
Toward a High-performance System for Symbolic and Statistical Modeling
Neng-Fa Zhou

Department of Computer Science
Brooklyn College & Graduate Center

The City University of New York
zhou@sci.brooklyn.cuny.edu

Taisuke Sato
Department of Computer Science,

Tokyo Institute of Technology, CREST JST
sato@mi.cs.titech.ac.jp

Abstract
We present in this paper a state-of-the-art imple-
mentation of PRISM, a language based on Prolog
that supports statistical modeling and learning. We
start with an interpreter of the language that incor-
porates a naive learning algorithm, and then turn to
improve the interpreter. One of the improvements
is to refine the learning algorithm such that it works
on explanation graphs rather than flat explanations.
Tabling is used to construct explanation graphs so
that variant subgoals do not need to be considered
redundantly. Another technique is compilation.
PRISM programs are compiled into a form that
facilitates searching for all solutions. The imple-
mented system is, to our knowledge, the first of its
kind that can support real-world applications. The
implemented system, which will be available from
http://sato-www.cs.titech.ac.jp/prism/index.html, is
being applied to several problem domains ranging
from statistical language processing, decision sup-
port, to game analysis.

1 Introduction
PRISM (PRogramming In Statistical Modeling) [Sato, 1995;
Sato and Kameya, 2001] is a new language that integrates
probability theory and Prolog, and is suitable for the descrip-
tion of computations in which randomness or uncertainty is
involved. PRISM provides built-ins for describing experi-
ments 1. A PRISM program can be executed in three differ-
ent modes, namely sample execution, probability calculation,
and learning. In sample execution mode, a goal may give dif-
ferent results depending on the outcomes of the experiments.

1An experiment is defined by a sample space and a probabil-
ity distribution for the outcomes in the sample space. For example,
tossing a coin is an experiment where the sample space is {head,
tail} and the probability distribution is uniform (this means that
the events head and tail have the same likelihood to occur) if the
coin is fair.

For example, it is possible for a goal to succeed if a coin
shows the head after being tossed and to fail if the coin shows
the tail. The probability calculation mode gives the proba-
bility of a goal to succeed. In the learning mode, the system
estimates the probabilities of the outcomes of the experiments
from given observed data. The PRISM system adopts the EM
(Expectation and Maximization) algorithm [Dempster et al.,
1976] in probability estimation.

PRISM, as a symbolic statistical modeling language, sub-
sumes several specific statistical tools such as HMM (Hid-
den Markov Models) [Rabiner, 1989], PCFG (Probabilis-
tic Context Free Grammars) [Wetherell, 1980] and descrete
Bayesian networks [Castillo et al., 1997; Pearl, 1987]. Com-
pared with numeric models where mathematical formulas are
used, PRISM offers incomparable flexibility by allowing the
use of arbitrary logic programs to describe probability distri-
butions. PRISM can be used in many areas such as language
processing, decision making, bio-informatics, and game the-
ory where randomness or uncertainty is essential.

This project aims at implementing an efficient system for
PRISM in B-Prolog. For most applications, learning is time-
consuming especially when the amount of observed data is
large. The EM learning algorithm estimates the probabilities
of outcomes through two phases: the first phase searches for
all explanations for the observed facts, and the second phase
estimates the probabilities. The first phase is the neck of the
learning algorithm. We have made several efforts to speed-up
this phase. One is to tabulate partial explanations for subgoals
such that explanations for variant subgoals are searched only
once. With tabling, this phase gives an explanation graph that
facilitates the estimation of probabilities. The tabling mecha-
nism of B-Prolog is improved such that copy of data between
the heap and the tabling area is reduced significantly. This
improved version demonstrates a big speed-up when complex
goals with structured data need to be tabulated. Another tech-
nique used in the system is compilation. PRISM programs
are compiled into a form that facilitates searching for all so-
lutions.

The main part of this paper is devoted to the implemen-
tation techniques. To make the paper self-contained, we start

1

with an interpreter of PRISM in the next section. The descrip-
tion of the operational semantics is informal and is based on
examples. The reader is referred to [Sato and Kameya, 2001]
for a formal description of the semantics and the EM learning
algorithm adopted in PRISM.

