procedure GetInsideProbs(�, �) begin
Let � � �pseudo goal� ��� � � � � ��� and �
 � pseudo goal;
for � �� � downto 0 do begin
����� �� ;
foreach � such that ��� � �� � ����� do begin
����� �� �� �;
foreach � � � do

if � � msw(�,�) then ����� �� 	� ����
else ����� �� 	� ����;

����� �� ���� � ��
end

end
end

procedure GetExpectations(�, �) begin
Let � � �pseudo goal� ��� � � � � ��� and �
 � pseudo goal;
foreach � � � , � � �� do ���� �� �� ;
for � �� � to � do

if
� ��� �
���� then ����� �� �����
�	� �
���� � � � (b)
else ����� �� ;

for � �� � to � do
foreach � such that ��� � �� � ����� do

foreach � � � do
if � � msw(�,�) then ���� �� �� ����� � ����� ��
else ���� �� ����� � ����� ��	� ���

end

Figure 3. Modified gEM algorithm.

program, we repeatedly pick up the first � goals from �
 with in-
creasing � by 100. Since the modified gEM algorithm runs in linear
time of the size of the explanation graph, we only measured af-
ter tabled search, instead of the real running time.10 For the length
� of input strings, we tried two cases: � � �� and � � ��.11 Also
three types of gEM algorithms are tested: the original one in [15] (re-
ferred to as “Original”), the modified one in Figure 3 (“Modified”),
and the one which does not make inter-goal sharing but only re-
moves the redundancy in training data by taking weights into account
(“Weights”). Figure 4 shows the results. When � � ��, inter-goal
sharing is quite effective, i.e. the modified algorithm runs 6 times
more compactly and faster than the original one (at � � �� ���). The
algorithm only taking weights into account also runs fast because the
number of distinct observable patterns are ��
 � �� ��	 (we have
only two output symbols and � � ��). Obviously, this is not the
case when � � ��, whereas the modified algorithm still runs 3 times
faster than the original (at � �
� ���). For longer sequences, un-
fortunately, the effectiveness of compaction will be decreased since

�

� s0 s1
init 0.9 0.1

�

� a b
out(s0) 0.5 0.5
out(s1) 0.6 0.4

�

� s0 s1
tr(s0) 0.2 0.8
tr(s1) 0.8 0.2

�
 There is also an implementational reason. Currently we have implemented
the algorithm in Figure 3 only as a Prolog code, which is quite slow.

�� Figure 1 is the program with � � �.

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 0 500 1,000

Original
Weights
Modified

 140,000

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 0 1,000 2,000 3,000

Original
Weights
Modified

Figure 4. Experimental results for HMM: � � � (left), � � �� (right),
where x-axis and y-axis correspond to the size � of training data and the size

� of the explanation graph(s), respectively.

there is less chance for each subgoal to be shared. On the other hand,
for the fully connected HMM, the effectiveness does not change, be-
cause for each time � and subsequence �, subgoals hmm(�,�,�)
occur in the explanation graphs symmetrically with respect to the
state � (see Figure 2).

5.2 Probabilistic context-free grammars

PCFGs are a probabilistic extension of context-free grammars. Each
production rule � � � has a probability ���, where � is a non-
terminal symbol and � is a sequence of terminal or non-terminal
symbols, and for every non-terminal �,

