# An introduction to PRISM



- What is PRISM?
  - acronym of PRogramming In Statistical Modeling
  - programming language for symbolic-statistical modeling
  - downloadable at http://mi.cs.titech.ac.jp/prism/
- Modeling targets
  - complex phenomena governed by rules and probabilities
  - gene-inheritance, stochastic NLP, consumer-behavior,...
- Features
  - programs as statistical models
  - probabilities and most likely paths computed
  - parameter learning by the EM algorithm
- See [Sato '01] for theoretical background

### **Development of PRISM**







# An example of PRISM modeling

## Gene inheritance





### Program DB = rules + distribution P<sub>F</sub> over msws



btype(X):- pg\_table(X,[Gf,Gm]),gtype(Gf,Gm).
pg\_table(X,GT): ((X=a;X=b),(GT=[X,o];GT=[o,X];GT=[X,X])
 ;X=o,GT=[o,o]

;X=ab,(GT=[a,b];GT=[b,a])). (basic random switch)
gtype(Gf,Gm):- msw(abo,Gf),mws(abo,Gm).

$$P_F(\mathsf{msw}(\mathsf{abo}, \mathsf{a})) = \theta_{(\mathsf{abo}, \mathsf{a})} = 0.3 \text{ (parameter)}$$
  
....  
$$\Rightarrow P_{DB}(\mathsf{btype}(\mathsf{a})) = 0.4 \text{ (computed prob.)}$$

# Observation — Explanation search — Prob. computation



PRISM Explanation graph

### Three modes of execution

#### Prob. computation:

| ?- prob(btype(a)).The probability of btype(a) is: 0.4

#### Search for explanation graph:

```
| ?- probf(btype(a)).
btype(a) <=> gtype(a,a) v gtype(a,o) v gtype(o,a)
gtype(a,a) <=> msw(gene,a) & msw(gene,a)
gtype(a,o) <=> msw(gene,a) & msw(gene,o)
gtype(o,a) <=> msw(gene,o) & msw(gene,a)
```

Sampling: | ?- sample(btype(X)). X = a?





# Learning parameters



# Statistical modeling



PRISM



### **Declarative semantics**

# Parameterized logic programs

• Program  $DB = F \cup R$ 

• R definite clauses (rules)

Prob. measure over the Herbrand interpretations of F parameterized with  $\theta$ 

- F probabilistic facts with  $P_F(\cdot \mid \theta)$
- Distribution semantics

Prob. measure over the Herbrand interpretations of *DB* 

- $P_F(\cdot \mid \theta)$  is extended by DB to  $P_{DB}(\cdot \mid \theta)$
- $P_{DB}(\cdot \mid \theta)$  is the denotation of DB
- $\theta$  is set manually or learned from data



### Distribution semantics (1) [Sato 95]



- Ground atom = random variable taking on {1,0}
- Program represents a set of ground clauses

$$DB = F \cup R$$
  
= {A<sub>1</sub>, A<sub>2</sub>, ...}  $\cup$  {B<sub>1</sub>  $\leftarrow$  W<sub>1</sub>, ...}

- Why semantic difficulty?
  - infinite symbols infinite Herbrand universe
  - Recursion infinitely many random variables
  - D-semantics allows for recursion and infinite domains, and unconditionally definable (even for looping programs)

## **Distribution semantics (2)**



- Sample  $P_F$  and get  $\langle A_1 = 1, A_2 = 0, A_3 = 1, \ldots \rangle$
- $\clubsuit$  Pick up  $F' = \{A_1, A_3, \ldots\}$  a set of true facts
- $\clubsuit$  The least Herbrand model  $\mathbf{M}(F' \cup R)$  is defined
- $\clubsuit$  Every ground atom has a truth value depending on F' and hence considered as a random variable
- $\stackrel{\text{\tiny $\forall$}}{\Rightarrow} P_{DB}(A_1 = x_1, B_1 = y_1, A_2 = x_2, B_2 = y_2, \dots \mid \theta)$ is defined PRISM

# Distribution semantics (3)



P<sub>DB</sub>(· | θ) is a σ-additive probability measure on
 Ω = {ω | ω = ⟨z<sub>1</sub>, z<sub>2</sub>,...⟩, z<sub>i</sub> ∈ {0, 1}}

where  $\boldsymbol{\omega}$  corresponds to an Herbrand interpretation

- $\varphi$  closed formula:  $P_{DB}(\varphi) = P_{DB}(\{\omega \mid \omega \models \varphi\})$ 
  - Globally consistent probs are assigned to all closed formulas
- Continuity by  $\sigma$ -additivity

