
PRISM

An introduction to
PRISM

What is PRISM?
acronym of PRogramming In Statistical Modeling
programming language for symbolic-statistical modeling
downloadable at http://mi.cs.titech.ac.jp/prism/

Modeling targets
complex phenomena governed by rules and probabilities
gene-inheritance, stochastic NLP, consumer-behavior,…

Features
programs as statistical models
probabilities and most likely paths computed
parameter learning by the EM algorithm

See [Sato ’01] for theoretical background

PRISM

Negation

2004

First
parameter

learning from
negative goals

PRISM1.8

Fast
all solution
search by

linear tabling

PRISM1.6

Tabled
search

2003

Fast
EM algorithm

based on
AND-OR graphs

PRISM1.4

graphical
EM

2000

First
programming

language
with EM

learning ability

PRISM

1997

Development of PRISM

First
probabilistic
semantics
for (logic)
programs
as statistical

models

Distribution
semantics

1995

PRISM

PRISM = Prolog + probability +
parameter learning

TopTop--eventsevents

ClausesClauses
IfIf--then,recursionthen,recursion

Simple events by dice throwingSimple events by dice throwing
with statistical parameters with statistical parameters θθ

programmingprogramming EM learning of EM learning of θθ

(sampling)(sampling) (search)(search)

PRISMPRISM

Basic idea

PRISM

An example of PRISM
modeling

PRISM

Gene inheritance

B

father mother

child

aa
AB A

b

o

o

b

PRISM

(parameter)

(computed prob.)

(basic random switch)

Program DB = rules +
distribution PF over msws

PRISM

2

3

4
87

65

9 10

2
3
4

Observation Explanation
search Prob. computation

1

2

3

4

1

2

3

4

0

10

5 6

7 8

9

Explanation graph

explanation

Dynamic
programming

In
si

de
 p

ro
b.

Tabled search

observation (top-event)
1

PRISM

Three modes of execution
Prob. computation:
| ?- prob(btype(a)).
The probability of btype(a) is: 0.4

Search for explanation graph:
| ?- probf(btype(a)).

btype(a) <=> gtype(a,a) v gtype(a,o) v gtype(o,a)
gtype(a,a) <=> msw(gene,a) & msw(gene,a)
gtype(a,o) <=> msw(gene,a) & msw(gene,o)
gtype(o,a) <=> msw(gene,o) & msw(gene,a)

Sampling:
| ?- sample(btype(X)).
X = a?

PRISM

Learning parameters

| ?- Gs =[btype(a),btype(o),btype(ab),btype(o),…],learn(Gs).
.
Finished learning

Number of iterations: 5.
Final likelihood:-12.800480
Total learning time: 0.0 seconds.
All solution search time: 0.0 seconds.

| ?- show_sw(abo).
Switch abo: a (0.292380) b (0.163031) o (0.544588)

observed data

learned parameters

parameter learning
by the EM algorithm

PRISM

Statistical modeling
500 samples

Fitting test

= 0.65
(accepted, level=0.05)

2χ
1

prob(btype(a)) =0.397
prob(btype(b)) =0.201
prob(btype(o)) =0.311
prob(btype(ab))=0.089

Calculation by the model

prob(msw(abo,a))=0.283
prob(msw(abo,b))=0.158
prob(msw(abo,o))=0.558

Learned parameters
EM learning

btype(a) :195
btype(b) : 97
btype(o) :159
btype(ab): 49

PRISM

Declarative semantics

PRISM

Parameterized logic
programs

Program

definite clauses (rules)

probabilistic facts with

Distribution semantics

is extended by to

is the denotation of

is set manually or learned from data

Prob. measure over the
Herbrand interpretations of F
parameterized with θ

Prob. measure over the
Herbrand interpretations of DB

PRISM

Ground atom = random variable taking on
Program represents a set of ground clauses

Why semantic difficulty?
infinite symbols infinite Herbrand universe
Recursion infinitely many random variables
D-semantics allows for recursion and infinite domains,
and unconditionally definable (even for looping
programs)

Distribution semantics (1)
[Sato 95]

PRISM

Distribution semantics (2)

Assume a parameterized basic distribution

is given over
Sample and get
Pick up a set of true facts
The least Herbrand model is defined
Every ground atom has a truth value depending on

and hence considered as a random variable

is defined

PRISM

Distribution semantics (3)

is a σ-additive probability measure on

where ω corresponds to an Herbrand interpretation

closed formula:

Globally consistent probs are assigned to all closed
formulas

Continuity by σ-additivity

PRISM

Note
is constructed from finite distributions

Prob. mass distributes only over the set of possible
least H-models

Distribution semantics covers logic programming,
discrete Bayesian net, HMMs, PCFGs,…

Definable for any DB (unlike other approaches:-)

PRISM

Tabled search

PRISM

We compute probabilities using explanation
graphs which are a compact representation of
statistical-logical dependency among events.
In an explanation graph, subgraphs are partially
ordered and shared by super-graphs.
Sharing of subgraphs causes sharing of
computations by dynamic programming.
Thus efficient computation is achievable.

Explanation graphs

PRISM

E-graph represents
all explanations for G

Computation sharing

:1τ

3τ 4τ
end

start end

msw
1τG:

1τ

3τ
2τ

2τ

msw

msw

msw

msw

msw

start

computation is shared!

PRISM

An explanation graph for G is obtainable by searching
for all explanations of G using tabling.
Tabling remembers successful goals and reuses them to
avoid recomputation of the same goal.
There are two ways of tabling in logic programming;

Suspension & resumption of multiple processes
based on OLDT search, difficult to implement (see XSB)

Single process with iterative search
Based on linear-tabling, easy to implement (see B-Prolog)
Adopted in PRISM

Tabling

PRISM

Linear Tabling [Zhou 04]

A...

A’...

...

Pioneer
(first occurrence)

Follower
(looping subgoal)

table

• A’ is a descendant of A but
identical to A.

• A’ immediately fails after consuming
existing answers in the table

Advantages
easy to implement
overhead-free
space efficient
cut is easy to handle

Disadvantage
iterative computation

Optimizations
subgoal optimization
semi-naïve

optimization possible

Top-down left-right execution

PRISM

Learning parameters

PRISM

To learn parameters in a program, we apply ML (maximum
likelihood) estimation to observed data (top-goal G)
Usually we do not know which of G’s explanation is true one G is
an incomplete data Use the EM algorithm.
PRISM uses the gEM (graphical EM) algorithm which is a generic EM
algorithm for PRISM programs unlike specialized ones such as the
BW (Baum-Welch) algorithm and the IO (Inside-Outside) algorithm.

gEM is derived from distribution semantics.
gEM runs on explanation graphs in the manner of dynamic
programming.
gEM achieves the same time complexity as BW and IO when
OLDT search [Tamaki & Sato 86] is used for explanation graph
construction.

gEM [Kemeya 00]

PRISM

Search-and-learn schema
with tabulation

Tabled search + the graphical EM algorithm
= efficient parameter learning

Tabled
search

Explanation
graphs

Observed atoms

gEM

PRISM

EM learning in PRISM
Old approach:

Design a new EM algorithm for each application
Our approach:

Write a PRISM program for each application

specify HMMs
by program Baum-Welch

specify PCFGs
by program Inside-Outside

specify BNs
by program EM for BN

specify your
model

by program

New EM
algorithm for
your model

graphical

EM
algorithm

PRISM

Time complexity of gEM
+ OLDT

Total time = OLDT search time + iterations * time/iteration
O(OLDT) O(explanation graphs) = O(updata-time/iteration)
Equal to existing (specialized) EM algorithms

[Charniak & Carroll 94]

[Castillo et al. 97]

Inside-Outside

Baum-Welch

Specialized EM

Pseudo PCSGs

Singly connected
Bayesian net

PCFGs

HMMs

gEMOLDT

)(2LTNO

)(33 TLNO

)(TVO

)(34 TLNO

)(2LTNO

)(33 TLNO

)(TVO

)(34 TLNO
N = #symbols, #states, L=sentence length, T = #data, |V| = #nodes

≥

PRISM

Conditions for fast EM
learning

Each observation has finitely many explanations:

Exclusiveness of explanations:

Uniqueness of observable goals:

Acyclicity:
caller-callee relation is partial ordering

Independence:
atoms in an explanation are independent

PRISM

gEM vs. the Inside-Outside
algorithm (1)

PCFG is a CFG with probs assigned to rules

ATR corpus (size=10,995 min=2 ave.=10
max=49)

PCFG: 860 rules (NT 173, POS 441)