2 PRISM: The Language and its
Implementation

PRISM is an extension of Prolog that provides built-ins for
statistical modeling and learning.

2.1 Built-ins
The built-in msw(I,V) describes a trial of an experiment,
where I is the identifier of an experiment, and V is the out-
come of the trial2. The identifier I can be any complex term,
but I must be ground when the trial is conducted. In the
sample-execution mode, the built-in msw(I,V) succeeds if
the trial of the experiment I gives the outcome V. If V is a
variable, then the built-in always succeeds, binding V to the
outcome of the experiment.

For each experiment, the user must specify the sample
space by defining the predicate values(I,Space), where
I is the identifier and Space is a list of possible outcomes
of the experiment. A probability distribution of an exper-
iment tells the probabilities of the outcomes in the sample
space. The sum of the probabilities of the outcomes in any
experiment must be 1.0. Probability distributions are either
given by the programmer or obtained through learning from
given sample data. The predicate set sw(I,Probs) sets
the probabilities of the outcomes in the experiment I, where
Probs is a list of probabilities (floating-point numbers). The
length of Probsmust be the same as the number of outcomes
in the sample space and the sum of the probabilities must be
equal to 1.0.

The following shows an illustrative example:
direction(D):-

msw(coin,Face),
(Face==head−>D=left;D=right).

values(coin,[head,tail]).

The predicate direction(D) determines the direction to
go by tossing a coin; D is bound to left if the head is
shown, and to right if the tail is shown. To set uniform dis-
tribution, we use set sw(coin,[0.5,0.5]) to set the
probabilities to the two outcomes. Notice that the following
gives a different definition of direction:

direction(left):-
msw(coin,head).

direction(right):-
msw(coin,tail).

2The name msw is an abbreviation for multi-outcome switch. In
the version presented in [Sato and Kameya, 2001], the built-in takes
another argument called trial number. The same trial of the same
experiment must give the same outcome. In the new version, all
trials are considered independent by default. If the outcome of a
trial needs to be reused, the programmer must have it passed as an
argument or have it saved in the global database.

While for the original definition, the query direction(D)
always succeeds, binding D to either left or right.
The same query may fail for the new definition since
msw(coin,head) and msw(coin,tail) are two sep-
arate trials. If the first trial gives tail and the second trial
gives head, then the query direction(D) fails.

In addition to msw/2, PRISM provides several other built-
ins, including prob(Goal,Prob) for computing the prob-
ability of a goal, sample(Goal) for sample executing a
goal, and learn(Facts) for estimating the probabilities
of the switches in the program from the observed facts. These
built-ins will be explained in the subsequent subsections.

A predicate is said to be probabilistic if it is defined in
terms of msw or predicates that are probabilistic. Predicates
that do not use (either directly or indirectly) msw in its def-
inition are said to be non-probabilistic. This terminology is
extended naturally to goals. A goal is said to be probabilistic
if its predicate is probabilistic.

2.2 Sample execution
The subgoal sample(Goal) starts executing the program
with respect to Goal in the sample execution mode. If Goal
is the built-in msw(I,V), then sample(Goal) succeeds
if the trial of the experiment I gives the outcome V. The out-
come of an experiment is chosen randomly, but the proba-
bility distribution is respected such that those outcomes that
have the highest probabilities have the most chances to be
chosen. Trials of experiments are independent regardless of
whether or not the experiments are the same.

If Goal is non-probabilistic, then sample(Goal) be-
haves in the same way as call(Goal). Otherwise, if Goal
is probabilistic, then a clause H:-Body is selected from its
predicate such that H unifies Goal, and sample(Goal) is
reduced to sample(Body).

