A Separate-and-Learn Approach to EM Learning of PCFGs
(Revised Feb. 1st, 2001)

Sato, Taisuke} and Abe, Shigeruf and Kameya, Yoshitakaf and Shirai, Kiyoaki§

tTokyo Insititute of Technology (sato@mi.cs.titech.ac.jp)
tTokyo Insititute of Technology (abe@mi.cs.titech.ac.jp)
f Tokyo Insititute of Technology (kame@mi.cs.titech.ac.jp)
§Japan Advanced Institute of Science and Technology (kshirai@jaist.ac.jp)

Abstract

We propose a new approach to EM learn-
ing of PCFGs. We completely separate
the process of EM learning from that of
parsing, and for the former, we introduce
a new EM algorithm called the graphical
EM algorithm that runs on a new data
structure called support graphs extracted
from WFSTs (well formed substring ta-
bles) of various parsers. Learning exper-
iments with PCFGs using two Japanese
corpora indicate that our approach can
significantly outperform the existing ap-
proaches using the Inside-Outside algo-
rithm (Baker, 1979) and Stolcke’s EM
algorithm (Stolcke, 1995).

1 Introduction

The objective of this paper is to show that it is
possible to realize faster EM learning of PCFGs
(probabilistic context free grammars) than the
Inside-Outside algorithm (Baker, 1979) and Stol-
cke’s EM algorithm (Stolcke, 1995) by adopting a
new EM algorithm! called the graphical EM algo-
rithm that runs on a new data structure called
support graphs which can compactly represent
parse trees. We assume, unlike (Pereira and Sch-
abes, 1992), that there is a stochastic grammar in
addition to an unannotated corpus. This is be-
cause the former aims at grammar induction from
scratch, whereas we intend to learn parameters
for the grammar from the corpus like (Beil et al.,
1999; Riezler et al., 2000). Learning experiments
using two Japanese corpora show that unsuper-
vised parameter learning of PCFGs (and their ex-
tensions) can be significantly sped up. Due to
severe space limitations, only PCFGs are treated

'The EM algorithm is an algorithm for ML (max-
imum likelihood) estimation with incomplete data. It
iteratively updates parameters so that the likelihood
of the observed data increases until it saturates.

in this paper. For more details of learning exper-
iments with PCFGs and their extensions such as
Pseudo PCSGs (Charniak and Carroll, 1994) and
lexicalized PCFGs, the reader is referred to (Sato
et al., 2001).?

2 Background

Baker proposed the first EM algorithm for PCFGs
in the late 70’s (Baker, 1979) which is now called
the Inside-Outside algorithm (hereafter referred to
as the I-O algorithm). It is applicable to PCFG
in Chomsky normal form and takes O(N?L?3) time
to update all parameters in one iteration, where
N is the number of symbols in a grammar and L
the length of an input sentence (Lari and Young,
1990).

Ten years later, Fujisaki et al. proposed an-
other EM algorithm using derivations of a sen-
tence (Fujisaki et al., 1989). Unlike the I-O algo-
rithm, their algorithm incorporates parsing, and
hence the blind combination of rules is avoided.

Six years later, Stolcke proposed to use an
Earley chart generated by an Earley parser to
compute inside and outside probabilities (Stolcke,
1995). The chart is comprised of items augmented
with probabilities and inside and outside prob-
abilities are computed from them. His EM al-
gorithm incorporates both parsing and factorized
computations of inside and outside probabilities.
Thus the redundancies that plagued the I-O al-
gorithm and Fujisaki et al.’s algorithm are elimi-
nated. However there still remain two redundan-
cies. One is that an Earley chart contains items
not part of a parse tree but inside probabilities
are computed for all of them. The other is that
complete items [d: g A —v.] are dynamically com-
bined in every iteration despite the fact that their
combinations do not change.

