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Preface
The past several years have witnessed a tremendous interest in logic-based probabilistic learning as testified by
the number of formalisms and systems and their applications. Logic-based probabilistic learning is a multidis-
ciplinary research area that integrates relational or logic formalisms, probabilistic reasoning mechanisms, and
machine learning and data mining principles. Logic-based probabilistic learning has found its way into many
application areas including bioinformatics, diagnosis and troubleshooting, stochastic language processing, infor-
mation retrieval, linkage analysis and discovery, robot control, and probabilistic constraint solving.

PRISM (PRogramming In Statistical Modeling) is a logic-based language that integrates logic programming
and probabilistic reasoning including parameter learning. It allows for the description of independent probabilistic
choices and their consequences in general logic programs. PRISM supports parameter learning, i.e. for a given set
of possibly incomplete observed data, PRISM can estimate the probability distributions to best explain the data.
This power is suitable for applications such as learning parameters of stochastic grammars, training stochastic
models for gene sequence analysis, game record analysis, user modeling, and obtaining probabilistic information
for tuning systems performance. PRISM offers incomparable flexibility compared with specific statistical tools
such as hidden Markov models (HMMs) [5, 42], probabilistic context free grammars (PCFGs) [5] and discrete
Bayesian networks.

PRISM employs a proof-theoretic approach to learning. It conducts learning in two phases: the first phase
searches for all the explanations for the observed data, and the second phase estimates the probability distributions
by using the EM algorithm. Learning from flat explanations can be exponential in both space and time. To speed
up learning, the authors proposed learning from explanation graphs and using tabling to reduce redundancy in
the construction of explanation graphs. The PRISM programming system is implemented on top of B-Prolog
(http://www.probp.com/), a constraint logic programming system that provides an efficient tabling system
called linear tabling [66]. Tabling shares the same idea as dynamic programming in that both approaches make
full use of intermediate results of computations. Using tabling in constructing explanation graphs resembles using
dynamic programming in the Baum-Welch algorithm for HMMs and the Inside-Outside algorithm for PCFGs.
Thanks to the good efficiency of the tabling system and the EM learner adopted in PRISM, PRISM is comparable
in performance to specific statistical tools on relatively large amounts of data. The theoretical side of PRISM
is comprehensively described in [52]. For an implementational view, please refer to [67]. Since version 2.0,
the PRISM programming system turns to be an open-source software, and hence the users can freely extend the
programming system or see how the programming system works.

The user is assumed to be familiar with logic programming, the basics of probability theory, and some of
popular probabilistic models mentioned above. The programming system is an extension of the B-Prolog system,
and only PRISM-specific built-ins are elaborated in this document. Please refer to the B-Prolog user’s manual for
details about Prolog built-ins.

Contact information
The latest information and resources on PRISM are available at the website below.

http://rjida.meijo-u.ac.jp/prism/

For any questions, requests and bug-reports, please send an E-mail to:

prism[AT]ccml.meijo-u.ac.jp

where [AT] is replaced with @ .
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Organization of this manual
This document is organized as follows:

• Chapter 1 gives an overview of the PRISM language and the PRISM programming system.

• Chapter 2 describes the detail of the language.

• Chapter 3 explains how to use the programming system.

• Chapter 4 gives the detailed descriptions of the basic built-in predicates provided by the programming
system.

• Chapter 5 explains how to use the utilities for variational Bayesian learning with some introductory descrip-
tion.

• Chapter 6 explains how to use the utilities for MCMC (Markov-Chain Monte Carlo) sampling with some
introductory description.

• Chapter 7 explains how to use the utilities for generative CRFs (conditional random fields) with some
introductory description.

• Chapter 8 explains how to use the utilities for probability computation based on cyclic explanation graphs
with some introductory description.

• Chapter 9 explains how to use the utilities for parallel EM learning using MPI (Message-Passing Interface).

• Chapter 10 shows several program examples with detailed explanations.

To learn PRISM, it is better to see typical usages of PRISM illustrated in Chapter 1 and 10 first, and then to run the
example programs in the released package. The chapters/sections whose titles are marked with * are considered as
advanced, so you can skip these sections for the first time. Chapter 2 may also be skipped until the examples have
been explored, but the content of this chapter (especially §2.2, §2.3 and §2.4) is indispensable to understanding
the essence of examples. Chapter 3 and 4 are expected to work as a (rough) reference manual. Chapters 5 and 9
have the facilities introduced recently, and the authors expect these chapters to be referred to (only) by the users
who are interested in these extended facilities. Note that a version number like ‘2.2’ is also referred to as a generic
number of the versions numbered as 2.2.x, so if there is no proviso, all descriptions about version 2.2 apply to
versions 2.2.x.
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Major changes from version 2.1
• The descriptions on the flags related to generative conditional random fields (crf_enable, crf_golden_b,
crf_init, crf_learn_mode, crf_learn_rate, crf_ls_c1, crf_ls_rho and crf_penalty)
were added into §4.13.2.

• Chapter 7 was added to describe generative conditional random fields (CRFs), a popular class of discrimi-
native models, newly introduced in version 2.2.

• Chapter 8 was added to describe probability computation based on cyclic explanation graphs, newly intro-
duced in version 2.2.

• §10.7 was added to present a program example for a linear-chain CRFs as an example of generative CRFs.

• §10.8 and §10.9 were added to present a couple of program examples that illustrate probabilistic inferences
based on cyclic explanation graphs.

iii
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Chapter 1

Overview of PRISM

PRISM is a probabilistic extension of Prolog. Syntactically, PRISM is just Prolog augmented with a probabilistic
built-in predicate and declarations. There is no restriction on the use of function symbols, predicate symbols or
recursion, and PRISM programs are executed in a top-down left-to-right manner just like Prolog. In this chapter,
we pick up three illustrative examples to overview the major features of PRISM. These examples will also be used
in the following chapters, but for brevity of descriptions, only a part is shown here. For full descriptions of these
examples, please refer to Chapter 10 or the comments in the example programs included in the released package.

1.1 Building a probabilistic model with random switches
The most characteristic feature of PRISM is that it provides random switches to make probabilistic choices. A
random switch has a name, a space of possible outcomes, and a probability distribution. The first example is a
simple program that uses just one random switch:

values(coin,[head,tail]).

direction(D):-
msw(coin,Face),
( Face == head -> D=left ; D=right).

The predicate direction(D) indicates that a person decides the direction to go as D. The decision is made by
tossing a coin: D is bound to left if the head is shown, and to right if the tail is shown. In this sense, we can
say the predicate direction/1 is probabilistic. It is allowed to use disjunctions (;), the cut symbols (!) and
if-then (->) statements as far as they work as expected according to the execution mechanism of the programming
system.1 By combining probabilistic predicates, the user can build a probabilistic model for the task at hand.

Besides the definitions of probabilistic predicates, we need to make some declarations. The clause values(
coin,[head,tail]) declares the outcome space of a switch named coin, and each call of msw(coin,Face)
makes a probabilistic choice (Face will be bound to the result), just like a coin-tossing. This means that we can
observe the direction he/she goes.

Now let us use this program. After installation, we can invoke the programming system just running the
command ‘prism’:

% prism
PRISM 2.2, (C) Sato Lab, Tokyo Institute of Technology, September, 2015
B-Prolog Version 7.8b1, All rights reserved, (C) Afany Software 1994-2012.

Type ’prism_help’ for usage.
| ?-

where ‘%’ is the prompt symbol of some shell (on Linux or Mac OS X) or the command prompt (on Windows). In
the following, removing the vertical bar, we use ‘?-’ as the prompt symbol for PRISM.

Let us assume that the program above is contained in the file named ‘direction.psm’. Then, we can load
the program using a built-in prism/1 as follows:

?- prism(direction).

1 For detailed descriptions on the execution mechanism of the programming system, please visit §2.4.1 and §2.4.2.
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After loading the program, we can run the program using built-in predicates. For example, we can make a sampling
by the built-in sample/1:

?- sample(direction(D)).
D = left ?

The probability distributions of switches are maintained by the programming system, so they are not buried directly
in the definitions of probabilistic predicates. Since version 1.9, the switches have uniform distributions by default.
So the results obtained by the multiple runs of the query above should not be biased.

On the other hand, the built-in predicate set_sw/2 and its variations are available for setting probability
distributions manually. For example, to make the coin biased, we may call

?- set_sw(coin,[0.7,0.3]).

which sets the probability of the head being shown to be 0.7. The status of random switches can be confirmed by
show_sw/0:

?- show_sw.
Switch coin: unfixed: head (0.7) tail (0.3)

At this point, the run with sample/1 will show a different probabilistic behavior from that was made before:

?- sample(direction(D)).

1.2 Basic probabilistic inference and parameter learning
Let us pick up another example that models the inheritance mechanism of human’s ABO blood type. As is well-
known, a human’s blood type (phenotype) is determined by his/her genotype, which is a pair of two genes (A, B
or O) inherited from his/her father and mother.2 For example, when one’s genotype is AA or AO (OA), his/her
phenotype will be type A. In a probabilistic context, on the other hand, we consider a pool of genes, and let
pa, pb and po denote the frequencies of gene A, B and O in the pool, respectively (pa + pb + po = 1). When
random mating is assumed, the frequencies of phenotypes, namely, PA, PB, PO and PAB, are computed by Hardy-
Weinberg’s law [13]: PA = p2

a + 2pa po, PB = p2
b + 2pb po, PO = p2

o and PAB = 2pa pb. To represent the distribution
over phenotypes instead of these numerical equations, we may write the following PRISM program:

values(gene,[a,b,o]).

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

In this program, we let a switch msw(gene,X) instantiated with X = a, X = b and X = o denote a random pick-
up of gene X from the pool, and become true with probability pa, pb and po, respectively. Then, from the definition
of bloodtype/1, we can say that one of bloodtype(P) with P = a, P = b, P = o and P = ab becomes
exclusively true with probability PA, PB, PO and PAB, respectively (see §2.2 for details). This implies the logical
variable P in bloodtype(P) behaves as a random variable that follows the distribution over phenotypes.3

Here, just like the distribution {PA, PB, PO, PAB} is computed from the basic one {pa, pb, po}, the probability
distributions of switches form a basic distribution from which we can construct the probability distribution repre-
sented by the PRISM program. Then we consider each θi,v, the probability of a switch instance msw(i,v) being
true (i and v are ground terms), as a parameter of the program’s distribution. If we give appropriate parame-
ters, a variety of probabilistic inferences are available. For example, sampling is done with the built-in predicate
sample/1:

2 In this example, we take a view of classical population genetics, where a gene is considered as an abstract genetic factor proposed by
Mendel.

3 From a similar discussion, in the previous example, we can see D in direction(D) as a random variable in a probabilistic context. In
many cases, it is useful to define a program so that some logical variables behave as random variables, but also note that there is no need to
make all logical variables in the program behave as random variables.
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?- sample(bloodtype(X)).

In the above query, the answer X = b will be returned with probability PB, the frequency of blood type B. Also
it is possible to compute the probability of a probabilistic goal (or simply, a goal):

?- prob(bloodtype(a)).
Probability of bloodtype(a) is: 0.360507016168634

Instead of being set manually, the parameters can be estimated from the observed data. We call this task
parameter learning or more specifically, maximum likelihood estimation (ML estimation or MLE) — given some
observed data,, a bag of observed goals, we find the parameters that maximize the probability of the observed data
being occurred. In the current case, the observed data should be a bag of instances of bloodtype(X), which
correspond to phenotypes of (randomly sampled) humans. Also note here that we are now in a partially observing
situation, that is, we cannot know which switch instances are true (i.e. which genes are inherited) for some given
instances of bloodtype(X) (i.e. some phenotypes). For example, if we observed a person of blood type A, we
do not know whether he has inherited two genes A from both parents, or he inherits gene A from one parent and
gene O from the other. For MLE in such a situation, one solution is to use the EM (expectation-maximization)
algorithm [17],4 and the programming system provides a built-in routine of the EM algorithm.

On the other hand, for the ‘direction’ program in the last section, we are in a fully observing situation, i.e. we
can know all behaviors of the random switches from the observation. Then, the EM algorithm is simply reduced
to a counting procedure of the true switch instances. In PRISM, either partially observing or fully observing, by
adding a couple of declarations and preparing some data, we can estimate the parameters from the data.

For example, let us consider that we have observed 40 persons of blood type A, 20 persons of B, 30 persons
of O, and 10 persons of AB. To estimate the parameters from these observed data, we then invoke the learning
command as follows:5

?- learn([count(bloodtype(a),40),count(bloodtype(b),20),
count(bloodtype(o),30),count(bloodtype(ab),10)]).

After parameter learning, we may confirm the estimated parameters:

?- show_sw.
Switch gene: unfixed: a (0.292329558535712) b (0.163020241540856)
o (0.544650199923432)

It can be seen from above and the original meaning given to the program that the frequencies of genes are estimated
as: pa = 0.292, pb = 0.163, po = 0.545. Thus in the context of population genetics, we can say that, inversely
with Hardy-Weinberg’s law, the hidden frequencies of genes can be estimated from the observed frequencies of
phenotypes.

The inheritance model described in this section is considerably simple since we have assumed random mates.
However with the expressive power of PRISM, the cases of non-random mates can also be written (for example,
as done in [47]).

1.3 Utility programs and advanced probabilistic inferences
Furthermore, let us consider a PRISM version of a hidden Markov model (HMM) [5, 42]. HMMs not only
dominate in speech recognition but are also well-known as suited for many tasks such as part-of-speech tagging in
natural language processing or biological sequence analysis. An HMM is a probabilistic finite automaton where
state transitions and symbol emissions are all probabilistic.

Let us consider a two-state HMM in Figure 1.1. The HMM has the states s0 and s1, and it emits a symbol
a or b at each state. Each of state transitions and symbol emissions is probabilistic, and conditioned only on the
current state. It is assumed in HMMs that we can only observe a string (i.e. a sequence of emitted symbols), not
the sequence of state transitions. The program is described as follows:

4 A more detailed description for this example (the problem of gene frequency estimation for blood types) can be found in Section 2.4 of
[37].

5 Actually in PRISM, at the query prompt, we cannot make a new line until reaching the end of the query. For readability, in this manual’s
illustrations, the text typed by the user or displayed by the system is sometimes beautified by the authors.
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s0 s1

Figure 1.1: State transition diagram of a 2-state hidden Markov model.

values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Please note the comments in the program, each states a procedural reading of the corresponding predicate call.
Then we may find that a top-down execution from hmm(L), which represents the distribution for a string L,
simulates a generation process that yields L, or in other words, that we observe L after a chain of probabilistic
choices by switches. In this sense, it is possible to say that the program forms a generative model. Besides, it
may be noticed that we are also in a partially observing situation for HMMs, since the information about states is
hidden from the string L in hmm(L).

In this manual, the code shown above is called the modeling part of the program, and on the other hand, we
can also write non-probabilistic clauses (i.e. usual Prolog clauses) as the utility part. For example, we define the
two predicates hmm_learn/1 and set_params/0, where the former is a batch predicate for learning, and the
latter is the former’s subroutine that sets some particular values of parameters at once.

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with these samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

get_samples/3,6 learn/1 and set_sw/2 are the built-ins provided by the system, which run the pred-
icates in the modeling part (at meta-level), or change the status of the system including parameter values. The
built-ins except msw/2 are non-probabilistic, and hence all predicates in the utility part above are also non-
probabilistic. Programming with built-ins in the utility part allows users to take a variety of ways of experiments
according to the application. For example, in the HMM program, we may add clauses to carry out tasks such as
aligning and scoring sequences.

In the literature of applications with HMMs, several efficient algorithms are well-known. One of these algo-
rithms is the Viterbi algorithm [42], which computes the most probable sequence of (hidden) state transitions given

6 get_samples(N,G,Goals) generates N samples as Goals by invoking sample(G) for N times.
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a string. This is done by dynamic programming, and the computation time is known to be linear in the length of
the given string. The programming system provides a built-in for the Viterbi algorithm, which is a generalization
of the one for HMMs. For example, viterbif/1 writes the most probable sequence to the output:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])
<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])
<= hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(2,10,s1,[a,a,a,a,b,b,b,b,b])
<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s1),a) & msw(tr(s1),s0)

...omitted...

hmm(10,10,s1,[b])
<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000117528

We then read from here that the most probable sequence is: s0 → s1 → · · · → s1 → s0 (though the last
transition may be redundant).

It is shown that the algorithm implemented as the system’s built-in works as efficiently as the one specialized
for HMMs [51]. So we can handle considerably large datasets with PRISM. The efficiency comes from linear
tabling [66], a tabling mechanism provided by B-Prolog, and an EM algorithm called the graphical EM algo-
rithm.7 A similar mechanism is adopted for learning and probability computation mentioned above, which is also
a generalization of the Baum-Welch algorithm (also known as the forward-backward algorithm) and the backward
probability computation for HMMs respectively [27, 51, 52].

1.4 Modeling assumptions and handling failures in the generation pro-
cess

To realize efficient computation described in the previous section, we need to write PRISM programs which
obey some restrictions. The first major one is the exclusiveness condition, in which all disjunctive paths in a
proof tree are required to be probabilistically exclusive. The second one is the uniqueness condition, in which
all observable goal patterns are probabilistically exclusive to each other and the sum of their probabilities needs
to be unity. For parameter learning, this condition can be relaxed by assuming the missing-at-random (MAR)
condition [52], and with the MAR condition, there is a case that we can handle the PRISM programs in which
the sum of probabilities of observable patterns can exceed unity. On the other hand, the lack of probability mass
with failure in the generation process (in which the sum of probabilities becomes less than one) is more serious.
The uniqueness condition implies that for every observable pattern, its generation process never fails, and could
be a strong restriction in our modeling. Recently, for a remedy of this, the programming system introduced a
new graphical EM algorithm that takes such failures into account [53, 54, 57]. This algorithm is based both on
Cussens’s FAM (failure-adjusted maximization) algorithm [14] and FOC (First Order Compiler) [45]. With this
new learning framework, we are able to introduce some constraints (which causes some failures) to generative
models.

1.5 Bayesian approaches in PRISM
When the observed data is not so large compared to the complexity of the model (i.e. the number of parameters),
there should be a risk to rely on the parameters estimated from such data. For example, let us consider that we
just have a data set on blood types of 10 persons, in which only the persons of blood type B and O are recorded.
Even in such a situation, it seems inappropriate to conclude that gene A does not exist at all. Instead, we may take
a Bayesian approach to combine our prior knowledge (bias) with the statistics from the data in a principled way.

In Bayesian approaches, we first consider a prior distribution P(θ) over parameters θ. In PRISM, as the
built-in prior distribution, we use a Dirichlet distribution P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v , where each parameter αi,v (> 0)

7 Recently the authors often use the term generalized inside-outside algorithm instead.
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of the Dirichlet distribution corresponds to a switch instance msw(i,v) and is often called a hyperparameter of
the program’s distribution (Z is a normalizing constant). Then, the programming system provides two types of
Bayesian learning. One is for MAP (maximum a posteriori) estimation, and the other for variational Bayesian
(VB) learning.

The hyperparameters basically work as pseudo counts, i.e. the statistics on what we assume, not actually
observed. Since version 2.0, the programming system provides a clearer way of handling pseudo counts. That
is, in the context of MAP estimation, we consider δi,v = (αi,v − 1) as pseudo counts and it is recommended to
configure the hyperparameters through δi,v. On the other hand, in VB learning, αi,v themselves are considered
as pseudo counts, and it is recommended to configure αi,v directly. In practice, it is important that we are only
allowed to have δi,v ≥ 0 (i.e. αi,v ≥ 1) in the MAP case while we can have αi,v > 0 in the VB case.

In MAP estimation, to estimate a parameter θi,v, the probability of a switch instance msw(i,v) being true,
we perform θ̂i,v = (Ci,v + δi,v)/(

∑
v′∈Vi

(Ci,v′ + δi,v′ )), where Ci,v is the (expected) occurrences of the switch instance
msw(i,v) in the data, and Vi is the set of possible outcomes of the switch named i. When the pseudo count δi,v = 0,
this procedure is nothing but ML estimation (i.e. θ̂i,v = Ci,v/

∑
v′∈Vi

Ci,v′). When configuring δi,v to be positive, on
the other hand, we can avoid the estimated parameter θ̂i,v being zero, and hence can relieve the problem of data
sparseness to some extent. In the above example, we can assign a positive probability to the chance that gene A
exists. Generally speaking, MAP estimation is a procedure to obtain the parameters that maximizes a posteriori
probability P(θ | G,M) ∝ P(G | M, θ)P(θ), where G is the observed data, i.e. a multiset of observed goals G1, G2,
. . . , GT , and M is the model written as a PRISM program.

It is often said, on the other hand, that variational Bayesian (VB) learning has high robustness against data
sparseness in model selection and prediction (Viterbi computation). This is because VB learning gives us an a
posteriori distribution P∗(θ | G,M) and we can make inferences based on some averaged quantities with respect
to P∗(θ | G,M), instead of particular point-estimated parameters.

Now let us run the blood type program with the facilities above. To set pseudo counts (hyperparameters) in
the context of MAP estimation, we may add the query below to the program:

:- set_prism_flag(default_sw_d,1.0).

The programming system provides dozens of execution flags to allow the users to change the behaviors of the
built-in predicates. The query above will set a value 1.0 to the flag named ‘default_sw_d’. Under this
setting, when the system tries to register a new switch gene to the internal database, its pseudo counts δgene,v
(v = a,b,o) will be all set to 1.0 (and accordingly αgene,v will be set to 2.0). The suffix ‘_d’ of the flag name
means “for pseudo counts δi,v”. Then, let us learn the parameters from the data in which 4 persons of blood type
B and 6 persons of blood type O are recorded:

?- prism(bloodABO).
:

?- learn([count(bloodtype(b),4),count(bloodtype(o),6)]).

#goals: 0(2)
Exporting switch information to the EM routine ... done
#em-iters: 0(4) (Converged: -12.545609035)
Statistics on learning:

Graph size: 12
Number of switches: 1
Number of switch instances: 3
Number of iterations: 4
Final log of a posteriori prob: -12.545609035
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 2092 bytes

Type show_sw to show the probability distributions.

yes

After learning, we can confirm that a positive probability is assigned to the parameter of msw(gene,a), and that
the common pseudo count 1.0 are surely set to each switch:

?- show_sw_pd.

Switch gene: unfixed_p,unfixed_h: a (p: 0.043478261, d: 1.000000000)
b (p: 0.242686723, d: 1.000000000) o (p: 0.713835016, d: 1.000000000)
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yes

The suffix ‘_pd’ of the built-in predicate show_sw_pd/0 means “for both parameters and pseudo counts δi,v”.
On the other hand, we can assign the pseudo counts manually:

?- set_sw_d(gene,[0.5,1.0,1.0]).
:

?- show_sw_pd.

Switch gene: unfixed_p,unfixed_h: a (p: 0.043478261, d: 0.500000000)
b (p: 0.242686723, d: 1.000000000) o (p: 0.713835016, d: 1.000000000)

yes

In the context of VB learning, it is recommended to configure αi,v directly. To conduct VB learning in this
example, we use default_sw_a flag instead of the default_sw_d flag:

:- set_prism_flag(default_sw_a,0.5).

By this query, the pseudo counts αgene,v (v = a,b,o) of the switch gene will be all set to 0.5. The suffix ‘_a’
of the flag name means “for pseudo counts αi,v”. Then, VB learning is easily conducted by setting ‘vb’ to the
execution flag named ‘learn_mode’ and then invoking the usual learning command (note that there is no need
to modify the modeling part):

?- prism(bloodABO).
:

?- set_prism_flag(learn_mode,vb).
:

?- learn([count(bloodtype(b),4),count(bloodtype(o),6)]).

#goals: 0(2)
Exporting switch information to the EM routine ... done
#vbem-iters: 0(4) (Converged: -10.083233825)
Statistics on learning:

Graph size: 12
Number of switches: 1
Number of switch instances: 3
Number of iterations: 4
Final variational free energy: -10.083233825
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 2092 bytes

Type show_sw_a/show_sw_d to show the probability distributions.

yes

We can see that the pseudo counts have been adjusted based on the given data, while the parameters are kept as
their default values. This implies that now we have the a posteriori distribution P∗(θ | D).

?- show_sw_pa.

Switch gene: unfixed_p,unfixed_h: a (p: 0.333333333, a: 0.509135683)
b (p: 0.333333333, a: 5.027009446) o (p: 0.333333333, a: 16.015080650)

yes

Similarly to parameter learning, Viterbi computation based on the a posteriori distribution P∗(θ | D,M) can
be invoked with a setting for the execution flag ‘viterbi_mode’. For the HMM program, we may run the
following after VB learning:

?- set_prism_flag(viterbi_mode,vb).
:

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

Since version 2.1, two new approximate frameworks for Bayesian learning are available. The former is called
variational Bayesian Viterbi training (VB-VT) and the latter is MCMC sampling. The user can easily switch
among these frameworks including variational Bayesian EM learning with his/her program unchanged.
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1.6 Parallel EM learning*
In the programming system, a command named upprism is provided for batch execution (or non-interactive
execution) of a program. For a batch execution, we first write what we would like to execute in the clause body
of prism_main/0-1. In the HMM program, for example, we may run hmm_learn(100), which means to
conduct EM learning with 100 observed goals (§1.3), in a batch execution:

prism_main:- hmm_learn(100).

Then, the batch execution can be started by running upprism (recall that the file name of the HMM program is
‘hmm.psm’):

% upprism hmm
:

loading::hmm.psm.out
#goals: 0.........(94)
Exporting switch information to the EM routine ... done
#em-iters: 0.........100.........200.........300.........400.........500.
........600.........700.........800.........900(910) (Converged: -684.452
761975)
Statistics on learning:

Graph size: 5680
Number of switches: 5
Number of switch instances: 10
Number of iterations: 910
Final log likelihood: -684.452761975
Total learning time: 0.128 seconds
Explanation search time: 0.008 seconds
Total table space used: 349032 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes

Furthermore, since version 1.11, a utility for parallel EM learning is available. Namely, a command named
mpprism (multi-process PRISM) is used instead of upprism (uni-process PRISM). Under some additional
settings for a parallel computing environment (§9.2), we can run mpprism similarly to upprism. For example,
we learn the HMM program from 100 observed goals in a data-parallel fashion:

% env NPROCS=4 MACHINES=machines mpprism hmm
:

loading::hmm.psm.out
#goals: 0.........(91)
Gathering and exporting switch information ...
#em-iters: 0.........100.........200.........300.........400.........500.
........600.........700.........800.(811) (Converged: -680.209735465)
Statistics on learning:

Graph size: 6268
Number of switches: 5
Number of switch instances: 10
Number of iterations: 811
Final log likelihood: -680.209735465
Total learning time: 0.902 seconds
Explanation search time: 0.070 seconds

Type show_sw or show_sw_b to show the probability distributions.

yes

In the above execution, we specified the number of processors and the machine file (the file that contains the
name of machines where the distributed processes work) by the environment variables NPROCS and MACHINES,
respectively. Although the mechanism inside is rather complicated, we need no extra PRISM programming for
parallel execution.
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Chapter 2

PRISM programs

Generally speaking, a probabilistic model represents some probability distribution which probabilistic phenomena
in the application domain are assumed to follow, and PRISM is a logic-based representation language for such
probabilistic models. In this chapter, we describe the detail of the PRISM language, and the basic mechanism of
the related algorithms provided as built-in predicates.

2.1 Overall organization
Let us first define that a probabilistic predicate is a predicate which eventually calls (at non-meta level) the built-in
probabilistic predicate msw/2, i.e. random switches. Then we roughly classify the clauses in a PRISM program
into the following three parts:

• Modeling part: the definitions of all probabilistic predicates, and of some non-probabilistic predicates which
are called from probabilistic predicates. This part corresponds to the definition of the model.

• Utility part: the remaining definitions of non-probabilistic predicates. This part is a usual Prolog program
that utilizes the model, and often that can be seen as a meta program of the modeling part.

• Declarations: the clauses of some particular built-in predicates which contain additional information on the
model (of course, they are non-probabilistic).

In the rest of this chapter, we first describe the basic semantics of PRISM programs and the currently available
probabilistic inferences. Then we proceed to describe the details of each part.

2.2 Basic semantics
PRISM is designed based on the distribution semantics [46, 52, 55], a probabilistic extension of the least model
semantics. In the distribution semantics, all ground atoms are considered as random variables taking on 1 (true)
or 0 (false). With this semantics and the predefined probabilistic property of random switches, we can give a
declarative semantics to programs. However, in the recent versions, to make an efficient implementation of tabling,
we use a different specification from the original one [50, 52] of random switches, in which some procedural notion
is required. Here we describe msw/2 as follows:

1. For each ground term i in msw(i,v) which is possible to appear in the program, a set of ground terms Vi

should be given by the user with multi-valued switch declaration, and also v ∈ Vi should hold. Such an
msw(i,v) is hereafter called a switch instance, where i is the switch name, v the outcome or the value, and
Vi the outcome space of i. A collection of msw(i,·) forms switch i.

2. For a switch i, whose outcome space is Vi = {v1, . . . , vk} (k ≥ 1), one of the ground atoms msw(i,v1), . . . ,
msw(i,vk) is exclusively true at the same position of a proof tree, and

∑
v∈Vi

θi,v = 1 holds, where θi,v is the
probability of msw(i,v) being true and is called a parameter of the program. Intuitively, a logical variable
V in a predicate call of msw(i,V) behaves as a random variable which takes a value v from Vi with the
probability θi,v.

3. The truth-values of switch instances at the different positions of a proof tree are independently assigned.
This means that the predicate calls of msw/2 behave independently of each other.
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Hereafter, for understanding the third condition, it would be a help to introduce IDs which identify positions in the
proof tree,1 and then to associate each occurrence of switch instance with the ID of the corresponding position.
Then the switches at different positions will be syntactically different. The third condition is referred to as the
independence condition.

The probabilistic meaning of the modeling part can be understood in a bottom-up manner.2 Now, for illustra-
tion, let us pick up again the blood type program:

bloodtype(P) :-
genotype(X,Y),
( X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

First, one of msw(gene,X) instantiated with X = a, X = b or X = o (i.e. a random pick-up of a gene X from
the pool) becomes exclusively true, according to the probabilistic property of switches described above. Then
we associate the parameters of switches with gene frequencies, i.e. θgene,a = pa, θgene,b = pb and θgene,o = po.
Also in view of the independence of switches at different occurrences, the definition of genotype/2 satisfies
the random-mate assumption on genotypes, hence the probability of each is a product of two gene frequencies.
In the body of bloodtype/1’s definition, one of genotype(X,Y) with X = a,b and o, and Y = a,b and o
becomes exclusive, and hence the different instances of the clause body become exclusively true. We can also see
the second conjunct makes a correct many-to-one mapping from genotypes to phenotypes. Therefore we can say
that one of bloodtype(P) with P = a, P = b, P = o and P = ab becomes exclusively true with probability
PA, PB, PO, and PAB, respectively. In addition, from the exclusiveness discussed above, each of logical variables
X and Y in genotype(X,Y) behaves just like a random variable that takes a gene as its value, whereas P in
bloodtype(P) behaves like a random variable that takes a phenotype.

In PRISM, it would be easier, and so is recommended, to write a program in a top-down (consequently, a
generative) manner. On the other hand, sometimes it is also crucial to inspect the program’s probabilistic meaning
in a bottom-up manner, as shown above.

2.3 Probabilistic inferences
Before proceeding to the further details of the PRISM language, it would be worth listing what we can do with
this language. First let Pθ(·) be the probability distribution specified by the program, under the parameters θ of
switches buried in the program. Then, in the PRISM programming system, the following five types of probabilistic
inferences are available:

Sampling (§4.2):
Given a goal G of a probabilistic predicate, return the answer substitution σ with the probability Pθ(Gσ),

or fail with the probability that ∃G is false.

Probability calculation (§4.3):
Given a goal G of a probabilistic predicate, compute Pθ(G).

Viterbi computation (§4.5):
Given a goal G of a probabilistic predicate, find E∗ = argmaxE∈{E1,...,EK }Pθ(E), where E1, . . . , EK are the

explanations for G such that G ⇔ E1 ∨ · · · ∨ EK and each Ek is a conjunction of switch instances.

Hindsight computation (§4.6):
Given a goal G of a probabilistic predicate, compute Pθ(G′) or Pθ(G′ | G) for each subgoal G′ of G.

1 In old SICStus Prolog versions, PRISM uses msw(i,n,v) where the users need to explicitly specify n, the ID of an independent choice
by the switch. This definition is important to give a declarative semantics to programs, and hence the theoretical papers on PRISM still use
msw/3.

2 The discussion in this section should be considerably rough. For the readers interested in the distribution semantics, the formal semantics
of PRISM, please consult [46, 52, 55].
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Parameter learning (§4.7):
Given a bag {G1,G2, . . . ,GT } of observed goals of probabilistic predicates (i.e. training data), get the

parameters θ of switches which maximizes the likelihood, e.g.
∏

t Pθ(Gt).

The first inference task works with an execution style called the sampling execution (§2.4.1), and the rest utilize
the explanation search (§2.4.2). For HMMs, the former execution style simulates the behavior of an HMM as a
string generator (i.e. data sampler), and the latter simulates the behavior as an acceptor or a recognizer. For more
details including their variations, please visit the corresponding sections.

2.4 Modeling part
We have seen a couple of examples of the modeling part (sections in Chapter 1 and §2.2). One interesting feature
of PRISM is that we can (or we should) write models as executable. For various probabilistic inferences, there
are two underlying execution styles called sampling execution and explanation search. So it is expected for users
to write the modeling part so that it can work in these two execution styles. As far as we understand these two
execution styles, it is allowed to write disjunctions (‘;’), the cut symbols (‘!’), or the if-then (‘->’) statements in
a clause body.

In addition, for efficient execution of models, the system assumes that the model follows several conditions.3

However, it is often difficult for the system to check these conditions, and hence it is required to write carefully
programs to satisfy the conditions (otherwise some unexpected behavior arises).

In the rest of this section, we first explore two underlying execution styles for probabilistic inferences, and
then make some advanced discussions concerning to parameter learning. Finally we summarize the conditions on
the modeling part to be satisfied.

2.4.1 Sampling execution
Sampling execution is the underlying execution style for a sampling task (§2.3, §4.2). In the literature of Bayesian
networks, this style is sometimes called forward sampling. In the recent versions, sampling execution becomes
easier to understand. That is, the system only makes a top-down execution like Prolog, and determines the value
v of msw(i,v) on the fly according to the parameters {θi,v}. A sampling execution of probabilistic goal4 G is
invoked by:5

?- sample(G).

Internally, msw/2 for sampling execution is essentially defined as follows:6

msw(I,V):-
get_values1(I,Values),
$get_probs(I,Probs),
$choose(Values,Probs,V).