The following shows a simplified version of the interpreter
for sample execution:
sample((A,B)):-!,

sample(A),
sample(B).

sample(msw(I,V)):-!,
R is random(0.0,1.0),
% R is a random number in the range of 0.0..1.0
prob distribution(I,Values,Probs),
% probability distribution assigned to the experiment
choose outcome(R,Values,Probs,V).

sample(Goal):-prob predicate(Goal),!,
clause(Goal,Body),
sample(Body).

sample(Goal):- % non-probablistic
call(Goal).

choose outcome(R,Values,Probs,V):-
choose outcome(R,0.0,Values,Probs,V).

choose outcome(R,Sum,[V|Values],[P|Probs],V):-
Sum1 is Sum+P,
R=<Sum1,!.

choose outcome(R,Sum,[|Values],[P|Probs],V):-
Sum1 is Sum+P,
choose outcome(R,Sum1,Values,Probs,V).

2

For an experiment whose sample space is
[V1,V2,...,Vn] and whose probability distribution
is [P1,P2,...,Pn], the call
choose outcome(R,[V1,V2,...,Vn],[P1,P2,...,Pn],V)

selects the outcome Vk such that
∑k

i=1 Pi ≥ R and∑k−1
i=1 Pi < R.
The real interpreter handles other constructs including

negation, disjunction, if-then-else, and the cut operator in ad-
dition to conjunction.

2.3 Calculating the probabilities of goals
In statistical modeling, it is often necessary to calcu-
late the probability of events. In PRISM, the built-in
prob(Goal,Prob) calculates the probability Prob with
which Goal becomes true. It is assumed that all probabilis-
tic ground atoms in the Herbrand base of a program are prob-
abilistically independent and exclusive. With these assump-
tions, the probability of the conjunction (A,B) is computed
as the product of the probabilities of A and B (independent),
and the probability of the disjunction (A;B) is computed as
the sum of the probabilities of A and B (exclusive). For a
switch msw(I,V), the probability is 1.0 if V is a variable,
and the probability assigned to the outcome V if V an element
is the sample space.

For example, recall the illustrative example direct. As-
sume the distribution of the coin experiment is uniform. The
probability of direction(left) is 0.5 since the prob-
ability of msw(coin,head) is 0.5. The probability of
direction(D) is 1.0 sine the sum of the probabilities of
msw(coin,head) and msw(coin,tail) is 1.0.

The programmer must bear the above assumptions in mind
when writing programs. Programs that violates this assump-
tion will give wrong results. For example, the conjunction
(A,A), which makes sense logically, is not allowed proba-
bilistically since the conjuncts are not independent. Likewise
the disjunction (A;A) is not allowed. If the disjuncts are not
independent, the probability of a goal may exceed 1.0.

One question arises: if events are assumed to be indepen-
dent, then how to represent conditional events in PRISM? Let
B and C be two experiments. Assume C has the possible
outcomes {c1, ..., cn}. The conditional event (B|C) can be
represented by using n switches: msw(b(ci), Vi) (i=1,...,n).
Consider, for example, the following problem taken from
[Stirzaker, 1994], which is a typical example of Bayesian rea-
soning.

You have a blood test for some rare disease which occurs
by chance in 1 in every 100,000 people. The test is fairly
reliable; if you have the disease it will correctly say so
with probability 0.95; if you do not have the disease, the
test will wrongly say you do with probability 0.005. If the
test says you do have the disease, what is the probability
that this is a correct diagnosis?

Let D be the event that you have the disease, D′ the event
that you do not have the disease, and T the event that the test
says you do. Then the probability P (D|T) is calculated as
follows based on the Bayes’ Theorem:

P (D|T)= P (T |D)P (D)
P (T)

= P (T |D)P (D)
P (T |D)P (D)+P (T |D′)P (D′)

= 0.95×0.00001
0.95×0.00001+0.005×0.99999

= 0.1896

The Bayesian network for this problem consists of two
nodes, called disease and test. The outcomes of both
nodes are {yes, no}. The node test is dependent on
the node disease. The following clause represents the net-
work:

disease test(D,T):-
msw(disease,D),
msw(test(D),T).