A tacit commonality of these approaches is that
they did not separate learning from parsing so

2Regrettably, it contains certain confusions about
the unit of y-axis used in the graphs, but they do not
affect the conclusions.

that data structure used for parsing is reused for
EM learning, which we believe causes various de-
grees of inefficiencies. We therefore completely
separate EM learning from parsing. That is, we
first parse input sentences and extract support
graphs (explained in Section 3) from the WFSTs
(well-formed substring tables) such as a triangu-
lar table employed by a CYK parser and an Ear-
ley chart employed by an Earley parser. They
compactly represent all possible derivations of a
given sentence as a graph. We then run a new
EM algorithm called the graphical EM algorithm
on the support graphs that efficiently computes in-
side and outside probabilities in a way of dynamic
programming. While the form of support graphs
varies with a parser, the graphical EM algorithm
does not change and our separate-and-learn ap-
proach is experimentally confirmed to bring about
a significant speed up of EM learning not only of
PCFGs but also of a family of PCFGs such as
Pseudo PCSGs and lexicalized PCFGs (Sato et
al., 2001).

3 Support graphs

In this section, we introduce support graphs, a new
data structure for EM learning of stochastic gram-
mars.® Let G be a PCFG and w(V ... w(T) a
random sample of T sentences. In what follows,
R stands for the rule set of G and H(A — C) for the
parameter associated with a rule A — (€ R. ng
denotes |w(®)|, i.e. the length of w(¥) and w(9)[i, j]
a substring of w(*) starting at the i + 1 th word
and ending at the j th word.

In our approach to EM learning of PCFGs, we
first parse each sentence w(®) (1 <£<T), ob-
tain a WFST and extract from it a support graph
Ay for w®). We then run the graphical EM algo-
rithm on {A, | 1 < £ < T} to statistically learn
parameters associated with G.

Generally speaking, a support graph is a graph-
ical representation of a finite set of decision se-
quences. In the case of PCFGs, a decision is noth-
ing but a probabilistic choice of a rule to expand
a non-terminal category. A sequence of decisions
uniquely determines a (leftmost) derivation of a
sentence, and hence obviously has one-to-one cor-
respondence to a parse tree.

Figure 1 illustrates a support graph for a sen-

tence “astronomers saw stars with ears”? ex-

3For simplicity, only PCFGs are considered here
and we assume that there is neither the empty pro-
duction rule nor non-terminal A such that A = A in
the grammar.

*This example is taken from (Manning and
Schiitze, 1999). We omit the grammar rules.

S(0, 5) S—NP VP NP(0,1) VP(1,5)

VP—> V NP NP(2,5)

VP(1, 5)

VP—> VP PP

PP(3,5) PP—P NP P(3,4) NP(4,5)

or| NG @

VP(1,3) VWP—V NP V(1 NP(2, 3)

NP(2,5) NP—=NP PP NP(2,3) PP(3,5)

PP(3, 5) PP— P NP NP(4, 5)
NP(4, 5) NP —> ear s

P(3, 4) P—=vith

NP(2, 3) NP —stars

V(1,2) V—saw

NP(0, 1) NP — ast r ononer s

Figure 1: Parsing “astronomers saw stars with
ears” and its support graph

tracted from the triangular table generated by a
CYK parser. The sentence has two parse trees;
[[astronomers] , [[saw], [[stars],, [[with],
[ears]yp Jpp Iyp Jvp Js and [[astronomers]y, [[
[saw], [starsyp Jyp [[With]p [ears]yp Jop Jyp Is-
As can bee seen, the support graph is a collection
of subgraphs labeled like A(7,7) which means that
there are partial derivations from non-terminal A
that spans from the 7+ 1 th word to the 5 th word
in the input sentence. These subgraphs are or-
dered linearly, preserving the ancestor-descendent
relationship in the parse tree. Subgraphs them-
selves are comprised of linear graphs. For in-
stance, the subgraph labeled VP(1,5) has two lin-
ear graphs corresponding to two successful expan-
sions of VP by (VP—NP VP) and (VP—VP PP).
Other nodes have a unique expansion. It is easy
to see that the support graph in Figure 1 as a
whole represents the two parse trees we mentioned
above. We call support graphs of this type CYK
type.

Formally, a support graph A, for w'® is a totally

ordered set (11, ..., Tar) of disconnected subgraphs
m (1 < k < M) which can be read off from the
WFST for w®. Each 1 is comprised of finitely
many linear graphs v of the form

start-Ni----—-N;-end.

start and end are respectively a fork node and a
join node. The start node is labeled by an indez
of 73, whose form depends on the type of parser we
use. It is of the form A(7,5) for a CYK parser and
is an item [d': yA —(.£] for an Earley parser. Each
internal node N; (1 < i < j) in v is labeled by a
label label(N;) which is either a rule A — ¢ or an
index of some other node in A,. We introduce a
mapping lZg(-) that maps a disconnected subgraph
Tr to the set of sets of labels appearing in 7.