Parser used for explanation graph construction:
Generalized LR (Tomita) parser

gEM is 850 times faster than IO per iteration

PRISM

Comparing updating time
for sampled 100 sentences (ATR)

time per iteration

sentence length

850 : 1

PRISM

EDR corpus (size=9,900 min=5 ave.=20 max=63)

PCFG: 2,687 rules / 12,798 rules (CNF),

3*10^8 parses/sentence at sentence length 20

6.7*10^19 at 38

Parser used for explanation graph construction:
Generalized LR (Tomita) parser

gEM is 1300 times faster than IO per iteration

gEM vs. the Inside-Outside
algorithm (2)

PRISM

Comparing updating time
for sampled 100 sentences (EDR)

1,300 : 1

time per iteration

sentence length

PRISM

PCFGs in PRISM
Probabilistic LL(1) parser with

Parameter learning of PDCG form + ATR corpus
completes in 3 min by a PC (3.4Ghz,2GB)

target(pdcg,1). % we observe pdcg([boys,run]),…
values(vp,[[v],[v,np]]). % vp has two rules {vp->v, vp->v np}
… % one of {msw(vp,[v]), msw(vp,[v,np])}

% is probabilistically chosen

pdcg(L):- start_symbol(C), pdcg2([C],L,[]).
pdcg2([Wd|R],[Wd|L0],L2):- terminal(Wd), pdcg2(R,L0,L2).
pdcg2([A|R],[Wd|L0],L2):-

first(A,Wd), % Wd is in first(A)
msw(A,RHS), % probabilistic choice
pdcg2(RHS,[Wd|L0],L1), pdcg2(R,L1,L2).

pdcg2([],L1,L1). Meta-interpreter

PRISM

Naïve Bayes
Profile HMM
Linkage analysis
PCFGs (PDCG, PLC,PGLR(k))
HPSGs
Graph grammars (HR, NLC)
Shogi palyer

Exploring diverse modeling
and parameter learning

one report so far

no report so far

PRISM

Negation and
probabilistic

constraint modeling

PRISM

Failure by constraints
[Sato 05]

Generative models
simulate how observations are generated
no failure assumed (e.g.BNs,HMMs,PCFGs)

Complex models use constraints
failure is inevitable (e.g.HPSGs)
Let’s model probabilistic agreement in number

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

agree(A) succeeds only
when A=B. O.w. fails

PRISM

The fgEM algorithm
Failure means loss of probability mass

gEM is not usable
Distribution is log-linear;

EM learning of parameters is possible by fgEM
fgEM [Sato 04] = gEM [Kameya 00] + FAM [Cussens 01]

FAM computes average count of msws in a failed computation

fgEM requires a failure program

PRISM

A failure program is one that explicitly describes
how failure occurs.

PRISM1.8 uses FOC to automatically derive a failure
program from the negation of a source program.

Failure program

failure
= no output generated
= not(∃X agree(X))

failure:-
msw(coin0,A),
msw(coin1,B),
¥+A=B.

failure:-
msw(coin0,A),
msw(coin1,B),
¥+A=B.

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

PRISM

FOC (first-order compiler)
Full automatic program synthesis for logic programs with
negation [Sato 89]

Compiled program DBc positively computes the finite
failure of DB

M(DB) M(DBc)

HB

If DBc is terminating,
failure = negation and
M(DBc)= HB-M(DB)

The program terminates
for every ground goal

PRISM

Negation elimination by
FOC

even(0).
even(s(X)) :- not(even(X)).

even(0).
even(s(A)):- closure_even0(A,f0).
closure_even0(s(A),_):- even(A).

Source program DBeven

Compiled program DBc
even

PRISM

Extension
Original FOC = for non-probabilistic programs
Extended for PRISM programs containing
negation

This transformation is meaning-preserving in view
of a new distribution semantics (not included in
slides)

PRISM

Constrained HMMs and
a dieting professor

R0
R1

p,s h,s

Suppose a professor wishes to diet.
There are two restaurants R0 and R1
He visits them and orders pizza or
sandwich at R0, and hamburger or
sandwich at R1, probabilstically.
He records lunches like [s,s,h,p,s,h,s].
He tries to keep the total lunch calories
in a week < 4000.
Only successful records are kept.

Given: we have a list of
his successful records.

Task: infer the failure
probability.