The sample spaces of all the experiments are [yes,no].
The switch msw(disease,yes) says that you have the
disease, and the switch msw(disease,no) says no. The
switch msw(test(D),T), which depends on the outcome
of the node disease, says that the diagnostic result is T if
the outcome of disease is D. For the problem, the given
probabilities are set as follows:

set sw(disease,[0.00001,0.99999]),
% P(D)=0.00001

set sw(test(yes),[0.95,0.05]),
% P(T|D)=0.95

set sw(test(no),[0.005,0.995])
% P(T|D’)=0.005

If the test says you do have the disease, then the probability
that this is a correct diagnosis is calculated by the query:

prob(disease test(yes,yes),P1),
prob(disease test(,yes),P2),
P is P1/P2.

The goal prob(disease test(yes,yes),P1)
gives the probability of the event that you have
the disease and is also diagnosed so, and the goal
prob(disease test(,yes),P2) gives the prob-
ability of the event that you are diagnosed of the disease
regardless whether or not you have the disease. The query
gives the same result 0.1896 as the one obtained by using
Bayes’ Theorem directly.

Since new switches can be created when needed, it is pos-
sible to represent in PRISM any Bayesian networks and per-
form Bayesian reasoning on them.

2.4 Learning
The built-in learn(Facts) takes Facts, a list of
observed facts, and estimates the probabilities of the
switches that explain Facts. While sample(Goal) and
prob(Goal,Prob) are deductive, using the current dis-
tributions of switches to deduct Goal, learn(Facts) is
abductive, which finds the explanations for Facts and use
the explanations to estimate the distributions of the switches.

PRISM adopts the EM learning algorithm to learn distribu-
tions. It first finds all the explanations for the observed facts.
Then it repeatedly estimates and maximizes the likelihood of
the observed facts until the estimation is stable.

An explanation for an observed fact is a set of switches that
occur in a path of the execution of the fact. The following is
an interpreter that searches for explanations for a goal:

3

expls(G,Exs):- %Exs is a list of explanations for G
findall(Ex,expl(G,Ex,[]),Exs).

expl((G1,G2),Ex,ExR):-!,
expl(G1,Ex,Ex1),
expl(G2,Ex1,ExR).

expl(msw(I,V),[mse(I,V)|ExR],ExR):-!,
values(I,Values),% sample space is Values
member(V,Values).

expl(G,Ex,ExR):-
prob predicate(G),!, %G is a probabilistic
clause(G,B),
expl(B,Ex,ExR).

expl(G,Ex,Ex):-
call(G).

Recall our illustrative example direction. For
the fact direction(left), the interpreter finds
[msw(coin,head)], and for the fact direc-
tion(right) it finds [msw(coin,tail)] as the
explanations. In general, there may exist multiple execution
paths for an observed fact and each execution path may
contain multiple switches.

After all the explanations are found, the EM algorithm
turns to estimate the probabilities of the switches in the ex-
planations. Let I be the set of switches, and Vi be the sample
space of switch i. For each switch msw(i, v), θi,v denotes
the probability of the outcome v. The following assertion
must hold

∀i∈IΣv∈V iθi,v = 1.0.

Let F be a set of observed facts. For each fact f ∈ F , Ef

denotes the set of explanations. Let e ∈ Ef be an explanation.
The probability of e is the product of the probabilities of all
the switches in the explanation:

θe =
∏

msw(i,v)∈e

(θi,v)

The probability of fact f is the sum of the probabilities of all
its explanations:

θf =
∑

e∈Ef

(θe)

The log likelihood of fact f is defined as ln(θf). For each
explanation e ∈ Ef , let δi,v(e) denote the number of occur-
rences of the switch msw(i, v) in e. Figure 1 shows the EM
algorithm. The algorithm repeats the estimation until the like-
lihood of the observed facts becomes stable.

The use of the term ηi,v , which estimates the number of
occurrences of the switch msw(i, v) that contribute to the ob-
served facts, is essential in the algorithm. The probability of
msw(i, v) is estimated as the ratio of its count to the count of
all the outcomes of the switch.