N) =
def

de(re) =

{label(;) | internal node N; € v}
{N(v) | v is a linear graph in 73}

The construction of a support graph for w(®
proceeds as follows. By parsing w(®) using our
favorite parser, we obtain a WFST. From the
WFST, we extract a partially ordered set of dis-
connected subgraphs {7y,..., 7} where each 7;
denotes a set of “similar” sub-derivations factored
out from the whole derivation sequences. The par-
tial ordering associated with these subgraphs is
determined by the principle that 7; precedes 7; if
7; is a sub-derivation of 7;. Finally by topologi-
cally sorting the partially ordered set, we reach the
totally ordered support graph A, = (7,...,7x)
for the input sentence w(*) where 71 = S(0, ng) for
a CYK parser and 7 = [ng:9 — S.] for an Earley
parser.

The actual extraction algorithm is somewhat
optimized by merging the extraction of discon-
nected subgraphs with their sorting. A support
graph extraction algorithm for a CYK parser is
presented in (Sato et al., 2001) and one for an
Earley parser is described in Section 6.

4 The graphical EM algorithm

After constructing support graphs {A; |1 < ¢ <
T}, we run the graphical EM algorithm on them.
It is driven by one main routine gEM () in Fig-
ure 2 that updates parameters® and two subrou-
tines, Get-Inside-Probs() in Figure 3 which com-
putes inside probabilities and Get-Ezpectations()
in Figure 4 which computes outside probabilities
together with the expected number of occurrences
n[A — (] of arule A — (€ R given the sentence.

®P(- | 8) in gEM () stands for a distribution under

the current parameter values 6.

In this section, we explain the graphical EM algo-
rithm but for the ease of understanding and intu-
itiveness, we assume it runs on CYK type support
graphs.®

Let A(Z,j) be an index labeling a dis-
connected subgraph 7, in a support graph
A, for w®. In each iteration of gEM(),
Get-Inside-Probs() is called and recursively com-
putes in a bottom-up manner each inside prob-
ability P(A = w(®[i j]) and stores it in array
P[e, A(i,7)].7 Get-Inside-Probs() also uses array
RI[¢, A(7,7), E] to store probability P(E) where
E={eq,...,en} € (m1). P(E)is computed as a
product P(eq)--- P(ep) where P(e) = 0(A — (),
i.e. the current parameter value of A — (if
node e is labeled by a rule A — (€ R, or
P(e) = P[¢,B(7',j')], i.e. the inside probability
of B(7',j') if e is labeled by an index B(i’,j'). We
see P[¢, A(4,§)] = ZE(—:J)(n) P(E).

1: procedure gEM () begin

2: Initialize all parameters 8(A— ()
3 such that P(w(£)|€) >0forall£=1,...,T;
4: Get-Inside-Probs();

5. A0 .= EzT=1 log P[¢, S(0, ne)];
6: repeat

7 Get-Ezpectations();

8 foreach (A— () € R do

9 B(A—C) = n[A—C)/ X nlA—)
10: m +=1;

11: Get-Inside- Probs();

12: A(m) .= Z[T=1 log P[£, S(0, n)]

13: until A(™ — X"~ ig sufficiently small
14: end.

Figure 2: Main routine gEM

After computing all PlL, A, §)]s,
Get-Ezpectations() is called to compute
each Q[A(i,j)], the outside probability

P(S & w®[0,i] A w[j ng]) in a top-down
manner from 7 = S(0,ny) where n, = |w(’£)|,
while incrementing the expected counts n[A « (]
of A — (in a parse of w(¥). gEM() iterates
to update parameters until an increase in the
log likelihood of w(M ... w(T) is less than a
threshold, say 10~5.

It is proved in (Kameya, 2000) that the graph-

® Adaptation by analogy to other types of parser is
straightforward. In the case of an Earley parser for
instance, S(0,n¢) in gEM () is replaced by an initial
item [ng:g — S.].

"In the actual implementation, indecies are re-
placed by pointers to them.