�
�
��� � � should

hold.12 Figure 5 shows Charniak’s example of a PCFG [3]. For the
experiment, we wrote two types of PRISM programs which repre-
sent PCFGs. One is a probabilistic version of DCG (definite clause
grammar) programs [18] described in [16], and the other is a program
using an auxiliary non-probabilistic predicate divide/3 (referred to
as “PCFG-div”). Following [16], we describe the Charniak’s exam-
ple in Figure 6 (above) as a probabilistic DCG (PDCG) program.
A probabilistic event that a rule � � � is chosen at nonterminal
� is represented by a switch msw(�,��) (�� is a Prolog list of
symbols appearing in �). The predicate pdcg2(�,�) means that
a substring � is governed by a nonterminal �. In tabled subgoals
obtained after tabled search, the second argument � is instantiated
by a (ground) difference list [��,...,��]-[�����,...,��],
which indicates a substring ������ � � ���� .13 On the other hand,
Figure 6 (below) shows a PCFG-div program for the Charniak’s ex-
ample. Just like pdcg2/2 in the PDCG program, a tabled subgoals
pcfg div2(�,�) also says that a substring � is governed by a
nonterminal �, but syntactically � is just a list [��,...,���]
meaning ������ � � ���� . The predicate divide/3 is defined as

s � np vp (0.8) vp � verb (0.3) verb � swat (0.2)
s � vp (0.2) vp � verb np (0.3) verb � flies (0.4)

np � noun (0.4) vp � verb pp (0.2) verb � like (0.4)
np � noun pp (0.4) vp � verb np pp (0.2) noun � swat (0.05)
np � noun np (0.2) prep � like (1.0) noun � flies (0.45)
pp � perp np (1.0) noun � ants (0.5)

Figure 5. Charniak’s example of a PCFG (‘s’ is the start symbol).

�� For simplicity, we assume here that the grammar has no �-rule, and for any
nonterminal �, there is no derivation from � to � itself.

�� In addition, attempting to reduce the burden of tabled search, we com-
pute in advance the FIRST set for each nonterminal. first(�,�)means
that � is an element of the FIRST set of �. Now we are concentrating on
EM learning (and hence on exhaustive tabled search), both the PDCG and
PCFG-div program are specialized to parsing.

values(s, [[np,vp],vp]).
values(np, [noun,[noun,pp],[noun,pp]]).
:

pdcg(L):- pdcg2(s,L-[]).

pdcg2(np,[F|L0]-L1):- first(np,F),
msw(np,noun),
pdcg2(noun,[F|L0]-L1).

pdcg2(np,[F|L0]-L1):- first(np,F),
msw(np,[noun,pp]),
pdcg2(noun,[F|L0]-X0),pdcg2(pp,X0-L1).

:

pcfg_div(L):- pcfg_div2(s,L).

pcfg_div2(np,[F|L]):- first(np,F),
msw(np,noun),
pcfg_div2(noun,[F|L]).

pcfg_div2(np,[F|L]):- first(np,F),
msw(np,[noun,pp]),
divide([F|L],L0,L1),
pcfg_div2(noun,L0),pcfg_div2(pp,L1).

:
divide([A,B|As],[A],[B|As]).
divide([A|As],[A|Bs],Cs):- divide(As,Bs,Cs).

Figure 6. A PDCG program (above) and a PCFG-div program (below).

non-deterministic so that we can find all boundaries of phrases.14 In
a probabilistic sense, we are able to translate PDCG programs and
PCFG-div programs interchangeably, i.e., by considering proof trees
by (non-tabled) exhaustive search, it is possible to make one-to-one
correspondences between successful paths for a PDCG program and
those for the translated PCFG-div program, and vise versa.

For these two types of PCFG programs, we made experiments with
artificial and real data. For an artificial data, we sampled sufficiently
many goals by using both the CFG skeleton and rule probabilities
in Figure 5. On the other hand, the ATR corpus [21] and a manu-
ally developed Japanese CFG [20] are used as a real data.15 Then,
as we did in the HMM case, we measure the size of the explana-
tion graph with the size � of training data being increased by 100.
Figure 7 shows the results. For the artificial data with the Charniak’s
example, it can be observed that the modified algorithm runs about
3–4 times faster than the original, and that the PCFG-div program
runs more efficiently than the PDCG program. The difference in per-
formance between PDCG and PCFG-div comes from the substring
representation (the second argument � of pdcg2/2) in tabled sub-
goals. That is, a difference list contains the information of a suffix
substring, which make the subgoals have less chance to be shared (in
both inter-goal and intra-goal). Also, the difference of performance
caused by the substring representation turns to be more significant in
the case of the ATR corpus. In addition, from the result for the ATR
corpus, we can find that the modified EM algorithm achieved to run
twice faster than the original one.16

�� More concretely, a query “?- divide([w1,w2,w3,w4],L1,L2).”
yields three answers: �L1=[w1], L2=[w2,w3,w4], �L1=[w1,w2],
L2=[w3,w4], �L1=[w1,w2,w3], L2=[w4].