θi,v =
ηi,v∑

v′∈V i(ηi,v′)

For our illustrative example, the algorithm converges in
a few iterations. If only direction(left) is observed,
then the estimated probability of head is close to 1.0 and that
of tail is close to 0.0; if direction(left) and di-
rection(right) each occupy half of the observed facts,

procedure em(F) begin
initialize ε to a small positive number;
foreach i ∈ I , v ∈ Vi initialize θi,v;
λ1 =

∑
f∈F (ln(θf)); /* initial likelihood */

repeat
λ0 = λ1;
foreach i ∈ I , v ∈ Vi

ηi,v =
∑

f∈F (

∑
e∈Ef

(θe×δi,v(e))

θf
)

/* expected count of msw(i, v) */
foreach i ∈ I , v ∈ Vi

θi,v =
ηi,v∑

v′∈V i
(ηi,v′)

λ1 =
∑

f∈F (ln(θf));
until λ1 − λ0 < ε

end

Figure 1: The EM algorithm

then the estimated distribution is close to uniform. For more
complicated programs, more iterative steps are required to
obtain a stable estimation.

3 Improvements of the Implementation
The interpreters and the EM learning algorithm presented in
the previous section are naive and inefficient. The number of
explanations for a set of observed facts may be exponential.
Therefore, it is expensive to find explanations and it is also
expensive to go though the explanations to estimate the prob-
abilities of the switches in the explanations. In this section,
we propose several techniques for improving the implemen-
tation, especially the learning algorithm.

3.1 Explanation Graphs
It is not hard to notice that explanations differ from each other
by only a small number of switches. Just as it is important
to factor out common sub-expressions in evaluating expres-
sions, it is important to factor out common switches among
explanations. Actually, a logic program provides a natural
structure for factoring out common switches. Instead of con-
sidering explanations as lists of switches, we consider expla-
nations as a graph.

An explanation path for a fact H is defined as (H →
Bg & Bs) where Bg is a set of facts and Bs is a set of
switches. H is called the root of the path. An explanation
path corresponds to an instance of a clause where Bg is the
set of probabilistic subgoals, and Bs the set of switches in
the body. An explanation tree for a fact consists of a set of
explanation paths that have the fact as the root. The root of
the paths is also called the root of the tree. An explanation
tree corresponds to an instance of a predicate. An explana-
tion graph consists of a set of explanation trees whose roots
are all distinct.

Consider, for example, the following program that repre-
sents the two-state HMM3 in Figure 2,

3An HMM is a probabilistic automaton in which the selections
of the initial state, output symbols, and transitions on the symbols

4

s s

a,b

a,b

a,b a,b

10

Figure 2: An example HMM.

hmm([a,b,a],3)
→ hmm(1,3,s0,[a,b,a]) & msw(init,s0)
→ hmm(1,3,s1,[a,b,a]) & msw(init,s1)

hmm(1,3,s0,[a,b,a])
→ hmm(2,3,s0,[b,a]) & msw(tr(s0),s0), msw(out(s0),a)
→ hmm(2,3,s1,[b,a]) & msw(tr(s0),s1), msw(out(s0),a)

hmm(1,3,s1,[a,b,a])
→ hmm(2,3,s0,[b,a]) & msw(tr(s1),s0), msw(out(s1),a)
→ hmm(2,3,s1,[b,a]) & msw(tr(s1),s1), msw(out(s1),a)

hmm(2,3,s0,[b,a])
→ hmm(3,3,s0,[a]) & msw(tr(s0),s0), msw(out(s0),b)
→ hmm(3,3,s1,[a]) & msw(tr(s0),s1), msw(out(s0),b)

hmm(2,3,s1,[b,a])
→ hmm(3,3,s0,[a]) & msw(tr(s1),s0), msw(out(s1),b)
→ hmm(3,3,s1,[a]) & msw(tr(s1),s1), msw(out(s1),b)

hmm(3,3,s0,[a])
→ hmm(4,3,s0,[]) & msw(tr(s0),s0), msw(out(s0),a)
→ hmm(4,3,s1,[]) & msw(tr(s0),s1), msw(out(s0),a)

hmm(3,3,s1,[a])
→ msw(tr(s1),s0), msw(out(s1),a)
→ msw(tr(s1),s1), msw(out(s1),a)

Figure 3: The explanation graph for hmm([a,b,a],3).

hmm(L,N) :-
msw(init,Si),
hmm(1,N,Si,L).