In the definition above, get_values1(I,Values) is declared as a multi-valued switch declaration by the user,
and I should be a ground term. Then Values, a list of ground terms, will be returned based on the declara-
tion. On the other hand, $get_probs(I,Probs) returns Probs which is a list of switch I’s parameters, and
$choose(Values,Probs,V) returns V randomly from Values according to the probabilities Probs. Also note
that none of get_values1/2, $get_probs/2 and $choose/3 is backtrackable.7

One typical trap in sampling execution is the independence among switches. In the previous papers, the authors
often use a blood type program similar to the one below, instead of the one illustrated in this manual:

bloodtype(a) :- (genotype(a,a) ; genotype(a,o) ; genotype(o,a)).
bloodtype(b) :- (genotype(b,b) ; genotype(b,o) ; genotype(o,b)).
bloodtype(o) :- genotype(o,o).

3 For the theoretical details, please see [52].
4 A probabilistic goal is a goal whose predicate is probabilistic.
5 For ease of programming, it is also allowed to run G directly just like Prolog:

?- G.

6 Note that the predicates in the clause body are introduced for illustration — in the actual implementation, they are more complicatedly
defined with different predicate names.

7 In version 2.0.1, new built-in predicates soft_msw/2 and b_msw/2 for backtrackable sampling execution of random switches are
introduced (see §4.1.11 for details).
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bloodtype(ab):- (genotype(a,b) ; genotype(b,a)).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

values(gene,[a,b,o]).

With this program, the following query for sampling execution sometimes fails:

?- sample(bloodtype(X)).

This is because there is a case that all predicate calls genotype(a,a), genotype(a,o), . . . , and genotype(
b,a) in the bloodtype/1’s definition independently fail, without sharing the results of sampling msw/2. The
difference between the program above and the blood type programs in the previous papers is the use of msw/3,
which can share the sampling results by referring to their second arguments. For sampling execution with msw/2,
we need to write a program in a purely generative manner: once we get a result of a switch sampling, the result
should be passed through the predicate arguments to the predicate call which requires it as input.

2.4.2 Explanation search
Explanation search works as an underlying subroutine of built-in predicates for probabilistic inference such as
probability calculation (§4.3), Viterbi computation (§4.5), hindsight computation (§4.6) and parameter learning
(§4.7).8 To simulate only explanation search, we can use the built-ins probf/1-2 (§4.4). In this section, we
describe the explanation search by defining several terminologies.

First, in PRISM, an explanation for a probabilistic goal G is a conjunction E of the ground switch instances,
which occurs in a derivation path of a sampling execution for G. In the blood type program, for example, one
possible explanation of goal bloodtype(a) is:

msw(gene,a) ∧ msw(gene,a).

(if we know a person’s blood type is A, one possibility is that he inherits two A genes from both parents.)
This corresponds to a phenomenon that we will get bloodtype(a) as a solution of a sampling execution of
bloodtype(X) by having msw(gene,a) twice. Each of two msw(gene,a)s above indicates an individual
gene inheritance from one of the parents, so they should not be suppressed (in other words, they appear at different
positions in a proof tree; see the discussion in §2.2).

Basically we can write the modeling part, keeping in mind that an explanation search finds all possible expla-
nations for a given goal by a failure-driven loop [62]. For bloodtype(a), we have three explanations:

msw(gene,a) ∧ msw(gene,a),
msw(gene,a) ∧ msw(gene,o),
msw(gene,o) ∧ msw(gene,a).

Also please note here that the last two explanations correspond to different derivation paths, and so should not
be suppressed. To be more specific, as mentioned in §2.2, this would be understood that, by associating switches
with IDs of the positions in the proof tree, they are probabilistically exclusive. In PRISM, for the explanations
E1, E2, . . . , Ek for a goal G, we assume that k is finite (the finiteness condition), and G ⇔ E1 ∨ E2 ∨ . . . ∨ Ek.

In a probabilistic context, an explanation E is a conjunction of independent switch instances, and hence the
probability of E is the product of the probabilities of switch instances in E. Also, if we assume that possible
explanations for any goal are all exclusive (i.e. the program satisfies the exclusiveness condition), the probability
of a probabilistic goal G is the sum of probabilities of the explanations for G. For some probabilistic inference or
learning given a goal G, the system makes an explanation search for G in advance of numerical computations.

Unfortunately, it is easily seen that, in general, the number of explanations for a goal can be exponential
depending on the complexity of the model or the given goal (input). To compress these explanations and make
them manageable, the system adopts tabling, or more specifically linear tabling [66], for explanation search. In
tabling, every solution of a predicate call is stored into the solution table, and once we have all solutions for the
predicate call, the stored solutions are used for the later calls. After the explanation search by tabling, the stored
solutions are converted to a data structure called explanation graphs, and then the system performs probabilistic
computation on these graphs. Furthermore, explanation graphs can be seen as AND/OR graphs consisting of
propositional (i.e. ground or existentially quantified) formulas, and tabling itself can be understood as a kind of
propositionalization procedure in that it receives first-order expressions (i.e. a PRISM program) and observed
goals as input, and generates as output propositional AND/OR graphs that explain observed goals.

8 The summary of these inferences is given in §2.3
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For example, let us consider the HMM program in §1.3, with the string length being changed to 3. In this
program, we have the following 16 explanations9 for G = hmm([a,b,b]):

E1 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s0),

E2 = msw(init,s0) ∧ msw(out(s0),a) ∧ msw(tr(s0),s0) ∧
msw(out(s0),b) ∧ msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ msw(tr(s0),s1),

...

E16 = msw(init,s1) ∧ msw(out(s1),a) ∧ msw(tr(s1),s1) ∧
msw(out(s1),b) ∧ msw(tr(s1),s1) ∧ msw(out(s1),b) ∧ msw(tr(s1),s1).

Then we have G ⇔ E1∨E2∨· · ·∨E16, and this iff-formula can be converted to a conjunction of iff-formulas below,
which can be derived from Clark’s completion [8] constructed from the definitions of probabilistic predicates.

hmm([a,b,b]) ⇔ (msw(init,s0) ∧ hmm(1,3,s0,[a,b,b]))

∨ (msw(init,s1) ∧ hmm(1,3,s1,[a,b,b]))

hmm(1,3,s0,[a,b,b]) ⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[b,b]))

hmm(1,3,s1,[a,b,b]) ⇔ (msw(out(s1),a) ∧ msw(tr(s1),s0) ∧ hmm(2,3,s0,[b,b]))

∨ (msw(out(s1),a) ∧ msw(tr(s1),s1) ∧ hmm(2,3,s1,[b,b]))

hmm(2,3,s0,[b,b]) ⇔ (msw(tr(s0),s0) ∧ msw(out(s0),b) ∧ hmm(3,3,s0,[b]))

∨ (msw(out(s0),b) ∧ msw(tr(s0),s1) ∧ hmm(3,3,s1,[b]))
...

hmm(3,3,s1,[b]) ⇔ (msw(out(s1),b) ∧ msw(tr(s1),s0))

∨ (msw(out(s1),b) ∧ msw(tr(s1),s1))

In this converted iff-formula, the ground atoms appearing on the left hand side are called subgoals. Each con-
junction on the right hand side of each iff-formula whose left hand side is G′ is called a sub-explanation for G′.
It is easy to see that a sub-explanation includes subgoals as well as switch instances, and that G′ depends on the
subgoals appearing in the sub-explanations for G′. It should be noticed that, to make an exact probability compu-
tation by dynamic programming possible, the system assumes that these dependencies cannot form a cycle. This
condition is hereafter called the acyclicity condition. Assuming this condition, we treat the converted iff-formulas
as ordered.

As mentioned above, in explanation search, the system tries to find all possible explanations. With tabling,
each subgoal solved in the search process is stored into a table, together with its sub-explanation, and after the
search terminates, the explanation graphs are constructed from the stored information. Finally the routines for
probabilistic inference including learning works on the explanation graphs. The structure of explanation graphs are
isomorphic to the ordered iff-formula described above. Some may notice that a subgoal hmm(2,3,s0,[b,b])
is found in both sub-explanations for hmm(1,3,s0,[a,b,b]) and hmm(1,3,s1,[a,b,b]). In this data
structure, a substructure can be shared by the upper substructures to avoid redundant computations. In other
words, we can enjoy the efficiency which comes from dynamic programming. The programming system provides
the built-in probf/2 (§4.4) to get an explanation graph as a Prolog term.

Besides, at a more detailed level, we have a different definition of msw/2 for explanation search:10

msw(I,V):- get_values1(I,Values),member(V,Values).

Again, it is assumed that, in a predicate call of get_values1(I,Values), I is a ground term. One may find
that there are no probabilistic predicates in the body that work at random. This is because the explanation search
only aims to enumerate all possibilities that a given goal holds, and it requires no probabilistic consideration.

9 Our HMM program can be said as redundant since we distinguish the explanations by the last state transition which do not contribute to
the final output. A more optimized one should have only 8 (= 23) explanations.

10 Note that the predicate name of msw/2 is different from the one in the actual implementation.
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2.4.3 Additional notes on writing the modeling part
⋄ Two styles in writing the modeling part

It is crucial to notice that the blood type program shown in §2.4.1 can work for explanation search, while it does
not for sampling execution. On the other hand, the one shown in §1.2 works in both ways. It would be fine for
the modeling part to work for both sampling execution and explanation search, but if it is difficult or inefficient,
we need to write the modeling part in two styles — one is specialized for sampling execution, and the other for
explanation search.

⋄ Representing dependent choices by independent random switches

In §2.2, it is mentioned that the random switches appearing at different positions in a proof tree behave indepen-
dently of each other. On the other hand, some may wonder how we can make the next choice conditioned on the
previous choice(s). To consider about this question, let us consider again the HMM program picked up in §1.3:

values(init,[s0,s1]). % Switch for state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: the state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

Then, we get a trace of sampling execution (§2.4.1) of hmm(L) as shown in Figure 2.1 (see §3.6 for the usage
of the trace mode). From this trace and the definition of hmm/4, it can be seen that, in the first recursive call of
hmm/4, we use random switches out(S) and tr(S) where the current state S is the outcome of the switch
init. Also in the T -th recursive call (T > 2), random switches out(S) and tr(S) are used, where S is chosen
by the switch tr(S ′) used in the (T − 1)-th recursive call. For instance, in the first recursive call of hmm/4
(beginning from Line 14 in Figure 2.1), we obtain s0 as a sampled value of the switch tr(s1) (Lines 19–20).
Then, in the second recursive call, letting the current state S = s0, we use switches out(s0) and tr(s0), and
get the value b and s0, respectively (Lines 26–27 and Lines 28–29).

We can say from the above example that, to make a choice C depending on the results R1, R2, . . . , RK of previ-
ous choices, it is sufficient to use a switch named c(r1,r2,...,rK), where c is a functor name that corresponds
to the choice C and rk is a ground term that corresponds to the results Rk (1 ≤ k ≤ K). Of course, the switch
name can be an arbitrary ground term, e.g. choose(c,[r1,r2,...,rK]), as long as it uniquely refers to the
choice C that depends on R1, R2, . . . , RK . To summarize, in PRISM, it is only allowed to use independent random
switches, but we can represent dependent choices by using different random switches according to the context, i.e.
the results of some of the previous choices.

Keeping this discussion in mind, we can write a Mealy-type HMM,11 in which each output probability depends
on the state transition (i.e. both the current state and the next state), by modifying only a few lines:

values(init,[s0,s1]).
values(out(_,_),[a,b]). % modified
values(tr(_),[s0,s1]).

hmm(L):-
str_length(N),
msw(init,S),
hmm(1,N,S,L).

11 On the other hand, the original HMM program picked up in §1.3 defines a Moore-type HMM, in which each output probability depends
only on the current status.
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1 ?- prism([consult],hmm).
2 :
3 ?- trace.
4 :
5 {Trace mode}
6 ?- sample(hmm(L)).
7
8 Call: (0) sample(hmm(_c60)) ?
9 Call: (2) hmm(_c60) ?

10 Call: (3) str_length(_d20) ?
11 Exit: (3) str_length(10) ?
12 Call: (4) msw(init,_d3c):_e34 ?
13 Exit: (4) msw(init,s1):0.5 ? · · · switch init takes a value s1
14 Call: (7) hmm(1,10,s1,_c60) ? · · · first recursive call of hmm/4
15 Call: (8) 1>10 ?
16 Fail: (8) 1>10 ?
17 Call: (9) msw(out(s1),_f24):_1060 ?
18 Exit: (9) msw(out(s1),a):0.5 ? · · · switch out(s1) takes a value a
19 Call: (12) msw(tr(s1),_f6c):_11bc ?
20 Exit: (12) msw(tr(s1),s0):0.5 ? · · · switch tr(s1) takes a value s0
21 Call: (15) _f88 is 1+1 ?
22 Exit: (15) 2 is 1+1 ?
23 Call: (16) hmm(2,10,s0,_f28) ? · · · second recursive call of hmm/4
24 Call: (17) 2>10 ?
25 Fail: (17) 2>10 ?
26 Call: (18) msw(out(s0),_12cc):_1408 ?
27 Exit: (18) msw(out(s0),b):0.5 ? · · · switch out(s0) takes a value b
28 Call: (21) msw(tr(s0),_1314):_1574 ?
29 Exit: (21) msw(tr(s0),s0):0.5 ? · · · switch tr(s0) takes a value s0
30 Call: (24) _1330 is 2+1 ?
31 Exit: (24) 3 is 2+1 ?
32 Call: (25) hmm(3,10,s0,_12d0) ? · · · third recursive call of hmm/4
33 Call: (26) 3>10 ?
34 Fail: (26) 3>10 ?
35 Call: (27) msw(out(s0),_1684):_17c0 ?
36 Exit: (27) msw(out(s0),a):0.5 ? · · · switch out(s0) takes a value b
37 Call: (30) msw(tr(s0),_16cc):_191c ?
38 Exit: (30) msw(tr(s0),s1):0.5 ? · · · switch tr(s0) takes a value s0
39 Call: (33) _16e8 is 3+1 ?
40 Exit: (33) 4 is 3+1 ?
41 Call: (34) hmm(4,10,s1,_1688) ? · · · fourth recursive call of hmm/4
42 Call: (35) 4>10 ?
43 :

Figure 2.1: Trace of a sampling execution of hmm(L).

hmm(T,N,_,[]):- T>N,!.
hmm(T,N,S,[Ob|Y]) :-

msw(tr(S),Next), % modified
msw(out(S,Next),Ob), % modified
T1 is T+1,
hmm(T1,N,Next,Y).

str_length(10).

Note here that, in the recursive clause of hmm/4, the switch out(S,Next) should be called after Next is
determined as a ground term s0 or s1 by the switch tr(S). The Bayesian network programs shown in §10.3 are
another typical example.

⋄ Subgoal patterns to be tabled

For an efficient execution of explanation search, the argument patterns of the subgoals to be tabled should be kept
minimal. For example, let us consider the following HMM program where the predicates hmm/{2,5} have an
auxiliary argument denoted by Seq to record a sequence of state transitions:

hmm(L,Seq):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,Seq,L). % Start stochastic transition (loop)

hmm(T,N,_,[],[]):- T>N,!. % Stop the loop
hmm(T,N,S,[S|Seq],[Ob|Y]) :- % Loop: the state is S at time T
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msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Seq,Y). % Go next (recursion)

This program works fine in sampling execution, as shown below, but a performance problem will arise in expla-
nation search, especially for longer strings.

?- sample(hmm(L,Seq)).
L = [b,b,a,b,a,a,a,a,b,b]
Seq = [s1,s0,s0,s1,s1,s0,s1,s0,s1,s0] ?

The reason is that the added argument increases the number of different subgoal patterns of hmm/5 and prevents
effective substructure sharing in tabling (§2.4.2). For instance, even for a short string [a,b,b], we have many
unshared iff-formulas as follows:

...

hmm(1,3,s0,[s0,s0,s0],[a,b,b])

⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[s0,s0],[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[s0,s0],[b,b]))

hmm(1,3,s0,[s0,s0,s1],[a,b,b])

⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[s0,s1],[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[s0,s1],[b,b]))

hmm(1,3,s0,[s0,s1,s0],[a,b,b])

⇔ (msw(out(s0),a) ∧ msw(tr(s0),s0) ∧ hmm(2,3,s0,[s1,s0],[b,b]))

∨ (msw(tr(s0),s1) ∧ msw(out(s0),a) ∧ hmm(2,3,s1,[s1,s0],[b,b]))
...

We see from above that the added 4th argument of hmm/5 undesirably segments the subgoal hmm(1,3,s0,
[a,b,b]) in the iff-formulas shown in page 13. Therefore we should keep the subgoal patterns minimal, by
avoiding the use of auxiliary arguments like the 4th argument of hmm/5.

Fortunately, even when removing such auxiliary arguments, the patterns of the subgoals or the random switches
in an explanation have sufficiently rich information in most cases. For example, in the HMM program in §1.3,
the following utility predicate viterbi_states/2 easily extracts a sequence of state transitions from the most
probable explanation obtained by a Viterbi inference:

viterbi_states(L,Seq):-
viterbif(hmm(L),_,E), % Get the most probable explanation E
viterbi_subgoals(E,Gs), % Extract the subgoals Gs from E
maplist(hmm(_,_,S,_),S,true,Gs,Seq).

% Extract the sequence Seq of the states appearing in Gs

where viterbif/3 (§4.5.1), viterbi_subgoals/2 (§4.5.2) and maplist/5 (§4.16) are the built-in pred-
icates of the programming system. We may run this utility predicate as follows:

?- viterbi_states([a,a,a,a,a,b,b,b,b,b],States).
States = [s0,s1,s0,s1,s0,s1,s0,s1,s0,s1,s0] ?

⋄ Tabling strategy

As described before, the programming system runs linear tabling for explanation search, in which every solution
of a predicate call is stored into the solution table, and the stored solutions are consumed in later calls. In linear
tabling, two strategies have been proposed in the consumption of solutions. The lazy strategy postpones the
consumption of solutions until no solutions can be produced by the application of the rules (the clauses with
non-empty bodies), while the eager strategy puts priority on the consumption of solutions over rule applications.
Please consult [68] for a detailed description on these strategies. The programming system adopts the lazy strategy
since it is suitable for exhaustive search. On the other hand, we need to note that, for example, the cut operator in
“p(X),!,q(X)” does not work in the lazy strategy in a usual sense, since the programming system will try to
find all solutions for p(X) before reaching the cut operator.
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⋄ Infinite terms

A known problem in the current programming system is that it immediately crashes when some tabled goal con-
tains an infinite Prolog term, such as the one created by X = [a|X]. To be more specific, for such a case, a
recursively defined hash function cannot terminate, and the depth of recursion easily excesses the limit of the call
stack. Like other Prolog systems, the programming system does not perform occur check, so we should be sure
that infinite terms do not appear in the program.

2.4.4 Handling failures*
As previously mentioned, a PRISM program basically describes a probabilistic generation process of the data at
hand. On the other hand, there could be a case where failures may be caused in the process by some constraints.
In a probabilistic context, this implies that some probability mass is lost, and hence we cannot directly apply a
traditional learning algorithm which assumes the no-failure condition, i.e. there is no failure in the generation
process. However it is sometimes difficult to write a program without failures. In such a case, the difficulty could
be resolved by using a special learning routine.

In usual maximum likelihood (ML) estimation, we try to find the parameters θ that maximize the likelihood∏
t Pθ(Gt), the product of the probabilities of the observed data Gt being generated.12 Instead of this, we exclude

the probability mass which is lost by failures, and try to maximize
∏

t Pθ(Gt | succ), the product of the conditional
probabilities of the observed data being generated under the condition that no failure arises (indicated by succ).

To be more specific, let us consider a program which considers the agreement in coin flipping.13 The modeling
part is written as follows:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

The predicate agree(A) means that two outcomes of flipping two coins meet as A, and that we fail to observe
any result when they differ. So this program violates the no-failure condition. On the other hand, the predicate
success/0 denotes the event succ above since it is equivalent to ∃X agree(X), i.e. we have some observation.
PRISM assumes that all possibilities in which a failure arises are denoted by a predefined predicate failure/0.
In this program, and probably in many cases, failure/0 can be defined as a negation of success/0. However,
in other cases, it is necessary to define failure/0 explicitly. Under this setting, the target of maximization for
the system is rewritten as

∏
t Pθ(Gt | succ) =

∏
t{Pθ(Gt)/Pθ(succ)} = ∏t{Pθ(Gt)/(1 − Pθ(fail))}, where fail is the

event represented by failure/0, i.e. indicates that some failure arises. Cussens’s failure-adjusted maximization
(FAM) algorithm [14] is an EM algorithm that solves this maximization, by considering the number of failures as
hidden information.

It is important to notice that not/1 in the failure/0’s definition does not mean negation as failure
(NAF).14 We cannot directly simulate this negation, and hence it is eliminated by First Order Compiler [45]
when the program is loaded.15 The program above, excluding the declarations by values/2, will be compiled
as:

failure:- closure_success0(f0).
closure_success0(A):- closure_agree0(A).
closure_agree0(_):-
msw(coin(a),A),
msw(coin(b),B),
\+ A=B.

12 We assume here that the propositional random variables corresponding to the data are independent and identically distributed (i.i.d.).
13 This program comes from [57].
14 Please do not confuse it with not/1 provided by B-Prolog, which simulates negation as failure. From the theoretical view, it is important

to notice that PRISM allows general clauses, i.e. clauses that may contain negated atoms in the body.
15 More generally, First Order Compiler eliminates universally quantified implications, i.e. goals of the form ∀y(p(x, y)→ q(y, z)))
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Table 2.1: The conditional probability table Pϕ(G+|G) for the HMM program which satisfies the MAR condition.
The predicate name hmm is simply abbreviated to h. All logical variables are existentially quantified.

G+ ∈ G+
G ∈ G h([X,Y]) h([X,X]) h([a,X]) h([b,X]) h([X,a]) h([X,b]) h([a,a]) h([a,b]) h([b,a]) h([b,b])

h([a,a]) p1 p2 p3 0 p5 0 p7 0 0 0
h([a,b]) p1 0 p3 0 0 p6 0 p8 0 0
h([b,a]) p1 0 0 p4 p5 0 0 0 p9 0
h([b,b]) p1 p2 0 p4 0 p6 0 0 0 p10

where \+/1 means negation as failure. To enable such a compilation, we use the predicate prismn/1, not the
usual one (i.e. prism/1). Then it is also required to invoke the learning command, adding a special symbol
failure to the list of observed goals. A detailed description for the usage is given in §4.10, and a program
example can be found in §10.6.

2.4.5 Learning from goals with logical variables*
In parameter learning, the system accepts observed goals with (existentially quantified) logical variables. However,
we need to be aware that it is justified under the condition called the missing-at-random (MAR) condition, which
is firstly addressed by Rubin [43]. The discussion made in this section can be generalized to some cases where
the sum of probabilities of observable goal patterns exceeds unity, but as a typical case, we will concentrate on the
case of observed goals with logical variables.

First, let G be a set of observable ground atoms, and G+ be a set of atoms in G or atoms with existentially
quantified logical variables, whose ground instances are inG (i.e.G ⊆ G+). Also let us consider that the uniqueness
condition holds with G (i.e.

∑
G∈G Pθ(G) = 1 for any θ). Furthermore, for explanatory simplicity, we assume here

that every atom in G has a positive probability. For example, in the HMM program with the string length being 2,
hmm([a,b]) is in G, and hmm([a,X]) in G+. Here, it is easily seen that there is a many-to-many mapping on
ground instantiation from G to G+, and hence the sum of probabilities of goals in G+ can exceed unity.

For such a case, logical variables can be seen as a kind of missing values, and sometimes we assume that there
is a missing-data mechanism that lurks in our observation process where some part of data turns to be missing.
To be more specific, the missing-data mechanism is modeled as Pϕ(G+|G), a conditional distribution of final
observations G+ ∈ G+ on events G ∈ G, which are fully informative but hidden from us (ϕ are the distribution
parameters). Trivially, Pϕ(G+|G) = 0 holds where G is not the instance of G+. Then we further assume the MAR
condition and the parameter distinctness condition, respectively, as follows:16

• For an actual observation G+ ∈ G+ and some ϕ, Pϕ(G+|G1) = Pϕ(G+|G2) holds for any ground instances
G1,G2 of G.

• ϕ is distinct from θ.17

For the HMM program, the conditional probability table Pϕ(G+|G) under the MAR condition is shown in Table 2.1,
where p1, p2, . . . , p10 (which form ϕ) need to be assigned so that

∑
G+ Pϕ(G+|G) = 1 holds for each G ∈ G. For

example, we may have: p1 = 1/2, p2 = 0, p3 = p4 = · · · = p10 = 1/6.
As we have mentioned, in this situation, the logical variables can be seen as the missing part, and one may find

from Table 2.1 that the probability of G+ ∈ G+ only depends on the observed part, not on the missing part18 in the
case withG+. For example, we have a constant probability p3 for the different instantiations of X in hmm([a,X]).

If the MAR condition holds, it is shown that the missing-data mechanism is ignorable in making inferences for
the model parameters θ (i.e. learning θ). The programming system blindly ignores the missing-data mechanism,
but under the MAR condition, learning θ based on the goals from G+ (goals with logical variables) is justified.
Otherwise, the missing-data mechanism is said to be non-ignorable, and we may need to consider an explicit
model of the observation process. One difficulty with the MAR condition is its testability. For example, a recent
work by Jaeger tackles with this problem [24].

16 The first sub-condition implies that Pϕ(G+ |G) = Pϕ(G+)/
∑

G′: G′ is an instance of G+ Pθ(G′) for any ground instance G of G+ [23].
17 ϕ is said to be distinct from θ if the joint parameter space of θ and ϕ is the product of θ’s parameter space and ϕ’s parameter space.
18 It should be noted that the original definition of the MAR condition [43] is made on a data matrix which has missing-data cells. We can

make a correspondence between our setting (the many-to-many mapping from G to G+) and such a data matrix, by an encoding method briefly
described in Section 4.1.1 of [17]. The MAR condition roughly defined in this section should rather be called the coarsened-at-random (CAR)
condition, a generalization of the MAR condition. There are several formal definitions on the MAR/CAR condition, so it would be useful for
the interested users to consult the papers in the literature ([23], for example).
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2.4.6 Summary: modeling assumptions
For all efficient probability computations offered by the system to be realized, we have pointed out several as-
sumptions on the modeling part. In this section, let us summarize them as follows:

• Independence condition: the sampling results of the different switches are probabilistically independent,
and the sampling results of a switch with different trials (i.e. at different positions in a proof tree) are also
probabilistically independent.

• Finiteness condition: for any observable goal19 G, both the size of any explanation for G and the number of
explanations for G are finite.

• Exclusiveness condition: with any parameter settings, for any observable goal G, the explanations for G are
probabilistically exclusive to each other, and the sub-explanations for each subgoal of G are also probabilis-
tically exclusive to each other.

• Uniqueness condition: with any parameter settings, all observable goals are exclusive to each other, and
the sum of probabilities of all observable goals is equal to unity. For parameter learning, the following two
conditions form a relaxation of the uniqueness condition:

– Missing-at-random (MAR) condition: in the observation process for the data of interest, there is a
missing-data mechanism in which the probability of the data being generated does not depend on its
missing part.

– No-failure condition: for any observable goal G, the generation process for G (i.e. a sampling execution
of G) never fails.

• Acyclicity condition: for any observable goal G, there is no cyclic dependency with respect to the calling
relationship among the subgoals, which are found in a generation process for G.

It may look difficult to satisfy all the conditions above. But if we keep in mind to write terminating programs
in a generative fashion with care for the exclusiveness among disjunctive paths, these conditions are likely to be
satisfied. It can be seen in Chapter 10 that popular generative models including hidden Markov models, probabilis-
tic context-free grammars or Bayesian networks are written in this fashion. If the program violates the no-failure
condition, one possible solution is to utilize the system’s facility described in §2.4.4. Additionally, in some prob-
abilistic inferences, these conditions do not always have to be satisfied jointly. For example, Viterbi computation
(§4.5) and Viterbi training (§4.7.3) do not require the exclusiveness condition.

Theoretically speaking, it is sometimes misunderstood and hence is desired to note that the distribution seman-
tics [46, 52, 55] itself assumes none of the conditions above. We can say PRISM’s semantics is just a restricted
version of the distribution semantics, which is conscious of efficient probability computation.

2.5 Utility part
As compared to the modeling part, the utility part is quite simple — it is just a usual Prolog program with the
system’s built-ins. It is also possible to write queries, each of which takes the form “:-Q.” These queries are
issued after the program is completely loaded.

2.6 Declarations
Declarations are made with several predefined predicates to give additional information to the system — outcome
spaces of switches (multi-valued switch declarations), the source of observed data (data file declarations), tabled
and non-tabled predicates (table declarations), and some other program files to be included (inclusion declara-
tions).

Since version 1.12, the target declaration (with target/1) is treated as obsolete, and hence has no effect on
the program. Also as will be mentioned in §2.6.1, the data file declaration is now preferred to be replaced by an
execution flag named data_source (see §4.7.5 or §4.13.2).

19 Observable goals are the goals which can all potentially arise in the data. We can of course consider a countably infinite number of
observable goals.
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2.6.1 Data file declaration
A data file declaration takes the form:

data(Filename).

where Filename is the filename of observed data. As in Prolog, a filename must be an atomic symbol. On
the other hand, since version 1.12, the use of an execution flag (see §4.13 for handling execution flags) named
data_source (§4.13.2) is more preferred. By using this execution flag, we can switch the data file on demand
in the utility part, and can use the predicate data/1 for other purposes.

2.6.2 Multi-valued switch declarations
⋄ Basic form

A multi-valued switch declaration basically takes the following form:

values(I,Values).

where I denotes a switch identifier and Values is the list of ground terms indicating the possible outcomes (or the
outcome space) of I. For example,

values(temperature,[high,medium,low]).

declares that switch temperature has three possible outcomes: high, medium and low.
The first argument I in a switch declaration can be an arbitrary Prolog term. All switches that have matching

identifiers will have a declaration list of outcomes. If there are multiple declarations for a switch, the first matching
declaration is used. For instance, consider the declarations:

values(f(a,a),[1,2,3]).
values(f(X,X),[a,b]).
values(f(_,_),[x,y,z]).

Then, switch f(a,a) has the outcomes 1, 2 and 3, switch f(b,b) has the outcomes a and b, and switch
f(a,b) has the outcomes x, y and z.

Until version 1.12, values/2 has been treated just as a non-probabilistic clause which can be called in the
other part of the program (i.e. both the modeling part and the utility part). However, since version 2.0, each multi-
valued switch declaration with values/2 is no more than a declaration and hence cannot be called from any
other part. Instead, a built-in predicate get_values/2 is available (see §4.1.9 for details):

?- get_values(temperature,Values).

Values = [high,medium,low]

This change of specification was made to add flexibility to the multi-valued switch declarations for future exten-
sions. For backward compatibility, all appearances of values(I,Values) in the clause bodies in the program are
automatically replaced with get_values(I,Values) while the program loaded.

⋄ On-demand specification of the outcome space

A multi-valued switch declaration can have a non-probabilistic body that dynamically generates a list of outcomes
(a list of ground terms) for the corresponding switch. For instance, in the following declaration,

values(s,Vals):-
findall([X,Y],(member(X,[1,2,3]),member(Y,[a,b])),Vals).

switch s has as outcomes the pairs of terms in which one from {1, 2, 3} and another from {a, b}. From a viewpoint
of efficiency, however, the above declaration would be time-consuming since the body of a multi-valued switch
declaration is evaluated at each time the corresponding msw/2 is called.20

There is a case where some switches have outcome spaces that dynamically change. Let us consider a part of
a program as follows:

20 Since version 2.0, it is not a good idea to specify values/2 as a tabled predicate.
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:- dynamic s2_vals/1.

values(s2,Vs):- s2_vals(Vs). % Multi-valued switch declaration

s2_vals([a,b,c]).

change_values(Vs):- retract(s2_vals(_)), assert(s2_vals(Vs)).

In this program fragment, the outcome space of a switch s2 is specified by s2_vals/1, a user-defined non-
probabilistic predicate. Also it is easy to see that the outcome space of s2 are (indirectly) modified by calling
change_values(Vs), where Vs is a list of new outcomes. For such a case, the probability distributions (or
parameters) of s2 maintained by the programming system can be inconsistent, and should be problematic in many
cases. By default, when some modification in the outcome space of a switch is detected, the system automatically
sets the default distribution to the switch (by set_sw/1; §4.1.6), before invoking the routines that refer to the
distributions of switches (e.g. sampling, probability computations, get_sw/2 and so on).

On the other hand, the bodies of the multi-valued switch declarations should not include the predicate calls that
cause any side-effects, since the multi-valued switch declarations are frequently referred to inside the programming
system.

⋄ Extended form

In values/2, we can write a multi-valued switch declaration which includes a range specification ‘Min-Max’,
where Min and Max are integers and Min ≤ Max. For instance, the declaration

values(s,[1-10]).

is equivalent to

values(s,[1,2,3,4,5,6,7,8,9,10]).

Furthermore, we can specify two or more ranges in a list, and it is also possible to specify the skip number N in
the form @N suffixed to the range specification. For instance,

values(foo,[3,8,0-3@2,7-20@5]).

is the same as values(foo,[3,8,0,2,7,12,17]).21 Inside the system, while the program loaded, the
values/2 clauses including ground range specifications will be translated to the values/2 clauses with the
corresponding expanded values, like above, by the built-in expand_values/2 (§4.1.4). On the other hand, the
second argument of values/2 (i.e. the outcome list) are not ground, the clauses in the form “values(Sw,
Values):- Body” will be translated into:

values(Sw,Values1):- Body,expand_values(Values,Values1).

Note, on the other hand, that some exception will occur if the program includes the clauses “values(Sw,
Values)” where the second argument Values is not ground. Now we are in a position to have parameterized
multi-valued switch declarations:

num_class(20).
values(class,[1-X]):- num_class(X).

In addition, using values/3, we can set/fix parameters of switches with ground names after the program
loaded. Please note however that, for the declarations of switches with non-ground names, the parameters can
neither be set nor fixed. Similarly to values/2, the range specifications in values/3 will be also translated
to values/3 with the corresponding expanded values. For the detailed descriptions on setting and fixing switch
parameters, please visit §4.1.6 and §4.1.7, respectively. Now let us consider the examples:

values(foo(0),[1,2,3],fix@[0.2,0.7,0.1]).
values(bar,[1,2,3],set@[0.2,0.7,0.1]).
values(baz(a,b),[1,2,3],[0.2,0.7,0.1]).
values(u_sw,[1,2,3],uniform).

21 Currently, the system neither considers sorting nor deletion of duplicate values on the expanded values.
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In the first case, we declare a switch foo(0) whose values are 1, 2, and 3 and whose parameters are fixed to
0.2, 0.7, and 0.1 respectively. In the second case, we declare a switch bar, only setting parameters, not fixing
parameters. In the third case in which set@ or fix@ prefixes are omitted, the parameters will not be fixed (i.e.
the default is set@). As in the last case, we can set/fix the parameters in a distribution form.