1: procedure Get-Ezpectations() begin

2: foreach (A—() € R do n[A—(]:=0;
3: for £:=1 to T do begin

4 Put Ag = (r1,m2,...,7|a,);

5: Qlt,] :=1;

6 for k := 2 to |A4| do Q[¢,] :=0;

7 for k:=1 to |A,| do

8 foreach F € QZ(rk) do

9 foreach e € F do

10; if e = (A—() then n[A—(] += Q[¢,] - R[L, 7, E]/P[£, S(0,n,)]

11: else if P[{,e] > 0 then Q[¢,e] += Q[¢, 7] - R[L, 7, E]/P[Y, €]
12: end /% for ¢ */
13: end.
Figure 4: Subroutine Get-Ezpectations

1: procedure Get-Inside-Probs() begin ing and parameter updating in one iteration for
2: for £:=1to T do begin Pseudo PCSGs (Charniak and Carroll, 1994) take
3 Put Ap = (r,72,...,T|a,); O(N*L?) (Sato et al., 2001).

4 for k := |A;| downto 1 do begin

5: foreach E € 9)(r;) do begin 5 EM learning of PCFGs based on
6 R[l, 7k, E] := 1; CYK charts

; foilf-eeaih(iif)do In this section, we experimentally compare the

graphical EM algorithm with the I-O algorithm in

9 then R[L, 7., E] += 6(A—() terms of time per iteration (= time for updating
10: else R[{, i, E] ¥= Pt e]; parameters) by letting them learn PCFG param-
11: end; eters from corpora.’
12: Plt,] == ZEG,;(Tk) RI[¢, 7k, E] Table 1 summarizes properties of ATR cor-
13: end /% fork %/ pus (Uratani et al, 1994) and EDR corpus
14: end /x for £ %/ (Japan EDR, 1995) we used in the experiments.

15: end.

Figure 3: Subroutine Get-Inside-Probs

ical EM algorithm computes the same values (in-
side and outside probabilities, update values of
parameters) as the I-O algorithm, hence the dif-
ference only lies in computational efficiency. Since
time complexity of parsing (by a CYK parser and
by an Earley parser) and that of one iteration for
updating all parameters in one iteration by the
graphical EM algorithm are all O(N3L?) where N
is the number of terminal symbols in a grammar
and L the length of an input sentence,® we can
say that the graphical EM algorithm is as efficient
as the I-O algorithm. Likewise we can analyze
time complexity by the graphical EM algorithm of
various extensions of PCFGs. For example, pars-

81t is easy to see that time complexity of the graph-
ical EM algorithm in one iteration is linear in the size
of a support graph which is O(N?L?) (Kameya, 2000).

ﬁ(minﬂ , ((ave .77

and “max” in the column of sen-
tence length respectively means the minimum, av-
erage and maximum length of sentences. Numbers
in the column of grammar denote the number of
rules contained in the used PCFG and the one
with “(CF)” is that of the grammar translated
into Chomsky normal form.

ATR corpus contains labeled 10,995 sentences.
They are short and conversational Japanese sen-
tences, and have a CFG grammar G4t containing
860 rules which is not very ambiguous. G, is
converted into Chomsky normal form G%, con-
taining 2,105 rules for the I-O algorithm. The
corpus is divided into subgroups of similar length
like (L = 1,2),(L = 3,4),...,(L = 25,26), each
containing randomly chosen 100 sentences.

For each subgroup of sentences, we applied the
I-O algorithm to G%, = and also applied the graph-

atr
ical EM algorithm to CYK type support graphs

®Support graphs are CYK type and generated by
a Tomita (Generalized LR) parser. All measurements
were made on a 296MHz Sun UltraSPARC-II with So-

laris 2.6 and the algorithms are implemented in C.

Corpus | size sentence length grammar ambiguities at ave. length
ATR | 10,995 | min = 2, ave.= 9.97, max = 49 | 860/2,105(CF) 958 parses/sentence
EDR 9,900 | min = 5, ave.= 20, max = 63 | 2,687/12,798(CF) | 3.0 x 10® parses/sentence

Table 1: Data for ATR and EDR corpora

generated by Gatr an.d G*atr respe.ctivel.y. We
plotted average updating time per iteration per
sentence by varying L = 2,4, ...10 Figure 5 shows
the result.