Constrained HMMs are an instance of
probabilistic constraint modeling.
They are HMMs with constrains that
may fail.

PRISM

failure:- not(success).
success:- success(_).
success(L):- diet(L,r0,0,7).

diet(L,R,C,N):-
N>0,
msw(lunch(R),D), % order lunch
(R == r0, % pizza or sandwich

(D = p, C2 is C+900 ; D = s, C2 is C+400)
; R == r1, % hamburger or sandwich

(D = h, C2 is C+400 ; D = s, C2 is C+500)),
L=[D|L2],
N2 is N-1,
msw(tr(R),R2), % next restaurant
diet(L2,R2,R2,N2).

diet([],_,C,0):- C < 4000. % calorie constraint must be met

Program for the dieting
professor

R0
R1

p,s h,s

PRISM

Failure program by FOC
failure:- closure_success0(f0).
closure_success0(A):- closure_chmm0(r0,0,7,A).
closure_chmm0(R,B,C,D):-

(C>0,
msw(tr(R),R2), msw(lunch(R),F),
(R¥==r0
; R==r0,

(¥+F=p ; F=p, G is B+900,H is C-1, closure_chmm0(R2,G,H,D)),
(¥+F=s ; F=s, I is B+400,J is C-1,closure_chmm0(R2,I,J,D))),

(R¥== r1
; R == r1,

(¥+F=h ; F=h, K is B+400,L is C-1,closure_chmm0(R2,K,L,D)),
(¥+F=s ; F=s, M is B+500,N is C-1,closure_chmm0(R2,M,N,D)))

; C=<0),
(¥+C=0 ; C=0, B>=4000).

tail recursive just like
positive case

dynamic programming

PRISM

| ?- prismn(‘prof.psm'),set_sw,
generate_goals(500,Gs),learn([failure|Gs]).

success([s,s,p,p,s,h,s])
...
.........50..(Converged: -2905.412443514)
Finished learning
Number of iterations: 63
Total learning time: 0.2 seconds
All solution search time: 0.08 seconds

Switch lunch(r0): p (0.4014) s (0.5986)
Switch lunch(r1): h (0.5339) s (0.4661)
Switch tr(r0): r0 (0.7190) r1 (0.2810)
Switch tr(r1): r1 (0.7236) r0 (0.2764)

?- prob(failure).
The probability of failure is: 0.3448

sampled goal

fgEM learning

0.3486

0.4 0.6

0.5 0.5

0.7 0.3
0.7 0.3

original values

If failure is not assumed, the
estimated failure probability
deteriorates to 0.0823.

PRISM

Note
Failure programs can be obtainable by other methods

Manual derivation
traces all failed paths of computation by inspection and
represent them as a program.

Negation technique [Sato 89]
gives better code than FOC but there are restrictions on
applicability

More complex probabilistic constraint modeling than
constrained HMMs is possible.

Finite PCFGs = PCFGs with failure constraints [Sato 04]
HPSGs = unification based constraint grammar, approximated
by PCFGs

PRISM

References
Please visit http://mi.cs.titech.ac.jp/prism/

Current version is PRISM1.8
Papers

[Sato 05] Sato, T., Kameya, Y. and Zhou, N.-F.: Generative modeling with
failure in PRISM. IJCAI2005, to appear, 2005.

[Zhou 04] Zhou, N.-F., Shen, Y.-D. and Sato, T.: Semi-naive Evaluation in
Linear Tabling, PPDP04, pp.90–97, 2004.

[Sato 01] Sato, T. and Kameya, Y.: Parameter learning of logic programs for
symbolic-statistical modeling. JAIR, Vol.15, pp.391–454, 2001.

[Cussens 01] Cussens, J.: Parameter estimation in stochastic logic programs.
Machine learning, Vol.44, Issue 3, pp.245–271, 2001.

[Kameya 00] Kameya, Y. and Sato, T.: Efficient EM learning with tabulation for
parameterized logic programs. CL2000, LNAI, Vol.1861, pp.269–294, 2000.

[Sato 95] Sato, T.: A statistical learning method for logic programs with
distribution semantics, ICLP95, Tokyo, pp.715–729, 1995.

([Sato 01] is a most comprehensive paper)

PRISM

More sophisticated learning
Conditional random fields
DAEM
Better tabled search

More computer power
Parallel search on a grid machine
64bit

More applications
Graph grammars
User modeling

Future plan