Inside the system, to set/fix parameters, set_sw/2 (§4.1.6) or fix_sw/2 (§4.1.7) will be invoked while the
program loaded. In this sense, the third argument of values/3 can be seen as a built-in directive. Note here that
this directive will not be executed if the first and the third arguments of values/3 include logical variables. Also
note that, for each declaration with values/3, the directive is executed only once while the program loaded —
not every time the declared switch is used in the program, and thus, for the switches whose outcome spaces are
dynamically changed, values/3 may not work as expected.

Furthermore, we can configure the pseudo counts of switches as well. For the switches specified with set_d@
(resp. fix_d@), the programming system will call set_sw_d/2 (resp. fix_sw_d/2) while the program
loaded. Similarly, for the switches specified with set_a@ (resp. fix_a@), the programming system will call
set_sw_a/2 (resp. fix_sw_a/2). The modifier d@ (resp. a@) can be used as an abbreviation of set_d@
(resp. set_a@). For example, we may declare:

values(foo(0),[1,2,3],fix_d@[1.0,2.0,0.5]).
values(bar,[1,2,3],set_d@[1.0,2.0,0.5]).
values(baz(a,b),[1,2,3],d@[1.0,2.0,0.5]).
values(u_sw,[1,2,3],d@0.5).

Furthermore, it is possible to execute two or more directives simultaneously by connecting with ’,’/2 (the latter
directives can overwrite the formers):

values(u_sw,[1,2,3],(uniform,d@0.5)).

For backward compatibility, the modifiers h@, set_h@ and fix_h@ are available as the aliases of d@, set_d@
and fix_d@, respectively.

2.6.3 Table declarations
In PRISM, all probabilistic predicates are tabled by default as long as a program is compiled (§3.3). On the other
hand, the user can declare which predicates are to be tabled. The statement

:- p_table p/n.

declares that the probabilistic predicate p/n is tabled, where p is the predicate name and n is the arity. In this case,
please note that all other probabilistic predicates that are not declared will not be tabled.

The user can also declare predicates that need not be tabled by using the statement:

:- p_not_table p/n.

The declarations p_table and p_not_table cannot co-exist in a program. Once a program contains a
p_not_table declaration, all the probabilistic predicates that do not occur in any p_not_table declaration
are assumed to be tabled. p_not_table seems useful in the following cases:

• It is obviously inefficient (especially in space) to store the solutions for probabilistic but deterministic pred-
icates (i.e. the predicates which only call probabilistic predicates deterministically). So it is recommended
to use the p_not_table declarations for such predicates, as long as they are not referred to as subgoals.22

• The solutions for tabled predicates will appear as subgoals in the explanation graphs, and we can handle such
explanation graphs in various ways (by probf/2 or viterbif/3, for example). If we wish to make such
explanation graphs simple and readable, it might be useful to use p_not_table for the predicates which
are not important to understand the explanation graphs. Of course there is a trade-off between the readability
of such explanation graphs and the efficiency in computation.

It should be noted that, when a program is loaded with the consult option (§3.3), none of probabilistic predicates
will be tabled regardless of the table declarations.23

For non-probabilistic predicates, B-Prolog’s table declaration is available (see B-Prolog’s manual for details):

:- table p/n.
22 In hindsight computation (§4.6) or in extracting explanations graphs (§4.4), we often need to refer to some particular subgoals explicitly.

In such cases, we cannot apply p_not_table to the predicates of these subgoals.
23This restriction is mainly due to implementational reasons.
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2.6.4 Inclusion declarations
If probabilistic predicates are stored in several files, then all these files must be included by using the directive
:- include(File) in the main file. If the filename of a PRISM program includes the dot symbol, it should be
enclosed by the single quotation mark like :- include(’foo.psm’).

2.6.5 Mode declarations
The mode declarations supported by B-Prolog also work for both probabilistic predicates and non-probabilistic
predicates in PRISM. For a detailed description, please consult the user’s manual of B-Prolog.

2.6.6 Declaration related to debugging
With the following declaration, the programming system strips write_call/1-2, a debugging facility for
logging particular predicate calls, at the compile time (see §3.6.4 for details).

:- disable_write_call.
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Chapter 3

PRISM programming system

3.1 Installing PRISM
PRISM is implemented on top of B-Prolog. The release package contains all standard functionalities of B-Prolog,
and therefore it is unnecessary to install B-Prolog separately.

3.1.1 Windows
To install PRISM on Windows, you need to make the following steps:

1. Download the package prism22_win.zip.

2. Unzip the downloaded package under C:\ .

3. Append C:\prism\bin to the environment variable PATH so PRISM can be started at every working
folder.1

3.1.2 Linux
A single united package prism22_linux.tar.gz is provided for x86-based Linux systems. The binaries are
expected to work on the systems with glibc 2.3 or higher.2 Typical steps for installation are as follows:

1. Download the package prism22_linux.tar.gz into your home directory.

2. Unpack the downloaded package using the tar command.

3. Append $HOME/prism/bin to the environment variable PATH so that PRISM can be started under any
working directory.3

Internally, the package contains a binary for 64-bit systems. The start-up commands (prism, upprism and
mpprism) automatically choose a binary suitable for your environment.

3.1.3 Mac OS X
The package prism22_macx.tar.gz is provided for Mac OS X and contains a binary for Intel processors. To
install the package, please follow the steps for Linux (§3.1.2). Please note that we have not tested the Mac OS X
package well, since our test environment for Mac OS X is rather limited.

1 If you have installed PRISM in a folder other than C:\, you need to change the path accordingly. In the case of Windows 98/Me, you
also have to edit the batch file prism.bat in the bin folder.

2Note that the utility of parallel EM learning has more requirements on the environments; see §9.2 for details.
3If you have installed PRISM in a directory other than your home directory, you need to change the path accordingly.
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3.2 Entering and quitting PRISM
You need to open a command terminal first before entering PRISM. To do so on Windows, open the Start menu,
then select: All Programs → Accessories → Command Prompt. On Linux and Mac OS X, find and start an
application named Terminal.

To enter PRISM, type

prism

at the command prompt. Once the system is started, it responds with the prompt ‘| ?-’ (in this manual, we
simply write ‘?-’ instead) and is ready to accept Prolog queries.

To quit the system, use the query:

?- halt.

or simply enter ˆd (Control-d) when the cursor is located at an empty line. We can confirm the version of the
programming system by typing get_version(Version) or print_version [no args] .

3.3 Loading PRISM programs
The command prism(File) compiles the program in File and loads the binary code into the system. For example,
suppose ‘coin.psm’ stores a PRISM program, then the command

?- prism(coin).

compiles the program into a byte code program ‘coin.psm.out’ and loads ‘coin.psm.out’ into the system.
A program may be stored in multiple files, but only the main file may be loaded. In the main file, all the files in

the program that contain probabilistic predicates must be included by using the directive ‘:- include(FileName)’
(§2.6.4). In this way, the system’s compiler will access all the probabilistic predicates when the program is loaded.
Standard Prolog program files that do not contain probabilistic predicates can be compiled and loaded separately
by using compile/1 and load/1 commands of B-Prolog.

The command prism(Options,File) loads the PRISM program stored in File into the system under the
control of the options given in a list Options. If the file has the extension name ‘.psm’, then only the main file
name needs to be given. The following options are allowed:

• compile — Load the program after it is compiled (default).

• consult — Load the program without compilation. This option must be specified if the program is to be
debugged. Note that, when this option is specified, probabilistic predicates will not be tabled at all (see also
§2.6.3).

• load — Load the (compiled) binary code program with the suffix .psm.out . This option enables us to
save the compilation time. To load a program containing probabilistic predicates, it is highly recommended
to use this option rather than direct use of load/1 (B-Prolog’s built-in)4

• v — Monitor the learning process.

• nv — Do not monitor the learning process (default).

For example, by ?- prism([consult],foo), we can load the program without compilation.
In addition, we can specify the values of execution flags (§4.13) as loading options, each takes the form

‘Flagname=Value’. For example, if we want to set a value on to the log_scale flag, add log_scale=
on to Options. The options ‘v’ and ‘nv’ can also be specified by ‘verb=on’ and ‘verb=off’, respectively.
Even if we have a query like ‘:-set_prism_flag(Flagname,Value0)’ in the program, this setting can be
overwritten by the setting in Options. The command prism(File) described above is the same as prism([],
File), which means that the program is loaded with the default options and no additional flag settings.

4 On the other hand, we can load the compiled binary code of a usual (i.e. non-probabilistic) Prolog program by load/1.
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prism(File) -- compile and load a program
prism(Opts,File) -- compile and load a program

msw(I,V) -- the switch I randomly outputs the value V

learn(Gs) -- learn the parameters
learn -- learn the parameters from data_source
sample(Goal) -- get a sampled instance of Goal
prob(Goal,P) -- compute a probability
probf(Goal,F) -- compute an explanation graph
viterbi(Goal,P) -- compute a Viterbi probability
viterbif(Goal,P,F) -- compute a Viterbi probability with its explanation
hindsight(Goal,Patt,Ps) -- compute hindsight probabilities

set_sw(Sw,Params) -- set parameters of a switch
get_sw(Sw,SwInfo) -- get information of a switch
set_prism_flag(Flg,Val) -- set a new value to a flag
get_prism_flag(Flg,Val) -- get the current value of a flag

Figure 3.1: The output of prism_help/0.

3.4 Configuring the sizes of memory areas*
B-Prolog, the base system of the PRISM programming system, has four memory areas: program area, control
stack + heap, trail stack and table area. These areas are automatically expanded on demand, so there is no need to
specify the sizes of memory areas manually.

If you already know the memory sizes used by your program, you can specify the sizes of initial memory
areas by modifying the corresponding values in the start-up commands prism (a shell script on Linux) and
prism.bat (a batch file on Windows), or by specifying command line options -s (control stack + heap), -b
(trail stack), -t (table area) and -p (program area). For example,

prism -s 8000000

starts the programming system with 8 megawords (32 megabytes on 32-bit environments, 64 megabytes on 64-bit
environments) allocated to the control stack + heap area. B-Prolog’s built-in statistics/0 will show the
allocated sizes of these memory areas.

3.5 Running PRISM programs
The command prism_help/0 displays the usage of the basic built-ins in the programming system (Figure 3.1).
The details of these built-ins are described in Chapter 4.

As mentioned before, the modeling part of a PRISM program can be executed in two different styles, namely
sampling execution (§2.4.1) and explanation search (§2.4.2). The system is in sampling execution if it is given
a probabilistic goal or sample(Goal) (§4.2) as a top goal. In sampling execution, a goal may give different
results depending on the outcomes of the switches. On the other hand, an explanation search will be invoked in
advance of numerical computations in learning (with learn/0 or learn/1; §4.7), probability calculation (with
prob/2 and so on; §4.3), Viterbi computation (with viterbif/3 and so on; §4.5), and hindsight computation
(with hindsight/3 and so on; §4.6). probf/2 or its variation (§4.4) only makes an explanation search and
outputs explanation graphs, the intermediate data structure used in the numerical computations above.

In addition, there are miscellaneous built-in predicates which handle switch parameters (set_sw/2 and so
on; §4.1) or the flags for various settings of the system (set_prism_flags/2 and get_prism_flags/2;
§4.13).

3.6 Debugging PRISM programs
The programming system provides a couple of ways to debug the program — viewing explanations, tracing the
program, and logging predicate calls. The user can choose one of these debugging methods according to the
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purpose. Also, in advance of debugging, it would be helpful to check the basic information about the program.

3.6.1 Basic program information
After a program loaded, we can get the basic information about the program by the following built-ins:

• show_values/0 displays the outcomes of the switches registered (§4.1.3) at the moment.

• show_prob_preds/0 displays the list of probabilistic predicates.

• show_tabled_preds/0 displays the list of tabled predicates.

• is_prob_pred(F/N) or is_prob_pred(F,N) succeeds when the predicate F/N is a user-defined
probabilistic predicate.5

• is_tabled_pred(F/N) or is_tabled_pred(F,N) succeeds when the predicate F/N is a tabled
probabilistic predicate.

3.6.2 Viewing explanations
As described above, probabilistic inferences with some given goal G are made on the explanations for G. So
probf/1-2 (§4.4) should be the first choice as a static debugging tool at symbolic level since they are designed
to output all explanations for G. Furthermore, since version 1.12, we can check the explanations numerically
by using the built-in predicates that output the explanations with the inside, outside and Viterbi probabilities
(probfi/1-2, probfo/1-2 and probfv/1-2, respectively; see §4.4.4 for details).

3.6.3 Tracing the program
Furthermore, programs can be executed in the trace mode. The command trace/0 switches the execution mode
to the trace mode, and the command notrace/0 switches the execution mode back to the usual mode. In the
trace mode, the execution steps of programs loaded with the option consult (§3.3) can be traced. To trace part
of the execution of a program, use spy/1 to set spy points, i.e. “?- spy(Atom/Arity).” The spy points can be
removed by “?- nospy.” To remove only one spy point, use “?- nospy(Atom/Arity).”

In (forward) sampling, the trace of a program looks the same as that of a normal Prolog program except that
for the built-in msw(I,V) the probability of the outcome V is shown. For example, the following trace steps
show that the outcome of the trial of the switch is ‘head’, which has probability 0.5.

Call: (7) msw(coin,_580ebc):_580ff8 ?
Exit: (7) msw(coin,head):0.5 ?

On the other hand, the trace mode does not work in explanation search, since in the current implementation, the
built-in predicates such as prob/1-2, probf/1-2, viterbif/{1,3} and so on require a tabled probabilistic
goal as input, while all user-defined probabilistic predicates will not be tabled with the consult option. This
limitation needs to be removed in the future release.

3.6.4 Logging predicate calls
In our experience, it is often difficult to identify subgoals that cause unexpected failures. Although the trace mode
(§3.6.3) may help us find the culprits, it is only usable when the target program is loaded with the consult
option. Also, the tracer displays all calls of any predicates (or the spied predicates in the case of using spy/1),
so it might be uneasy to see the behavior of particular calls. Moreover, it is not feasible to follow the explanation
search via linear tabling.

From this background, since version 1.12, the built-in predicates write_call/1-2 are provided as a new
debugging aid. These predicates take a subgoal (say, a watched subgoal) as their argument, and call the subgoal
with displaying the execution message of the subgoal at the events, namely, the entrance, success, reentrance and
failure. The execution message shows the type of event and the watched subgoal to help us find the unexpected
behavior.

5 On the other hand, is_prob_pred/1-2 fail for msw/2, since it is a built-in probabilistic predicate.
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⋄ Basic usage

write_call(Goal) calls Goal with displaying the execution message at all events (i.e. the entrance, success,
reentrance and failure of the subgoal) in the default setting, or at the events specified in the write_call_events
flag (§4.13.2). write_call(Opts,Goal) calls Goal with displaying a according to the specified options Opts,
which is a list of zero or more of the following Prolog terms:

• call, exit, redo, fail, exit+fail, all, etc. — specify the events at which the message is dis-
played. call, exit, redo and fail denote the entrance, success, reentrance and failure of the subgoal
respectively. It is also possible to specify multiple events by connecting them with a plus sign (‘+’), such as
exit+fail meaning that the message should be displayed at the return (both successful and failed) from
the subgoal. all is equivalent to call+exit+redo+fail and thus denotes all of the four events. In the
case of no events specified, the predicate follows the write_call_events flag.

• indent(N) — indent the message by N spaces (by default, N = 0).

• marker(Term) — display the message with Term as the marker.

Note here that Goal is not allowed to contain any control constructs other than conjunctions (‘,’), such as cuts
(‘!’), disjunctions (‘;’), negations (‘\+’) and conditionals (‘->’). A call of the write_call predicate succeeds
when (and only when) the watched subgoal succeeds. Here are a couple of examples:

?- write_call(member(X,[1,2])).

[Call] member(_830,[1,2])
[Exit] member(1,[1,2])
X = 1 ?;
[Redo] member(1,[1,2])
[Exit] member(2,[1,2])
X = 2 ?;
[Redo] member(2,[1,2])
[Fail] member(_830,[1,2])

no

?- write_call([exit+fail],member(X,[1,2])).

[Exit] member(1,[1,2])
X = 1 ?;
[Exit] member(2,[1,2])
X = 2 ?;
[Fail] member(_878,[1,2])

no

?- write_call([indent(4),marker(test)],(write(hello),nl)).

[Call:test] write(hello),nl
hello

[Exit:test] write(hello),nl

yes

⋄ Short forms

As a syntactic sugar, the programming system also accepts the following short forms:

• (?? Goal) is equivalent to write_call(Goal).

• (??* Goal) is equivalent to write_call([all],Goal).

• (??> Goal) is equivalent to write_call([call],Goal).

• (??< Goal) is equivalent to write_call([exit+fail],Goal).

• (??+ Goal) is equivalent to write_call([exit],Goal).
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• (??- Goal) is equivalent to write_call([fail],Goal).

Usually, the surrounding parentheses are not required, and thus we can use these forms just by adding ‘??’ (or
‘??*’ etc.) at the left of the watched subgoals.6

⋄ Use in programs

A typical usage of write_call/1-2 should be to embed them in the program. write_call(Goal) appear-
ing in the program is the same as Goal except that the execution messages are displayed as indicated. For example,
a recursive clause

hmm(T,N,S,[Ob|Y]) :-
msw(out(S),Ob), msw(tr(S),Next), T1 is T+1,
write_call([call],hmm(T1,N,Next,Y)).

or equivalently,

hmm(T,N,S,[Ob|Y]) :-
msw(out(S),Ob), msw(tr(S),Next), T1 is T+1,
??> hmm(T1,N,Next,Y).

has a watched subgoal hmm(T1,N,Next,Y), and then we can check the patterns of arguments of this recursive
call. On the other hand, note that we may have a flood of execution messages when performing a huge explanation
search.

⋄ Disabling logging

The following declaration will completely strip the write_call predicates in a program, that is, every occur-
rence of write_call(G) in the program will be replaced with G at compilation time:

:- disable_write_call.

For instance, the above recursive clause for hmm/4 will be compiled as if it were defined as:

hmm(T,N,S,[Ob|Y]) :-
msw(out(S),Ob), msw(tr(S),Next), T1 is T+1,
hmm(T1,N,Next,Y).

Similarly, at runtime, the following flag setting disables the write_call predicates:

?- set_prism_flag(write_call_events,off).

3.7 Batch execution*
The released package provides additional commands for batch execution. To enable batch execution, we need the
following two steps:

• Add a query we attempt to run as a batch execution to the program.

• Run the command upprism at the shell prompt (Linux) or the command prompt (Windows), instead of
prism.

The query for batch execution is specified in the body of prism_main/0-1. For example, for a simple
learning session, we may add the following definition of prism_main/0 to the program foo.psm:

prism_main:-
random_set_seed(5893421),
get_data_from_somewhere(Gs), % user-defined predicate
learn(Gs).

Then we run upprism specifying the program name:
6 These symbols are declared as fx-type operators with the preference of 950, which means to be lower than a conjunction (‘,’) and higher

than a negation (‘\+’).
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upprism foo

at the shell prompt (Linux) or the command prompt (Windows). If we want to pass arguments to upprism, it
is needed to define prism_main/1 instead of prism_main/0. For example, let us introduce two arguments,
where the first is a seed for random numbers and the second is the data size. The corresponding batch clause could
be as follows:

prism_main([Arg1,Arg2]):-
parse_atom(Arg1,Seed), % parse_atom/2 is provided by B-Prolog
parse_atom(Arg2,N),
random_set_seed(Seed),
get_data_from_somewhere(N,Gs), % assume that we’ll get N data
learn(Gs). % as Gs here

The command arguments will be passed to prism_main/1 as a list of atoms. Hence it is important to note that
to pass integers, we need to parse the corresponding atoms in advance, that is, we need to get an integer 5893421
from an atom ’5893421’. The parsing is done by parse_atom/2, a built-in provided by B-Prolog. After this
setting, we can conduct a batch execution as follows:

upprism foo 5893421 1000

If both prism_main/0 and prism_main/1 co-exist in one program, upprismwill run only prism_main/1.
For such a program, if we invoke upprismwith no command-line arguments, prism_main([])will be called,
and so an unexpected behavior is likely to be caused. An additional setting like below might be useful:

prism_main([]) :- prism_main.

Furthermore, upprism provides some variations in the file specification:7

• upprism prism:foo
This is the same as “upprism foo”, that is, the system will read a usual program file foo.psm (which has
no definition of the predicate failure/0).

• upprism prismn:foo
The system will read a failure program file foo.psm (which has a definition of failure/0; see §4.10).8

• upprism load:foo
The system will read a (compiled) binary code file foo.psm.out . By this, we would save the compilation
time.

Moreover, mpprism is available as a batch command for parallel learning. Please consult Chapter 9 for the
detailed usage.

3.8 Error handling
Since version 2.0, when the system encounters an error, it will raise an exception in the same way as that of B-
Prolog. Also to handle exceptions, we can use B-Prolog’s built-ins catch/3 or throw/1. If you meet some
exception, it is recommended to load the program again or to invoke the programming system again (of course,
the latter is safer). Besides, if you meet a message beginning with “PRISM INTERNAL ERROR” or an exception
term that includes prism_internal_error(Error), where Error is the error type, the problem should not
have been caused by the user program, but the system. In such a case, please make a contact to the development
team (see page i).

7 Some users may want to use ‘-g’ option introduced since B-Prolog 6.9. That is, we can run “prism foo.psm.out -g ’go’” to
load the binary code ‘foo.psm.out’ and then to execute a query “go”.

8 This is a replacement for the command upprismn, which was introduced in version 1.9.
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Chapter 4

PRISM built-in utilities

4.1 Random switches

4.1.1 Making probabilistic choices
The built-in msw(I,V) succeeds if a trial of a random switch I gives an outcome V. To use a switch I, there
must be a multi-valued switch declaration (§2.6.2) for I in the program. Also note that, as previously mentioned,
switches have different behaviors for sampling execution (§2.4.1) and explanation search (§2.4.2). To see the
difference, let us pick up again the simplified definitions of msw/2 for two execution styles:

For sampling execution:

msw(I,V):-
get_values1(I,Values),
$get_probs(I,Probs),
$choose(Values,Probs,V).

For explanation search:

msw(I,V):- get_values1(I,Values),member(V,Values).

where get_values1(I,Values) is a built-in predicate that deterministically returns the outcomes of switch I
to Values (introduced in version 2.0; see §4.1.5), $get_probs(I,Probs) returns Probs which is a list of switch
I’s parameters, and $choose(Values,Probs,V) returns V randomly from Values according to the probabilities
Probs. We can use random switches freely as long as they behave as expected according to the definitions above
and the execution style we take.

Additionally, in version 2.0.1, new built-in predicates soft_msw/2 and b_msw/2 for backtrackable sam-
pling execution of random switches are introduced. See §4.1.11 for details.

4.1.2 Probabilistic behavior of random switches
It is also mentioned in §2.2 that the probabilistic behaviors of random switches are specified by their own prob-
ability distributions. That is, a random switch i gives an outcome v with probability θi,v, and we call θi,v as a
parameter for the switch i. These parameters can be set by using set_sw/2 (§4.1.6) or by parameter learning
(§4.7). Without any particular settings, the parameters are set to the default ones specified by the default_sw
flag (see §4.1.3).

Furthermore, in Bayesian approaches, we consider that the parameters θ follow the prior distribution (a Dirich-
let distribution) P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v which has hyperparameters αi,v (> 0), each corresponding to a parameter θi,v

(Z is a normalizing constant). These hyperparameters need to be given in advance to the routines for maximum
a posteriori (MAP) estimation (§4.7.4) or variational Bayesian (VB) learning (§5.1). Since version 2.0, the pro-
gramming system provides a clearer way of handling hyperparameters. That is, in the context of MAP estimation,
it is recommended to handle the hyperparameters through δi,v = (αi,v − 1). δi,v are considered as pseudo counts,
and can be set manually by set_sw_d/2 and its variants (§4.1.6). On the other hand, in the context of VB
learning, the hyperparameters αi,v themselves are considered as pseudo counts and it is recommended to handle
αi,v directly. αi,v can be set manually by the built-ins such as set_sw_a/2 and its variants (§4.1.6), or adjusted
by variational Bayesian learning, as described in Chapter 5. The suffix ‘_d’ (resp. ‘_a’) in the predicate name
indicates “for pseudo counts δi,v” (resp. “for pseudo counts αi,v”). It is practically important to note that we are
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only allowed to have δi,v ≥ 0 (accordingly, αi,v ≥ 1) in MAP estimation while we can have αi,v > 0 in VB learning.
Without any particular settings, the hyperparameters (the pseudo counts) are set to the default ones specified by
the default_sw_d flag or the default_sw_a flag (see §4.1.3).

4.1.3 Registration of switches
Let us consider a program which contains no query statements (that begin with ‘:-’). Just after the program
loaded, the programming system will not have recognized any random switches at all. This is because the switch
names in the program are not always given as ground, and the system does not know at that moment what switches
will be used later (please recall that each switch is identified by a ground term). Random switches are registered
to the programming system’s internal database in the following cases:

• Their parameters or pseudo counts are set manually with the built-ins in §4.1.6 and §4.1.7.

• Their switch information is retrieved with the built-ins in §4.1.8 and §4.1.9. The parameters or pseudo
counts are automatically set to the default ones in advance.

• Their parameters or pseudo counts are referred to the built-in predicates for probabilistic inferences, i.e.
sampling (§4.2), probability calculation (§4.3), construction of the explanation graph (§4.4), Viterbi com-
putation (§4.5), and hindsight computation (§4.6). The parameters or pseudo counts are automatically set to
the default ones in advance.

• Their parameters are explicitly set by parameter learning (§4.7).

• Their hyperparameters (pseudo counts) are explicitly set by VB learning (Chapter 5).

Basically, by default, the parameters θi,v are given as uniform, and the hyperparameters αi,v are given as one (equiv-
alently, δi,v are given as zero). The default parameter is changed by the default_sw flag, and the default hyper-
parameter is changed by the default_sw_d flag (in the context of MAP estimation) or by the default_sw_a
flag (in the context of VB learning), respectively (see §4.13.2 for details).

Specifically, as described in §2.6.2, if a switch is declared with the ground name in values/3, the switch
will have been registered after the program loaded. This is because the parameters or the hyperparameters in the
third argument of values/3 will be set by set_sw/2, set_sw_d/2 or set_sw_a/2 while the program
loaded.

To check which switches are currently registered, since version 2.0, the following built-in predicates are intro-
duced:

• show_reg_sw [no args] displays all names of the switches currently registered.

• get_reg_sw(I) returns the name of a switch currently registered to I. On backtracking, I is bound to the
name of the next registered switch.

• get_reg_sw_list(Is) return the list of all names of the switches currently registered to Is.

One may see that show_reg_sw/0 and get_reg_sw/1 are just a simplified version of show_sw/0 (§4.1.8)
and get_sw/1 (§4.1.9), respectively.

4.1.4 Outcome spaces, parameters and hyperparameters
In PRISM, the outcome space of a random switch is usually represented in an external form, that is, by a Prolog
list of possible outcomes, e.g. [high,medium,low] or [1,2,3,4,5]. Accordingly, it is sometimes tedious
to specify such outcome space when the size of the space is very large or the space dynamically changes. By
using expand_values/2, on the other hand, a list of range specifications [1-4,7-10@2] is converted into
[1,2,3,4,7,9], the list of the integers included in the ranges. With a similar motivation, since version 2.0, the
built-in predicates expand_probs/2-3 and expand_pseudo_counts/2-3 are respectively introduced to
specify parameters and hyperparameters (pseudo counts) easily.

• expand_values(Values,ExpandedValues) converts a list Values that contains range specifications into
the list ExpandedValues where each range specification in Values is expanded into the integers included in
the range. A range specification appearing in Values is a Prolog term of the form Min-Max or Min-Max@Step,
where Min, Max and Step are all integers such that Min ≤ Max and Step > 0. A range specification
Min-Max@Step is expanded into the integers i = Min + k · Step such that i ≤ Max and k is a non-negative
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integer, and a range specification Min-Max is interpreted as Min-Max@1. On the other hand, the ele-
ments in Values which are not range specifications are added into ExpandedValues as they are. For exam-
ple, for the query ?- expand_values([a,1-4,b,7-10@2],Vals), we have the answer Vals =
[a,1,2,3,4,b,7,9].

• expand_probs(Dist,N,Probs) creates a list Probs of probabilities of N outcomes specified by a speci-
fication Dist of a distribution (N > 0):

– If Dist is a list of probabilities (e.g. [0.1,0.5,0.4]) or probabilities separated by ‘+’ (e.g. 0.1+
0.5+0.4), the system just returns a list of the same probabilities Probs (e.g. [0.1,0.5,0.4],
where the order is also preserved). Of course the probabilities should sum up to unity. The predicate
fails if Dist does not contain N probabilities, but we do not have to mind it by using expand_probs(
Dist,Probs) instead. For example, a query ?- expand_probs(0.1+0.5+0.4,Ps) returns Ps
= [0.1,0.5,0.4].

– If Dist is a ratio of non-negative numbers where the delimiter is ‘:’, the system returns a list of proba-
bilities each of which is proportional to the corresponding number in Dist. The predicate fails if Dist
does not contain N numbers, but we do not have to mind it by using expand_probs(Dist,Probs)
instead. For example, ?- expand_probs(1:5:2,Ps) returns Ps = [0.125,0.625,0.25].

– If Dist is an atom uniform, the system returns a list of size N whose elements are all 1/N. Note that
N is mandatory here. For example, ?- expand_probs(uniform,5,Ps) returns Ps = [0.2,
0.2,0.2,0.2,0.2].

– If Dist takes the form f_geometric(Base,Type), the system returns a list of probabilities, which
is an external representation of a finite geometric distribution1 over N outcomes, whose base is Base
and whose type is Type. Note that N is mandatory, and if Type is asc (resp. desc), the probabilities
are placed in ascending (resp. descending) order. Base is a floating-point number greater than one.
For example, ?- expand_probs(f_geometric(3,asc),4,Ps) returns Ps = [0.025,
0.075,0.225,0.675], where 0.025 = 30/(30 + 31 + 32 + 33), 0.075 = 31/(30 + 31 + 32 + 33),
0.225 = 32/(30 + 31 + 32 + 33) and 0.675 = 33/(30 + 31 + 32 + 33). The default values for Base
and Type are 2 and desc, respectively. That is, if Dist is f_geometric(Base), it will be in-
terpreted as f_geometric(Base,desc), and if Dist is f_geometric, it will be interpreted as
f_geometric(2,desc).

– If Dist is an atom random, the system returns a list of N probabilities that are randomly assigned.
Note that N is mandatory. For example, ?- expand_probs(random,3,Ps) may return Ps =
[0.372662008331793,0.49796901988938,0.129368971778827].

– If Dist is an atom noisy_u, the system returns a list of N probabilities that are drawn from a Gaus-
sian distribution whose mean is 1/N and whose variance is 1

Nσ, where σ is the value specified by the
std_ratio flag. The drawn values are normalized, and if there are some negative drawn values,
they are forcedly set to very small positive number before the normalization (such a situation seems
to hardly occur with the default setting of the std_ratio flag). Also note that N is mandatory. For
example, ?- expand_probs(noisy_u,3,Ps) may return Ps = [0.30982725282602,
0.291335632422077,0.398837114751903].

– If Dist is an atom default, the steam returns a list of N probabilities which is an external represen-
tation of the distribution specified by the default_sw flag (§4.13). N is mandatory here. For exam-
ple, when the default_sw flag is set to uniform, a query ?- expand_probs(default,4,
Ps) returns Ps = [0.25,0.25,0.25,0.25].

• expand_pseudo_counts(Spec,N,Counts) creates a list Counts of pseudo counts of size N specified
by Spec (N > 0).

– If Spec is a list of non-negative numbers (e.g. [1.0,0.5,2.0]), the system just returns Spec to
Counts. The predicate fails if Spec does not contain N numbers, but we do not have to mind it by using
expand_pseudo_counts(Spec,Counts) instead.

– If Spec is a non-negative number, the system returns a list of size N whose elements are all Spec. Note
that N is mandatory here. For example, ?- expand_pseudo_counts(0.5,3,Cs) returns Cs
= [0.5,0.5,0.5].

1 The use of finite geometric distributions is inspired by [1].
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– If Spec is of the form uniform(δ), where δ is a non-negative number, the programming system
returns a list of size N whose elements are all δ/N. Note that N is mandatory here. If Spec is an
atom uniform, it will be interpreted as uniform(1.0). For example, ?- expand_pseudo_
counts(uniform(5),4,Cs) returns Cs = [1.25,1.25,1.25,1.25] and ?- expand_
pseudo_counts(uniform,4,Cs) returns Cs = [0.25,0.25,0.25,0.25].

– If Spec takes the form f_geometric(δ,Base,Type), the programming system returns a list of
size N whose i-th element is δβi−1, where we let β = Base. Here N is mandatory, δ is a non-
negative floating-point number and Base is a floating-point number greater than one. To be more
concrete, a query ?- expand_pseudo_counts(f_geometric(2,3,asc),3,Cs) returns
Cs = [2.0,6.0,18.0]. Some simpler forms f_geometric, f_geometric(Base) and f_
geometric(δ,Base) are interpreted as f_geometric(1.0,2.0,desc), f_geometric(
1.0,Base,desc) and f_geometric(δ,Base,desc), respectively.

– If Spec is an atom default, the system returns a list of N pseudo counts specified by the default_
sw_d flag or the the default_sw_a flag (§4.13.2). N is mandatory here. For example, when
the default_sw_d flag or the default_sw_a flag is set to uniform, ?- expand_pseudo_
counts(default,4,Ps) returns Ps = [0.25,0.25,0.25,0.25].

Inside the programming system, expand_values/2 is used to interpret the multi-valued switch declarations
(§2.6.2), and expand_probs/3 and expand_pseudo_counts/3 are invoked by the set_sw predicates
and the set_sw_d/set_sw_a predicates (§4.1.6), respectively.

4.1.5 Getting the outcome spaces
Since version 2.0, the following built-ins are used to access the outcome spaces of random switches instead of
calling values/2 directly:

• get_values(I,Values) binds Values to a list of outcomes of switch I. This predicate raises an exception
in the cases that there is no multi-valued switch declaration with values/2-3 (§2.6.2) anywhere in the
program. If there are two or more matching multi-valued switch declarations, Values is bound to the next
one on backtracking.

• get_values0(I,Values) binds Values to a list of outcomes of switch I. If there is no multi-valued switch
declaration anywhere in the program, this predicate fails. If there are two or more matching multi-valued
switch declarations, Values is bound to the next one on backtracking.