(sec) (sec)
60 T 07 -
5ol 1-O -x %« 06}),(
X 05t -0 -x-
! gEM (original) —+
0.4+ 9EM (Chomsky NF) ——
30¢ X :
/ 031 |
X I
2071 / i
X 021 .
X/ X
10¢ ; 01l
X
e X)) L A |
0 5 10 15 20 25 0 5 10 15 20 25

Figure 5: I-O vs. gEM (ATR)

In Figure 5, curves labeled “I-O” are drawn
by the I-O algorithm!' and those labeled
“sEM(original)” and “gEM(Chomsky NF)” are
drawn by the graphical EM, each corresponding
to Gty and to G4 respectively.

The left graph is a learning curve drawn by the
I-O algorithm. Tt clearly indicates cubic depen-
dency of the I-O algorithm on sentence length.
The right graph magnifies the y-axis of the left
graph. Two curves, drawn by the graphical EM
algorithm applied Gty and by G, are added.
They are very close. According to the learning
data, at average length 10, the graphical EM algo-
rithm applied to Gt ran about 850 times faster
than the I-O algorithm applied to G, .

Such a big gap in learning speed is surprising
but understandable because the I-O algorithm it-
erates the parsing of input sentences in every itera-
tion while the graphical EM algorithm requires no
parsing. Another factor to be considered is that
ATR corpus contains short sentences and G,¢, 1s
not very ambiguous so that the resulting WFSTs
are sparse. The sparseness of WFSTs implies the
small size of the support graphs, which works ad-

19The stopping threshold was 107°.

1 An x-axis is the length L corresponding to a sub-
group of similar length and a y-axis is time per sen-
tence taken by the EM algorithm to update all pa-
rameters in the grammar in one iteration.

vantageously to the graphical EM algorithm.

To confirm that the graphical EM algorithm can
outperform the I-O algorithm even in the case
of dense WFSTs, we repeated the same experi-
ment as above using EDR corpus (Japan EDR,
1995) whose CFG grammar is much more ambigu-
ous than the ones for ATR corpus. The corpus
contains total 220,000 Japanese news articles but
because it is under the process of re-annotation,
we can use only part of it (randomly sampled
9,900 sentences) as a labeled corpus. As Table 1
indicates, it has a CFG grammar G4, (2,687
rules) which is highly ambiguous, having 3.0 x 10®
parses/sentence at length 20 and even 6.7 x 109 at
length 38. Geq; is converted into G7 ;3 in Chom-
sky normal form that contains 12,798 rules.

(sec) (se0)
6000 —— 10—
1-0-x- ! 1-O -x-
5000 X 8>< gEM (original) —+
4000+ x J'
x 6f
X
3000+ 2
x 4t
2000+ X
><X
1000} 2
0 A N - L
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Figure 6: I-O vs. gEM (EDR)

Figure 6 shows the result of the same learning
experiment with EDR corpus, i.e. the I-O algo-
rithm applied to szr vs. the graphical EM algo-

rithm applied Gedr12

As was the case with ATR corpus, the I-O algo-
rithm took so much time compared to the graph-
ical EM algorithm that we have to separate their
graphs. The left graph contains a curve plotted by
the I-O algorithm and the right graph contains the
magnified curve and a curve drawn by the graph-
ical EM algorithm. This time at average sentence
length 20, the graphical EM algorithm ran 1,300
times faster than the I-O algorithm per iteration.

12The plotted updating time is the average of 100
iterations for the graphical EM algorithm and the av-
erage of 20 iterations for the I-O algorithm, each per
sentence.

The longer the sentence is, the larger the speed
ratio becomes. Thus the speed ratio even widens
compared to the case of ATR corpus. This can be
explained by the mixed effects of time complexity
O(L?) for the I-O algorithm and a slow increase
in the size of support graphs for the graphical EM
algorithm.