% Current state is S, current position is I.
hmm(I,N,S,[]) :- I>N,!.
hmm(I,N,S,[C|L]) :-

msw(out(S),C),
msw(tr(S),NextS),
I1 is I+1,
hmm(I1,N,NextS,L).

values(init,[s0,s1]).
values(out(),[a,b]).
values(tr(),[s0,s1]).

The predicate hmm(L,N) analyses or generates a string L of
length N. The explanation graph for hmm([a,b,a],3) is
shown in Figure 3.

It is assumed that explanation graphs are acyclic, i.e., a
fact cannot be used to explain the fact itself. This assump-
tion, however, does not rule out left recursion. Consider, for
example, the following CFG rule,

s(I,J):-s(I,I1),a(I1,J).

Although s(I,J) and s(I,I1) are variants as subgoals,
they are instantiated to different instances and thus no fact is
used to explain the fact itself.

are all probabilistic.

3.2 Constructing Explanation Graphs Using
Tabling

If goals were treated independently in constructing explana-
tion graphs, the computation would still be exponential in
general. Recall the explanation graph in Figure 3. The size
of the graph is O(N × S) where N is the length of the string
and S is the size of the largest sample space. If shared goals
in different paths, such as the two underlined ones, are con-
sidered only once, then it takes only linear time to construct
the explanation graph.

Tabling or memoization [Tamaki and Sato, 1986; Warren,
1992; Zhou et al., 2000] can used to avoid redundant com-
putations. The idea of tabling is to memorize the answers to
subgoals and use the answers to resolve subsequent variant
subgoals. The table area is global and answers stored in it
can survive over backtracking. Therefore, variant subgoals
can share answers regardless where they occur in execution.
They can occur in the same execution path or different paths.

The following gives an interpreter for constructing the ex-
planation graph for a goal.

expls(G):-
expl(G, ,[], ,[]),fail.

%backtrack to find all paths
expls(G).

expl((G1,G2),Bg,BgR,Bs,BsR):-!,
expl(G1,Bg,Bg1,Bs,Bs1),
expl(G2,Bg1,BgR,Bs1,BsR).

expl(msw(I,V),Bg,Bg,[mse(I,V)|Bs],Bs):-!,
values(I,Values), % sample space is Values
member(V,Values).

expl(G,[G|Bg],Bg,Bs,Bs):-
prob predicate(G),!,

%G is a probabilistic predicate
expl prob goal(G).

expl(G,Bg,Bg,Bs,Bs):-
call(G).

:-table expl prob goal/1.
expl prob goal(G):-

clause(G,Body),
expl(Body,Bg,[],Bs,[]),
add to database(path(G,Bg,Bs)).

The expl(G,Bg,BgR,Bs,BsR) is true if Bg-BgR is
the list of probabilistic subgoals and Bs-BsR is the list
of switches in G. For each probabilistic subgoal G, the
expl prob goal(G) finds the explanation paths for G.
The predicate expl prob goal/1 is tabled. So vari-
ant probabilistic subgoals share explanation paths. The
add to database(path(G,Bg,Bs)) adds the path to
the database if the path is not there yet.

The naive EM learning algorithm is reformulated such that
it works on explanation graphs. Since explanation graphs are
acyclic, it is possible to sort the trees in an explanation graph
based on the calling relationship in the program. The refined
algorithm is able to exploit the hierarchical structure to prop-
agate probabilities over sorted explanation graphs efficiently.

5

3.3 Compilation
The interpreter presented above is inefficient since it intro-
duces an extra level of interpretation. The interpreter version
of the PRISM system is used in debugging programs. For
learning from a large amount of data, it is recommended that
the compiler version be used. The PRISM compiler trans-
lates a program into a form that facilitates the construction of
explanation graphs.

Let p(X1,...,Xn):-B be a clause in a probabilistic
predicate. The compiler translates it into:

expl p(X1,...,Xn):-
B’,
add to database(path(p(X1,...,Xn),Bg,Bs)).

where B’ is the translation of B, Bg is the list of probabilis-
tic subgoals in B’, and Bs is the list of switches in B. For
each subgoal G in B, if G is msw(I,V), then it is trans-
lated into values(I,Values),member(V,Values).
Otherwise, it is copied to B’, renaming each predicate p to
expl p. The translated predicate is declared as a tabled
predicate, so explanation trees need to be constructed only
once for variant subgoals.