• get_values1(I,Values) deterministically binds Values to a list of outcomes of switch I. This predicate
raises an exception in the cases that the switch name I is not ground, and that there is no multi-valued
switch declaration matching with the switch name I. If there are two or more matching multi-valued switch
declarations, the first matching one will be chosen.

get_values/2 is the closest to a direct call of values/2 in previous versions, so for backward compatibility,
all appearances of values/2 in the clause bodies in the program are automatically replaced by get_values/2
while the program loaded. get_values0/2 and get_values1/2 would be useful variations, and the latter
is often used inside the system (§4.1.1 for example).

4.1.6 Setting the parameters/hyperparameters of switches
⋄ Setting the parameters of switches

The built-in set_sw(I,Params) sets the parameters of outcomes of a switch I to Params where Params is a list
[p1,p2,...,pK] (recommended) or a term of the form p1+p2+· · ·+pK where the numbers p1, p2, . . . , pK sum
up to unity (i.e.

∑
k pk = 1). Please note that the switch name I must be ground. For example, to simulate a biased

coin, we may run:

?- set_sw(coin,[0.8,0.2]).

That is, this will set 0.8 to the parameter of the first value of switch coin, and set 0.2 to the parameter of the
second value, where the order of values follows the corresponding multi-valued switch declaration (§2.6.2).

It is also allowed to set parameters in a distribution form:

• set_sw(I) is the same as set_sw(I,default).
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• set_sw(I,default) sets a distribution specified by the default_sw flag.

• set_sw(I,uniform) sets a uniform distribution.

• set_sw(I,f_geometric) is the same as set_sw(I,f_geometric(2,desc)).

• set_sw(I,f_geometric(Base)) is the same as set_sw(I,f_geometric(Base,desc)).

• set_sw(I,f_geometric(Base,Type)) sets a finite geometric distribution, where Base is its base (a
floating-point number greater than one) and Type is asc or desc. For finite geometric distributions, see
the description on expand_probs/3 (§4.1.4).

• set_sw(I,random) sets the parameters, which sum up to one, randomly.

• set_sw(I,noisy_u) sets the parameters drawn from a Gaussian distribution. For details, see the de-
scription on expand_probs/3 (§4.1.4).

We can also specify the default parameters in a distribution form. For example,

?- set_prism_flag(default_sw,uniform).

makes the default parameters to be uniform (see §4.13 for handling execution flags). Then, if we attempt a
sampling, or a probability computation, the parameters of switches that has not been registered yet will be set to
be uniform on the fly (§4.1.3).

Since the default value of the default_sw flag is ‘uniform’, we can use switches which follow a uniform
distribution just after invoking the system. The other available values for the flag are ‘none’, ‘f_geometric(Base)’
(Base is the base, an integer greater than one), and so on. The first one means that we have no default parame-
ters, and hence that we cannot use a random switch until its parameters are given by parameter learning (§4.7) or
explicitly by manual (e.g. set_sw/1-2). The second one stands for a finite geometric distribution.

Also, the following predicates set the parameters to one or more switches that have been registered to the
internal database at that time (see §4.1.3):

• set_sw_all(Patt) sets a default distribution to all switches matching with Patt (i.e. all switches whose
names unify with Patt).

• set_sw_all(Patt,Dist) sets a distribution Dist to all switches matching with Patt.

• set_sw_all [no args] is the same as set_sw_all(_).

⋄ Setting the hyperparameters of switches for MAP estimation

In the context of MAP estimation (§4.7.4), pseudo counts δi,v (= αi,v − 1) of random switches msw(i,v) (§4.1.2)
can be set by set_sw_d/1-2 and set_sw_all_d/0-2:

• set_sw_d(I) is the same as set_sw_d(I,default).

• set_sw_d(I,[ζ1,ζ2,...,ζK]) sets the pseudo counts δI,v = ζk where K is the number of possible
outcomes of switch I, v is the k-th outcome of switch I. ζk should be a non-negative floating-point number
(1 ≤ k ≤ K).

• set_sw_d(I,ζ) is the same as set_sw_d(I,[ζ,ζ,...,ζ]), where ζ is a non-negative floating-point
number.

• set_sw_d(I,uniform(ζ)) is the same as set_sw_d(I,[ζ/K,ζ/K,...,ζ/K]), where ζ is a non-
negative floating-point number, K is the number of possible outcomes of switch I.

• set_sw_d(I,uniform) is the same as set_sw_d(I,uniform(1.0)).2

• set_sw_d(I,default) sets the default pseudo counts specified by the default_sw_d flag. If the
default_sw_d flag is disabled at the time, this is equivalent to set_sw_a(I,default).

• set_sw_all_d(Patt,PseudoCs) or set_sw_d_all(Patt,PseudoCs) sets the pseudo counts Pseu-
doCs to all switches matching with Patt, where PseudoCs is a Prolog term allowed to be the second argument
of set_sw_d/2.

2 This setting is the same as that in AutoClass, a well-known probabilistic clustering tool [6].

35



• set_sw_all_d(Patt) and set_sw_d_all(Patt) are the same as set_sw_all_d(Patt,default).

• set_sw_all_d and set_sw_d_all [no args] are the same as set_sw_all_d(_).

In addition, for backward compatibility, set_sw_h/1-2 and set_sw_all_h/0-2 are available as the aliases
of set_sw_d/1-2 and set_sw_all_d/0-2, respectively.

⋄ Setting the hyperparameters of switches for variational Bayesian learning

In the context of variational Bayesian learning (Chapter 5), pseudo counts (hyperparameters) αi,v of random
switches msw(i,v) (§4.1.2) can be set by set_sw_a/1-2 and set_sw_all_a/0-2:

• set_sw_a(I) is the same as set_sw_a(I,default).

• set_sw_a(I,[ζ1,ζ2,...,ζK]) sets the pseudo counts αI,v = ζk where K is the number of possible
outcomes of switch I, v is the k-th outcome of switch I, and ζk should be a positive floating-point number
(1 ≤ k ≤ K).

• set_sw_a(I,ζ) is the same as set_sw_a(I,[ζ,ζ,...,ζ]), where ζ is a positive floating-point num-
ber.

• set_sw_a(I,uniform(ζ)) is the same as set_sw_a(I,[ζ/K,ζ/K,...,ζ/K]), where ζ is a pos-
itive floating-point number, K is the number of possible outcomes of switch I.

• set_sw_a(I,uniform) is the same as set_sw_a(I,uniform(1.0)).

• set_sw_a(I,default) sets the default pseudo counts specified by the default_sw_a flag. If the
default_sw_a flag is disabled at the time, this is equivalent to set_sw_d(I,default).

• set_sw_all_a(Patt,PseudoCs) or set_sw_a_all(Patt,PseudoCs) sets the pseudo counts Pseu-
doCs to all switches matching with Patt, where PseudoCs is a Prolog term allowed to be the second argument
of set_sw_a/2.

• set_sw_all_a(Patt) and set_sw_a_all(Patt) are the same as set_sw_all_a(Patt,default).

• set_sw_all_a and set_sw_a_all [no args] are the same as set_sw_all_a(_).

⋄ Default setting of pseudo counts

Since version 2.0, two execution flags default_sw_d and default_sw_a have been introduced to make the
default setting of pseudo counts. As described above, the former is mainly used in the context of MAP estimation
while the latter is used together with variational Bayesian learning. To avoid the inconsistency between these two
flags, they are designed to be exclusive — when one of these two flags is set some value, it will be enabled and the
other flag will be disabled. Then, both set_sw_d(I,default) and set_sw_a(I,default) will follow
the setting by the enabled flag.

For example, if the user set 0.5 to the default_sw_d flag, then the default_sw_a flag will be disabled.
After that, the following queries are all equivalent and they will configure δfoo,v = 0.5 (and accordingly αfoo,v =
1.5):

?- set_sw_a(foo,default).
?- set_sw_d(foo,default).
?- set_sw_a(foo).
?- set_sw_d(foo).

On the other hand, if the user set 0.5 to the default_sw_a flag, then the default_sw_d flag will be
disabled, and the above queries will configure αfoo,v = 0.5 (and accordingly δfoo,v = −0.5).

This mechanism may look complicated, but if the user use the ∗_sw_d predicates and the default_sw_d
flag (resp. the ∗_sw_a predicates and the default_sw_a flag) consistently in the context of MAP estimation
(resp. variational Bayesian learning), it should not cause confusion.
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4.1.7 Fixing the parameters/hyperparameters of switches
Sometimes we need constant parameters which are not updated during learning. For example, letting g be a gene
of interest, we may want the probability of g being selected from one parent to be constant at 1/2. To handle with
such situations, the programming system provides a couple of built-in predicates that fix the parameters of some
particular switches:

• fix_sw(I) fixes the parameters of all switches matching with I (i.e. all switches whose names unify with
I). Then, the parameters of these switches cannot be updated and will be kept unchanged during learning.
These switches are said to be fixed. In addition, if I is given as a list of switch names, the programming
system calls fix_sw/2 for each of them.

• fix_sw(I,Params) sets the parameters Params to a switch I, as done in set_sw/2, and then fixes the
parameters. Please note that I in fix_sw(I,Params) should be ground, while I in fix_sw(I) does not
need to be ground. Since version 2.0, in each call of fix_sw(I,Params), the programming system unfixes
the parameters of switch I first, and then fixes them at Params.

• unfix_sw(I) makes changeable the parameters of all switches matching with I.

Furthermore, we can also fix the hyperparameters (pseudo counts) of switches. In the context of MAP estimation,
it is recommended to the following built-ins (here ‘pseudo counts’ indicate δi,v; see §4.1.2):

• fix_sw_d(I) fixes the pseudo counts of all switches matching with I. Then, the pseudo counts of these
switches cannot be updated and will be kept unchanged during VB learning (§5.2.1, §5.2.2). In addition, if
I is a list of switch names, the programming system calls fix_sw_d/2 for each of them.

• fix_sw_d(I,PseudoCs) sets the pseudo counts PseudoCs to a switch I, as done in set_sw_d/2, and
then fixes the pseudo counts. Similarly to fix_sw/2, I should be ground here, and the system unfixes the
pseudo counts of switch I first, and then fixes them at PseudoCs.

• unfix_sw_d(I) makes changeable the pseudo counts of all switches matching with I.

On the other hand, in the context of variational Bayesian (VB) learning, it is recommended to the following
built-ins (here ‘pseudo counts’ indicate αi,v; see §4.1.2):

• fix_sw_a(I) fixes the pseudo counts of all switches matching with I. Then, the pseudo counts of these
switches cannot be updated and will be kept unchanged during VB learning (§5.2.1, §5.2.2). In addition, if
I is a list of switch names, the programming system calls fix_sw_a/2 for each of them.

• fix_sw_a(I,PseudoCs) sets the pseudo counts PseudoCs to a switch I, as done in set_sw_a/2, and
then fixes the pseudo counts. Similarly to fix_sw/2, I should be ground here, and the system unfixes the
pseudo counts of switch I first, and then fixes them at PseudoCs.

• unfix_sw_a(I) makes changeable the pseudo counts of all switches matching with I.

Inside the system, two built-ins fix_sw_d/1 and fix_sw_a/1 behave in the same way, and this also applies to
unfix_sw_d/1 and unfix_sw_a/1. For backward compatibility, fix_sw_h/1-2 and unfix_sw_h/1
are available as the the aliases of fix_sw_d/1-2 and unfix_sw_d/1, respectively.

4.1.8 Displaying the switch information
The programming system provides the built-in predicates for displaying the current status of switches. This
information is hereafter called switch information, and is displayed for the switches that have been registered
into the internal database at that time (see §4.1.3).

• show_sw [no args] displays information about the parameters of all switches. For example, in the ‘direction’
program (§1.1), we may run:

?- show_sw.
Switch coin: head (0.8) tail (0.2)

• show_sw(I) displays information about the parameters of the switches whose names match with I. For
example:
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?- show_sw(coin).
Switch coin: head (0.8) tail (0.2)

Also we can display the pseudo counts of the switches. In the context of MAP estimation, it is recommended to
use the built-in predicates that that display pseudo counts δi,v of msw(i,v) (§4.1.2):

• show_sw_d [no args] displays information about the pseudo counts of all switches.

• show_sw_d(I) displays information about the pseudo counts of the switches whose names match with I.

• show_sw_pd [no args] displays information about both the parameters and the pseudo counts of all switches.

• show_sw_pd(I) displays information about both the parameters and the pseudo counts of the switches
whose names match with I.

The suffix ‘_pd’ indicates “for both parameters and pseudo counts δi,v”. On the other hand, in the context of
variational Bayesian learning, it is recommended to use the built-in predicates that display pseudo counts (hyper-
parameters) αi,v of msw(i,v) (§4.1.2):

• show_sw_a [no args] displays information about the pseudo counts of all switches.

• show_sw_a(I) displays information about the pseudo counts of the switches whose names match with I.

• show_sw_pa [no args] displays information about both the parameters and the pseudo counts of all switches.

• show_sw_pa(I) displays information about both the parameters and the pseudo counts of the switches
whose names match with I.

The suffix ‘_pa’ indicates “for both parameters and pseudo counts αi,v”. In addition, for backward compatibility,
show_sw_h/0-1 and show_sw_b/0-1 are respectively available as the aliases of show_sw_d/0-1 and
show_sw_pd/0-1.

4.1.9 Getting the switch information
The switch information can be obtained as Prolog terms by the following built-ins:

• get_sw(I,Info) binds Info to a Prolog term in the form [Status,Vals,Params] that contains information
about switch I:

– Status is either fixed or unfixed. The former (resp. the latter) indicates that the parameters of
switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

For example, we may run:

?- get_sw(coin,Info)
Info = [unfixed,[head,tail],[0.8,0.2]]

• get_sw(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,Params) where I is the
identifier, Status is either fixed or unfixed, Vals is a list of possible outcomes, and Params is a list of
the parameters. On backtracking, Info is bound to the one about the next switch.

• get_sw(I,Status,Vals,Params) is the same as get_sw(I,[Status,Vals,Params]).

• get_sw(I,Status,Vals,Params,Ĉs) additionally returns the expected occurrences Ĉs of switch I, which
are computed in EM learning for maximum likelihood estimation or MAP estimation (§4.7).3 This predicate
works after EM learning for maximum likelihood estimation or MAP estimation, but fails after VB-EM
learning.

3 These expected occurrences are used in computing Cheeseman-Stutz score (§4.9), and might be used to judge whether we need to apply
so-called backoff smoothing. If the observed data is complete (§4.7.1), Ĉs is just a list of numbers of occurrences of msw(I,·) in the data.
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We can also obtain the pseudo counts of the switches as Prolog terms. In the context of MAP estimation, it is
recommended to use the built-in predicates that that return pseudo counts δi,v of msw(i,v) (§4.1.2):

• get_sw_d(I,Info) binds Info to a Prolog term in the form [Status,Vals,PseudoCs] that contains infor-
mation about switch I:

– Status is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the pseudo
counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– PseudoCs is a list of the pseudo counts δI,v of switch I.

• get_sw_d(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,PseudoCs) where I is
the identifier, Status is either fixed_h or unfixed_h, Vals is a list of possible outcomes, and PseudoCs
is a list of the pseudo counts. On backtracking, Info is bound to the one about the next switch.

• get_sw_d(I,Status,Vals,PseudoCs) is the same as get_sw_d(I,[Status,Vals,PseudoCs]).

• get_sw_d(I,Status,Vals,PseudoCs,Ĉs) additionally returns the expected occurrences Ĉs of switch I,
which are computed in EM learning for maximum likelihood estimation or MAP estimation (§4.7). This
predicate works after EM learning for maximum likelihood estimation or MAP estimation, but fails after
VB-EM learning.

• get_sw_pd(I,Info) binds Info to a Prolog term in the form [[StatusP,StatusH],Vals,Params,PseudoCs]
that contains information about switch I, that is:

– StatusP is either fixed or unfixed. The former (resp. the latter) indicates that the parameters of
switch I is fixed (resp. unfixed).

– StatusH is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the pseudo
counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

– PseudoCs is a list of the pseudo counts δI,v of switch I.

• get_sw_pd(Info) binds Info to a Prolog term in the form switch(I,[StatusP,StatusH],Vals,Params,
PseudoCs) where I is the identifier, StatusP is either fixed or unfixed, StatusH is either fixed_h or
unfixed_h, Vals is a list of possible outcomes, Params is a list of the parameters, and PseudoCs is a list
of the pseudo counts δI,v. On backtracking, Info is bound to the one about the next switch.

• get_sw_pd(I,[StatP,StatH],Vals,Ps,PseudoCs) is the same as get_sw_pd(I,[[StatP,StatH],
Vals,Ps,PseudoCs]).

• get_sw_pd(I,[StatP,StatH],Vals,Ps,PseudoCs,Ĉs) additionally returns the expected occurrences
Ĉs of switch I, which are computed in EM learning for maximum likelihood estimation or MAP estimation
(§4.7). This predicate works after EM learning for maximum likelihood estimation or MAP estimation, but
fails after VB-EM learning.

On the other hand, in the context of variational Bayesian learning, it is recommended to use the built-in predicates
that that return pseudo counts (hyperparameters) αi,v of msw(i,v) (§4.1.2):

• get_sw_a(I,Info) binds Info to a Prolog term in the form [Status,Vals,PseudoCs] that contains infor-
mation about switch I:

– Status is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the pseudo
counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– PseudoCs is a list of the pseudo counts αI,v of switch I.

• get_sw_a(Info) binds Info to a Prolog term in the form switch(I,Status,Vals,PseudoCs) where I is
the identifier, Status is either fixed_h or unfixed_h, Vals is a list of possible outcomes, and PseudoCs
is a list of the pseudo counts αI,v. On backtracking, Info is bound to the one about the next switch.
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• get_sw_a(I,Status,Vals,PseudoCs) is the same as get_sw_a(I,[Status,Vals,PseudoCs]).

• get_sw_a(I,Status,Vals,PseudoCs,C̃s) additionally returns the expected occurrences C̃s of switch I,
which are computed in VB-EM learning (§5.1.2). This predicate works after VB-EM learning, but fails after
EM learning for maximum likelihood estimation or MAP estimation.

• get_sw_pa(I,Info) binds Info to a Prolog term in the form [[StatusP,StatusH],Vals,Params,PseudoCs]
that contains information about switch I, that is:

– StatusP is either fixed or unfixed. The former (resp. the latter) indicates that the parameters of
switch I is fixed (resp. unfixed).

– StatusH is either fixed_h or unfixed_h. The former (resp. the latter) indicates that the pseudo
counts of switch I is fixed (resp. unfixed).

– Vals is a list of possible outcomes of switch I.

– Params is a list of the parameters of switch I.

– PseudoCs is a list of the pseudo counts αI,v of switch I.

• get_sw_pa(Info) binds Info to a Prolog term in the form switch(I,[StatusP,StatusH],Vals,Params,
PseudoCs) where I is the identifier, StatusP is either fixed or unfixed, StatusH is either fixed_h or
unfixed_h, Vals is a list of possible outcomes, Params is a list of the parameters, and PseudoCs is a list
of the pseudo counts αI,v. On backtracking, Info is bound to the one about the next switch.

• get_sw_pa(I,[StatP,StatH],Vals,Ps,PseudoCs) is the same as get_sw_pa(I,[[StatP,StatH],
Vals,Ps,PseudoCs]).

• get_sw_pa(I,[StatP,StatH],Vals,Ps,PseudoCs,C̃s) additionally returns the expected occurrences
C̃s of switch I, which are computed in VB-EM learning (§5.1.2). This predicate works after VB-EM learn-
ing, but fails after EM learning for maximum likelihood estimation or MAP estimation.

For backward compatibility, get_sw_h/{1,2,4} and get_sw_b/{1,2,5} are available as the aliases of
get_sw_d/{1,2,4} and get_sw_pd/{1,2,5}, respectively. On the other hand, due to the difficulty in
keeping the backward compatibility, get_sw_h/5 and get_sw_b/6 are not available since version 2.0.

4.1.10 Saving the switch information
By using the following built-ins, all switch information can be saved into, or restored from, a file:

• save_sw(File) saves all switch information about the parameters into the file File.

• save_sw [no args] is the same as save_sw(’Saved_SW’).

• restore_sw(File) restores all switch information about the parameters from the file File.

• restore_sw [no args] is the same as restore_sw(’Saved_SW’).

We can also save the pseudo counts of the switches into a file. In the context of MAP estimation, it is recommended
to use the built-in predicates that save/restore pseudo counts δi,v of msw(i,v) (§4.1.2):

• save_sw_d(File) saves all switch information about the pseudo counts δi,v into the file File.

• save_sw_d [no args] is the same as save_sw_d(’Saved_SW_D’).

• save_sw_pd(File1,File2) is the same as (save_sw(File1),save_sw_d(File2)).

• save_sw_pd [no args] is the same as (save_sw,save_sw_d).

• restore_sw_d(File) restores all switch information about the pseudo counts δi,v from the file File.

• restore_sw_d [no args] is the same as restore_sw_d(’Saved_SW_D’).

• restore_sw_pd(File1,File2) is the same as (restore_sw(File1),restore_sw_d(File2)).

• restore_sw_pd [no args] is the same as (restore_sw,restore_sw_d).
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On the other hand, in the context of variational Bayesian learning, it is recommended to use the built-in predicates
that save/restore pseudo counts (hyperparameters) αi,v of msw(i,v) (§4.1.2):

• save_sw_a(File) saves all switch information about the pseudo counts αi,v into the file File.

• save_sw_a [no args] is the same as save_sw_a(’Saved_SW_A’).

• save_sw_pa(File1,File2) is the same as (save_sw(File1),save_sw_a(File2)).

• save_sw_pa [no args] is the same as (save_sw,save_sw_a).

• restore_sw_a(File) restores all switch information about the pseudo counts αi,v from the file File.

• restore_sw_a [no args] is the same as restore_sw_a(’Saved_SW_A’).

• restore_sw_pa(File1,File2) is the same as (restore_sw(File1),restore_sw_a(File2)).

• restore_sw_pa [no args] is the same as (restore_sw,restore_sw_a).

For backward compatibility, the built-ins save_sw_h/0-1, save_sw_b/{0,2}, restore_sw_h/0-1 and
restore_sw_b/{0,2} are available as the aliases of save_sw_d/0-1, save_sw_pd/{0,2}, restore_
sw_d/0-1 and restore_sw_pd/{0,2}, respectively. However, it should be noted that the default filename
for saving/restoring pseudo counts has been changed in version 2.0.

4.1.11 Backtrackable sampling execution of random switches
As described in §4.1.1, for sampling execution, msw/2 is defined as a deterministic predicate. That is, once an
outcome has been sampled by msw/2, we can get no alternative outcomes by backtracking. On the other hand,
since version 2.0.1, a built-in predicate soft_msw/2 for backtrackable sampling execution is available.4

A simplified definition of soft_msw/2 is given as follows:

soft_msw(I,V):-
get_values1(I,Values),
$get_probs(I,Probs),
$b_choose(Values,Probs,V).

Here $b_choose/3 is a backtrackable version of $choose/3 (§4.1.1). In addition, b_msw/2 is available as
an alias of soft_msw/2.

To illustrate the behavior of soft_msw/2, let us consider a random switch named sw1, which has three
possible outcomes. The switch sw1 outputs the outcome a with probability 0.5, b with probability 0.2 and c with
probability 0.3:

values(sw1,[a,b,c],[0.5,0.2,0.3]).

When we sample an outcome of sw1 with msw/2, the programming system deterministically returns the sampled
outcome:

?- sample(msw(sw1,X)).
X = a
yes

The sampling of the switch sw1 with soft_msw/2 will also return an outcome in a similar way. For example,
the switch returns an outcome a with probability 0.5:

?- sample(soft_msw(sw1,X)).
X = a ?

On the other hand, differently from the above case, we can sample an alternative outcome by backtracking:

?- sample(soft_msw(sw1,X)).
X = a ?;
X = c ?

4 Jon Sneyers provided a public-domain code for soft_msw/2. The authors are grateful for this offering.
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On this backtracking, we obtain X = c with the probability 0.3/(0.2 + 0.3) = 0.6. Generally speaking, the
sampling for the alternatives which have not been sampled yet is made according to the probabilities normalized
among these alternatives. Eventually, repeating backtracking, we obtain all outcomes:

?- sample(soft_msw(sw1,X)).
X = a ?;
X = c ?;
X = b ?;
no

soft_msw/2 and b_msw/2 can be used in the program. In sampling execution, the random switches spec-
ified by soft_msw/2 and b_msw/2 behave as above, and in explanation search, they behave as if they are
specified by msw/2.

4.2 Sampling
An execution with sample(Goal) (or a direct execution of Goal) simulates a sampling execution. A more
detailed description of sampling execution is found in §2.4.1. For example, for the program in §1.1, we may have
a result of sampling execution such as:

?- sample(direction(D)).
D = left ?

Of course, the result changes at random, and follows the distribution specified by the program.
Besides, there are some built-ins for getting two or more samples. get_samples(N,G,Gs) returns a list

Gs which contains the results of sampling G for N times. For example:

?- get_samples(10,direction(D),Gs).
Gs = [direction(right),direction(left),direction(right),

direction(left),direction(right),direction(right),
direction(right),direction(right),direction(left),
direction(right)] ?

Inside the system, on each trial of sampling, a copy G′ of the target goal G is created and called by sample(G′).
Please note that if one of N trials ends in failure, this predicate totally fails.

On the other hand, get_samples_c(N,G,C,Gs) tries to make sampling G under the constraint C for N
times, and returns a list Gs which only contains the successful results of sampling. Note here that this predicate
never fails by sampling, and if some trial ends in failure, nothing is added to Gs (thus the size of Gs can be less
than N). Internally, this predicate first creates a copy [G′,C′] of [G,C], and then executes sample(G′) and
call(C′) in this order. In addition, get_samples_c/4 writes the numbers of successful and failed trials to
the current output stream. For example,

?- get_samples_c(10,pcfg(Ws),(length(Ws,L),L<5),Gs).

will return to Gs a list of sampled pcfg(Ws) where the length of Ws is less than 5. get_samples_c(N,G,
Gs) is the same as get_samples_c(N,G,true,Gs). For example, let us consider the following queries:

?- get_samples(100,hmm([a|_]),Gs).
?- get_samples_c(100,hmm([a|_]),Gs).
?- get_samples_c(100,hmm([a|_]),true,Gs).
?- get_samples_c(100,hmm(Xs),Xs=[a|_],Gs).

The second and the third queries show the same behavior. On the other hand, the first query may fail due to the
failure at some trial of sampling. Furthermore, the last query could yield a different result from the one for the
second query (even with the same random seed), since they build different proof trees.5

The built-in get_samples_c(N,G,C,Gs,[SN,FN]) behaves similarly to get_samples_c(N,G,
C,Gs), except returning the numbers of successful and failed trials to SN and FN, respectively. Furthermore, the
programming system provides a couple of variations for get_samples_c/3-5. If we specify the first argument
in the form [N,M], the predicates will try to make sampling for N times at maximum to get M samples. If we
specify [inf,M], then the system tries to get M samples with no limit on the number of trials. For example, we
can always get 100 samples with the following query:

5 In the previous versions of this user’s manual, it was wrongly described that the last three queries show the same behavior.
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?- get_samples_c([inf,100],pcfg(Ws),(length(Ws,L),L<5),Gs).

However it should be noticed here that there is a risk of entering an almost infinite loop in the use of ‘inf’ if the
goal G (or G under the constraint C) is unlikely to succeed.

As discussed in §2.4.1 and §2.4.2, sometimes we need to write models in two different styles for sampling and
explanation search with different sets of predicates. For example, we may use a predicate foo_s/1 for sampling,
and use foo/1 for explanation search. To get training data for foo/1 by sampling foo_s/1 in an artificial
experiment, we may replace the predicate name of sampled goals by modifying the second argument as follows:

?- get_samples_c(100,[foo_s(Ws),foo(Ws)],true,Gs).

4.3 Probability calculation
For a tabled probabilistic goal Goal, the built-in prob(Goal,Prob) calculates the probability Prob with which
Goal becomes true. For a switch instance msw(I,V), the probability is 1.0 if V is a variable, and the probability
assigned to the outcome V if V is one of the outcomes of switch I. For example, for the program in §1.1, we have:

?- prob(direction(left),P).
P = 0.5

The built-in prob(Goal) is the same as prob(Goal,Prob) except that the computed probability Prob is
sent to the current output stream. Note here that, when enabling the methods for avoiding underflow (§4.11),
prob/1-2 returns the logarithm of probabilities. log_prob(Goal) and log_prob(Goal,P) are the same
as prob(Goal) and prob(Goal,P), respectively, except that they always return the log-scaled probability of
the goal G. If there is no explanation for Goal, the call of these predicates will fail.

4.4 Explanation graphs

4.4.1 Basic usage
For a tabled probabilistic goal G, the built-in probf(G,EGraph) returns the explanation graph EGraph for G
as a Prolog term. An explanation graph is represented as a list of nodes, each corresponds to one of the ordered
iff-formulas in §2.4.2. Each node takes the form node(G′,Paths) where G′ is a subgoal of G and Paths is a list
of explanation paths that explain G′. With the terminology in §2.4.2, one of these paths corresponds to a sub-
explanation E′ for G′. Each path takes the form path(Subgoals,Switches) where Subgoals is a list of subgoals
found in E′, and Switches is a list of switch instances also found in E′. If there is no explanation for G, the call
of probf(G,EGraph) will fail. Also, if we have subgoals which include logical variables, all of these variables
will be treated as the distinct ones, for implementational reasons.

For example, in the HMM program with string length being 2, the explanation graph for hmm([a,b]) is
obtained as follows:

?- probf(hmm([a,b]),EGraph).

EGraph =
[node(hmm([a,b]),

[path([hmm(1,2,s0,[a,b])],[msw(init,s0)]),
path([hmm(1,2,s1,[a,b])],[msw(init,s1)])]),

node(hmm(1,2,s0,[a,b]),
[path([hmm(2,2,s0,[b])],[msw(out(s0),a),msw(tr(s0),s0)]),
path([hmm(2,2,s1,[b])],[msw(out(s0),a),msw(tr(s0),s1)])]),

node(hmm(1,2,s1,[a,b]),
[path([hmm(2,2,s0,[b])],[msw(out(s1),a),msw(tr(s1),s0)]),
path([hmm(2,2,s1,[b])],[msw(out(s1),a),msw(tr(s1),s1)])]),

node(hmm(2,2,s0,[b]),
[path([hmm(3,2,s0,[])],[msw(out(s0),b),msw(tr(s0),s0)]),
path([hmm(3,2,s1,[])],[msw(out(s0),b),msw(tr(s0),s1)])]),

node(hmm(2,2,s1,[b]),
[path([hmm(3,2,s0,[])],[msw(out(s1),b),msw(tr(s1),s0)]),
path([hmm(3,2,s1,[])],[msw(out(s1),b),msw(tr(s1),s1)])]),

node(hmm(3,2,s0,[]),[path([],[])]),
node(hmm(3,2,s1,[]),[path([],[])])]
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Be warned that the result was manually beautified by the authors for making the data structure clear. Also the last
two node terms indicate that hmm(3,2,s0,[]) and hmm(3,2,s1,[]) are always true.6

Usually, the results by probf/2 are appropriate to be handled by the program, but too complicated for
humans to understand. For post-processing such Prolog-term representation of an explanation graph, we may use
strip_switches(EGraph,EGraph′), which drops all switch instances from EGraph and then returns the
resultant graph as EGraph′. Furthermore, the built-in probf(Goal) finds and displays the explanation graph for
Goal in a human-readable form. For the same goal as above, we have:

?- probf(hmm([a,b])).

hmm([a,b])
<=> hmm(1,2,s0,[a,b]) & msw(init,s0)

v hmm(1,2,s1,[a,b]) & msw(init,s1)
hmm(1,2,s0,[a,b])

<=> hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])
<=> hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)
hmm(2,2,s0,[b])

<=> hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])
<=> hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)
hmm(3,2,s0,[])
hmm(3,2,s1,[])

We may notice that this output corresponds to the ordered iff-formula described in §2.4.2. The last two formulas
say that subgoals hmm(3,2,s0,[]) and hmm(3,2,s1,[]) are always true.

4.4.2 Encoded explanation graphs
The built-in predicate probef(Goal) is the same as probf(Goal) except that all subgoals and switches in
explanations are encoded. Also probef(Goal,EGraph) is the same as probf(Goal,EGraph) except that all
the subgoals and switches in the graph are encoded. In these predicates, each subgoal has a unique number and so
does each switch instance (i.e. they are encoded) . The subgoal table stores the correspondence between subgoals
and their numbers, and the switch table stores the correspondence between switch instances and their numbers.
The following built-ins are provided to get the tables:

• get_subgoal_hashtable(Table) gets the subgoal hashtable which can be used to decode encoded
subgoals in explanation graphs.

• get_switch_hashtable(Table) gets the switch hashtable which can be used to decode encoded
switches in explanation graphs.

4.4.3 Printing explanation graphs
Some pretty-printing routines used internally in probf/1 are also available as built-ins. print_graph(Graph)
prints an explanation graph Graph (as a Prolog term with functors node and path, as illustrated above) to the
current output stream. print_graph(Graph,Options) is the same as print_graph(Graph) except it re-
places connectives with the ones specified in Options. Options may contain and(C1), or(C2) and lr(C3),
which indicates the AND connectives will be replaced with C1, the OR connectives with C2, and the primary
connectives with C3, respectively. For example, we can have:

?- probf(hmm([a,b]),EGraph),print_graph(EGraph,[lr(’iff’)]).

hmm([a,b])
iff hmm(1,2,s0,[a,b]) & msw(init,s0)

6 In the previous versions, these two last node terms are output as node(hmm(3,2,s0,[]),[]) and node(hmm(3,2,
s1,[]),[]). For backward compatibility, probf/2 can also output the explanation graphs in this form by turning off the
explicit_empty_expls flag (§4.13.2).
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v hmm(1,2,s1,[a,b]) & msw(init,s1)
hmm(1,2,s0,[a,b])

iff hmm(2,2,s0,[b]) & msw(out(s0),a) & msw(tr(s0),s0)
v hmm(2,2,s1,[b]) & msw(out(s0),a) & msw(tr(s0),s1)

hmm(1,2,s1,[a,b])
iff hmm(2,2,s0,[b]) & msw(out(s1),a) & msw(tr(s1),s0)

v hmm(2,2,s1,[b]) & msw(out(s1),a) & msw(tr(s1),s1)
hmm(2,2,s0,[b])

iff hmm(3,2,s0,[]) & msw(out(s0),b) & msw(tr(s0),s0)
v hmm(3,2,s1,[]) & msw(out(s0),b) & msw(tr(s0),s1)

hmm(2,2,s1,[b])
iff hmm(3,2,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

v hmm(3,2,s1,[]) & msw(out(s1),b) & msw(tr(s1),s1)
hmm(3,2,s0,[])
hmm(3,2,s1,[])

print_graph(Stream,Graph,Options) is the same as print_graph(Graph,Options) except the output
is set to Stream.