The comparisons made so far are based on EM
learning time (per iteration). It should be noted
however that the total learning time of the graph-
ical EM algorithm consists of time for preprocess-
ing (parsing and extracting support graphs) plus
time for EM learning whereas the total learning
time of the I-O algorithm merely consists of time
for EM learning. Consequently making a compar-
ison solely in terms of updating time thus gives
a special favor to the graphical EM algorithm as
it ignores time for preprocessing. We therefore
made yet another comparison in terms of the to-
tal learning time using the entire ATR corpus. We
do not give the details of the comparison here but
the conclusion is that the graphical EM algorithm
can still learn about 350 times faster than the I-O
algorithm in this case (Sato et al., 2001).

It also must be considered that these conclu-
sions could possibly depend on an implementa-
tion of the I-O algorithm because our implemen-
tation is faithful to (Baker, 1979) and naive. We
thus conducted yet another learning experiment
using an independent implementation by Mark
Johnson of the I-O algorithm down-loadable from
http://www.cog.brown.edu/%7Emj/. We mea-
sured time per iteration for the entire ATR cor-
pus. His implementation turned out to be twice
as fast as our naive implementation but still took
630 seconds per iteration whereas the graphical
EM algorithm only took 0.661 second per itera-
tion, giving a ratio of nearly 1,000 to 1.

(Sato et al., 2001) contains more detailed dis-
cussions of these experiments. It also contains
learning experiments with a Pseudo PCSG and
a lexicalized PCFG using the graphical EM algo-
rithm on ATR corpus.

6 EM learning of PCFGs based on
Earley charts

Stolcke’s EM algorithm (Stolcke, 1995) runs on
Earley charts. It incorporates parsing and fac-
tored computations of inside and outside probabil-
ities. Since the redundancy in the I-O algorithm is
eliminated, it is expected to run much faster than
the I-O algorithm. In this section, we compare
the graphical EM algorithm with Stolcke’s EM al-
gorithm in terms of updating time per iteration

using ATR corpus and EDR corpus by conduct-

ing the same experiment as the previous section.
13

6.1 Earley charts and Stolckes’s EM
algorithm

Stolcke’s EM algorithm employs an Earley chart
as data structure for EM learning. Let
w . w() be T sampled sentences and I, an
Earley chart for w(®). I, contains items of the
form [d': 4 A— (.£] stating that ¢ in a rule A —(¢
already has spanned from position d to d’ in w(®).
Items are constructed while parsing through a cy-
cle of top-down prediction, scanning a word, and
combining complete items as usual, but associated
with each item are forward probabilities «, inner
probabilities v and outer probabilities 3. The last
two are generalizations of inside probabilities and
outside probabilities respectively. For example the
inner probability for the item [d' : 4A — (.£] is
the sum of probabilities of derivation paths from
[d:4A — (€] to [d' : 4A — (.£]. The outer proba-
bility has a more complex definition and omitted
here (Stolcke, 1995). Let S be a start symbol.
Then [n;:9— S.] is the complete item signaling a
successful parse where n, = |w(®)|.

In every iteration, the algorithm updates pa-
rameter values by computing inner (inside) prob-
abilities and outer (outside) probabilities. Note
that inner probabilities are computed for all items
in the chart but outer probabilities are computed
only for items that lead to the complete item
[ng:g — S.].

Inner probabilities ¥ are updated by completion
operation as follows. Let d’ be the current dot po-
sition. If there are two items [d': 4« B —v. [y"]]
and [d":3A—(.B¢ [v]] in I, such that d" < d'!*
where v and 4" are associated inner probabilities,
replace an item of the form [d' : 44 — (B.£ [¥']]
with v+ = v - 4” if it already exists in I, i.e.
the item has been constructed before. We imple-
mented Stolcke’s EM algorithm following (Stol-
cke, 1995) while supplementing implementation
details.’> So a queue is used to correctly com-
bine new complete items and old items in the Ear-
ley chart. As a result, the computation of inside

*The experimental environment is the same as in
Section 5, but the implementation language is changed
to an object oriented programming language Ruby
(see http://wew.ruby-lang.org/en/index.html for
details).

!4 Recall that our grammar is assumed not to con-
tain the empty production rule.

!5 We have found that there are some subtleties con-
cerning outer probability computation which we do
not discuss here.

and outside probabilities using an Earley chart be-
comes dynamic in the sense that items to be com-
bined are searched in every iteration in contrast
to the graphical EM algorithm using a support
graph that statically compiles the information on
the correct combination of complete items into a
totally ordered graph.