�� The numbers of rules, nonterminal symbols, and terminals (part-of-
speeches) are 860, 173, and 441, respectively. The sentences in the ATR
corpus were randomly re-ordered in advance.

�	 It was observed that, in tabled search, the PDCG program runs faster than
the PCFG-div program. It is possible that divide/3 in the PCFG-div pro-
gram blindly determines the phrase boundaries, and hence tends to produce

(1) (2) (3) (4)

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 0 1,000 2,000 3,000 4,000

Original
Weights
Modified

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 0 1,000 2,000 3,000 4,000

Original
Weights
Modified

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

 0 2,000 4,000

Original
Weights
Modified

 50,000

 100,000

 150,000

200,000

 250,000

 300,000

 350,000

 400,000

 0 2,000 4,000

Original
Weights
Modified

Figure 7. Experimental results for Charniak’s example with PDCG (1) and PCFG-div (2), and for ATR corpus with PDCG (3) and PCFG-div (4), where
x-axis and y-axis correspond to the size � of training data and the size � of the explanation graph(s), respectively.

6 Related work and Conclusions

In this paper, we presented an idea called ‘inter-goal sharing’ which
achieves the full sharing of derivation paths for given goals (observa-
tions), and makes the EM learning for PRISM programs more com-
pact and efficient. This implies that we can deal with more observa-
tions as training data than ever, and the ML estimates of parameters
are expected to be more statistically reliable. Obviously, inter-goal
sharing is quite general idea, so there seem to be other mathemat-
ical models containing structures to which we can apply the idea
of inter-goal sharing. In statistical natural language processing, sev-
eral probabilistic language model and the related algorithms based on
unification-based grammars (e.g. [1, 7, 17]) are proposed for mixing
our linguistic knowledge and statistical preference naturally. In par-
ticular for parsing, some authors use language models based on log-
linear models which allow us to freely handle the constraints among
phrases [1, 7]. Recently, dynamic-programming-based methods are
proposed for parameter estimation in such log-linear models [6, 9].
These methods use graph structures like explanation graphs, and
hence they would benefit from the notion of inter-goal sharing. This
is because the methods for parameter estimation in such log-linear
models (i.e. maximum entropy methods) also require the indepen-
dence assumption, described in Section 3. To implement the idea of
inter-goal sharing on the other formalisms on first-order logic and
probability, it is needed to start investigating the relations on seman-
tics between these formalisms, as done in [11].

REFERENCES

[1] S. Abney, ‘Stochastic attribute-value grammars’, Computational Lin-
guistics, 23, 597–618, (1997).

[2] N. Angelopoulos, ‘Extending the CLP engine for reasoning under un-
certainty’, in 14th International Symposium on Methodologies for In-
telligent Systems (ISMIS2003), (2003).

[3] E. Charniak, Statistical Language Learning, The MIT Press, 1993.
[4] J. Cussens, ‘Parameter estimation in stochastic logic programs’, Ma-

chine Learning, 44, 245–271, (2001).
[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘Maximum likelihood

from incomplete data via the EM algorithm’, Journal of the Royal Sta-
tistical Society, B39, 1–38, (1977).