4.4.4 Explanation graphs with probabilities
Several built-in predicates are also available to obtain explanation graphs together with probabilities. By these
built-ins, we can inspect the explanations for a particular probabilistic goal at a numerical level. Especially, a
violation of some of the modeling assumptions in PRISM (§2.4.6) can be checked using these built-ins. Another
usage is to see how dynamic programming based probability computations work. For example, we can understand
the behavior of the forward or the backward algorithm for HMMs. These built-ins were introduced in version
1.12, and the output format was extended in version 2.0.

For a tabled probabilistic goal G, probfi(G,EGraph) returns the explanation graph for G as a Prolog
term to EGraph along with the inside probabilities of all subgoals. The returned graph is represented as a list
of nodes, each of which takes the form node(G′,Paths,Prob′) where G′ is a subgoal of G, Paths is a list of
explanation paths (sub-explanations) for G′, and Prob′ is the inside probability of G′. Each explanation path
takes the form path(GNodes,SNodes,PathProb). GNodes is a list of subgoal nodes, each of which takes the
form gnode(G′′,Prob′′) where G′′ and Prob′′ are a subgoal occurring in the path and its inside probability,
respectively. SNodes is a list of switch nodes, each of which takes the form snode(Sw,Param) where Sw and
Param are a switch instance occurring in the explanation path and its parameter, respectively. PathProb is the
inside probability of the explanation path, i.e. the product of the inside probabilities or the parameters appearing
GNodes and SNodes. For example, in the HMM program, we may run:

?- probfi(hmm([a,b],EGraph).

EGraph =
[node(hmm([a,b]),

[path([gnode(hmm(1,2,s0,[a,b]),0.255905908488921)],
[snode(msw(init,s0),0.207377412241521)],
0.053069105079748),

path([gnode(hmm(1,2,s1,[a,b]),0.185292158172328)],
[snode(msw(init,s1),0.792622587758479)],
0.146866749901904)],

0.199935854981652),
node(hmm(1,2,s0,[a,b]),

[path([gnode(hmm(2,2,s0,[b]),0.231748454480656)],
[snode(msw(out(s0),a),0.768251545519344),
snode(msw(tr(s0),s0),0.720379033510596)],

0.128257081541387),
path([gnode(hmm(2,2,s1,[b]),0.594215057955413)],

[snode(msw(out(s0),a),0.768251545519344),
snode(msw(tr(s0),s1),0.279620966489404)],

0.127648826947534)],
0.255905908488921),

node(hmm(1,2,s1,[a,b]),
[path([gnode(hmm(2,2,s0,[b]),0.231748454480656)],

[snode(msw(out(s1),a),0.405784942044587),
snode(msw(tr(s1),s0),0.379589611329194)],
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0.03569661964052),
path([gnode(hmm(2,2,s1,[b]),0.594215057955413)],

[snode(msw(out(s1),a),0.405784942044587),
snode(msw(tr(s1),s1),0.620410388670806)],

0.149595538531808)],
0.185292158172328),

node(hmm(2,2,s0,[b]),
[path([gnode(hmm(3,2,s0,[]),1.0)],

[snode(msw(out(s0),b),0.231748454480656),
snode(msw(tr(s0),s0),0.720379033510596)],

0.166946727656349),
path([gnode(hmm(3,2,s1,[]),1.0)],

[snode(msw(out(s0),b),0.231748454480656),
snode(msw(tr(s0),s1),0.279620966489404)],

0.064801726824307)],
0.231748454480656),

node(hmm(2,2,s1,[b]),
[path([gnode(hmm(3,2,s0,[]),1.0)],

[snode(msw(out(s1),b),0.594215057955413),
snode(msw(tr(s1),s0),0.379589611329194)],

0.22555786289525),
path([gnode(hmm(3,2,s1,[]),1.0)],

[snode(msw(out(s1),b),0.594215057955413),
snode(msw(tr(s1),s1),0.620410388670806)],

0.368657195060163)],
0.594215057955413),

node(hmm(3,2,s0,[]),
[path([],[],1.0)],
1.0),

node(hmm(3,2,s1,[]),
[path([],[],1.0)],
1.0)

] ?

The above result was manually beautified by the authors. Note that, from the probabilistic meaning of the
HMM program, the inside probabilities (resp. 0.255905908488921, 0.185292158172328, . . . ) of tabled
subgoals (resp. hmm(1,2,s0,[a,b]), hmm(1,2,s1,[a,b]), . . . ) correspond to the backward probabil-
ities used in the Baum-Welch algorithm. In addition, the resulting Prolog term EGraph can be passed into
print_graph/1-3 (§4.4.3) for a human-readable form.

probfi(G,EGraph) has the following three variants:

• probfo(G,EGraph) returns the outside probabilities instead of the inside probabilities for subgoals/paths,
and the expected occurrences instead of parameters for switch instances.

• probfv(G,EGraph) returns the Viterbi probabilities (§4.5.1) for subgoals/paths, and the parameters for
switch instances.

• probfio(G,EGraph) returns pairs of the inside and the outside probabilities for subgoals/paths, and pairs
of expected occurrences and parameters for switch instances. Each pair is represented by a two-element list
[InProb,OutProb].

The programming system also provides the following built-in predicates:

• probfi(G) finds and displays the explanation graph for G with the inside probabilities of subgoals.
probfo/1, probfv/1 and probfio/1 are also available.

• probefi(G) and probefi(G,EGraph) do the same things as probfi/1-2, but they display or re-
turn an encoded explanation graph (§4.4.2). probefo/1-2, probefv/1-2 and probefio/1-2 are
also available.

Similarly to probf/1-2, the call of the predicates above will fail if there is no explanation for the given goal G.
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4.5 Viterbi computation

4.5.1 Basic usage
By the Viterbi computation, we mean to get the most probable explanation E∗ for a given goal G, that is, E∗ =
arg maxE∈ψ(G) P(E), where ψ(G) is a set of explanations for G. Also the probability of E∗ can be obtained. Here
we call them respectively the Viterbi explanation and the Viterbi probability of G. Currently the following built-in
predicates are available for a tabled probabilistic goal G:

• viterbi(G) displays the Viterbi probability of G.

• viterbi(G,P) returns the Viterbi probability of G to P.

• viterbif(G) displays the Viterbi probability and the Viterbi explanation for G.

• viterbif(G,P,Expl) returns the Viterbi probability of G to P, and a Prolog-term representation of the
Viterbi explanation E∗ for G to Expl.

• viterbig(G) is the same as viterbi(G) except that G is unified with its instantiation found in the
most probable explanation path (sub-explanation) when G is non-ground.

• viterbig(G,P) is the same as viterbi(G,P) except that G is unified with its instantiation found in
the most probable explanation path (sub-explanation) when G is non-ground.

• viterbig(G,P,Expl) is the same as viterbif(G,P,Expl) except that G is unified with its instan-
tiation found in the most probable explanation path (sub-explanation) when G is non-ground.

If there is no explanation for G, the call of the predicates above will fail. A Prolog-term representation of a Viterbi
explanation takes the same form as a usual explanation graph except that a node has exactly one explanation path
(sub-explanation). That is, it takes the form:

[node(G′1,[path(GL1,SL1)]),..., node(G′n,[path(GLn,SLn)])],

where G′i is a subgoal in the explanation path for G, and G′i is directly explained by subgoals GLi and switches
SLi. This Prolog term can be printed in a human-readable form by using print_graph/1-2 (see §4.4). If G′i
is known to be true, both GLi and SLi are bound to [].7

In practical situations, we often suffer from the problem of underflow for a very long Viterbi explanation. Set-
ting ‘on’ to the log_scale flag enables log-scaled Viterbi computation in which all probabilities are contained
in logarithmic scale (see §4.13 for details), and then the problem of underflow will be cleared.

4.5.2 Post-processing
Since version 1.11, two post-processing built-ins for Viterbi computation are available:

• viterbi_subgoals(Expl,Goals) extracts the subgoals G′1,. . . ,G′n in the explanation Expl, and returns
them as a list Goals.

• viterbi_switches(Expl,Sws) extracts the switch instances in the explanation Expl, and returns them
as a list Sws (i.e. returns the concatenation of SL1,. . . ,SLn).

4.5.3 Top-N Viterbi computation
Furthermore, built-in predicates for computing top-N Viterbi explanations or top-N Viterbi probabilities are avail-
able. That is, we can obtain N explanations with the highest probabilities, where the number N can be specified in
the query. This procedure is sometimes called top-N Viterbi computation or N-Viterbi computation in short. The
following is a list of built-ins for top-N Viterbi computation:

• n_viterbi(N,G) displays the top-N Viterbi probabilities of the goal G.

• n_viterbi(N,G,Ps) returns the top-N Viterbi probabilities of the goal G as a list Ps.

• n_viterbif(N,G) displays the top-N Viterbi explanations for the goal G.

7 Similarly to the case of probf/2 (§4.4.1), we can have node(G′i,[]) instead by turning off the explicit_empty_expls flag.
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• n_viterbif(N,G,VPathL) returns Prolog-term representations of the top-N Viterbi explanations for
the goal G as a list VPathL. Each element in VPathL takes the form v_expl(K,P,Expl), where Expl is
the K-th ranked explanation and P is its generative probability.

• n_viterbig(N,G,P,Expl) unifies G with its instantiation found in the most probable explanation path
(sub-explanation) when G is non-ground. This built-in also returns the corresponding Viterbi probability
and the corresponding Viterbi explanation to P and Expl, respectively. On backtracking, this built-in returns
the answers w.r.t. the second most probable explanation path, the third most probable path, and so on, in
turn.

• n_viterbig(N,G) is the same as n_viterbig(N,G,_,_) when G is non-ground, and is the same
as n_viterbi(N,G) when G is ground, except that the Viterbi probability will be displayed.

• n_viterbig(N,G,P) is the same as n_viterbig(N,G,P,_) when the goal G is non-ground, or
returns top-N Viterbi probabilities of G to P one by one on backtracking when G is ground.

Note that G should be a tabled probabilistic goal. Since the implementation of these N-Viterbi routines is dif-
ferent from (and is more complicated than) that of the basic Viterbi routines such as viterbif/1 (§4.5.1), the
efficiency (both time and space) of the N-Viterbi routines seems inferior to that of the basic ones. So it is recom-
mended to use the basic ones if you only need to the most probable explanation (i.e. N = 1). Besides, for the same
reason, the results from n_viterbif(1,G) and viterbif(G) can be different if there are more than one
Viterbi explanation of G with the same generative probability.

4.5.4 Viterbi trees
Each of Viterbi explanations can also be represented in the form of a tree. Namely, each node of a tree corresponds
to either a subgoal or a switch instance and the parent node corresponds to the caller. We refer to such trees by
Viterbi trees.

viterbi_tree(Expl,Tree) returns a Prolog-term representation Tree of the Viterbi tree based on the
Viterbi explanation Expl. Each subgoal G′i is represented by a list [G′i,Ci,1,...,Ci,ni] if the subgoal has other
subgoals and/or switch instances in its explanation path (sub-explanation), or just G′i itself otherwise. Each switch
instance is represented by a term msw(I,V). Here, Ci, j denotes the term that represents the node corresponding
to a subgoal or a switch instance in the G′i’s explanation path (GLi and SLi). The following example shows one of
possible Viterbi trees for hmm([a,b]) in the HMM program with the string length of two:

?- viterbif(hmm([a,b]),_,_EG),viterbi_tree(_EG,Tree).

Tree = [hmm([a,b]),[hmm(1,2,s0,[a,b]),[hmm(2,2,s1,[b]),hmm(3,2,s0,
[]),msw(out(s1),b),msw(tr(s1),s0)],msw(out(s0),a),msw(tr(s0),s1)],
msw(init,s0)] ?

While this term is suitable to be processed by programs, it is not easily understood by humans. So the programming
system also provides a pretty-printing routine. print_tree(Tree) prints the Viterbi tree represented by a Pro-
log term Tree to the current output stream. print_tree(Tree,Opts) is the same as print_tree(Tree) ex-
cept it accepts a list Opts of options. print_tree(Stream,Tree,Opts) is the same as print_tree(Tree,Opts)
except the output is produced to Stream rather than the current output stream. Currently the only available option
is indent(N), which changes the indent level to N (3 in default). For example, the Viterbi tree presented above
is printed as shown below:

?- viterbif(hmm([a,b]),_,_EG),viterbi_tree(_EG,_Tree),print_tree(_Tree).

hmm([a,b])
| hmm(1,2,s1,[a,b])
| | hmm(2,2,s1,[b])
| | | hmm(3,2,s1,[])
| | | msw(out(s1),b)
| | | msw(tr(s1),s1)
| | msw(out(s1),a)
| | msw(tr(s1),s1)
| msw(init,s1)

The following built-in predicates are also available to perform the Viterbi computation and obtain the tree at the
same time:
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• viterbit(G) displays the Viterbi probability and tree for the goal G.

• viterbit(G,P,Tree) returns the Viterbi probability and a Prolog-term representation of the Viterbi tree
for the goal G to P and Tree respectively.

• n_viterbit(N,G) displays the top-N Viterbi probabilities and trees for the goal G.

• n_viterbit(N,G,VTreeL) returns Prolog-term representations of the top-N Viterbi trees for the goal G
as a list VTreeL. Each element in VTreeL takes the form v_tree(K,P,Tree) where Tree is the tree based
on the K-th ranked explanation and P is its generative probability.

4.6 Hindsight computation*

4.6.1 Basic usage
A hindsight probability is Pθ(G′), the probability of a subgoal G′ for a given top-goal G.8 Inside the system, the
hindsight probability of a subgoal G′ is computed as a product of the inside probability and the outside probability
of G′. For illustration, let us consider the HMM program (§1.3) with string length being 4. In an HMM given some
sequence, we may want to compute the probability distribution on states for every time step. The programming
system computes such a probability distribution as hindsight probabilities. That is, we get the distribution at time
step 2 as follows:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_)).
hindsight probabilities:

hmm(2,4,s0,[b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564

We read from above that, given a string [a,b,a,b], the probability of the hidden state being s0 at time step 2
is about 0.0139, whereas the probability of the hidden state being s1 is about 0.0545. Generally speaking, for a
tabled probabilistic goal G, hindsight(G,GPatt) writes the hindsight probabilities of G’s subgoals that match
with GPatt to the current output. In a similar way, hindsight(G,GPatt,Ps) returns the list of pairs of subgoal
and its hindsight probability to Ps:

?- hindsight(hmm([a,b,a,b]),hmm(2,_,_,_),Ps).

Ps = [[hmm(2,4,s0,[b,a,b]),0.013880247702822],
[hmm(2,4,s1,[b,a,b]),0.054497179729564]] ?

When omitting the matching pattern GPatt, hindsight(G) writes the hindsight probabilities for all subgoals
of G to the current output.

?- hindsight(hmm([a,b,a,b])).
hindsight probabilities:

hmm(1,4,s0,[a,b,a,b]): 0.058058181772934
hmm(1,4,s1,[a,b,a,b]): 0.010319245659452
hmm(2,4,s0,[b,a,b]): 0.013880247702822
hmm(2,4,s1,[b,a,b]): 0.054497179729564
hmm(3,4,s0,[a,b]): 0.062748214275926
hmm(3,4,s1,[a,b]): 0.005629213156460
hmm(4,4,s0,[b]): 0.015964697775827
hmm(4,4,s1,[b]): 0.052412729656559
hmm(5,4,s0,[]): 0.047234593867704
hmm(5,4,s1,[]): 0.021142833564682

It should be noted that, if you want the list of all pairs of subgoal and its hindsight probability, we need to run
hindsight(G,_,Ps) (not hindsight(G,Ps), in which Ps will be interpreted as the matching pattern).

8 The term ‘hindsight’ comes from an inference task with temporal models such as dynamic Bayesian networks [44].

49



4.6.2 Summing up hindsight probabilities
Furthermore, sometimes it is required to compute the sum of hindsight probabilities of several particular subgoals.
Although this procedure may be implemented by the user with hindsight/1-3 and additional Prolog routines,
for ease of programming, the system provides a built-in utility of such summation (marginalization).

To illustrate this utility, let us consider another example that describes an extended hidden Markov model, in
which there are two state variables, only one depends on another:

values(init,[s0,s1,s2]).
values(out(_),[a,b]).
values(tr(_),[s0,s1,s2]).
values(tr(_,_),[s0,s1,s2]).

hmm(L):-
str_length(N),
msw(init,S1),
msw(init,S2),
hmm(1,N,S1,S2,L).

hmm(T,N,S1,S2,[]) :-T>N,!.
hmm(T,N,S1,S2,[Ob|Y]) :-

msw(out(S2),Ob),
msw(tr(S1),Next1), % Transition in S1 depends on S1 itself
msw(tr(S1,S2),Next2), % Transition in S2 depends both on S1 and S2
T1 is T+1,
hmm(T1,N,Next1,Next2,Y).

str_length(4).

Each state variable takes on three values (s0, s1 and s2), and the state of the HMM itself is determined as a
combination of the values of the two variables (hence we can say that the number of possible states is (3 × 3 =)
9). Under some parameter configuration (e.g. after learning), we can compute the hindsight probabilities for all
subgoals.

?- hindsight(hmm([a,b,a,b])).
hindsight probabilities:

hmm(1,4,s0,s0,[a,b,a,b]): 0.129277300817752
hmm(1,4,s0,s1,[a,b,a,b]): 0.000547187686019
hmm(1,4,s0,s2,[a,b,a,b]): 0.001995647575806

:
hmm(5,4,s2,s0,[]): 0.038066015885796
hmm(5,4,s2,s1,[]): 0.030640117459401
hmm(5,4,s2,s2,[]): 0.013513864959245

Now let us suppose that we want to marginalize out the second state variable (i.e. the fourth argument). It is
achieved by running hindsight_agg/2 as follows:

?- hindsight_agg(hmm([a,b,a,b]),hmm(integer,_,query,_,_)).
hindsight probabilities:

hmm(1,*,s0,*,*): 0.131820136079577
hmm(1,*,s1,*,*): 0.012972174566148
hmm(1,*,s2,*,*): 0.050479679093070
hmm(2,*,s0,*,*): 0.031258649883958
hmm(2,*,s1,*,*): 0.116570845419607
hmm(2,*,s2,*,*): 0.047442494435231

:
hmm(5,*,s0,*,*): 0.041483563280137
hmm(5,*,s1,*,*): 0.071568428154217
hmm(5,*,s2,*,*): 0.082219998304441

In the above, hmm(integer,_,query,_,_) is a control statement that means “group subgoals according to
the first (integer) argument, and then, within each group, sum up the hindsight probabilities among the subgoals
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that has the same pattern in the argument specified by query (i.e. the third argument). In general, query is a
reserved Prolog atom that specifies an argument of interest, and the arguments specified by unbound variables are
ineffective in grouping and then bundled up in summation.

For the control of grouping, six reserved Prolog atoms are defined: integer, atom, compound, length,
d_length, depth. A null list [] matches with compound and length. The first three symbols just mean
grouping by exact matching9 for the integer argument, the argument with an atoms, and the argument with a
compound term, respectively. On the other hand, length will make groups according to the length of a list in
the corresponding argument. Similarly, d_length considers the length of a difference list (which is assumed to
take the form D0-D1), and depth considers the term depth. The last three symbols would be useful if we have
no appropriate argument for exact matching. For example, we can make grouping by the list length in the fifth
argument, instead of the first argument (L-n means that the length is n):

?- hindsight_agg(hmm([a,b,a,b]),hmm(_,_,query,_,length)).
hindsight probabilities:

hmm(*,*,s0,*,L-0): 0.041483563280137
hmm(*,*,s1,*,L-0): 0.071568428154217
hmm(*,*,s2,*,L-0): 0.082219998304441

:
hmm(*,*,s0,*,L-4): 0.131820136079577
hmm(*,*,s1,*,L-4): 0.012972174566148
hmm(*,*,s2,*,L-4): 0.050479679093070

The arguments in the control statement, which are neither variable nor reserved Prolog atoms, will be used for
filtering, that is, they are considered as matching patterns, just as in hindsight/1-3. For example, to get the
distribution at time step 3, we run:

?- hindsight_agg(hmm([a,b,a,b]),hmm(2,_,query,_,_)).
hindsight probabilities:

hmm(2,*,s0,*,*): 0.031258649883958
hmm(2,*,s1,*,*): 0.116570845419607
hmm(2,*,s2,*,*): 0.047442494435231

Besides, hindsight_agg(G,GPatt,Ps) will return to Ps a Prolog term representing the above computed
results, where ‘*’ can be handled just as a Prolog atom.

By default, each group in the computed result is sorted in the Prolog’s standard order with respect to the
subgoals. When setting ‘by_prob’ to the sort_hindsight flag (§4.13), the group will be sorted by the
magnitude of the hindsight probabilities.

4.6.3 Conditional hindsight probabilities
Furthermore, chindsight/1-3 and chindsight_agg/2-3 compute the conditional hindsight probabili-
ties Pθ(G′|G) = Pθ(G′)/Pθ(G) instead of Pθ(G′), where G is a given top-goal and G′ is its subgoal.10 The usages
for them are respectively the same as those for the hindsight or the hindsight_agg predicates with the
same arity. Conditional hindsight probabilities can be seen as a restricted version of conditional probabilities. For
instance, in the example program which represents a Bayesian network (§10.3), we compute conditional probabil-
ities on the network by using conditional hindsight probabilities.

4.6.4 Computing goal probabilities all at once
One interesting use of the hindsight predicates is to compute the probabilities of several goals all at once.
For example, in the HMM program, let us compute the conditional distribution on the strings that have a prefix
‘ab’. To do this, we compute the hindsight probabilities of subgoals of hmm([a,b,_,_]), which take the form
hmm(_):

9 The matching is done by ==/2, where the variables in the distinct subgoals are considered as different and thus do not match with each
other.

10 Generally speaking, we need to say that what is computed by the chindsight predicates is not a probability but Eθ[G′ |G], the expected
occurrences of G′ given G, which can exceed unity. This is because, in a general case, some subgoal G′ can appear more than once in G’s
proof tree. On the other hand, in typical programs of HMMs, PCFGs (with neither ε-rule nor chain of unit productions) or Bayesian networks,
each of subgoals should appear just once, hence Eθ[G′ |G] can be considered as a conditional probability, say Pθ(G′ |G). The discussion in this
footnote also holds for the hindsight predicates.
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?- chindsight(hmm([a,b,_,_]),hmm(_)).
conditional hindsight probabilities:

hmm([a,b,a,a]): 0.150882383997529
hmm([a,b,a,b]): 0.375321053537642
hmm([a,b,b,a]): 0.162375115518536
hmm([a,b,b,b]): 0.311421446946293

On the other hand, in the blood type program, we may compute the distribution over blood types:

?- hindsight(bloodtype(_),bloodtype(_)).
hindsight probabilities:

bloodtype(a): 0.403912166491685
bloodtype(ab): 0.095321638418523
bloodtype(b): 0.204152312431112
bloodtype(o): 0.296613882658681

Furthermore, by giving ‘by_prob’ to the sort_hindsight flag (§4.13), we can list goals in descending order
of their probabilities:

?- set_prism_flag(sort_hindsight,by_prob).
:

?- hindsight(bloodtype(_),bloodtype(_)).
hindsight probabilities:

bloodtype(a): 0.403912166491685
bloodtype(o): 0.296613882658681
bloodtype(b): 0.204152312431112
bloodtype(ab): 0.095321638418523

It is obvious that, since we use a top goal which contains logical variables, the computational cost (especially the
size of memory consumption) can be very large for some programs.

4.7 Parameter learning

4.7.1 Maximum likelihood estimation
The programming system supports parameter learning called maximum likelihood estimation (ML estimation).
That is, we can learn the parameters θ of switches buried in a program from data. More concretely, in the standard
ML estimation, the system tries to find the parameters θ that maximize the likelihood defined as

∏
t Pθ(Gt), the

product of probabilities of given observed goals {G1,G2, . . . ,GT } (i.e. training data).11

If we know that there is just one way to yield each observation Gt, ML estimation of the parameters θ is quite
easy. In such a case, Gt has only one explanation Et (a conjunction of switch instances which used to generate
Gt; see §2.4.2 for illustrated details of explanations), and hence it is only required to count up Ci,v, the number of
occurrences of msw(i,v) among all Et, and then to get the estimate θ̂i,v = Ci,v/

∑
v′ Ci,v′ of the parameters of the

switch.
The situation above is frequently seen in supervised learning where we say each observation Gt is a complete

data. In partially observing situation such as unsupervised or semi-supervised learning, on the other hand, we can
consider two or more ways to yield Gt (i.e. Gt has two or more explanations). To deal with such partially observed
goals (incomplete data) as observations, the programming system provides the utility of EM learning and Viterbi
training (VT). In the next two sections, we explain these learning frameworks in turn.

4.7.2 EM learning
In the system, EM learning is conducted in two phases: the first phase searches for all explanations for observed
data Gt (i.e. make an explanation search for Gt; see §2.4.2), and the second phase finds an ML estimate of θ by
using the EM algorithm. The EM algorithm is an iterative algorithm:

Initialization step:

Initialize the parameters as θ(0), and then iterate the next two steps until the likelihood
∏

t Pθ(Gt) (or its
logarithm) converges.

11 It should be noted here that each goal Gt is assumed to be observed independently.
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Expectation step:

For each msw(i,v), compute Ĉi,v, the expected occurrences of msw(i,v) under the parameters θ(m).

Maximization step:

Using the expected occurrences, update each parameter by θ(m+1)
i,v = Ĉi,v/

∑
v′ Ĉi,v′ and then increment m by

one.

When the likelihood converges, the system stores the estimated parameters to its internal database, and then we
can make further probabilistic inferences based on these estimated parameters. The threshold ε is used for judging
convergence, that is, if the difference between the likelihood under the updated parameters and one under the
original parameters is less than ε (i.e. sufficiently small), we can think that the likelihood converges. The value of
ε can be configured by the epsilon flag (see §4.13; the default is 10−4).

4.7.3 Viterbi training
Viterbi training (VT) has been known from early researches on speech recognition [26] and statistical natural
language processing [15], and recently, is paid attention again in unsupervised learning tasks for natural lan-
guages [9, 61]. Viterbi training is also known under the names of hard EM, classification EM, Viterbi EM and
so on. A typical instance of Viterbi training should be the K-means clustering algorithm, where the underlying
model is a Gaussian mixture with equal class probabilities and a common covariance matrix of the form σ2I [4].
A detailed description of Viterbi training for PRISM programs is provided in [58]. Currently, Viterbi training is
not applicable to the programs with failure (§2.4.4).

Viterbi training, as the name suggests, includes Viterbi computation in its procedure. The most important
difference between Viterbi training and EM learning (or the standard ML estimation) is that they maximize the
different likelihood functions. To be more specific, given a bag {G1,G2, . . . ,GT } of observed goals, the likelihood
function used in Viterbi training is

∏
t Pθ(E∗t ) where E∗t is defined as the most probable explanation (or Viterbi

explanation) for the goal Gt. On the other hand, Viterbi training is an iterative algorithm like EM learning:

Initialization step:

Initialize the parameters as θ(0), and then iterate the next two steps until the likelihood
∏

t Pθ(E∗t ) (or its
logarithm) converges.

Viterbi-computation step:

Compute E∗t by Viterbi computation based on the current parameter θ(m) for each Gt (1 ≤ t ≤ T ), and then
count the (exact) occurrences C∗i,v of msw(i,v) in {E∗1, E∗2, . . . , E∗T }.

Maximization step:

Using the counted occurrences, update each parameter by θ(m+1)
i,v = C∗i,v/

∑
v′ C∗i,v′ and then increment m by

one.

From our experience, we would like to add three remarks. First, Viterbi training converges more quickly than
EM learning, presumably because it is easier to obtain the same Viterbi explanations at both the m-th and the
(m + 1)-th iterations than to obtain very similar parameters at these iterations. Second, Viterbi training is sensitive
to the initial parameters, and thus it is strongly recommended to conduct as many random restarts (§4.7.7) as time
permits. Third, from the definition of the likelihood, Viterbi training is a reasonable choice for the situations where
we eventually need only the most probable explanation for each goal. For example, in an experiment on statistical
parsing [58], Viterbi training tends to bring good parameters to obtain the best parse for a given sentence. This
point of view also indicates that Viterbi training does not necessarily require the exclusiveness condition (§2.4.6)
which is mandatory for EM learning.

4.7.4 Maximum a posteriori estimation
As mentioned in §1.5, the programming system also supports maximum a posteriori estimation (MAP estimation)
for parameter learning, which tries to find parameters θ that maximize, P(θ | G1, . . . ,GT ) ∝ P(θ)

∏
t Pθ(Gt), the a

posteriori probability of the parameters given training data from a Bayesian point of view.12 In MAP estimation,
the system assumes the prior distribution P(θ) follows a Dirichlet distribution P(θ) = 1

Z
∏

i,v θ
αi,v−1
i,v , where Z

12 In this view, the parameterized probability distribution Pθ(G) which we used so far should be considered as P(G|θ), a conditional proba-
bility given the parameters. The discussion in this section also holds for Viterbi training, where a different likelihood function is used (§4.7.3).
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is a normalizing constant and each αi,v is a hyperparameter of the Dirichlet distribution, which corresponds to
msw(i,v). Then in estimating parameters, it introduces δi,v = (αi,v − 1), as a pseudo count for each msw(i,v).

The term ‘pseudo count’ comes from the fact that, in the complete-data case, each parameter is estimated by
θ̂i,v = (Ci,v + δi,v)/(

∑
v′(Ci,v′ + δi,v′ )). Similarly, in the incomplete-data case, each parameter is updated by the

EM algorithm with θ̂i,v = (Ĉi,v + δi,v)/(
∑

v′ (Ĉi,v′ + δi,v′ )), until the a posteriori probability converges. Practically
speaking, even for small training data (compared to the number of parameters to be estimated), with all pseudo
counts being positive, all estimated parameters are guaranteed to be positive, and hence we can escape from the
problem of so-called data sparseness or zero frequency. If all pseudo count are zero, the MAP estimation is just
an ML estimation, and it is sometimes called Laplace smoothing when all pseudo counts are set to be unity. To
configure these pseudo counts individually, it is recommended to use the built-in predicates named ∗_sw_d or
∗_sw_pd described in §4.1.

4.7.5 Built-in utilities for EM learning
The built-in learn(Goals) takes Goals, a list of observed goals, and estimates the parameters of the switches to
maximize the likelihood of the goals. For example, in the direction program (§1.1), we make the program learn
with three observed goals:

?- learn([direction(left),direction(right),direction(left)]).

Then we may receive messages like:

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -1.909542505)
Statistics on learning:

Graph size: 2
Number of switches: 1
Number of switch instances: 2
Number of iterations: 2
Final log likelihood: -1.909542505
Total learning time: 0.004 seconds
Explanation search time: 0.004 seconds
Total table space used: 1088 bytes

Type show_sw or show_sw_b to show the probability distributions.

The line beginning with #goals shows the number of distinct goals whose explanation searches have been done.
The lines beginning with #iterations show the number of EM iterations. Since each of direction(left)
and direction(right) has just one explanation msw(coin,head) and msw(coin,tail) respectively
(i.e. they are complete data), EM learning finishes with only two iterations. After learning, the statistics on
learning are displayed. These statistics can also be obtained as Prolog terms (see §4.8). We may confirm the
estimated parameters by show_sw/0 (§4.1.8):

?- show_sw.
Switch coin: unfixed: head (0.666666666666667) tail (0.333333333333333)

This result indicates that the estimated parameters are θ̂coin,head = 2/3 and θ̂coin,tail = 1/3. This is obvi-
ously because, for the whole training data, we have the explanation msw(coin,head) for two goals, and
msw(coin,tail) for one goal.

The built-in learn/0 can be used only when the program gives the data_source flag (§4.13.2) which
specifies the location of the observed goals. The built-in predicate learn [no args] is the same as learn(Goals)
except that the observed goals are read from the file specified by the data_source flag. For example, assume
the file ‘direction.dat’ contains the following two unit clauses:

direction(left).
direction(right).

and the program contains a query statement for the data_source flag:

:- set_prism_flag(data_source,file(’direction.dat’)).

Then running the command learn/0 is equivalent to:

?- learn([direction(left),direction(right)]).
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Furthermore, we can specify the data by goal-count pairs by using count/2. That is, the data

count(direction(left),3).
count(direction(right),2).

are equally treated as below:

direction(left).
direction(left).
direction(left).
direction(right).
direction(right).

Such goal-count pairs can also be given to learn/1:

?- learn([count(direction(left),3),count(direction(right),4)]).

Furthermore, an infix version of count/2, times/2 is also available (as the operator, the priority is set to 1160):

?- learn([(3 times direction(left)),(4 times direction(right))]).

In the programming system, the default learning method is ML estimation (§4.7.1). On the other hand, as
mentioned above, we can enable MAP estimation (§4.7.4) by setting the pseudo count δI,V , which is greater than
zero, for each switch instance msw(I,V). For example, let us set all pseudo counts as 0.5. There are two typical
cases:

• No random switches have been registered into the internal database yet (§4.1.3). In such a case, we set the
default pseudo counts as follows:

?- set_prism_flag(default_sw_d,0.5).

With this setting, the pseudo counts of the switches found (and registered) in the next learning will be all set
to 0.5.

• The switches whose parameters are the target of learning have already been registered. In such a case, we
use set_sw_all_d/2 to change the pseudo counts of these switches as follows:

?- set_sw_all_d(Patt,0.5).

In the query above, Patt is the matching pattern of the target switches. See §4.1.6 for the detailed usage of
set_sw_all_d/2 and other built-ins for setting the pseudo counts of switches.

Note that the settings above can co-exist. Finally, the learning command is invoked in the same way as that of ML
estimation:

?- learn([direction(left),direction(right),direction(left)]).

#goals: 0(2)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -2.646252953)
Statistics on learning:

Graph size: 2
Number of switches: 1
Number of switch instances: 2
Number of iterations: 2
Final log of a posteriori prob: -2.646252953
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 1088 bytes

Type show_sw or show_sw_b to show the probability distributions.
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It may be confusing that ‘log of a posteriori prob’ in the messages above is indeed the log of un-
normalized a posteriori probability of the observed goals (i.e. the sum of the log-likelihood and the log-scaled
prior probability13), which is the essential target of maximization. Finally we find the estimated parameters are
θ̂coin,head = (2 + 0.5)/(3 + 2 ∗ 0.5) = 0.625 and θ̂coin,tail = (1 + 0.5)/(3 + 2 ∗ 0.5) = 0.375.