6.2 An extraction algorithm for Earley
charts

Unlike Stolcke’s EM algorithm, the graphical EM
algorithm requires as input a support graph ex-
tracted from an Earley chart. The graph is ob-
tained by running FEztract-FEarley() in Figure 7 on
an Earley chart.

1: procedure Eztract-Earley() begin

2: for{:=1to T do

3 Initialize all ¥¢(-) to @ and all Visited[-] to NO;
4 ClearStack(U);

5: Visit-Earley({, [ne:0 — S.]);

6 for k :=1 to |U| do 1 := PopStack(U);

7 Ap:={n,72,...,Tv|)

8: end

9

: end.

Figure 7: A support graph extraction algorithm
for an Earley parser

Given an Earley chart I, for w(®) = wgl) = -wa)
(1 <£<T),it calls a subroutine Visit-Earley()
with a complete item [n; : ¢ — S.], and fol-
lows backtraces of item construction while push-
ing items into a stack U.

The generated graph, Farley type support graph
Ay = (71,72,...,Ty|) consists of totally ordered
disconnected subgraphs such that each subgraph
7 is comprised of one linear graph when it cor-
responds to prediction and scanning, or multiple
linear graphs when it corresponds to completion
of items. The map 1(7) giving the set of sets of
labels appearing in 7 is constructed in subroutine
Visit- Earley() as follows.

Ve([d:aB—w]) = {{B—w}} (1)

Pe([d':aA—Cul€]) = (2)
{{l(d' = 1):aA—Cwfel}}

De([d':aA—(BE]) = (3)

{{[d” :aA—C.BE], [d': g B—v]}

| d<d"<d,[d:gB—-v]e I[}

1: procedure Visii-Earley({,[d": A —(.£]) begin
2: Putr=([d:qA—=(.£])

3: Visited[r] := YES;

4: if{ =cand d' =d then ¢(r) := {{A—¢}}
5: /* [d:gA— .£] (Prediction) */

6: elseif ¢ = C’w() then begin

7 /* [d: quc'w(‘) ¢] (Scanning) */
8 do(r) = {{{(d' = 1):aA— "]}

9: if Visited[[(d' — 1):aA— "0 ¢]] = NO
10: then

11: Visit-Earley(£, [(d' — 1):qA— (. w(l)E])
12: end

13: else begin
14: Put ¢ =¢'B; /* Bis a non-terminal; */

15: /* [d':aA— (' B.£] (Completion) */
16: foreach d" such that d < d" < d' and
17: [d/’:dA%CI.BE],[d’:duB—H/.] el

18: do begin

19: Add to () aset {[d":qA— (' BE],
20: [d':duB—w.]};

21: if Visited[[d":qA— ¢'.B¢]] = NO

22: then Visit-Earley(¢,[d" : aA— (. B€));
23: if Visited[[d': qu B —v.]] = NO

24: then Visit-Earley(¢,[d': 4» B—v.])

25: end

26: end;

27: PushStack(r,U)

28: end.

Figure 8: Subroutine Visit-Earley()

6.3 Comparing the two EM algorithms

To see the behavior of Stolcke’s EM algorithm
compared to the graphical EM algorithm, we con-
ducted similar learning experiments as in Sec-
tion 5 using ATR. corpus.!® We first parsed each
subgroup of 100 sentences of the same length
(L = 1,2,...,43,44,49) chosen from the corpus
using G ot by an Earley parser and obtained Ear-
ley charts for each subgroup. When there are not
an enough number of sentences of the same length,
sentences are copied. Stolcke’s EM algorithm is
run directly on them. To remove an obvious re-
dundancy of Stolcke’s EM algorithm, inside prob-
abilities were computed only for items that can
be part of a parse tree. Also we extracted Ear-
ley type support graphs from the charts and ran
the graphical EM algorithm on them. We plotted
time per iteration per sentence varying L.

1We used a Unix machine with AMD Athlon
1.33GHz CPU, 768MB memory under FreeBSD 4.3

in the experiments.