 $P_{DB}(\exists x\varphi(x)) = \lim_{n\to\infty} P_{DB}(\varphi(t_1) \vee \ldots \vee \varphi(t_n))$ 

# Note

- $P_F(\cdot \mid \theta)$  is constructed from finite distributions  $P_F^{(n)}(x_1, \dots, x_n \mid \theta) \ (n = 1, 2, \dots)$  $(= \sum_{x_{n+1}} P_F^{(n+1)}(x_1, \dots, x_n, x_{n+1} \mid \theta))$
- Prob. mass distributes only over the set of possible least H-models {M(F' ∪ R) | F' ⊆ F}
- Distribution semantics covers logic programming, discrete Bayesian net, HMMs, PCFGs,...
- Definable for any DB (unlike other approaches:-)



### **Tabled search**



# **Explanation graphs**

- We compute probabilities using explanation graphs which are a compact representation of statistical-logical dependency among events.
- In an explanation graph, subgraphs are partially ordered and shared by super-graphs.
- Sharing of subgraphs causes sharing of computations by dynamic programming.
- Thus efficient computation is achievable.



### **Computation sharing**





# Tabling

- An explanation graph for *G* is obtainable by searching for all explanations of *G* using tabling.
- Tabling remembers successful goals and reuses them to avoid recomputation of the same goal.
- There are two ways of tabling in logic programming;
  - Suspension & resumption of multiple processes
    - based on OLDT search, difficult to implement (see XSB)
  - Single process with iterative search
    - Based on linear-tabling, easy to implement (see B-Prolog)
    - Adopted in PRISM

# Linear Tabling [Zhou 04]



- A' is a descendant of A but identical to A.
- A' immediately fails after consuming existing answers in the table

- Advantages
  - easy to implement
  - overhead-free
  - space efficient
  - cut is easy to handle
- Disadvantage
  - iterative computation
- Optimizations
  - subgoal optimization
  - semi-naïve optimization possible





# Learning parameters



### gEM [Kemeya 00]

- To learn parameters in a program, we apply ML (maximum likelihood) estimation to observed data (top-goal G)
- Usually we do not know which of G's explanation is true one G is an incomplete data Use the EM algorithm.
- PRISM uses the gEM (graphical EM) algorithm which is a generic EM algorithm for PRISM programs unlike specialized ones such as the BW (Baum-Welch) algorithm and the IO (Inside-Outside) algorithm.
  - gEM is derived from distribution semantics.
  - gEM runs on explanation graphs in the manner of dynamic programming.
  - gEM achieves the same time complexity as BW and IO when OLDT search [Tamaki & Sato 86] is used for explanation graph construction.

# Search-and-learn schema with tabulation

Tabled search + the graphical EM algorithm
 = efficient parameter learning





# EM learning in PRISM

- Old approach:
  - Design a new EM algorithm for each application
- Our approach:
  - Write a PRISM program for each application



# Time complexity of gEM + OLDT



- Total time = OLDT search time + iterations \* time/iteration
- O(OLDT) ≥ O(explanation graphs) = O(updata-time/iteration)
- Equal to existing (specialized) EM algorithms

|                                  | OLDT           | gEM            | Specialized EM          |
|----------------------------------|----------------|----------------|-------------------------|
| HMMs                             | $O(N^2 LT)$    | $O(N^2 LT)$    | Baum-Welch              |
| PCFGs                            | $O(N^3L^3T)$   | $O(N^3L^3T)$   | Inside-Outside          |
| Singly connected<br>Bayesian net | O( V T)        | O( V T)        | [Castillo et al. 97]    |
| Pseudo PCSGs                     | $O(N^4 L^3 T)$ | $O(N^4 L^3 T)$ | [Charniak & Carroll 94] |

N = #symbols, #states, L=sentence length, T = #data, |V| = #nodes

# Conditions for fast EM learning



• Each observation has finitely many explanations:  $comp(R) \vdash G \Leftrightarrow E_1 \lor \ldots \lor E_n$ 

where  $E_i = \mathfrak{msw}_1 \wedge \ldots \wedge \mathfrak{msw}_k$ 

- Exclusiveness of explanations:  $P_{DB}(E_i \wedge E_j) = 0; (i \neq j)$
- Uniqueness of observable goals:

 $P_{DB}(G_i \wedge G_j) = 0; (i \neq j) \text{ and } \sum_i P_{DB}(G_i) = 1$ 

- Acyclicity:
  - caller-callee relation is partial ordering
- Independence:
  - atoms in an explanation are independent