?- show_sw.
Switch coin: unfixed_p: head (p: 0.625000000) tail (p: 0.375000000)

Let us recall that the above example is a program with complete data. When EM learning is conducted with
incomplete data, the procedure is the same as above, but the larger number of iterations may be required for
complex models or large data. If some parameters are fixed (§4.1.7), they will not be updated in the process of
learning. Please note however that it is not allowed to fix any parameters at zero in MAP estimation (if we have
some parameter being zero, then the prior probability becomes zero, and in turn, its logarithm becomes −∞).

4.7.6 Built-in utilities for Viterbi training
Switching into Viterbi training is quite easy — we have only to set the learn_mode flag as ‘ml_vt’. The usage
of the related built-in predicates and execution flags are the same as those in the previous section (§4.7.5). To get
back to EM learning, please set the learn_mode flag as ‘ml’. The learn_mode flag is also used for switching
into variational Bayesian learning (Chapter 5).

4.7.7 Random restarts
It is only guaranteed in a run of EM learning and Viterbi training that each iteration monotonically increases the
likelihood (or the a posteriori probability), and hence we often face the problem of being trapped in undesirable
local maxima. In the current version, the system provides two solutions. The first one is quite simple. That is,
we try multiple runs of EM learning and Viterbi training by restarting with different initial parameters. The final
estimates are the ones with the highest likelihood (or the a posteriori probability) among all trials. The number of
such trials can be specified by the restart flag (see §4.13). For example, if you wish to make restarts for 10
times, just type:

?- set_prism_flag(restart,10).

4.7.8 Deterministic annealing EM algorithm
Another solution for avoiding undesirable local maxima is to use the deterministic annealing EM (DAEM) al-
gorithm [64]. It is easy to see that, in the usual EM algorithm, the final estimate of the parameters depends on
the choice of initial parameters. On the other hand, the DAEM algorithm is designed to reduce an undesirable
influence from the initial parameters in the early stage of EM iterations. In the rest of this section, we briefly
describe the DAEM algorithm.

Let us consider first that we have the observed data (a multiset of observed goals) D = {G1,G2, . . . ,GT }, and
ψ(Gt) is the set of explanations for the t-th observed goal. Then, from analogy to statistical mechanics, the free
energy is introduced as:

Fβ = −
1
β

T∑
t=1

log
∑

E∈ψ(Gt)

Pθ(E)β, (4.1)

where β is the inverse temperature which controls the influence from the initial parameters. The DAEM algorithm
is derived so that it tries to minimize the free energy Fβ at each temperature 1/β. Figure 4.1 shows an expected
behavior of the DAEM algorithm, where Lβ is introduced as −Fβ (then we will try to maximize Lβ). In the DAEM
algorithm, we start from the small β, under which Lβ is expected to have a smooth shape, and hopefully has
only one local maximum (i.e. the global maximum). So under the smaller β, we may be able to find the global
maximum or good local maxima. When β increases, on the other hand, the shape of Lβ changes (becomes sharper),
and hence we should continue to update the parameters by EM iterations. Please note that the starting point of
these EM iterations is expected to be more promising than the initial parameters. Finally we perform EM iterations
at β = 1, which is equivalent to the usual EM iterations.

13 To be precise, suppose we have some predefined probabilistic model and let D be the data at hand. Then, from a Bayesian point of view, a
posteriori probability of parameter θ given D is computed by P(θ | D) = P(θ)P(D | θ)/P(D), where P(θ) is a prior probability of θ, and P(D | θ)
is the likelihood of D under θ. As stated in §4.7.4, P(θ) is assumed to follow a Dirichlet distribution, and the ‘unnormalized’ a posteriori
probability is just P(θ | D) ignoring the constant factors with respect to θ (i.e. the constant factors in the Dirichlet distribution and P(D)). Of
course, such an unnormalized version can be used only for relative comparison such as a judgment of the EM algorithm’s convergence, or
selecting the ‘best’ parameters in multiple runs of the EM algorithm (§4.7.7).
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Figure 4.1: Image of the deterministic annealing EM algorithm.

For an effective use of the DAEM algorithm, the annealing schedule is important. In PRISM, following [64],
we start from β0 = βinit and then update β by the update rule βt+1 ← βt · βrate, where βinit and βrate are given by the
user (the default values are 0.1 and 1.5, respectively). In our experience, the appropriate annealing schedule seems
to vary depending on the model and the observed data.

The DAEM algorithm will be enabled when the daem flag is set as ‘on’, and controlled by the itemp_init
and the itemp_rate flags which correspond to βinit (the initial value) and βrate (the increasing rate), respectively.
For example, the followings will enable the DAEM algorithm with βinit = 0.3 and βrate = 1.2.

?- set_prism_flag(daem,on).
?- set_prism_flag(itemp_init,0.3).
?- set_prism_flag(itemp_rate,1.2).

While the DAEM algorithm running, the programming system displays an asterisk (‘*’) in the line beginning
with ‘#em-iters’ at the moment the inverse temperature is updated. For example, in the HMM program, we
will see the messages as follows:

?- prism(hmm).
:

?- set_prism_flag(daem,on).
:

?- set_prism_flag(itemp_init,0.3).
:

?- set_prism_flag(itemp_rate,1.2).
:

?- hmm_learn(100).

#goals: 0.........(92)
Exporting switch information to the EM routine ... done
#em-iters: *0*****.**(13) (Converged: -687.729389314)
Statistics on learning:

Graph size: 5420
Number of switches: 5
Number of switch instances: 10
Number of iterations: 13
Final log likelihood: -687.729389314
Total learning time: 0.032 seconds
Explanation search time: 0.008 seconds
Total table space used: 369180 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
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Table 4.1: Available statistics on the explanation graphs, on learning, and on the probabilistic inference other than
learning

graph_statistics(Name,Stat)
Name Stat

num_subgraphs Number of subgraphs in the explanation graphs
num_nodes Total number of nodes in the explanation graphs

(the sum of num_goal_nodes and num_switch_nodes)
num_goal_nodes Number of subgoal nodes
num_switch_nodes Number of switch nodes
avg_shared Average number of nodes which share a particular node (note: this average value

can be misleading if there is a node which is shared by extremely many nodes)
learn_statistics(Name,Stat)

Name Stat
log_likelihood Log likelihood (only available in ML/MAP)
log_post Log of unnormalized a posteriori probability (in MAP)
log_prior Log of a priori probability (in MAP)
lambda Same as log_likelihood (in ML) or log_post (in MAP)
num_switches Number of occurred switches in the last learning
num_switch_values Number of occurred switch values in the last learning
num_parameters Number of free parameters in the last learning
num_iterations Number of EM/VT iterations in the last learning
goals List of goals used in the last learning
goal_counts List of goal-count pairs used in the last learning
bic Bayesian Information Criterion (in ML/MAP, see §4.9)
cs Cheeseman-Stutz score (in MAP, see §4.9)
free_energy Variational free energy (in VB, see §5.1)
learn_time Total time consumed by the built-in (in seconds, including miscellaneous jobs)
learn_search_time Time consumed by the explanation search (in seconds)
em_time Time consumed by the EM/VT algorithm (in seconds)

infer_statistics(Name,Stat)
Name Stat

infer_time Total time consumed by the built-in (in seconds, including miscellaneous jobs)
infer_search_time Time consumed by the explanation search (in seconds)
infer_calc_time Time consumed by the numerical calculation (in seconds)

mcmc_statistics(Name,Stat)
Name Stat

mcmc_sample_time Total time consumed by MCMC sampling (in seconds, including miscellaneous jobs)
mcmc_marg_time Time consumed for the estimated log marginal liklihood (in seconds)
mcmc_pred_time Time consumed for Viterbi explanation based on the MCMC samples (in seconds)
mcmc_exact_time Time consumed for the exact log marginal likelihood (in seconds)

On the other hand, when the show_itemp flag (§4.13.2) turned ‘on’, the system will display ‘<βt>’ (t = 0, 1, . . .)
instead of asterisks.

4.8 Getting statistics on probabilistic inferences
The built-in predicates graph_statistics/0, learn_statistics/0, infer_statistics/0 and
mcmc_statistics/0 display the statistics on the explanation graphs, on learning, on the probabilistic in-
ferences other than learning and on MCMC sampling. Besides, prism_statistics/0 displays all statis-
tics displayed by the above four built-ins. To get an individual statistic, we can respectively use graph_
statistics(Name,Stat), learn_statistics(Name,Stat), infer_statistics(Name,Stat), mcmc_
statistics(Name,Stat), and prism_statistics(Name,Stat), where Name is the name of a statistic
and Stat is the value of the statistic. For example, to get the time consumed by learning, we may run:

?- prism_statistics(learn_time,T).

When calling prism_statistics(Name,Stat) with Name being unbound, we can get all available statistics
one after another by backtracking (this behavior also applies to the built-ins graph_statistics/2, learn_
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statistics/2 and infer_statistics/2). The available statistics are shown in Table 4.1.14 Combining
these statistics with the facilities for saving/restoring switch information (§4.1.10), it is possible to a customized
routine for multiple runs of the EM algorithm (§4.7.7).

In addition, the observed goals (with their counts and frequencies) used in the last learning is displayed by
show_goals, and can be obtained as Prolog terms by get_goals/1 and get_goal_counts/1:

?- show_goals.
Goal direction(right) (count=1, freq=33.333%)
Goal direction(left) (count=2, freq=66.667%)
Total_count=3

?- get_goals(Gs).
Gs = [direction(left),direction(right)] ?

?- get_goal_counts(GCs).
GCs = [[direction(left),2,66.666666666666657],

[direction(right),1,33.333333333333329]] ?

4.9 Model scoring*
In practical applications, we often face a problem of model selection — that is, we need to select the model that
fits best the data at hand, from possible candidates. Since version 1.10, the programming system provides the
following Bayesian scores:

1. Bayesian Information Criterion (BIC) [60],

2. The Cheeseman-Stutz (CS) score [6],

3. The variational (negative) free energy,

4. The estimated log marginal likelihood.

The first two are used after ML (§4.7.1) or MAP (§4.7.4) estimation, whereas the third one is used after variational
Bayesian learning (Chapter 5) and the last one is used after MCMC sampling (Chapter 6). Generally speaking, the
first three Bayesian scores are known to be ‘deterministic’ approximations of log P(G | M), log of the marginal
likelihood of the observed data G under the model M, and so in model selection with some Bayesian score (BIC,
for example), we compare the model candidates according to the score (i.e. the model with the larger score is
considered to be better). On the other hand, since version 2.1, the programming system provides built-in predicates
for MCMC sampling, by which we can obtain a sample-based approximation of log of the marginal likelihood
(see Chapter §6 for details).

To be more concrete, let us consider first that the joint distribution P(G,M, θ) of the observed data G, a
probabilistic model M, and its parameters θ. In PRISM, G is a multiset of observed goals G1,G2, . . . ,GT , and
M corresponds to the modeling part of a PRISM program. P(G,M, θ) is then factored as P(G | M, θ)P(θ | M)P(M)
by the chain rule, where P(M) is the prior distribution of the model M, P(θ | M) is the a posteriori distribution
of the parameters θ of the model M, and P(G | M, θ) is the likelihood of the data G based on the model M with

the parameters θ. Then, in model selection, our goal is to find the most probable model M∗ based on the data G at
hand, that is, we attempt to find M∗ such that:

M∗ = argmaxM P(M | G) = argmaxM
P(G | M)P(M)

P(G)
= argmaxM P(G | M),

where we assume P(M) to be uniform for simplicity. Now the goal is reduced to finding M (= M∗) that maximizes
P(G | M). P(G | M) is commonly called the marginal likelihood of G given M, and is used as a Bayesian score for
model selection. The marginal likelihood can be interpreted as the expectation (or the average) of the likelihood
P(G | M, θ) with respect to the prior distribution P(θ | M)15:

P(G | M) =
∫
Θ

P(G, θ | M)dθ =
∫
Θ

P(G | M, θ)P(θ | M)dθ = ⟨P(G | M, θ)⟩P(θ|M) .

14 The number of occurred switch instances is just the sum of the numbers of possible outcomes of switches occurred in all explanations
for all observed goals. This means that the switch instances not occurring in any of these explanations are also taken into account there. The
number of free parameters is just computed as the number of occurred switch instances subtracted by the number of occurred switches.

15 As described in §4.7.4, the programming system assumes the prior distribution P(θ | M) (M was omitted in for simplicity) follows
a Dirichlet distribution P(θ | M) = 1

Z
∏

i,v θ
αi,v−1
i,v , where Z is a normalizing constant and each αi,v is a hyperparameter of the Dirichlet

distribution, which corresponds to msw(i,v).
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If the observed data were complete data Gc, where each element in Gc is a pair (Gt, Et) of the t-th goal Gt

and its unique explanation Et, then P(Gc | M) is obtained in closed form (see [11] for the case with a Bayesian
network). On the other hand, when the observed data is incomplete, as in the case with mixture models, the integral
in the above equation is difficult to compute. As mentioned above, BIC and the CS score are the approximations
of log of the marginal likelihood, which are defined as:

ScoreBIC(M) def
= log P(G | M, θ̂MAP) − |θ|

2
log N

ScoreCS(M) def
= log P(G̃c | M) − log P(G̃c | M, θ̂MAP) + log P(G | M, θ̂MAP),

where N is the total size of dataset, |θ| denotes the number of free parameters, θ̂MAP is the MAP estimate of the
parameters, and G̃c is the pseudo complete data whose sufficient statistics are the expected occurrences of random
switches obtained by the EM algorithm. See [7] for more detailed descriptions about BIC and the CS score. In the
programming system, learn_statistics(bic,Score) or learn_statistics(cs,Score) (§4.8) will
provide us BIC and the CS score after ML or MAP learning (§4.7.5) with some observed goals G. The definitions
of the variational free energy and another approximation of the marginal likelihood via MCMC sampling will be
shown in Chapter 5 and Chapter 6, respectively.

4.10 Handling failures*
The programming system provides a facility of dealing with failure in generative models. The background and
general descriptions are given in §1.4 and §2.4.4, and so in this section, we will concentrate on the usage of this
facility.

For example, let us consider again the program which takes into account the agreement in the results of coin-
tossings, and suppose that the program is contained in the file named ‘agree.psm’:

values(coin(_),[head,tail]).

failure :- not(success).
success :- agree(_).

agree(A):-
msw(coin(a),A),
msw(coin(b),B),
A=B.

See §2.4.4 for a detailed reading of this program. Like the program above, for the model that may cause failures,
we need to define the predicate failure/0which describes all generation processes leading to failure. In a prob-
abilistic context, the sum of probabilities of successful generation processes and the probability that failure/0
holds (called the failure probability) should always sum to unity. Of course it is possible to define failure/0
in a usual manner of PRISM programming, but the definition should be much simpler if we can appropriately use
the negation not/1 as above.

When some negation not/1 occurs in a program, the system first attempts to eliminate it from the program by
applying a certain type of program transformation, called First Order Compiler (FOC) [45], to produce an ordinary
PRISM program. If this transformation is successful, PRISM then loads the transformed program into memory.
prismn(File) carries out this two-staged process automatically (please note that ‘n’ is added to the last of the
predicate name). File must include a definition of the failure/0 predicate described above.

By default, the transformed program is stored into the file ‘temp’ under the current working directory. If
you prefer another file, say TempFile, prismn(File,TempFile) should be used instead. For example, for the
agreement program above, the query

?- prismn(agree).

loads ‘agree.psm’ into memory. The user can check the result of the transformation by FOC, looking at the file
‘temp’. To estimate the parameters of switches for this program, include a special symbol failure as data:

?- learn([failure,agree(heads),agree(heads),agree(tails)]).
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For a batch execution (§3.7) of the program that deals with failures, we need to run a command ‘upprism
prismn:foo’ instead of ‘upprism foo’.

foc/2 is the built-in predicate internally invoked by prismn/1-2. That is, foc(File,TempFile) eliminates
negation (or more generally universally quantified implications) and generates executable code into TempFile. For
example, we can find the program ‘max’ under the ‘exs_foc’ directory obtained by extracting the package. With
the following query, we transform ‘max’ into ‘temp’, and load the translated program:

?- foc(max,temp),[temp].

Allowing negation in the clause body is equivalent to allowing arbitrary first-order formulas as goals which are
obviously impossible to solve in general. So foc/2 may fail depending on the source program. Users are advised
to look into the examples of foc/2 usage under the ‘foc’ directory.

It is unfortunate that the deterministic annealing EM (DAEM) algorithm (§4.7.8) does not work with the
failure-adjusted maximization (FAM) algorithm. This is because, under β < 1 (β is the inverse temperature used
in the DAEM algorithm), the failure probability can exceed unity, whereas the FAM algorithm is derived from the
property of a negative binomial distribution under the condition that the failure probability is less than unity [14].

4.11 Avoiding underflow*
For large data, such as very long sequential data, we often suffer from a problem that the probability of some
explanation goes into underflow. In version 2.0, the mechanism for avoiding underflow is simplified, i.e. we just
switch between logarithmic scale and non-logarithmic scale for the probabilities being kept in the programming
system. The default scale is non-logarithmic.

For Viterbi computation (§2.3 or §4.5), the log-scaled probability of the Viterbi explanation is just computed as
the sum of the log-scaled probabilities of the switch instances in the explanation. For the probabilistic inferences
other than Viterbi computation, the log-scaled probability computation is performed by calling the logarithmic
function and the exponential function alternately. Although log-scaled probability computation is safe in most
cases, we should care about two points. First, log-scaled probability computation requires some additional com-
putation time for the logarithmic function and the exponential function. The second point is that we often need
to combine the log-scaled probability computation with MAP estimation (§4.7.4) to avoid a numerical problem
that the programming system may take a logarithm of zero probabilities. With MAP estimation, on the other
hand, we can avoid having such zero probabilities. If you do not prefer the side-effect from MAP estimation, it is
recommended to set very small pseudo counts (e.g. 1.0 × 10−6).

To enable the log-scaled probability computation, please set ‘on’ to the log_scale flag (the default value
is off). Then the returned probability is in logarithmic scale. This setting is equivalent to simultaneously setting
‘on’ to the log_viterbi flag and ‘log_exp’ to the scaling flag in previous versions of the programming
system. See §4.13 for a general description on handling execution flags.

4.12 Keeping the solution table*
Since version 1.10, when the clean_table flag is set as ‘off’ (see §4.13 for a general description on handling
execution flags), the programming system will come not to clean up the solution table. On the other hand, if
this flag is set as ‘on’, which is the default, the programming system will automatically clean up all past results
of explanation search (say, solutions) in the solution table16 when invoking a routine that performs explanation
search, i.e. the routine for probability calculation (prob/2 and its variants; §4.3), explanation graph construction
(probf/2 and its variants; §4.4), Viterbi computation (viterbif/2 and its variants; §4.5), hindsight compu-
tation (hindsight/1 and its variants; §4.6) and learning (learn/0 and its variants; §4.7).

Keeping and reusing the past solutions can be significantly useful when we compute the probabilities of some
specific goal repeatedly with different parameter settings. Of course, the efficiency is gained at the price of memory
space, so we need to care about the size of the used memory (i.e. the table area).

16 Internally, the system calls both initialize_table/0 (B-Prolog’s built-in) and the routine that erases the ID tables of PRISM’s
own. So it is not guaranteed for the system to work when you call only initialize_table/0 at an arbitrary timing.
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4.13 Execution flags

4.13.1 Handling execution flags
The programming system provides dozens of execution flags for allowing us to change its behavior. The below is
the usage of these execution flags:

Setting flags:

The execution flags are set by the command set_prism_flag(FlagName,Value). There are a couple
of typical usages:

• At loading time:
The execution flags can be specified by the loading command prism/2 (§3.3):

?- prism([FlagName=Value],Filename).

The programming systems will then behave under the setting FlagName=Value.

• At the query prompt:
We can of course interactively set the execution flags at the query prompt:

?- set_prism_flag(FlagName,Value).

The programming systems will then behave under the setting FlagName=Value.

• In the query statements in the program:
When writing set_prism_flag/2 in some query statements in a program, these queries will be
evaluated while loading. They can be thought of as the default flag settings for the program. Here is
an example:

:
:- set_prism_flag(default_sw_d,1.0).
:- set_prism_flag(log_scale,on).

:

• In a batch routine:
It is often convenient to write set_prism_flag/2 in a batch predicate like go/1 shown below:

go(R) :- % R is the number of random restarts
set_prism_flag(restart,R),
learn.

Then, we can run “?- go(R)” with various R.

Printing flags:

show_prism_flags/0 or more shortly show_flags/0 prints the current values of flags.

Getting flag values:

By get_prism_flag(FlagName,X), we can get the current value of FlagName as X. If we call this with
FlagName being unbound, all available flags and their values are retrieved one after another by backtracking.

Resetting flags:

reset_prism_flags/0 resets all flags to their default values.

4.13.2 Available execution flags
Here we list the available execution flags in the alphabetical order. Please note that this list also includes ones for
the functions described in later chapters.

• clean_table (possible values: on and off; default: on) — the flag for automatic cleaning of the solu-
tion table (see §4.12 for details). If this flag is set as ‘on’, the programming system will automatically clean
up all past solutions in the solution table when invoking any routine that executes the explanation search.
On the other hand, with this flag turned ‘off’, we can keep the past solutions.

• crf_enable (possible values: on, off, default: on) — this flag enables the use of built-in predicates for
generative CRFs (§7).
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• crf_golden_b (possible value: non-negative float, default: 1.0) — this flag sets a parameter used in
golden section line search in learning generative CRFs (§7). Search is done between 0 and the value set by
the flag.

• crf_init (possible values: none, noisy_u, random and zero, default: zero) — this flag specifies
how to initialize the weights λ in learning generative CRFs (§7). There are four options: none, noisy_u,
random and zero. zero means initialization to 0.

• crf_learn_mode (possible values: fg and lbfgs, default: lbfgs) — the crf_learn_mode flag
specifies a learning mode, either fg or lbfgs, for generative CRFs (§7). The fg mode applies the steepest
descent method for minimization which is a line search method. Starting from an initial value λ0, the weights
λn are iteratively updated at step n by

λn+1 = λn + αndn

dn = ∇L(λn | D),

where αn, learning rate, is controlled by the crf_learn_rate flag. The lbfgs mode uses L-BFGS, a
powerful quasi-Newton method, to minimize −L(λ | D). Usually L-BFGS converges more quickly than the
steepest descent method. However the convergence may be sensitive to initialization and as an alternative
the steepest descent method is offered.

• crf_learn_rate (possible values: backtrack and golden, default: backtrack) — this flag con-
trols a learning rate αn when the crf_learn_mode flag is set to fg, the steepest descent algorithm. αn

is determined by line search: αn = argminαL(λn + αdn | D). If the crf_learn_mode flag is set to
backtrack, backtracking line search is used to perform argminα. Likewise golden performs golden
section line search.

• crf_ls_c1 (possible value: floating-point number in [0, 1], default: 0.5) — this flag sets another parame-
ter used in backtracking line search in learning generative CRFs (§7).

• crf_ls_rho (possible value: floating-point number in [0, 1], default: 0.5) — this flag sets a parameter
used in backtracking line search in learning generative CRFs (§7).

• crf_penalty (possible value: any floating-point number, default: 0.0) — this flag determines µ in the
penalty term µ

2
∑K

k=1 λ
2
k in learning generative CRFs (§7).

• daem (possible values: on and off; default: off) — the flag for enabling the deterministic annealing EM
(DAEM) algorithm (see §4.7.8). If this flag is set as ‘on’, the programming system will invoke the DAEM
algorithm while EM learning. On the other hand, with this flag turned ‘off’, it will be disabled.

• data_source (possible values: data/1, file(Filename), none; default: data/1) — the data file
for learn/0 (§4.7.5). If this flag is set as data/1, the observed goals are read from the file specified
by the data file declaration (§2.6.1) as in the versions earlier than 1.12. If file(Filename), the observed
goals are read from Filename. If none, the programming system assumes that there is no data file available
for learn/0 and thus raises an error when learn/0 is called. By setting file(Filename) or none,
you can use data/1 as a user predicate for the purposes other than data file declaration.

• default_sw (possible values: none, uniform, f_geometric, f_geometric(Base),
f_geometric(Base, Type), and random; default: uniform) — the default distribution for param-
eters. If none is set, we have no default distribution for parameters, and hence as in the versions ear-
lier than 1.9, we cannot make sampling or probability computation without an explicit parameter set-
ting (via set_sw/2, and so on) or learning. uniform means that the default distribution for each
switch is a uniform distribution. f_geometric(Base, Type) means the default distribution for each
switch is a finite geometric distribution where Base is its base (a floating-point number greater than one)
and Type is asc (ascending order) or desc (descending order). For example, when the flag is set as
f_geometric(2,asc), the parameters of some three-valued switch are set to 0.142· · · (= 20/(20 + 21 +

22)), 0.285· · · (= 21/(20+21+22)), and 0.574· · · (= 22/(20+21+22)), according to the order of values spec-
ified in the corresponding multi-valued switch declaration (values/2-3). f_geometric(Base) is the
same as f_geometric(Base,desc), and f_geometric is the same as f_geometric(2,desc).
random means that the default distribution for each switch is set at random.
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• default_sw_a (possible values: none, uniform, uniform(ζ), ζ (ζ is a positive float); default:
disabled — see below) — the default value for pseudo counts (hyperparameters) αi,v used in variational
Bayesian learning. If none is set, we have no default distribution for pseudo counts, and hence we cannot
perform probabilistic inferences unless giving the pseudo counts, by set_sw_a/2 or variational Bayesian
learning (§5.2.1, §5.2.2). uniform (resp. uniform(ζ)) means that each pseudo count will be set as 1/K
(resp. ζ/K) by default, where K is the number of possible values of the corresponding switch. If a positive
floating-point number ζ is set to this flag, the system use ζ as the default value of each pseudo count. This
flag will be disabled if the default_sw_d flag is set to some value. This flag is disabled just after the
programming system invoked.

• default_sw_d (possible values: none, uniform, uniform(ζ), ζ (ζ is a non-negative float); default:
0.0) — the default value for pseudo counts δi,v used in MAP estimation. If none is set, we have no default
distribution for pseudo counts, and hence we cannot perform probabilistic inferences unless giving the
pseudo counts by set_sw_d/2 (or variational Bayesian learning). uniform (resp. uniform(ζ)) means
that each pseudo count will be set as 1/K (resp. ζ/K) by default, where K is the number of possible values
of the corresponding switch. If a non-negative floating-point number ζ is set to this flag, the system use ζ
as the default value of each pseudo count. This flag will be disabled if the default_sw_a flag is set to
some value. This flag is enabled just after the programming system invoked.

• em_progress (possible value: positive integer; default: 10) — the frequency of printing the progress
message (i.e. the dot symbol) in the EM algorithm (§4.7.1).

• epsilon (possible value: non-negative float; default: 1.0e-4) — the threshold ε for judging convergence
in the EM algorithm (see §4.7.1).

• error_on_cycle (possible values: on and off; default: on) — the flag for checking cycles in the
calling relationship. By default or when this flag is set as ‘on’, the programming system checks the existence
of a cycle in the calling relationship, and if any cycle exists, the system will stop immediately. When this
flag is set as ‘off’, the system does not check such acyclicity and we are able to obtain an explanation
graph that violates the acyclicity condition. Of course this flag is very experimental and seems not to be
used in usual cases.

• explicit_empty_expls (possible values: on and off; default: on) — The built-in predicate probf/2
(§4.4) outputs an explanation graph which is a list of Prolog terms taking the form node(G,Es) where
G is a subgoal and Es is a list of G’s explanations. If G is known to be always true, Es is bound to
[path([],[])] since version 2.0. On the other hand, when setting off to this flag, Es will be bound to
[] as done in the earlier versions.

• fix_init_order (possible values: on and off; default: on) — the flag for fixing the order of parameter
initialization among switches. For an implementational reason, in the EM algorithm (§4.7.1), the order of
parameter initialization among switches can vary according to the platform, and hence we may have different
learning results among the various platforms. Turning this flag ‘on’ fixes the initialization order in some
manner, and will yield the same learning result.

• force_gc (possible values: on and off; default: on) — the flag for performing garbage collection after
the every call of the built-ins probf/1-2 (and their variants), viterbif/{1,3}, hindsight/2-3
and chindsight/2-3. This flag is just experimental. For the stability of the programming system, this
flag is activated by default, but if you have a sufficient space for control stack and heap, garbage collection
could be skipped.

• init (possible values: none, random and noisy_u; default: random) — the initialization method in
the EM algorithm (§4.7.1). none means no initialization, random means that the parameters are initial-
ized almost at random, and noisy_u means that the parameters are initialized to be uniform with (small)
Gaussian noises. The variance of Gaussian noises can be changed by the std_ratio flag.

• itemp_init (possible value: floating-point number b such that 0 < b ≤ 1; default: 0.1) — the initial
value βinit of the inverse temperature β used in the deterministic annealing EM (DAEM) algorithm (§4.7.8).

• itemp_rate (possible value: floating-point number b such that b > 1; default: 1.5) — the increasing
rate βrate of the inverse temperature β used in the DAEM algorithm (§4.7.8).
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• learn_message (possible values: see below; default: all) — the flag for controlling the messages
being displayed while EM learning is conducted (by learn/0-1; §4.7). Currently, there are four types of
messages:

1. The message on the progress of explanation search

2. The message on the progress of the EM algorithm (the numeric part)

3. The message on the summary statistics

4. Some other miscellaneous messages

These messages are enabled by giving search, em, stats and misc, respectively, to this flag. We
can specify the combination of these flag values by concatenating with ‘+’. For example, if the value
search+em is given, learn/0-1 will only show the messages on the progress of explanation search and
EM learning. In addition, all is an abbreviation of search+em+stats+misc, and if none is given,
learn/0-1 will show no message. By default, all types of messages will be displayed similarly to the
earlier versions.

• learn_mode (possible values: ml, vb, both, ml_vt, vb_vt and both_vt; default: ml) — the under-
lying statistical framework for parameter learning. The values ml, vb and both are related to EM learning.
If this flag is set as ‘ml’, the system will conduct the EM algorithm for ML/MAP estimation (§4.7.2), by
which we can get point-estimated parameters of random switches. If this flag is set as ‘vb’, the system
will conduct VB-EM algorithm (§5.2.1), by which we can get adjusted pseudo counts (or equivalently, the
hyperparameters) of switches. With ‘both’, we can get both point-estimated parameters and adjusted hy-
perparameters by EM learning. The remaining values ml_vt, vb_vt and both_vt are related to Viterbi
training. If this flag is set as ‘ml_vt’, the system will conduct Viterbi training in the ML/MAP setting
(§4.7.3), by which we can get point-estimated parameters of random switches. If this flag is set as ‘vb_vt’,
the system will conduct VB-VT algorithm (§5.2.2), by which we can get adjusted pseudo counts (or equiv-
alently, the hyperparameters) of switches. With ‘both_vt’, we can get both point-estimated parameters
and adjusted hyperparameters by Viterbi training.

• log_scale (possible values: on and off; default: off) — the flag for enabling/disabling the log-scaled
probability computation (§4.11). For large data, we often suffer from the problem that the probability of
some explanation goes into underflow. By turning this flag on (setting ‘on’ to this flag), we can avoid
this problem by using the log-scaled probabilities. This is equivalent to simultaneously setting ‘on’ to the
log_viterbi flag and ‘log_exp’ to the scaling flag in the previous versions of the programming
system. In learning, it is highly recommended to combine log-scaled probability computation with MAP
estimation (see §4.11).

• max_iterate (possible value: positive integer, default and inf; default: default) — the maximum
number of EM iterations to be performed. In the EM algorithm (§4.7.1), sometimes we need a large number
of iterations until convergence. For such a case, we can stop the EM algorithm before convergence by this
flag. ‘default’ means that the maximum number of iterations is the system’s default value (10000, in the
current version). With ‘inf’, the system do not put any limit on the number of iterations.

• mcmc_b (possible value: non-negative integer, default: 1000) — the length of so-called ‘burn-in’ period in
MCMC sampling (Hburn-in in §6.1.2).

• mcmc_e (possible value: non-negative integer, default: 2000) — the length of the Markov chain in MCMC
sampling (H in §6.1.2).

• mcmc_message (possible values: see below; default: all) — the flag controlling the messages being
displayed while MCMC sampling is conducted by mcmc/1-2 (§6.2.3). Note that this flag cannot be applied
to the ‘batch’ predicates related to MCMC sampling (i.e. the built-ins in §6.2.1 and §6.2.2). Currently, there
are five types of messages:

1. The message on the progress of explanation search

2. The message on the progress of the VB-EM algorithm (the numeric part)

3. The message on the progress of MCMC sampling

4. The message on the summary statistics

5. Some other miscellaneous messages
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See §6.1.2 for the entire procedure of MCMC sampling. These messages are enabled by giving search,
em, mcmc, stats and misc, respectively, to this flag. We can specify the combination of these flag
values by concatenating with ‘+’. For example, if the value em+mcmc is given, mcmc/1-2 will only
show the messages on the progress of the VB-EM algorithm and MCMC sampling. In addition, all is
an abbreviation of search+em+mcmc+stats+misc, and if none is given, mcmc/1-2 will show no
message. By default, all types of messages will be displayed.

• mcmc_progress (possible value: positive integer, default: 100) — the frequency of printing the progress
message (i.e. the dot symbol) in MCMC sampling (§6.1.2).

• mcmc_s (possible value: positive integer, default: 5) — the length of the cycle of picking up a sample in
MCMC sampling (Hskip in §6.1.2).

• rerank (possible value: positive integer; default: 10) — the number of intermediate candidates in rerank-
ing for the Viterbi computation based on the hyperparameters (§5.2.3).

• reset_hparams (possible values: on and off; default: on) — the flag on resetting of the pseudo counts
(hyperparameters) in the repeated runs of VB-EM algorithm (§5.2.1) and VB-VT algorithm (§5.2.2). By
default or if this flag is set as ‘on’, the programming system will reset the pseudo counts with the default
values (internally, it calls set_sw_all_a/0; §4.1.6) in advance of these learning algorithms. If this flag
is set as ‘off’, on the other hand, it can be observed that the pseudo counts monotonically increases as we
repeatedly run VB learning (this behavior might be common in Bayesian learning).

• restart (possible value: positive integer; default: 1) — the number of restarts (§4.7.7). Generally speak-
ing, the EM algorithm (§4.7.1) only finds a local ML/MAP estimate, so we often restart the EM algorithm
for several times with different initial parameters, and get the best parameters (i.e. with the highest log-
likelihood or log of a posteriori probability) among these restarts. This flag is also applicable to VB-EM
algorithm (§5.2.1) and VB-VT algorithm (§5.2.2).

• search_progress (possible value: non-negative integer; default: 10) — the frequency of printing the
progress message (i.e. the dot symbol) in explanation search and in constructing explanation graphs. if 0 is
set, the progress message will be suppressed.

• show_itemp (possible values: on and off; default: off) — the flag for showing the inverse temperature
in the DAEM algorithm (§4.7.8). If this flag is set as ‘on’, the programming system displays the inverse
temperature like ‘<0.100>’ each time it is updated. Otherwise, each update is indicated by an asterisk
(‘*’).