0.25

0.2

0.15 -1

0.05 -1

(sec) (se0)
gra’phic’al EI\;I (Ee;rley)’) 9’6 ' : 028 gra’phic’al EI\;I (C\’(K)) 9’6 ' i
Stoicke, , , ., -t i Stolcke, ., ~t-!
A
A
0.15 [~
0.1
0.05 [~
o o T
: oo OV : H—+:
e aao000a0900 . |1 ™

A RN A L i
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45

Figure 9: Stolcke’s EM algorithm vs. gEM (ATR)

The left graph contains curves drawn by Stol-
cke’s EM algorithm run on the complete item sets
and the graphical EM algorithm run on the Ear-
ley type support graphs. Apparently the graphi-
cal EM algorithm runs faster than Stolcke’s EM
algorithm but the speed gap is much smaller as
expected. Actually, at average length 10, the for-
mer runs 9.0 times faster than the latter and at
other length larger than 10, the speed ratio varies
from 8.3 to 6.7.17 We also made a learning speed
comparison using CYK type support graphs for
the graphical EM algorithm the result of which is
shown on the right graph. This time, the speed
gap grows; at the average length 10, 1t is 43 and
it is around 15 at other lengths larger than 10.

It seems that in spite of the elimination of the
redundancy of computing useless inside probabil-
ities on the side of Stolcke’s EM algorithm (one
of its two redundancies pointed out in Section 2),
the graphical EM algorithm still outperforms Stol-
cke’s EM algorithm by almost an order of mag-
nitude or more, which suggests that the remain-
ing redundancy (dynamic combination of com-
plete items) considerable slows down the learning
speed though we need more experiments to con-
clude.

References

J. K. Baker. 1979. Trainable grammars for speech
recognition. In Proceedings of Spring Conference of
the Acoustical Society of America, pages 547-550.

F. Beil, G. Carroll, D. Prescher, S. Riezler, and

"The extra-time for generating support graphs (lin-
ear in the size of items in the chart) at length 10 costs
1.5 times of one iteration of the graphical EM algo-
rithm.

L
Ltd. Japan EDR.

M. Rooth. 1999. Inside-Outside estimation of a lex-
icalized PCFG for German. In Proceedings of the
87th Annual Meeting of the Association for Com-
putational Linguistics (ACL’99), pages 269-276.

E. Charniak and G. Carroll. 1994. Context-sensitive
statistics for improved grammatical language mod-
els. In Proceedings of the 12th National Conference
on Artificial Intelligence (AAAI'94), pages T28-
733.

T. Fujisaki, F. Jelinek, J. Cocke, E. Black, and
T. Nishino. 1989. A probabilistic parsing method
for sentence disambiguation. In Proceedings of the
1st International Workshop on Parsing Technolo-
gies, pages 85-94.

1995. EDR electronic dictio-
nary technical guide (2nd edition). Technical re-
port, Japan Electronic Dictionary Research Insti-
tute, Ltd.

Y. Kameya. 2000. Learning and Representation of
Symbolic-Statistical Knowledge (in Japanese). Ph.
D. dissertation, Tokyo Institute of Technology.

K. Lari and S. J. Young. 1990. The estimation of
stochastic context-free grammars using the Inside-
Outside algorithm. Computer Speech and Lan-
guage, 4:35-56.

C. D. Manning and H. Schiitze. 1999. Foundations of
Statistical Natural Language Processing. The MIT
Press.

F. C. N. Pereira and Y. Schabes. 1992. Inside-Outside
reestimation from partially bracketed corpora. In
Proceedings of the 30th Annual Meeting of the As-
sociation for Computational Linguistics (ACL’92),
pages 128-135.

S. Riezler, J. Kuhn, D. Prescher, and M. Johnson.
2000. Lexicalized stochastic modeling of constraint-
based grammars using log-linear measure and em
training. In Proceedings of the 38th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’00), pages 480—487.

T. Sato, Y. Kameya, S. Abe, and K. Shirai. 2001.
Fast EM learning of a family of PCFGs. Titech
technical report (Dept. of CS) TR01-0006, Tokyo
Institute of Technology.

A. Stolcke. 1995. An efficient probabilistic context-
free parsing algorithm that computes prefix proba-
bilities. Computational Linguistics, 21(2):165-201.

N. Uratani, T. Takezawa, H. Matsuo, and C. Morita.
1994. ATR integrated speech and language
database. Technical Report TR-IT-0056, ATR In-
terpreting Telecommunications Research Laborato-
ries. In Japanese.