# gEM vs. the Inside-Outside algorithm (1)



- PCFG is a CFG with probs assigned to rules  $NP \rightarrow N(0.3), NP \rightarrow Adj N(0.3), NP \rightarrow SNP(0.4)$
- ATR corpus (size=10,995 min=2 ave.=10 max=49)
- PCFG: 860 rules (NT 173, POS 441)
- Parser used for explanation graph construction: Generalized LR (Tomita) parser
- gEM is 850 times faster than IO per iteration

### **Comparing updating time** for sampled 100 sentences (ATR)





# gEM vs. the Inside-Outside algorithm (2)



- EDR corpus (size=9,900 min=5 ave.=20 max=63)
- PCFG: 2,687 rules / 12,798 rules (CNF), 3\*10^8 parses/sentence at sentence length 20 6.7\*10^19 at 38
- Parser used for explanation graph construction: Generalized LR (Tomita) parser
- gEM is 1300 times faster than IO per iteration

### **Comparing updating time** for sampled 100 sentences (EDR)





# **PCFGs in PRISM**

• Probabilistic LL(1) parser with  $O(L^3)$ 

```
\label{eq:constraint} target(pdcg,1). % we observe pdcg([boys,run]),... \\ values(vp,[[v],[v,np]]). % vp has two rules {vp->v, vp->v np} \\ ... % one of {msw(vp,[v]), msw(vp,[v,np])} \\ % is probabilistically chosen \\ pdcg(L):- start_symbol(C), pdcg2([C],L,[]). \\ pdcg2([Wd|R],[Wd|L0],L2):- terminal(Wd), pdcg2(R,L0,L2). \\ pdcg2([A|R],[Wd|L0],L2):- first(A,Wd), % Wd is in first(A) \\ msw(A,RHS), % probabilistic choice \\ pdcg2(RHS,[Wd|L0],L1), pdcg2(R,L1,L2). \\ pdcg2([],L1,L1). \\ \end{tabular}
```

 Parameter learning of PDCG form + ATR corpus completes in 3 min by a PC (3.4Ghz,2GB)

# Exploring diverse modeling and parameter learning

- Naïve Bayes
- Profile HMM
- Linkage analysis
- PCFGs (PDCG, PLC, PGLR(k))
- HPSGs
- Graph grammars (HR, NLC)
- Shogi palyer

one report so far

no report so far



# Negation and probabilistic constraint modeling

### Failure by constraints [Sato 05]

- Generative models
  - simulate how observations are generated
  - no failure assumed (e.g.BNs,HMMs,PCFGs)
- Complex models use constraints
  - failure is inevitable (e.g.HPSGs)
  - Let's model probabilistic agreement in number







# The fgEM algorithm

- Failure means loss of probability mass
  - gEM is not usable
  - Distribution is log-linear;

 $P(x \mid \text{success}, \theta)$  where  $P(\text{success}) = \sum_{\mathbf{x}: proof} P(x \mid \theta)$ 

- EM learning of parameters is possible by fgEM
  - fgEM [Sato 04] = gEM [Kameya 00] + FAM [Cussens 01]
    - FAM computes average count of msws in a failed computation

$$E[\mathsf{msw}(i,v)|\mathsf{fail}] = \frac{\sum_{\chi(\mathsf{expl})=\mathsf{fail}} P_{DB}(\mathsf{expl} \mid \theta_k) \delta(\mathsf{msw}(i,v) \in \mathsf{expl})}{\sum_{\chi(\mathsf{expl})=\mathsf{fail}} p(\mathsf{expl} \mid \theta)}$$

• fgEM requires a failure program

# Failure program



• A failure program is one that explicitly describes how failure occurs.



• PRISM1.8 uses FOC to automatically derive a failure program from the negation of a source program.



# FOC (first-order compiler)

- Full automatic program synthesis for logic programs with negation [Sato 89]
- Compiled program DB<sup>c</sup> positively computes the finite failure of DB



# Negation elimination by FOC

Source program DB<sub>even</sub>

even(0).
even(s(X)) :- not(even(X)).