For example, the predicate

hmm(I,N,S,[]) :- I>N,!.
hmm(I,N,S,[C|L]) :-

msw(out(S),C),
msw(tr(S),NextS),
I1 is I+1,
hmm(I1,N,NextS,L).

is translated into:

:-table expl hmm/4.
expl hmm(I,N,S,[]) :- I>N,!.
expl hmm(I,N,S,[C|L]) :-

values(out(S),Values1),% msw(out(S),C),
member(C,Values1),
values(tr(S),Values2),% msw(tr(S),NextS)
member(NextS,Values2),
I1 is I+1,
expl hmm(I1,N,NextS,L),
add to database(path(hmm(I,N,S,[C|L]),

[hmm(I1,N,NextS,L)],
[msw(out(S),C),
msw(tr(S),NextS)])).

Notice that no path is added to the database for the first clause
since the body does not contain switches nor probabilistic
subgoals.

4 Experience
The PRISM system has been fully implemented in B-Prolog
which has a tabling system. The tabling system in B-Prolog
was first implemented in 1999 [Zhou et al., 2000] and was
recently re-implemented to meet the requirements of PRISM.
The new implementation inherits the linear tabling idea, and
incorporates new strategies and optimization techniques for
fast computation of fixpoints [Zhou and Sato, 2003]. As a
tabling system, B-Prolog is twice as fast as and consumes

Table 1: Learning times for a corpus (seconds).
sentences all-solution-search EM learning

1000 268 2022
1500 445 3938
2000 855 5542

an order of magnitude less stack space than XSB, a Prolog
system developed at SUNY Stony Brook.

The current version of PRISM is, to our knowledge, the
first of its kind that can support real-world applications. Sev-
eral application projects are going on at the moment [Sato
and Zhou, 2003]. One of the projects is to use PRISM to learn
probabilities of the Japanese grammar rules from corpora. Ta-
ble 1 shows the times spent in learning from various numbers
of sentences on Windows XP (1.7G CPU, 760M RAM). The
first phase of learning, i.e., finding explanations has improved
significantly thanks to the adoption of the new tabling system
in B-Prolog. The EM learning phase dominates the learn-
ing time now. In the current version, explanation graphs are
represented as Prolog terms. The EM learning phase can be
improved if better data structures are used.

5 Related Work
PRISM was first designed by Sato [Sato, 1995] who pro-
posed a formal semantics, called distribution semantics, for
logic programs with probabilistic built-ins, and derived an
EM learning algorithm for the language from the semantics.
The need for structural explanations was envisioned in [Sato
and Kameya, 2001], but this paper presents the first serious
implementation of the EM learning algorithm that works on
explanation graphs.

Poole’s abduction language [Poole, 1993] incorporates
Prolog and Bayesian networks, in which probability distribu-
tions are given as joint declarations. Muggleton’s stochastic
logic language [Muggleton, 1996] is an extension of PCFG
where clauses are annotated with probabilities. In both lan-
guages, probability distributions are specified by the users,
and learning from sample data is not considered.

Non-logic based languages have also been designed to sup-
port statistical modeling (e.g., [Pfeffer et al., 1999; Ram-
sey and Pfeffer, 2002]). The built-in function choose in
the stochastic lambda calculus [Ramsey and Pfeffer, 2002]
is similar to msw in PRISM, which returns a value from the
sample space randomly. Non-logic languages do not support
nondeterminism. Therefore, it would be difficult to devise an
EM like learning algorithm for these languages.

Tabling shares the same idea as dynamic programming in
that both approaches make full use of intermediate results
of computation. Using tabling in constructing explanation
graphs is analogous to using dynamic programming in the
Baum-Welch algorithm for HMM [Rabiner, 1989] and the
Inside-Outside algorithm for PCFG [Baker, 1979].