• sort_hindsight (possible values: by_goal and by_prob; default: by_goal) — the flag for the
mode on sorting the results of hindsight computation (§4.6). With by_goal, the result will be sorted in
the Prolog’s standard order with respect to the subgoals. With by_prob, the result will be ordered by the
magnitude of the hindsight probability.

• std_ratio (possible value: non-negative float; default: 0.2) — the control parameter for the variance
of Gaussian noises used in initialization of switch parameters in the EM algorithm (§4.7.1; see also the
description on the init flag). When we initialize parameters with a k-valued switch according to a uniform
distribution with Gaussian noises from N(1/k, (std_ratio/k)2). The parameters will be normalized at the
end of initialization. Note that this flag works differently in VB-learning (see §5.2.4 for details).

• verb (possible values: none, graph, em and full; default: none) — the flag for extra messages in EM
learning (§4.7.1). ‘none’ means that no extra message will be displayed. If this flag is set as ‘graph’, the
explanation graphs will be displayed after the explanation search. By ‘em’, we can get the more detailed
information about the EM algorithm. If ‘full’ is set, we will see both the explanation graphs and the
information about EM.

• viterbi_mode (possible values: ml and vb; default: ml) — the underlying statistical framework for
Viterbi computation. If this flag is set as ‘ml’, the system will conduct the Viterbi computation based on
the current parameter values (§4.5). If ‘vb’ is set, on the other hand, the system will conduct the Viterbi
computation for VB learning based on the current hyperparameters (§5.2.3).

• warn (possible values: on and off; default: off) — the flag for enabling/disabling warning messages.
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• write_call_events (possible values: Prolog atoms representing events (§3.6.4), none and off; de-
fault: all) — the default events at which the execution messages are displayed by write_call/1-2.
If this flag is set as none, the message is not displayed unless some events are specified in the options of
write_call/2. If this flag is set as off, the message will not be displayed regardless of the options
passed to write_call/2.

4.14 Random routines
The programming system contains an implementation of the Mersenne Twister (http://www.math.sci.
hiroshima-u.ac.jp/˜m-mat/MT/emt.html) for a random number generator. This generator is inter-
nally used in sampling (§4.2) and the initialization step of parameter learning (§4.7), and can be accessed by the
built-in predicates described in this section. These built-in predicates have the names beginning with ‘random_’.

4.14.1 Configuring the random number generator
In a pseudo random number generator, including Mersenne Twister, the sequence of generated random numbers is
solely determined by the random seed with which the generator is initialized. To enable us to control the sequence,
the programming system provides a couple of built-ins for getting and setting the random seed:

• random_get_seed(Seed) returns the random seed set by the most recent call to random_set_seed/0-1.

• random_set_seed [no args] initializes the generator with a seed determined according to the current
system time. This predicate is called by the programming system during its start-up.

• random_set_seed(Seed) initializes the generator with Seed.

There are also built-ins to save and restore the internal state of the generator, with which we can reproduce the
sequence from an arbitrary point:

• random_get_state(State) returns the present internal state of the generator as a ground term State.
This term can be stored into files and dynamic predicates.

• random_set_state(State) restores the internal state of the generator to State. The argument should be
a term obtained by random_get_state/1.

4.14.2 Random numbers
Here is the list of built-ins for generating random numbers:

• random_int(Max,N) returns a random integer N such that 0 ≤ N < Max.

• random_int(Min,Max,N) returns a random integer N such that Min ≤ N < Max.

• random_int_incl(Min,Max,N) returns a random integer N such that Min ≤ N ≤ Max.

• random_int_excl(Min,Max,N) returns a random integer N such that Min < N < Max.

• random_uniform(X) returns a random floating-point number X in [0, 1) under the uniform distribution.

• random_uniform(Max,X) returns a random floating-point number X in [0,Max) under the uniform
distribution.

• random_uniform(Min,Max,X) returns a random floating-point number X in [Min,Max) under the
uniform distribution.

• random_gaussian(X) returns a random floating-point number X under a normal distribution with the
mean 0 and the standard deviation 1.

• random_gaussian(Mu,Sigma,X) returns a random floating-point number X under a normal distribu-
tion with the mean Mu and the standard deviation Sigma.

67

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html


4.14.3 Model-independent random choices
It is possible to make random choices by sampling on random switches (msw/2). However, this way is sometimes
inconvenient, in particular when the choices are not a part of the model. That is, we should give the outcome
spaces and the distributions to random switches (by set_sw/2) in advance. To provide a quick way for random
choices, the programming system provides the following built-in predicates:

• random_select(Values,V) chooses V randomly from Values according to the uniform distribution.

• random_select(Values,Dist,V) chooses V randomly from Values according to the distribution Dist.

Values and Dist should be specified in the same manner as values/2-3 (§2.6.2) and set_sw/2 (§4.1.6)
respectively, optionally with extended forms (e.g. ‘[1-20,25-50@5]’; see §4.1.4) and/or distribution forms
(e.g. ‘uniform’, ‘f_geometric’, and so on; also see §4.1.4). Note that random_select/2 always follows
the uniform distribution, not the distribution indicated by the flag default_sw (§4.13.2).

For example, using random_select/3 as shown below, we may sample the phenotypes of blood types
according to the distribution PA = 0.4, PB = 0.2, PO = 0.3 and PAB = 0.1:

?- random_select([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = a ?

?- random_select([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = o ?

?- random_select([a,b,o,ab],[0.4,0.2,0.3,0.1],X).
X = b ?

4.14.4 Advanced random routines
In addition to those mentioned in the previous subsections, the following built-in predicates are provided as more
advanced random routines:

• random_multiselect(List,N,Output) simultaneously chooses N elements from List uniformly at
random.

• random_group(List,N,Output) randomly divides all elements in List into N groups. Output is a
(nested) list of N groups, where each group is represented by a list of elements belonging to that group.

• random_shuffle(List,Output) randomly reorders the elements in List.

Here are a couple of usage examples:

?- random_multiselect([1,2,3,4,5,6,7,8,9,10],3,Out).
Out = [1,5,6] ?

?- random_group([1,2,3,4,5,6,7,8,9,10],3,Out).
Out = [[4,5],[1,2,6,8],[3,7,9,10]] ?

?- random_shuffle([1,2,3,4,5,6,7,8,9,10],Out).
Out = [3,7,8,9,5,1,2,4,10,6] ?

4.15 Statistical operations
Dozens of built-in predicates are available for calculating statistical measures (such as average and variance) of a
given sequence of values, as listed in Table 4.2. Each predicate takes one input argument List for a list of values
and one output argument Y for the calculated statistical measure. All values in List are expected to be numeric
except for the predicates returning the mode.

In Table 4.2, n denotes the length of List; xi denotes the i-th value in List (1 ≤ i ≤ n); x̄ denotes the sample
mean; mr denotes the r-th sample central moment; and kr denotes the r-th k-statistic or the unique symmetric
unbiased estimator of the r-th cumulant [65].

There are four variants available for obtaining the mode as follows:
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Table 4.2: Available built-ins for statistical measures (see §4.15 for notations)

Predicate Op Description Formula
sumlist(List,Y) sum sum [B-Prolog’s built-in]

∑
i xi

avglist(List,Y) avg average (arithmetic mean) x̄ ≡ ∑i xi
/

n
meanlist(List,Y) mean average (arithmetic mean) x̄ ≡ ∑i xi

/
n

gmeanlist(List,Y) gmean geometric mean (
∏

i xi)1/n

hmeanlist(List,Y) hmean harmonic mean (
∑

i 1/xi)−1 · n
varlistp(List,Y) varp variance m2 ≡

∑
i(xi − x̄)2 / n

varlist(List,Y) var variance (estimator) k2 ≡
∑

i(xi − x̄)2 / (n − 1)
stdlistp(List,Y) stdp standard deviation m1/2

2

stdlist(List,Y) std standard deviation (estimator) k1/2
2

semlistp(List,Y) semp standard error of the mean (m2/n)1/2

semlist(List,Y) sem standard error of the mean (estimator) (k2/n)1/2

skewlistp(List,Y) skewp skewness m3
/

m3/2
2

skewlist(List,Y) skew skewness (estimator) k3
/

k3/2
2

kurtlistp(List,Y) kurtp kurtosis
(
m4
/

m2
2
) − 3

kurtlist(List,Y) kurt kurtosis (estimator) k4
/

k2
2

modelist(List,Y) mode mode (see §4.15) —
amodelist(List,Y) amode mode (see §4.15) —
rmodelist(List,Y) rmode mode (see §4.15) —
pmodelist(List,Y) pmode probabilistic mode (see §4.15) —
medianlist(List,Y) median median —
minlist(List,Y) min minimum min{xi}
maxlist(List,Y) max maximum max{xi}
length(List,Y) len length [B-Prolog’s built-in] n

• modelist(List,Y) returns a single value with the highest frequency. If multiple values have the highest
frequency, this predicate returns the value coming first in the standard order.17

• amodelist(List,Y) returns a list containing all values with the highest frequency. The values in the
resultant list are sorted by the standard order.

• rmodelist(List,Y) returns one of the values with the highest frequency. If multiple values have the
highest frequency, this predicate chooses one of them randomly.

• pmodelist(List,Y) chooses one element according to the frequencies in List.18

In addition, the programming system provides the built-in agglist(List,Queries) that allows us to calculate
two or more statistical measures at once. Queries is a list of queries each having the form Op=Y, where Op is one
of those listed in the column ‘Op’ of Table 4.2 and Y is unified with the corresponding statistics. For example:19

?- agglist([48,64,40,30,82],[mean=Avg,var=Var,std=Std]).
Var = 421.199999999999932
Avg = 52.799999999999997
Std = 20.523157651784484 ?

4.16 List processing
The programming system provides several built-in predicates that implement the map function in functional pro-
gramming languages, as well as the reduction operation.20 In addition, it is highly recommended to use the
extended syntactic constructs for ‘foreach’ and list comprehensions which are newly introduced in B-Prolog 7.4

17 The standard order refers to the order defined by the comparison operator ‘@<’.
18 Indeed, this has the same effect as random_select/2 (§4.14.3) which just randomly chooses one element, although they are imple-

mented separately.
19 The values do not look exact just because B-Prolog prints floating-point numbers with the precision more than they can retain.
20 A function for reduction operations is called fold in major functional programming languages, but the name reducelist was chosen

rather than foldlist to avoid confusion with unfold/fold transformation of logic programs.
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(http://www.probp.com/download/loops.pdf). These syntactic constructs are compiled at loading
time, whereas the current implementation of the maplist predicates uses the assert/retract utility for evaluation
of the Body argument. Here is a list of the built-in predicates:

• maplist(X,Body,Xs) succeeds when Xs is a list, and Body succeeds for every element of Xs. Body is
the body of a deterministic clause that takes one argument X, which will be unified with each element from
Xs.

• maplist(X,Y,Body,Xs,Ys) succeeds when Xs and Ys are lists of the same size, and Body succeeds for
every pair of corresponding elements in Xs and Ys. Body is the body of a deterministic clause that takes two
arguments X and Y, which will be unified with each pair from Xs and Ys, respectively.

• maplist(X,Y,Z,Body,Xs,Ys,Zs) succeeds when Xs, Ys and Zs are lists of the same size, and Body
succeeds for every triplet of corresponding elements in Xs, Ys and Zs. Body is the body of a deterministic
clause that takes three arguments X, Y and Z, which will be unified with each triplet from Xs, Ys and Zs,
respectively.

• maplist_func(F,Xs) succeeds when Xs is a list, and the predicate F succeeds for every element in Xs.
This is equivalent to maplist(X,F(X),Xs).

• maplist_func(F,Xs,Ys) succeeds when Xs and Ys are the lists of the same size, and the predicate F
succeeds for every pair of corresponding elements in Xs and Ys. This is equivalent to maplist(X,Y,
F(X,Y),Xs,Ys).

• maplist_func(F,Xs,Ys,Zs) succeeds when Xs, Ys and Zs are the lists of the same size, and the
predicate F succeeds for every triplet of corresponding elements in Xs, Ys and Zs. This is equivalent to
maplist(X,Y,Z,F(X,Y,Z),Xs,Ys,Zs).

• maplist_math(Op,Xs,Ys) constructs a list by applying an algebraic unary operator Op to each value in
Xs, and returns the resultant list to Ys. Xs must be a list containing only numerical values. This is equivalent
to maplist(X,Y,(Y is Op(X)),Xs,Ys), but is more efficient.

• maplist_math(Op,Xs,Ys,Zs) constructs a list by applying an algebraic binary operator Op to each
pair of values in Xs and Ys, and returns the resultant list to Zs. Xs and Ys must be lists of the same size con-
taining only numerical values. This is equivalent to maplist(X,Y,Z,(Z is Op(X,Y)),Xs,Ys,Zs),
but is more efficient.

• reducelist(Y,X,Y ′,Body,List,Init,Value) calls Body for each element of List to obtain Value, where
Body is the body of a deterministic clause that takes three arguments Y , X and Y ′. Let p(Y,X,Y ′) refer
to the given clause and Xi denote the i-th element of List, and then this predicate calls p(Yi−1,Xi,Yi) for
i = 1, . . . , n in turn, where Y0 is given by Init and n is the length of List, and returns Yn to Value.

• reducelist_func(F,List,Init,Value) calls the predicate F for each element of List to obtain Value.
This is equivalent to reducelist(Y0,X,Y1,F(Y0,X,Y1),List,Init,Value).

• reducelist_math(Op,List,Init,Value) applies an algebraic binary operator Op through the elements
in List to obtain Value. List must consist only of numerical values. This is equivalent to reducelist(Y0,
X,Y1,(Y1 is Op(Y0,X)),List,Init,Value), but is more efficient.

The following examples illustrate the usage of these predicates:

?- maplist(X,Y,(Y is X-1),[1,2,3],Ys).
Ys = [0,1,2]

?- maplist(p(X),q(X),true,[p(x),p(y),p(z)],Ys).
Ys = [q(x),q(y),q(z)]

?- maplist(X,Y,atom_chars(X,Y),Xs,[[f,o,o],[t,r,u,e],[x]]).
Xs = [foo,true,x]

?- maplist(X,Y,Z,(Z is X*X+Y),[1,2,3],[10,20,30],Zs).
Zs = [11,24,39]

?- reducelist(Y0,X,Y1,(Y1 is Y0+2**X),[1,2,3],0,Out).
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Out = 14

?- reducelist_func(append,[[2],[3,4],[5]],[0,1],Out)
Out = [0,1,2,3,4,5]

There are also the built-in predicates for list processing:

• sublist(Sub,List) succeeds when Sub is a sublist of List. This is inspired by [62] and equivalent to
sublist(Sub,List,_,_), where sublist/4 is defined below.

• sublist(Sub,List,I,J) succeeds when Sub is a list containing the (I + 1)-th to the J-th elements (one-
based indices are used here) in List. This predicate is backtrackable.

• splitlist(Prefix,Rest,List,N) succeeds when Prefix and Rest are lists, List is a concatenation of those
lists, and Prefix has exactly N elements. This predicate is backtrackable.

• grouplist(List,K,Sizes,Output) succeeds when the elements in List is divided into K groups accord-
ing to Sizes and the result is represented by Output. Sizes is a list of K elements in which the i-th element Ni

indicates the size of the i-th group. Output is a nested list in which the i-th inner list corresponds to the i-th
group and contains the (Mi−1 + 1)-th to the Mi-th elements in List where M0 = 0 and Mi = N1 + · · · + Ni for
1 ≤ i ≤ K. This predicate is backtrackable, but K must be instantiated.

• egrouplist(List,K,Output) divides the elements in List into K equal-sized groups. If the elements
cannot be equally divided into the groups, the former groups will have the size larger by one than the latter
groups. Output is a nested list in which the i-th inner list corresponds to the i-th group formed in the same
manner as grouplist/4. List and K must be instantiated,21 and thus this predicate is deterministic unlike
grouplist/4.

• countlist(Term,List,Count) counts the number of elements in List which are variants of Term, and
returns the result to Count.

• countlist(List,Counts) counts the occurrence for each variant appearing in List, and returns those
occurrences as a list Counts. Each element in Counts has the form Term=Count and represents that variants
of Term occurs Count times in List. The elements in Counts are ordered by decreasing order of Count then
by the standard order of Term.

• filter(Patt,Xs,Ys) leaves only the terms matching with Patt in the list Xs, and returns the resultant list
to Ys. In the filtering predicates, a term T is considered to match with Patt if T is more specific than Patt, or
more precisely T can be instantiated from Patt.22 For example, the pattern f(a,_,_)matches f(a,b,c),
f(a,1,_), f(a,X,g(X)), f(a,_,_), and so on, but does not f(a,b), f(a,b,c,d), f(x,y,z),
g(a,b,c), f(_,_,_), a variable, etc.

• filter(Patt,Xs,Ys,Count) leaves only the terms matching with Patt in the list Xs, and returns the
resultant list to Ys and its length to Count.

• filter_not(Patt,Xs,Ys) removes the terms matching with Patt from the list Xs, and returns the resul-
tant list to Ys.

• filter_not(Patt,Xs,Ys,Count) removes the terms matching with Patt from the list Xs, and returns the
resultant list to Ys and its length to Count.

• number_sort(Xs,Ys) sorts the list Xs in numerically ascending order and returns the resultant list to Ys.
This is equivalent to custom_sort(A,B,(A<B),Xs,Ys), but much more efficient than custom_sort/5.

• custom_sort(Cmp,Xs,Ys) sorts the list Xs according to the comparator Cmp and returns the resultant
list to Ys. This is equivalent to custom_sort(A,B,Cmp(A,B),Xs,Ys).

• custom_sort(A,B,Body,Xs,Ys) sorts the list Xs according to the comparator Body and returns the
resultant list to Ys. Here Body is a clause body that succeeds when A precedes B. Body should represent
a total order for the values in Xs; otherwise the result would be unpredictable. The order among equal
elements are preserved (i.e. the sorting is stable).

Here are some examples:
21Note that the length of List is needed to determine the size of each group.
22 This corresponds to the behavior of subsumes_chk/2 available on some Prolog systems (e.g. SWI-Prolog and XSB).
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?- sublist(Sub,[a,b,c,d,e],2,4).
Sub = [c,d] ?

?- splitlist(List1,List2,[a,b,c,d,e,f],2).
List1 = [a,b]
List2 = [c,d,e,f] ?

?- grouplist([p,q,r,s,t,u,v,w],3,[4,2,2],Groups).
Groups = [[p,q,r,s],[t,u],[v,w]] ?

?- egrouplist([p,q,r,s,t,u,v,w],3,Groups).
Groups = [[p,q,r],[s,t,u],[v,w]] ?

?- countlist(a,[a,b,a,c,a,a,c,b,c],N).
N = 4 ?

?- countlist(f(_),[f(A),f(B),f(x),g(_),f(x),f(g(_)),_,f(_)],N).
N = 3 ?

?- countlist([a,b,a,c,a,a,c,b,c],Counts).
Counts = [a=4,c=3,b=2] ?

?- countlist([f(A),f(B),f(x),g(_),f(x),f(g(_)),_,f(_)],Counts).
Counts = [f(_c80)=3,f(x)=2,_c74=1,f(g(_c70))=1,g(_c8c)=1] ?

?- filter(f(_),[f(A),f(B),f(x),g(_),f(x),f(g(_)),_,f(_)],Ys).
Ys = [f(A),f(B),f(x),f(x),f(g(_5c8)),f(_628)] ?

?- custom_sort(A,B,(A=X-_,B=Y-_,X<Y),[3-a,2-x,5-y,2-a,3-z],Ys).
Ys = [2-x,2-a,3-a,3-z,5-y] ?

4.17 Big arrays
B-Prolog provides a set of built-in predicates and operators to handle arrays. These arrays can be multi-dimensional,
but the index of each dimension is limited up to 65,535. Since version 1.12.1, on the other hand, the programming
system provides a set of built-in predicates to handle one-dimensional arrays (fixed-size sequences) up to (228 − 1)
elements. We call this data structure big arrays. Here are the built-in predicates for big arrays:

• new_bigarray(Array,N) creates a big array of N elements.

• is_bigarray(Array) succeeds when Array is a big array.

• bigarray_length(Array,N) returns the size N of the big array Array.

• bigarray_get(Array,I,Elem) returns the I-th element of a big array Array to Elem. The indices are
1-based.

• bigarray_put(Array,I,Elem) put Elem into a big array Array as the I-th element. The indices are
1-based.

• list_to_bigarray(List,Array) converts a list List to the corresponding big array Array.

• bigarray_to_list(Array,List) converts a big array Array to the corresponding list List.

Similarly to B-Prolog’s built-ins for array handling, big arrays basically need to be kept in the arguments of
predicate calls:

?- new_bigarray(A,5),bigarray_put(A,3,a),bigarray_get(A,3,X).

4.18 File IO
Basically, all B-Prolog’s built-ins for file IO are also available for PRISM. In addition, the programming system
provides utilities for file IO.
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4.18.1 Prolog clauses
First, the followings are the built-in predicates for loading/saving Prolog clauses:23

• load_clauses(File,Clauses,Options) reads clauses in File as Clauses, with the options Options,
which is a list of the following Prolog terms:

– from(K) or skip(K) — read from the K-th clause (K is a zero-based index). If this option is
omitted, K will be set as zero.

– size(N) — read N clauses. If this option is omitted or N is ‘max’, the built-in will read clauses
until reaching at the end of file.

• save_clauses(File,Clauses,Options)writes clauses Clauses into File, with the options Options, which
is a list of the following Prolog terms:

– from(K) or skip(K) — write from the K-th element in Clauses (K is a zero-based index). If this
option is omitted, K will be set as zero.

– size(N) — write N elements. If this option is omitted or N is ‘max’, the built-in will write elements
until reaching at the end of Clauses.

4.18.2 CSV files
Additionally, we can load/save the data in the CSV format. To avoid complicated handling of compound terms
(which use commas inside) and logical variables, the built-ins predicates currently assume that the data are rep-
resented by atomic terms (i.e. Prolog atoms or numbers). For more complex representation, please use double-
quotation marks in the CSV file, and the built-in predicates provided in B-Prolog (e.g. parse_atom/2 when
loading, or term2atom/2 when saving).

For loading a CSV file, the following built-ins are available:

• load_csv(File,Rows) reads the lines (rows) in a CSV file File as Rows.

• load_csv(File,Rows,Options) reads the lines (rows) in a CSV file File as Rows, with the options Op-
tions, which is a list of the following Prolog terms:

⋄ Options on the range of rows to be read:

– row_from(K) or row_skip(K) — read from the K-th row (K is a zero-based index). If this
option is omitted, K will be set as zero.

– row_size(N) — read N rows. If this option is omitted or N is ‘max’, the built-in will read
rows until reaching at the end of file.

– col_from(K) or col_skip(K) — read from the K-th column (K is a zero-based index). If
this option is omitted, K will be set as zero.

– col_size(N) — read N columns. If this option is omitted or N is ‘max’, the built-in will read
columns until reaching at the end of line.

⋄ Options on the format of a row:

– pred([])— read each row in the form [Col1,Col2,...], where Col1, Col2, . . . are the values
separated by commas.

– pred(p/1) or pred(p) — read each row in the form p([Col1,Col2,...]), where p is an
arbitrary predicate name.

– pred(p/n)— read each row in the form p(Col1,Col2,...), where p is an arbitrary predicate
name (here ‘n’ is just a Prolog atom).

⋄ Other options:

– comment(C) — regard as comments the rows beginning with the character C.
– comment — the same as comment(’#’).
– double_quote(X) — enable (with X = yes) or disable (with X = no) to process the double-

quoted columns following RFC 4180 (by default, X = yes).
23 load_clauses(F,Cls) and load_clauses(F,Cls,M,N) are now obsolete and only available as the aliases of load_

clauses(F,Cls,[]) and load_clauses(F,Cls,[from(M),size(N)]), respectively. Similarly, save_clauses(F,Cls)
and save_clauses(F,Cls,M,N) are equivalent to save_clauses(F,Cls,[]) and save_clauses(F,Cls,[from(M),
size(N)]), respectively.
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– parse_number(X) — enable (with X = yes) or disable (with X = no) to parse numeric
strings in the input file (by default, X = yes). For example, by default or if we specify parse_
number(yes), a value “123456” in the input file will be converted into 123456, which can
be evaluated as a number. Otherwise, we obtain ’123456’, which is just a Prolog atom.

– missing(X) — consider each cell containing X as a missing-data cell, and convert it with a
new logical variable. X must be a Prolog atom such as ’’ (an empty string), ’?’, ’NA’, and so
on.

– missing — the same as missing(’’).

For example, let us consider a CSV file named foo.csv which includes three rows:

bill,14
jeff,15
peter,18

Then we can read these three rows by using load_csv/2-3 as follows:

?- load_csv(’foo.csv’,Rs).
Rs = [csvrow([bill,14]),csvrow([jeff,15]),csvrow([peter,18])] ?

?- load_csv(’foo.csv’,Rs,[pred(age/n)]).
Rs = [age(bill,14),age(jeff,15),age(peter,18)] ?

On the other hand, the following built-in predicates are available for saving data into a CSV file:

• save_csv(File,Rows) writes the data contained in Rows into a CSV file named File. Here Rows is a list
[R1,R2,...,Rn], and each Ri is a list of atomic terms. Ri corresponds to a row in the output CSV file,
and each element in Ri therefore corresponds to a datum.

• save_csv(File,Rows,Options) writes the data contained in Rows into a CSV file named File with the
options Options. Here Rows is a list [R1,R2,...,Rn], and each Ri is a list of atomic terms. Ri corresponds
to a row in the output CSV file, and each element in Ri therefore corresponds to a datum. Besides, Options
is a list of the following Prolog terms:

⋄ Options on the format of a datum:
– quote(M) — use M as the quotation mark (by default, M = double). With M = double,

each atomic term is double-quoted following RFC 4180 (e.g. a Prolog atom is double-quoted if it
includes commas in its name). With M = single, each atomic term is single-quoted, only when
necessary, so that the written term can be read by PRISM or other Prolog systems. M = none
indicates that atomic terms are not enclosed by any quotation marks, and so should be faster than
the first two cases.

For example, queries

?- save_csv(’bar.csv’,[[a,’X’],[’c,d’,e]]).
?- save_csv(’bar.csv’,[[a,’X’],[’c,d’,e]],[quote(double)]).

create bar.csv whose contents are as follows:
a,X
"c,d",e

On the other hand, a query

?- save_csv(’bar.csv’,[[a,’X’],[’c,d’,e]],[quote(single)]).

results in:
a,’X’
’c,d’,e

Furthermore, a query

?- save_csv(’bar.csv’,[[a,’X’],[’c,d’,e]],[quote(none)]).

results in:
a,X
c,d,e
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4.19 Built-in predicates as operators
Since version 2.0, popular unary built-in predicates for probabilistic inference are available as prefix operators.
These built-ins include: sample/1, prob/1, log_prob/1, probf/1, probfi/1, probfo/1, probfv/1,
probfio/1, viterbi/1, viterbif/1, viterbig/1, hindsight/1 and chindsight/1. Their pri-
orities are all set to 1150. Here are some examples:

?- sample bloodtype(X).
?- prob bloodtype(ab).
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Chapter 5

Variational Bayesian learning*

5.1 Background
As mentioned in §1.5, Bayesian learning has high robustness against data sparseness in model selection and
prediction (Viterbi computation). For model selection, an introductory description on Bayesian learning is given
in §4.9. In this section, we briefly describe the background about a variational approach to Bayesian learning. The
paper [56] gives a full description on this topic with some experimental results.

5.1.1 Preliminaries
Before describing the details, we summarize the notions/notations on Bayesian learning in PRISM. In Bayesian
learning, the model M under consideration is parametric and here the parameters are denoted by θ. In the context
of PRISM, M is a PRISM program and θ is a collection of θi,v where θi,v is the probability of a random switch
msw(i,v) being true. We consider θ to follow a conjugate prior distribution (the Dirichlet distribution):

P(θ | M) =
1
Z

∏
i,v

θ
αi,v−1
i,v

Z def
=
∏

i

Zi

Zi
def
=

∏
v∈Vi
Γ(αi,v)

Γ(
∑

v∈Vi
αi,v)

.

Here Z is a normalizing constant and each αi,v (> 0) is a parameter of the prior distribution which corresponds to
θi,v (and accordingly to msw(i,v)). Vi is a set of possible outcomes of switch i, and Γ is the Gamma function.
These αi,v’s are called hyperparameters of the model M.

Furthermore, in PRISM, the data G is a multiset G1,G2, . . . ,GT of the observed goals. For an observed goal
G, ψ(G) is a set of explanations for G. If every Gt has just one explanation (i.e. |ψ(Gt)| = 1), G is said to be
complete and denoted by Gc. If some Gt has two or more explanations, G is said to be incomplete, because we
cannot immediately know the actual choices by random switches from such Gt. For an incomplete data G, we
may consider a complete data Gc = (G, E) by augmenting E, whose t-th element Et is some explanation of Gt

(Et ∈ ψ(Gt)). E is considered as one possible combination of the hidden explanations for G. For notational
simplicity, we extend ψ to denote this by E ∈ ψ(G).

5.1.2 Variational Bayesian EM learning
To choose the best model (the best PRISM program) M∗ that fits best the data G at hand, we consider M = M∗ is
the model that maximizes the marginal likelihood P(G | M). It has been also known that if G is complete data Gc,
P(G | M) can be obtained in closed form. However, when G is incomplete, some approximation is required. First,
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let us consider log of the marginal likelihood L(G) def
= log P(G | M), and then we have:

L(G) = log
∑

E

∫
Θ

P(G, E, θ | M)dθ

= log
∑

E

∫
Θ

Q(E, θ)
P(G, E, θ | M)

Q(E, θ)
dθ

≥
∑

E

∫
Θ

Q(E, θ) log
P(G, E, θ | M)

Q(E, θ)
dθ.

(
from Jensen’s inequality

)
For brevity, we fix the model M for the moment, and simply write P(· | M) = P(·) and then obtain:

L(G) ≥ F[Q] def
=
∑

E

∫
Θ

Q(E, θ) log
P(G, E, θ)

Q(E, θ)
dθ

where Q is called a test distribution over Θ given G, and F[Q] can be seen as a lower limit of L(G) and called the
variational free energy. So to get a good approximation of L(G), we attempt to find a distribution function Q = Q∗

that maximizes a functional F[Q]. In model selection, we use the variational free energy F[Q] as a model score.
Besides, to get another view, we have the following by considering L(G) =

∑
E
∫
Θ

Q(E, θ) log P(G)dθ:

L(G) − F[Q] =
∑

E

∫
Θ

Q(E, θ) log
{

P(G) · Q(E, θ)
P(G, E, θ)

}
dθ

=
∑

E

∫
Θ

Q(E, θ) log
Q(E, θ)

P(E, θ | G)
dθ = KL(Q(E, θ) || P(E, θ | G)).

From the above, maximizing F[Q] implies minimizing the Kullback-Leibler divergence between Q(E, θ) and
P(E, θ | G). So finding Q∗ is to make a good approximation of P(E, θ | G), the conditional distribution of hidden
variables and parameters.

In VB learning, we further assume Q(E, θ) ≈ Q(E)Q(θ), and obtain a generic form of variational Bayesian
EM (VB-EM) algorithm as an iterative procedure consisting of the following two updating rules:

Q(m)(E) ∝ exp
(∫
Θ

Q(m)(θ) log P(G, E | θ)dθ
)
,

Q(m+1)(θ) ∝ P(θ) exp
(∑

E Q(m)(E) log P(G, E | θ)
)
.

The VB-EM algorithm for PRISM programs is then derived from the above generic procedure as follows:

Initialization step:

Initialize the hyperparameters of random switches as α(0)
i,v = αi,v + ξi,v where αi,v are the hyperparameters

configured by the user and ξi,v are small positive random noises, and then iterate the next two steps until the
variational free energy converges.

Expectation step:

For each msw(i,v), compute C̃i,v, the statistics corresponding to the expected occurrences of msw(i,v)
under the hyperparameters α(m)

i,v .

Maximization step:

Using the expected occurrences, update each hyperparameter by α(m+1)
i,v = α(0) + C̃i,v and then increment m

by one.

After VB-EM learning, we finally obtain the adjusted hyperparameters α∗i,v of random switches instead of the
parameters, and the converged variational free energy which is considered as an approximation of log of the
marginal likelihood. αi,v need to be configured in advance by the user via the built-ins such as set_sw_a/2
(§4.1). By default, the system considers that P(θ) is uninformative, that is, αi,v = 1. Besides, as long as the user
program satisfies the modeling conditions listed in §2.4.6, it is still possible to compute C̃i,v in the expectation
step in a dynamic programming fashion. So at least in algorithmic level, we can perform VB learning as fast as
in the case of ML/MAP estimation. In this sense, the derived VB-EM algorithm can be seen as a generalization
of dynamic programming based VB-EM algorithm for hidden Markov models [36], probabilistic context-free
grammars [31], and discrete directed graphical models (Bayesian networks) [3].
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5.1.3 Variational Bayesian Viterbi training
Since version 2.1, a couple of built-in routines for a variational Bayesian version of Viterbi training (VB-VT) are
available. A detailed description of Viterbi training under the ML/MAP setting is given in §4.7.3. This learning
framework was firstly proposed by Kurihara and Welling [32] as an underlying theory of their Bayesian K-means
algorithm, and their algorithm is now generalized for PRISM programs. Currently, VB-VT is not applicable to the
programs with failure (§2.4.4).

First, in VB-VT, a marginal likelihood different from the one defined in §5.1.2 is introduced. That is, instead
of L(G) def

= log P(G), we use:

LVT(G) def
= log max

E
P(G, E) = log max

E

∫
Θ

P(G, E, θ)dθ.

Θ is the parameter space and we fix the underlying model M and write P(· | M) = P(·) for brevity. This marginal
likelihood LVT(G) is also written as log P(G, E∗), where E∗ def

= argmaxEP(G, E) = argmaxE∈ψ(G)

∫
Θ

P(E, θ)dθ =
argmaxE∈ψ(G)

∫
Θ

P(θ)P(E | θ)dθ is the most probable explanation for G.
Similarly to the case of variational Bayesian EM learning, if G is complete, we need some approxima-

tion for LVT(G) since obtaining E∗ is often intractable. The base strategy for approximation is also similar
— we introduce a test distribution Q over Θ given G, the approximately most probable explanation Ê[Q] def

=

argmaxE∈ψ(G)

∫
Θ

Q(θ) log P(E | θ)dθ, and a lower limit FVT[Q] of LVT(G) as follows:

LVT(G) = log P(G, E∗)

≥ log P(G, Ê[Q]) = log P(Ê[Q]) = log
∫
Θ

P(Ê[Q], θ)dθ

= log
∫
Θ

Q(θ)
P(Ê[Q], θ)

Q(θ)
dθ

≥
∫
Θ

Q(θ) log
P(Ê[Q], θ)

Q(θ)
dθ

(
from Jensen’s inequality

)
def
= FVT[Q].