Compiled program DB<sup>c</sup>even

```
even(0).
even(s(A)):- closure_even0(A,f0).
closure_even0(s(A),_):- even(A).
```

# Extension



- Original FOC = for non-probabilistic programs
- Extended for PRISM programs containing negation

$$\neg \exists X(\mathsf{msw}(\mathsf{abo}, X) \land X = \mathsf{a}) \\ \Rightarrow \exists X \mathsf{msw}(\mathsf{abo}, X) \land (X \neq \mathsf{a}))$$

 This transformation is meaning-preserving in view of a new distribution semantics (not included in slides)

# Constrained HMMs and a dieting professor

- Constrained HMMs are an instance of probabilistic constraint modeling.
   They are HMMs with constrains that may fail.
- Suppose a professor wishes to diet.
  There are two restaurants R0 and R1
  He visits them and orders pizza or sandwich at R0, and hamburger or sandwich at R1, probabilstically.
- He records lunches like [s,s,h,p,s,h,s].
- He tries to keep the total lunch calories in a week < 4000.</p>
- Only successful records are kept.





 Given: we have a list of his successful records.
 Task: infer the failure probability.

# Program for the dieting professor

failure: - not(success). p,s success:- success(\_). success(L):-diet(L,r0,0,7). $R_0$ diet(L,R,C,N):-N>0, msw(lunch(R),D), % order lunch (R == r0, % pizza or sandwich (D = p, C2 is C+900; D = s, C2 is C+400); R == r1, % hamburger or sandwich (D = h, C2 is C+400; D = s, C2 is C+500)),L=[D|L2],N2 is N-1, msw(tr(R),R2), % next restaurant diet(L2,R2,R2,N2). diet([], C, 0):- C < 4000. % calorie constraint must be met



h,s

 $R_1$ 



# Failure program by FOC

```
failure: - closure_success0(f0).
closure_success0(A):- closure_chmm0(r0,0,7,A).
closure_chmm0(R,B,C,D):-
                                                 tail recursive just like
   (C > 0,
                                                  positive case
      msw(tr(R),R2), msw(lunch(R),F),
                                                  → dynamic programming
      (R_{\pm}=r_{0})
      : R = = r0.
         ( +F=p; F=p, G \text{ is } B+900, H \text{ is } C-1, closure_chmm0(R2,G,H,D)),
        ( +F=s; F=s, I is B+400, J is C-1, closure_chmm0(R2, I, J, D)))
      (R_{4} = r_{1})
      : R == r1
         (¥+F=h; F=h, K is B+400,L is C-1,closure_chmm0(R2,K,L,D)),
        ( ¥+F=s ; F=s, M is B+500, N is C-1, closure_chmm0(R2, M, N, D)))
   ; C = < 0 ),
   ( \pm +C=0 ; C=0, B \ge 4000 ).
```

# fgEM learning





# Note



- Failure programs can be obtainable by other methods
  - Manual derivation
    - traces all failed paths of computation by inspection and represent them as a program.
  - Negation technique [Sato 89]
    - gives better code than FOC but there are restrictions on applicability
- More complex probabilistic constraint modeling than constrained HMMs is possible.
  - Finite PCFGs = PCFGs with failure constraints [Sato 04]
  - HPSGs = unification based constraint grammar, approximated by PCFGs

## References

- Please visit <a href="http://mi.cs.titech.ac.jp/prism/">http://mi.cs.titech.ac.jp/prism/</a>
  - Current version is PRISM1.8
- Papers ([Sato 01] is a most comprehensive paper)

[Sato 05] Sato, T., Kameya, Y. and Zhou, N.-F.: Generative modeling with failure in PRISM. IJCAI2005, to appear, 2005. [Zhou 04] Zhou N -F. Shen X -D. and Sato, T.: Semi-paive Evaluation in

- [Zhou 04] Zhou, N.-F., Shen, Y.-D. and Sato, T.: Semi-naive Evaluation in Linear Tabling, PPDP04, pp.90–97, 2004.
- [Sato 01] Sato, T. and Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. JAIR, Vol.15, pp.391–454, 2001.
- [Cussens 01] Cussens, J.: Parameter estimation in stochastic logic programs. *Machine learning*, Vol.44, Issue 3, pp.245–271, 2001.
- [Kameya 00] Kameya, Y. and Sato, T.: Efficient EM learning with tabulation for parameterized logic programs. *CL2000*, LNAI, Vol.1861, pp.269–294, 2000.
- [Sato 95] Sato, T.: A statistical learning method for logic programs with
  - distribution semantics, ICLP95, Tokyo, pp.715–729, 1995.

# Future plan

- More sophisticated learning
  - Conditional random fields
  - DAEM
  - Better tabled search
- More computer power
  - Parallel search on a grid machine
  - 64bit
- More applications
  - Graph grammars
  - User modeling