6 Concluding Remarks
This paper has presented an efficient implementation of
PRISM, a language designed for statistical modeling and

6

learning. The implementation is the first serious one of its
kind that integrates logic programming and statistical reason-
ing/learning. The high performance is attributed to several
techniques. One is to adopt explanation graphs rather than flat
explanations in learning and use tabling to construct explana-
tion graphs. Another technique is compilation. Programs are
compiled into a form that facilitates searching for all solu-
tions.

Acknowledgement
Thanks go to Shigeru Abe for his help in implementing the
refined EM learning algorithm. Part of the work by Neng-
Fa Zhou was conducted while he visited Tokyo Institute of
Technology in the summer of 2002.

References
[Baker, 1979] J. K. Baker. Trainable grammars for speech

recognition. In Speech Communication Papers for the 97th
Meeting of the Acoustical Society of America, pages 547–
550, 1979.

[Castillo et al., 1997] Enrique Castillo, Jose Manuel Gutier-
rez, and Ali S. Hadi. Expert Systems and Probabilistic
Network Models. Springer, New York, 1 edition, 1997.

[Dempster et al., 1976] A. P. Dempster, N. M. Laird, and
D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Proceedings of the Royal Statistical
Society, pages 1–38, 1976.

[Muggleton, 1996] S. Muggleton. Stochastic logic pro-
grams. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 254–264. IOS Press, 1996.

[Pearl, 1987] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann Publishers, Inc., 1987.

[Pfeffer et al., 1999] Avi Pfeffer, Daphne Koller, Brian
Milch, and Ken T. Takusagawa. SPOOK: A system for
probabilistic object-oriented knowledge representation. In
Kathryn B. Laskey and Henri Prade, editors, Proceedings
of the 15th Conference on Uncertainty in Artificial Intel-
ligence (UAI-99), pages 541–550, S.F., Cal., July 30–
August 1 1999. Morgan Kaufmann Publishers.

[Poole, 1993] David Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1):81–129,
1993.

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recoginition.
Proceedings of the IEEE, 77:257–286, 1989.

[Ramsey and Pfeffer, 2002] Norman Ramsey and Avi Pfef-
fer. Stochastic lambda calculus and monads of probability
distributions. In Conference Record of POPL’02: The 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 154–165, Portland, Oregon,
January 16–18, 2002.

[Sato and Kameya, 2001] A. Sato and Y. Kameya. Parameter
learning of logic programs for symbolic-statistical mod-
eling. Journal of Artificial Intelligence Research, pages
391–454, 1999.

[Sato and Zhou, 2003] T. Sato and N.F. Zhou. A new per-
spective of prism. IJCAI Workshop on Learning Statistical
Models from Relational Data, submitted, 2003.

[Sato, 1995] Taisuke Sato. A statistical learning method for
logic programs with distribution semantics. In Leon Ster-
ling, editor, Proceedings of the 12th International Confer-
ence on Logic Programming, pages 715–730, Cambridge,
June 13–18 1995. MIT Press.

[Stirzaker, 1994] D. Stirzaker. Elementary Probability.
Cambridge University Press, 1 edition, 1994.

[Tamaki and Sato, 1986] Hisao Tamaki and Taisuke Sato.
OLD resolution with tabulation. In Ehud Shapiro, edi-
tor, Proceedings of the Third International Conference on
Logic Programming, Lecture Notes in Computer Science,
pages 84–98, London, 1986. Springer-Verlag.

[Warren, 1992] D. S. Warren. Memoing for logic programs.
Comm. of the ACM, Special Section on Logic Program-
ming, 35(3):93, March 1992.

[Wetherell, 1980] C. S. Wetherell. Probabilistic languages:
A review and some open questions. ACM Computing Sur-
veys, 12(4):361–379, December 1980.

[Zhou and Sato, 2003] N.F. Zhou and T. Sato. Efficient fix-
point computation in linear tabling. to be submitted, 2003.

[Zhou et al., 2000] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan
Yuan, and Jia-Huai You. Implementation of a linear
tabling mechanism. Lecture Notes in Computer Science,
1753:109–123, 2000.

7