[6] S. Geman and M. Johnson, ‘Dynamic programming for parsing and
estimation of stochastic unification-based grammars’, in Proc. of the
40th Anuual Meeting of the Association for Computational Linguistics
(ACL02), pp. 279–286, (2002).

unfruitful succeeding derivations. However we note here that, since expla-
nation graphs only contain the successful paths, the running time of the
gEM algorithm is not influenced by such unfruitful derivations.

[7] M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler, ‘Estimators for
stochastic “unification-based” grammars’, in Proc. of the 37th Annual
Meeting of the Association for Compuational Linguistics (ACL99), pp.
535–541, (1999).

[8] K. Kersting and L. De Raedt, ‘Bayesian logic programs’, Technical Re-
port 151, University of Freiburg, (2001).

[9] Y. Miyao and J. Tsujii, ‘Maximum entropy estimation for feature
forests’, in Proc. of Human Language Technology Conference (HLT
2002), (2002).

[10] S. Muggleton, ‘Stochastic logic programs’, in Advances in Inductive
Logic Programming, ed., L. De Raedt, 254–264, IOS Press, (1996).

[11] A. Puech and S. Muggleton, ‘A comparison of stochastic logic pro-
grams and Bayesian logic programs’, in Proc. of IJCAI-03 workshop
on Learning Statistical Models from Relational Data (SRL2003), pp.
121–129, (2003).

[12] L. R. Rabiner, ‘A tutorial on hidden Markov models and selected appli-
cations in speech recognition’, in Proc. of IEEE, volume 77, pp. 257–
286, (1989).

[13] S. Riezler, Probabilistic constraint logic programming, Ph.D. disserta-
tion, Universität Tübingen, 1998.

[14] T. Sato, S. Abe, Y. Kameya, and K. Shirai, ‘A separate-and-learn ap-
proach to EM learning of PCFGs’, in Proc. of the 6th Natural Lan-
guage Processing Pacific Rim Symposium (NLPRS-2001), pp. 255–262,
(2001).

[15] T. Sato and Y. Kameya, ‘Parameter learning of logic programs for
symbolic-statistical modeling’, Journal of Artificial Intelligence Re-
search, 15, 391–454, (2001).

[16] T. Sato and N.-F. Zhou, ‘A new perspective of PRISM relational mod-
eling’, in Proceedings of IJCAI-03 workshop on Learning Statistical
Models from Relational Data (SRL2003), pp. 133–139, (2003).

[17] H. Schmid, ‘A generative probability model for unification-based gram-
mars’, in Proc. of the 19th International Conference on Computational
Linguistics (COLING 2002), (2002).

[18] L. Sterling and E. Sharpiro, The Art of Prolog, The MIT Press, 1986.
[19] H. Tamaki and T. Sato, ‘OLD resolution with tabulation’, in Proc. of

the 3rd International Conference on Logic Programming (ICLP86), pp.
84–98, (1986).

[20] H. Tanaka, T. Takezawa, and J. Etoh, ‘Japanese grammar for speech
recognition considering the MSLR method’, in SIG Notes on Spoken
Language Processing, number 015-025. Information Processing Soci-
ety of Japan, (1997). In Japanese.

[21] N. Uratani, T. Takezawa, H. Matsuo, and C. Morita, ‘ATR integrated
speech and language database’, Technical Report TR-IT-0056, ATR
Interpreting Telecommunications Research Laboratories, (1994). In
Japanese.

[22] D. S. Warren, ‘Memoing for logic programs’, Communications of the
ACM, 35(3), (1992).

[23] N.-F. Zhou and T. Sato, ‘Efficient fixpoint computation in linear
tabling’, in Proc. of the 5th ACM-SIGPLAN International Conference
on Principles and Practice of Declarative Programming (PPDP 03),
pp. 275–283, (2003).

[24] N.-F. Zhou, T. Sato, and K. Hashida, ‘Toward a high-performance sys-
tem for symbolic and statistical modeling’, in Proc. of IJCAI-03 work-
shop on Learning Statistical Models from Relational Data (SRL2003),
pp. 153–159, (2003).