Now FVT[Q] is called the variational (negative) free energy for Viterbi training. Since FVT[Q] is a lower limit of
LVT, we consider to find Q = Q∗ that maximizes FVT[Q]. A generic form of variational Bayesian Viterbi training
(VB-VT) algorithm is obtained as an iterative procedure consisting of the following two updating rules:

Ê(m)
:= argmax

E∈ψ(G)

∫
Θ

Q(m)(θ) log P(E | θ)dθ,

Q(m+1)(θ) ∝ P(Ê(m)
, θ).

Finally, the VB-VT algorithm for PRISM programs is derived from the above generic procedure as follows:

Initialization step:

Initialize the hyperparameters of random switches as α(0)
i,v = αi,v + ξi,v where αi,v are the hyperparameters

configured by the user and ξi,v are small positive random noises, and then iterate the next two steps until the
variational free energy converges.

Expectation step:

Compute Êt by Viterbi computation based on the pseudo parameter θ̂(m)
i,v

def
= exp

(
Ψ(α(n)

i,v ) − Ψ(
∑

v′∈Vi
α(n)

i,v′ )
)

for each Gt (1 ≤ t ≤ T ), and then count the (exact) occurrences Ĉi,v of msw(i,v) in {Ê1, Ê2, . . . , ÊT }.

Maximization step:

Using the occurrences, update each hyperparameter by α(m+1)
i,v = α(0) + Ĉi,v and then increment m by one.

Here Ψ(x) is the digamma function defined as Ψ(x) = d
dx lnΓ(x). It should be noted that the VB-VT algorithm

above inherits the strong/weak points from the ML/MAP version of Viterbi training. The readers are recommended
to take a look at the comments in the last paragraph of §4.7.3.
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5.1.4 Viterbi computation
Now let P∗(θ) be the a posteriori distribution given the observed data, which includes the adjusted hyperparameters
α∗i,v. Then we can perform the Viterbi computation based on the a posteriori distribution:

E∗ = argmax
E∈ψ(G)

P(E | G) = argmax
E∈ψ(G)

P(E,G)
P(G)

= argmax
E∈ψ(G)

P(E)

= argmax
E∈ψ(G)

∫
Θ

P∗(θ)P(E | θ)dθ.

The inference based on
∫
Θ

P∗(θ)P(E | θ)dθ seems more robust than that based on P(E | θ̂), since the former
relies on the averaged quantity with respect to the a posteriori distribution, not on any particular point-estimated
parameters.

However, there still remains a computational problem. Although
∫
Θ

P∗(θ)P(E | θ)dθ can be computed effi-
ciently in closed form for each E ∈ ψ(G), the number of explanations for an observed goal G (i.e. |ψ(G)|) can
exponentially grow. In addition, the integral over θ prevents us from introducing a simple dynamic programming
based computation.

As a remedy for this difficulty, we take a reranking approach [10], which is popular for the predictive tasks in
statistical natural language processing (e.g. part-of-speech tagging, parsing, and so on). To be specific, for a given
goal G, we follow the two-staged procedure below:

1. Run top-K Viterbi computation in a dynamic programming fashion based on the point-estimated parameters.
These parameters are obtained the mean values θ̄i,v of the adjusted hyperparameters (i.e. θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′).

2. Return E = Ẽ∗ which comes with the highest
∫
Θ

P∗(θ)P(E | θ)dθ among K explanations obtained in the first
step.

The point-estimated parameters used in the first step seems reliable to some extent, so if K is sufficiently large, the
true Viterbi explanation E∗ based on the a posteriori distribution (i.e. E∗ = argmaxE

∫
Θ

P∗(θ)P(E | θ)dθ) will be
found in K explanations obtained in the first step. So we can expect Ẽ∗ to be E∗ in most cases.

It is obvious from above that reranking requires extra computational effort. On the other hand, we need not
use reranking if every random switch i (i.e. an atom of the form msw(i,·)) only appears at most once in any
explanation for any observed goal, or in other words, if we do not use any random switch twice or more in any
generation process of any observed goal. For such a case, the first step above with θ̄i,v and K = 1 will return the
exact E∗. To be specific, it is easy to see that the following Bayesian network program (see §10.3 for detailed
descriptions) does not use any random switch twice or more to yield an observation represented by world/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

On contrary, the HMM program (§1.3) may use repeatedly a particular switch such as msw(tr(s0),·). This fact
implies that we need not use reranking for the Bayesian network program above, while reranking is indispensable
for the HMM program.

5.1.5 Other probabilistic inferences
For the probabilistic inferences other than Viterbi computation, it is also required to compute quantities based on
the a posteriori distribution P∗(θ). For example, the marginal (averaged) probability of goal G will be computed
as:

P(G) =
∫
Θ

P∗(θ)P(G | θ)dθ =
∫
Θ

P∗(θ)
(∑

E∈ψ(G) P(E | θ)
)

dθ.

In VB, it also seems difficult to perform dynamic programming based computation for these probabilistic infer-
ences. This is because, as explained in [2], the independencies among subgoals, which are fully exploited in
dynamic programming, are lost due to the integral over θ.
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In the programming system, we may utilize the routines for inferences used in ML/MAP with considering the
parameters θ to be the mean values of the parameters θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ [2, 36], under the assumption that these

mean values are a representative of the entire a posteriori distribution.

5.1.6 Deterministic annealing EM for VB learning
The deterministic annealing EM (DAEM) algorithm (§4.7.8) is also supported in VB learning. To be specific,
following [30], let us transform the variational free energy as follows:

F[Q] =
∑

E

∫
Θ

Q(E, θ) log P(G, E, θ)dθ −
∑

E

∫
Θ

Q(E, θ) log Q(E, θ)dθ

Again, from an analogy to statistical mechanics, we correspond F[Q] with −F (F : the free energy), the first term
in the above equation with −U (U: the internal energy) and the second term with S (S: the entropy). Then we
newly introduce the variational free energy that takes into account the inverse temperature β:

Fβ[Q] def
=
∑

E

∫
Θ

Q(E, θ) log P(G, E, θ)dθ − 1
β

∑
E

∫
Θ

Q(E, θ) log Q(E, θ)dθ.

The VB-EM algorithm that tries to maximize Fβ[Q] (i.e. the deterministic annealing version of the VB-EM algo-
rithm) has a similar procedure to that of the DAEM algorithm (§4.7.8) for ML/MAP estimation.

5.2 Built-in utilities

5.2.1 Variational Bayesian EM learning
On contrary to the long descriptions above on VB learning, the usages of the built-in predicates are considerably
simple. That is, in the programming system, we can switch between ML/MAP-EM learning and VB-EM learning
only by configuring the execution flag ‘learn_mode’. To enable VB-EM learning, we give a value ‘vb’ to the
learn_mode flag, and then run the usual learning command (learn/0-1) as follows:

?- set_prism_flag(learn_mode,vb).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

While learning, we will see the messages similar to those in the case of ML/MAP-EM learning. Another way is
to call learn_h/0-1 directly (the suffix ‘_h’ indicates that the target of learning is hyperparameters):

?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn_h(Goals).

One may find here that the hyperparameters have been increased by VB-EM learning. By default, these hyper-
parameters will be reset in advance of the next learning, but when turning ‘off’ the reset_hparams flag
(§4.13.2), we can keep the current hyperparameters as the initial hyperparameters for the next learning (so the
hyperparameters will monotonically increase).

On the other hand, to disable VB-EM, give ‘ml’ to the learn_mode flag (whose the default value is ‘ml’).
This indicates that we wish to get the point-estimated parameters of the model, and indeed the next call of
learn/0-1 will start ML/MAP-EM learning:

?- set_prism_flag(learn_mode,ml).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

It is also possible to run ML/MAP-EM learning by invoking learn_p/0-1 directly:

?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn_p(Goals).

Furthermore, as described above, we sometimes need the point-estimated parameters as well as hyperparame-
ters for the later probabilistic inferences. To get such point-estimated parameters, we give ‘both’ (i.e. we wish to
get both the adjusted hyperparameters and the point-estimated parameters) to the flag ‘learn_mode’.

?- set_prism_flag(learn_mode,both).
?- Goals=[hmm([a,b,a,a,a]),hmm([b,b,b,a,b])],learn(Goals).

learn_b/0-1 is also available for conducting VB-EM learning directly. After having the adjusted hyperparam-
eters, we will compute the mean values of the parameters θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ as point-estimated parameters. Even-

tually, we can run as usual the routines for the probabilistic inferences other than Viterbi computation (see §5.2.3
for the case of Viterbi computation). The DAEM algorithm can be used in the same way as that in ML/MAP-EM
learning, which is described in §4.7.8.
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5.2.2 Variational Bayesian Viterbi training
To switch into variational Bayesian Viterbi training (VB-VT), it is sufficient to set the learn_mode flag as
‘vb_vt’. The usage of the related built-in predicates and the flag settings are the same as those in the previous
section (§5.2.1). To get back to VB-EM learning, the learn_mode flag is set as ‘vb’.

5.2.3 Viterbi computation
Similarly to the case of EM learning, by configuring the viterbi_mode flag, we can switch the underlying
statistical framework for Viterbi computation. If we give a value ‘vb’ to this flag, the programming system will
invoke a routine for the Viterbi computation based on the current hyperparameters (with a help of the current
parameters) using reranking (§5.1.4). On the other hand, if we give a value ‘ml’ to the viterbi_mode flag, the
system will invoke the usual Viterbi routines based only on the current parameters.

All built-ins shown in §4.5 also work within the framework of VB learning. In these built-ins, the number
K of the intermediate candidates of the Viterbi explanation(s) in reranking can be specified by the rerank flag
(K = 10 by default; see §4.13 for details). In addition, K can be specified as an argument of the built-ins. That is,
for top-N Viterbi routines such as n_viterbif([N,K],G), we can give a pair [N,K] to the first argument,
where K is the number of intermediate candidates in reranking. For example, n_viterbif([N,K],G) is the
same as n_viterbif(N,G) which uses K intermediate candidates. If N > K, the built-ins return only top-K
Viterbi explanations.

Instead of configuring the viterbi_mode flag, we can directly call the built-ins for Viterbi computation
based on VB. To do this, we add a suffix ‘_h’ to the predicate name of the built-in we would like to use. For
example,

?- set_prism_flag(viterbi_mode,vb).
?- viterbif(hmm([a,b,b,b,a]).

and

?- viterbif_h(hmm([a,b,b,b,a])).

yield the same result. On the other hand, we can directly run the parameter-based Viterbi routines by adding ‘_p’ to
the predicate name of the corresponding built-in (e.g. viterbif_p/1). Similarly, the built-ins viterbif_p/3
and viterbif_h/3 are also available, whose usage is the same as viterbif/3.

Furthermore, as described in §5.1.4, if we are sure that every random switch i only appears at most once in
any explanation for any observed goal, we need not take the reranking approach. Instead, in variational Bayesian
learning, we first obtain the mean values of parameters as the point-estimated parameters, and then run built-ins for
usual (basic) Viterbi computation, such as viterbif/1-2 (§4.5). Note that these point-estimated parameters
will not be stored into the switch database (i.e. just thrown away) after the Viterbi computation. It is also worth
noting that, at the implementation level, the usual Viterbi built-ins work more efficiently (in both time and space)
than ones for top-K Viterbi computation.

5.2.4 Initialization of hyperparameters
As described in §5.1.2, in VB-EM learning, the programming system initializes the hyperparameter of a switch
instance msw(i,v) as α(0)

i,v = αi,v + ξi,v where αi,v are the hyperparameter configured by the user and ξi,v are small
positive random noises. More specifically, in the current version, the hyperparameter of the instance msw(i,v) of
a k-valued random switch i is initialized by α(0)

i,v = αi,v(1 + |ξ′i,v|), where ξ′i,v is drawn from a Gaussian distribution
with the mean 0 and the standard deviation s/k, and s is given in advance by the std_ratio flag.

This way of initialization makes the magnitude of a noise proportional to the magnitude of the corresponding
user-specified hyperparameter αi,v (since ξi,v = αi,v|ξ′i,v|). On the other hand, the noise can be too small to escape
from local maxima when αi,v is small or the random switch has so many outcomes (i.e. k is very large). In such a
case, we need to choose the value of the std_ratio flag carefully.

5.2.5 Summary: typical flag settings for variational Bayesian learning
The setting of the execution flags related to variational Bayesian (VB) learning is rather complicated, so in this
section, we will show several typical usages. Before listing them, we remark two styles for a simpler setting.
First, the execution flag learn_mode (resp. viterbi_mode) switches the underlying statistical framework
(called ‘mode’ here) between ML/MAP and VB for learning (resp. for Viterbi computation). Thus, the use of
learn_mode and viterbi_mode enables us to continue to use the built-in predicates such as learn/1 and

81



viterbif/1-2, instead of the mode-specific built-ins such as learn_p/1.1 Secondly, it is usually convenient
to write query statements beginning with ‘:-’, to make the setting valid every time the program is loaded (see
§4.13.1 for other ways to set execution flags).

Now we list the typical settings for execution flags related to variational Bayesian EM learning. For Viterbi
training, replace the values ml, vb and both of the learn_mode flag with ml_vt, vb_vt and both_vt,
respectively.

• First of all, we configure the pseudo counts (hyperparameters) αi,v according to the data:

:- set_prism_flag(default_sw_a,0.1).

• Suppose that we learn the hyperparameters α∗i,v by the VB-EM algorithm and the point-estimated param-
eters θ̄i,v by taking the averages of hyperparameters (i.e. θ̄i,v = α∗i,v/

∑
v′ α
∗
i,v′ ; see §5.1.4 and §5.1.5 for

details). We also make Viterbi computation based on the a posteriori distribution specified by the learned
hyperparameters α∗i,v. Then, the query statements are written as follows:

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,vb).

• Let us consider a case that we learn both the hyperparameters α∗i,v and the point-estimated parameters θ̄i,v,
but we make Viterbi computation based on the point-estimated parameters θ̄i,v. This procedure makes sense
if every random switch only appears at most once in any explanation for any observation. Then we may
write:

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,ml).

or equivalently,

:- set_prism_flag(learn_mode,both).

(the default value of the viterbi_mode flag is ml).

• When we just want to learn the hyperparameters α∗i,v and make Viterbi computation based on the a posteriori
distribution specified by α∗i,v, the queries would be:

:- set_prism_flag(learn_mode,vb).
:- set_prism_flag(viterbi_mode,vb).

On the other hand, one may find that the setting

:- set_prism_flag(learn_mode,vb).
:- set_prism_flag(viterbi_mode,vb).

or equivalently,

:- set_prism_flag(learn_mode,vb).

does not make sense in most cases, because we will not learn the parameters, which are to be used for Viterbi
computations.

• We can add some VB-specific execution flags:

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,vb).
:- set_prism_flag(rerank,5).

1 On the other hand, the mode-specific built-in predicates have an advantage that they can directly start learning or Viterbi computation,
without specifying the mode by execution flags.
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The number K of candidates for the most probable explanation(s) in reranking (§5.1.4) can be specified by
the rerank flag. See §4.13.2 for the details of these execution flags.

• The execution flags for controlling the ML/MAP-EM algorithm (§4.7.1 and §4.7.4) are also applicable to
the VB-EM algorithm (see §4.13.2 for the details):

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,vb).
:- set_prism_flag(restart,10). % # of random restarts
:- set_prism_flag(max_iterate,50). % Maximum # of EM iters
:- set_prism_flag(epsilon,1.0e-3). % Threshold for convergence
:- set_prism_flag(std_ratio,1.0). % Gaussian noises used in

% initialization

Note that the value of the std_ratio flag is used in a different way from that in ML/MAP-based EM
learning (see §5.2.4 for details).

• The execution flags for the DAEM algorithm are also applicable to the VB-EM algorithm (see §4.13.2):

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,vb).
:- set_prism_flag(daem,on). % Enabling DAEM
:- set_prism_flag(itemp_init,0.3). % Initial value of inverse temperature
:- set_prism_flag(itemp_rate,1.2). % Increasing rate of inverse temperature

• When turning off the reset_hparams flag, the expected statistics will be accumulated into the hyperpa-
rameters, every time VB learning is invoked (see §4.13.2):

:- set_prism_flag(learn_mode,both).
:- set_prism_flag(viterbi_mode,vb).
:- set_prism_flag(reset_hparams,off).
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Chapter 6

MCMC sampling*

6.1 Background
As described in chapter 5, the programming system provides the utilities for variational Bayesian learning. Since
version 2.1, the utilities for MCMC sampling, another approximate framework for Bayesian learning, are also
available. [49] gives a theoretical background and some experimental results on this topic.

6.1.1 Preliminaries
For self-containedness, we summarize again the notions/notations on Bayesian learning in PRISM. Many of the
contents in this section come from §5.1.1, but several notions/notations are additionally included. In Bayesian
learning, the model M under consideration is parametric and here the parameters are denoted by θ. In the context
of PRISM, M is a PRISM program and θ is a collection of θi,v where θi,v is the probability of a random switch
msw(i,v) being true. We consider θ to follow a conjugate prior distribution (the Dirichlet distribution):

P(θ | M) =
1
Z

∏
i,v

θ
αi,v−1
i,v

Z def
=
∏

i

Zi

Zi
def
=

∏
v∈Vi
Γ(αi,v)

Γ(
∑

v∈Vi
αi,v)

.

Here Z is a normalizing constant and each αi,v (> 0) is a parameter of the prior distribution which corresponds to
θi,v (and accordingly to msw(i,v)). Vi is a set of possible outcomes of switch i, and Γ is the Gamma function.
These αi,v’s are called hyperparameters of the model M and we denote a collection of such αi,v’s by α. In this
chapter, we basically include α into our probability distributions, while it is omitted in the previous chapter.

In PRISM, the data G is a multiset G1,G2, . . . ,GT of the observed goals. For an observed goal G, ψ(G) is a set
of explanations for G. If every Gt has just one explanation (i.e. |ψ(Gt)| = 1), G is said to be complete and denoted
by Gc. If some Gt has two or more explanations, G is said to be incomplete, because, only from such Gt, we
cannot immediately know the actual choices made by random switches. An incomplete data G would turn to be a
complete data Gc = (G, E) if we could augment E, whose t-th element Et is some explanation of Gt (Et ∈ ψ(Gt)).
Here E is considered as one possible combination of the hidden explanations for G. For notational simplicity, we
extend ψ to denote this by E ∈ ψ(G). Furthermore, σi,v(E) is defined as the number of msw(i,v)’s appearing in
an explanation E, and for a collection E of explanations, σi,v(E) =

∑
E∈E σi,v(E).

6.1.2 MCMC sampling
One task in Bayesian learning is to choose the best model (the best PRISM program) M∗ that fits best the data G at
hand, and we consider M∗ as the maximizer of the marginal likelihood P(G | M, α). As mentioned in §5.1.2, if G is
complete data Gc, P(G | M, α) can be obtained in closed form, but if not, some approximation is required. Another
task is to compute the most probable explanation E∗ for a new observation G by E∗ = argmaxE∈ψ(G)P(E | G, α),
which is intractable in practical cases. For both computational tasks, MCMC sampling gives us an sample-based
way of approximation, which does not require assumptions like the decomposability of the test distribution in
variational Bayesian EM learning (i.e. Q(E, θ) ≈ Q(E)Q(θ)). In this section, we concentrate on how MCMC
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sampling is done, and the next two sections explain in turn how to use the obtained samples for the two tasks
above.

By the MCMC sampling performed in the programming system, we obtain H samples E(1), E(2), . . . , E(H) that
follow P(E | G, α). In this MCMC sampling, an explanation E is seen as a state of a Markov chain. To start from
a promising initial state E(0), we borrow a result of variational Bayesian learning (Chapter 5), i.e. the routine of
variational Bayesian learning is conducted before MCMC sampling. The entire procedure is outlined as follows:

MCMC sampling for PRISM programs

1. Conduct a variational Bayesian EM learning to obtain the adjusted hyperparameters α∗i,v and their mean
values θ̄i,v of the adjusted hyperparameters (θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′ ). Let θ̄ be a collection of parameters θ̄i,v.

2. Compute the initial state E(0) such that E(0)
t := argmaxE∈ψ(Gt)P(E | Gt, θ̄) for 1 ≤ t ≤ T .

3. h := 0.

4. Choose t randomly from [1,T ].

5. E := E(h) for notational simplicity.

6. θ̂i,v :=
σi,v(E−t) + αi,v∑

v′∈Vi
(σi,v′(E−t) + αi,v′)

where E−t
def
= (E1, E2, . . . , Et−1, Et+1, . . . , ET ) for E = (E1, E2, . . . , ET ).

7. Draw a sample E′t from a proposal distribution P(Et | Gt, θ̂), where θ̂ is a collection of θ̂i,v above.

8. Create a candidate E′t := (E1, E2, . . . , Et−1, E′t , Et+1, . . . , ET ).

9. Compute the acceptance function:

A(Et, E′t )
def
= min

{
1,

P(E′t | Gt, E−t, α)P(Et | Gt, θ̂)

P(Et | Gt, E−t, α)P(E′t | Gt, θ̂)

}
= min

{
1,

P(E′ | α)P(Et | Gt, θ̂)
P(E | α)P(E′t | Gt, θ̂)

}
.

10. With probability A(Et, E′t ), accept the candidate as the next state (i.e. E(h+1) := E′), or with probability
1 − A(Et, E′t ), reject the candidate (i.e. E(h+1) := E).

11. h := h + 1 and go to Step 4.

This procedure is a generalization of Johnson et al.’s Metropolis-Hastings sampler for probabilistic context-free
grammars [25], and in Step 7, we can fully exploit PRISM’s efficient computational mechanism using tabling. For
further technical details, please consult [49]. To get stable results, we often use the control parameters Hburn-in and
Hskip as well as H. That is, when Hburn-in is used, we throw away initial Hburn-in samples to avoid the influence
from the initial state. One may see that Hburn-in is the length of so-called ‘burn-in’ period. Also when Hskip is
used, we pick up every Hskip-th sample from the original Markov chain.

6.1.3 Model selection
As mentioned before, one task in Bayesian learning is to choose the best PRISM program M∗ that maximizes the
marginal likelihood P(G | M, α). In other words, the marginal likelihood P(G | M, α) is used for evaluating a
candidate model M. For each candidate model M, we estimate P(G | M, α) using the samples obtained by MCMC
sampling (§6.1.2) as follows. First, we transform P(G | M, α):

P(G | α) =
P(G, θ | α)
P(θ | G, α)

=
P(G, θ | α)∑

E∈ψ(G) P(E, θ | G, α)
=

P(θ | α)P(G | θ)∑
E∈ψ(G) P(θ | E, α)P(E | G, α)

(M is omitted for brevity). Then, since the above equation holds for any θ, we use θ = θ̄, where θ̄ is computed from
the adjusted hyperparameters obtained by variational Bayesian learning (see §6.1.2 for its definition; also recall
that variational Bayesian EM learning is the first step of our MCMC sampling). Furthermore, since H samples
E(1), E(2), . . . , E(H) obtained in MCMC sampling follow P(E | G, α), the denominator of the rightmost formula
can be approximated by 1

H
∑H

h=1 P(θ | E(h), α). As a result, we obtain the estimated log marginal likelihood:

log P(G | α) ≈ log
P(θ̄ | α)P(G | θ̄)

1
H
∑H

h=1 P(θ̄ | E(h), α)
.

Here P(θ̄ | α) is the prior probability of θ̄ under the Dirichlet distribution, P(G | θ̄) is the likelihood of G under
θ̄, and P(θ̄ | E(h), α) is the a posteriori probability of θ̄ under the Dirichlet distribution added the data E(h). These
components are all efficiently computable, so the estimated log marginal likelihood is computed in a practical
amount of time.
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6.1.4 Viterbi computation
As mentioned before, another task in Bayesian learning is to compute the most probable explanation E∗ for a new
observation G by E∗ = argmaxE∈ψ(G)P(E | G, α). This computation is not feasible in most cases where |ψ(G)| is
exponential. Instead we take a reranking approach using an approximate P(E | G, α) based on H samples obtained
by MCMC sampling:

1. Run top-K Viterbi computation based on the mean values θ̄i,v of the adjusted hyperparameters α∗i,v obtained
by variational Bayesian learning (i.e. θ̄i,v = α

∗
i,v/
∑

v′ α
∗
i,v′).

2. Compute P(E | G, α) as described below for each of K explanations obtained in the first step, and return
E = Ẽ∗ which comes with the highest P(E | G, α).

Recall here that variational Bayesian EM learning has been conducted as the first step of our MCMC sampling.
Using H samples E(1), E(2), . . . , E(H) that follow P(E | G, α), we can have an approximation of P(E | G, α):

P(E | G, α) =
∑

E∈ψ(G)

P(E, E | G, α) =
∑

E∈ψ(G)

P(E | E, α)P(E | G, α)

≈ 1
H

H∑
h=1

P(E | E(h), α)

=
1
H

H∑
h=1

P(E, E(h) | α)
P(E(h) | α)

=
1
H

H∑
h=1

∏
i

Γ(
∑

v(αi,v + σi,v(E(h))))

Γ(
∑

v(αi,v + σi,v(E) + σi,v(E(h))))

∏
v

Γ(αi,v + σi,v(E) + σi,v(E(h)))

Γ(αi,v + σi,v(E(h)))
.

The last equation holds using a well-known property derived from the definition of Dirichlet distributions:

P(E | α) =

∫
P(E | θ)P(θ | α)dθ =

∫ ∏
i,v

θ
σi,v(E)
i,v


 1

Z

∏
i,v

θ
αi,v−1
i,v

 dθ =
1
Z

∫ ∏
i,v

θ
αi,v+σi,v(E)−1
i,v dθ

=

∏
i

Γ(
∑

v αi,v)∏
v Γ(αi,v)

 ∏
i

∏
v Γ(αi,v + σi,v(E))
Γ(
∑

v αi,v + σi,v(E))

 =∏
i

Γ(
∑

v αi,v)
Γ(
∑

v αi,v + σi,v(E))

∏
v

Γ(αi,v + σi,v(E))
Γ(αi,v)

.

6.2 Built-in utilities
As mentioned above, one task in Bayesian learning is to choose the most plausible PRISM program M∗ that
maximizes of the marginal likelihood P(G | M, α), and another task is to compute the most probable explanation
E∗ for a new observation G by E∗ = argmaxE∈ψ(G)P(E | G, α). In the next two sections §6.2.1 and §6.2.2, the built-
in routines for these two tasks are described in turn. Additionally in §6.2.3, we describe several primitive built-ins
that can be combined by the user to save and reuse the MCMC samples. The hyperparameters are assumed to be
given in advance, for example, using the set_sw_a predicates. After a run of MCMC sampling, its statistics are
available via mcmc_statistics/2 (§4.8).

6.2.1 Model selection
As described in §6.1.3, by MCMC sampling for the given observed goals G, we obtain an approximation of
log P(G | M, α) called the estimated log marginal likelihood. The following built-in predicates are available for
this purpose:

• marg_mcmc_full(Goals) displays the estimated log marginal likelihood and the variational free energy
for goals Goals.

• marg_mcmc_full(Goals,Opts) displays the estimated log marginal likelihood and the variational free
energy for Goals under the user-specified options Opts. Here Opts is a list that may contain end(End),
burn_in(BurnIn) and skip(Skip). End indicates the length of the Markov chain (H in §6.1.2), BurnIn
indicates the length of the ‘burn-in’ period (Hburn-in in §6.1.2), and Skip indicates the length of the cycle of
picking up a sample (Hskip in §6.1.2).

• marg_mcmc_full(Goals,Opts,MargLs) unifies MargLs with a list [VFE,EML], where EML is the
estimated log marginal likelihood for Goals under the options Opts and VFE is the variational free energy.
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The default values of the options end(End), burn_in(BurnIn) and skip(Skip) above are given by the flags
mcmc_e, mcmc_b and mcmc_s, respectively. Note here that the variational free energy is computed by vari-
ational Bayesian EM learning which is conducted as the first step in the entire procedure of MCMC sampling
(§6.1.2). Note also that these built-in predicates do not modify the current parameters and hyperparameters in the
switch database.

In addition, the programming system provides some built-in predicates that runs MCMC sampling for several
times and returns the average estimated log marginal likelihood together with the variance:

• ave_marg_mcmc(N,Goals) runs MCMC sampling for N times and displays the average estimated log
marginal likelihood of goals Goals together with the standard deviation.

• ave_marg_mcmc(N,Goals,Opts) runs MCMC sampling for N times under the options Opts and dis-
plays the average estimated log marginal likelihood of goals Goals together with the standard deviation.

• ave_marg_mcmc(N,Goals,Opts,EMLStats) runs MCMC sampling for N times under the options Opts
and unifies EMLStats with [AvgEML,StdEML] where AvgEML is the average estimated log marginal like-
lihood of goals Goals and StdEML is the standard deviation.

• ave_marg_mcmc(N,Goals,Opts,VFEStats,EMLStats) runs MCMC sampling for N times under the
options Opts, unifies VFEStats with [AvgVFE,StdVFE] where AvgVFE and StdVFE are respectively the
average and the standard deviation of the variational free energy of goals Goals, and unifies EMLStats with
[AvgEML,StdEML] where AvgEML and StdEML are respectively the average and the standard deviation
of the estimated log marginal likelihood of Goals.

The options Opts are the same as above.
Moreover, for small models with small datasets, the programming system provides the following built-in

predicates for computing the exact log marginal likelihood:

• marg_exact(Goals) displays the exact log marginal likelihood of goals Goals.

• marg_exact(Goals,MargL) returns the exact log marginal likelihood of goals Goals to MargL.

Using these built-ins, one may check the precision of the estimated log marginal likelihood via MCMC sampling
by comparing it with the exact one.

6.2.2 Viterbi computation
We have explained that another task in Bayesian learning is to compute the most probable (Viterbi) explanation
E∗ for a new observation Gnew by E∗ = argmaxE∈ψ(Gnew)P(E | G, α), where G are the goals we have observed.
Actually however, for efficiency and usability, the built-ins in this section are provided in a more advanced way.
Here we start with two remarks. First, to reuse the MCMC samples, these built-ins are designed to work for two
or more new observations Gnew all at once. Formally speaking, they compute E∗ = argmaxE∈ψ(Gnew)P(E | G, α).
Second, the built-in predicates in this section behave like the viterbig predicates (§4.5.1). For example, let
us suppose that blood type B has the highest probability in the blood type program (§1.2). Then, for the query
viterbig(bloodtype(X),P,E), we will have X substituted by b, E substituted by the explanation for
bloodtype(b) and P substituted by the probability of the explanation. Keeping these two remarks in mind,
now we list the built-ins:

• predict_mcmc_full(ObsGs,PredGs,Answers) unifies Answers with the most probable explanations
of new observations PredGs based on the previous observations ObsGs. To be more precise, letting PredGs
be [PG1,PG2,...,PGn], this predicate returns Answers as [Ans1,Ans1,...,Ansn], where each Ansi

is of the form [PG′i,Expli,LogPi], Expli is the most probable explanation for PGi, PG′i is the (ground)
instance of PGi appearing in Expli, and LogPi is logarithm of the probability of Expli. Furthermore, each
PGi is unified with PG′i as done in the viterbig predicates (§4.5.1).

• predict_mcmc_full(ObsGs,Opts,PredGs,Answers) works in the same way as predict_mcmc_
full(ObsGs,PredGs,Answers) under the user-specified options Opts. Opts is a list that may contain
end(End), burn_in(BurnIn) and skip(Skip). End indicates the length of the Markov chain (H in
§6.1.2), BurnIn indicates the length of the ‘burn-in’ period (Hburn-in in §6.1.2), and Skip indicates the length
of the cycle of picking up a sample (Hskip in §6.1.2).

• predict_mcmc_full(ObsGs,Opts,K,PredGs,Answers)works in the same way as predict_mcmc_
full(ObsGs,Opts,PredGs,Answers) except that it uses K intermediate candidate explanations in rerank-
ing (§6.1.4).
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The default values of the options end(End), burn_in(BurnIn) and skip(Skip) above are given by the flags
mcmc_e, mcmc_b and mcmc_s, respectively. Also the default number of intermediate candidate explanations in
reranking can be specified by the rerank flag. These built-in predicates do not modify the current parameters
and hyperparameters in the switch database.

6.2.3 Primitive utilities
The built-in predicates described in the previous two sections §6.2.1 and §6.2.2 are a kind of ‘batch’ routines, in
that MCMC sampling is unconditionally embedded in these built-ins, and the collected samples will be thrown
away when these ‘batch’ built-ins are invoked again. This way of handling the MCMC samples is safe but seems
not efficient in practice, since MCMC sampling often takes long time to collect as many as samples as possible
for making the later computation sufficiently precise. From this background, the programming system provides
several primitive built-in predicates for probabilistic inferences via MCMC sampling, that can be combined by the
user to save and reuse the collected MCMC samples.

The primitive built-ins provided by the programming system are divided into three groups. The built-ins in the
first group work just for MCMC sampling (§6.1.2):

• mcmc(Goals,Opts) performs MCMC sampling for goals Goals under the user-specified options Opts to
collect samples. Opts is a list that may contain end(End), burn_in(BurnIn) and skip(Skip). End
indicates the length of the Markov chain (H in §6.1.2), BurnIn indicates the length of the ‘burn-in’ period
(Hburn-in in §6.1.2), and Skip indicates the length of the cycle of picking up a sample (Hskip in §6.1.2).

• mcmc(Goals) performs MCMC sampling for goals Goals to collect samples under the default options,
which are given by the flags mcmc_e, mcmc_b and mcmc_s, respectively.

Note that the collected samples in the latest run are stored inside the programming system. Since the collected
samples can be huge, currently they are not provided to the user in the form of Prolog terms.

The primitive built-ins in the second group work compute the estimated log marginal likelihood (§6.1.3),
assuming that the MCMC samples have already been stored inside the system:

• marg_mcmc [no args] displays the estimated log marginal likelihood and the variational free energy, com-
puted from the stored MCMC samples.

• marg_mcmc(MargLs) unifies MargLs with a list [VFE,EML], where EML is the estimated log marginal
likelihood and VFE is the variational free energy. These quantities are computed from the stored MCMC
samples.

Slightly confusingly, the variational free energy is the one computed by variational Bayesian EM learning in the
last run of MCMC sampling (§6.1.2).

The primitive built-ins in the third group work find the most probable (Viterbi) explanations (§6.1.4), assuming
that the MCMC samples have already been stored inside the system:

• predict_mcmc(PredGs,Answers) unifies Answers with the most probable explanations of new observa-
tions PredGs, based on the stored MCMC samples. Letting PredGs be [PG1,PG2,...,PGn], this pred-
icate returns Answers as [Ans1,Ans1,...,Ansn], where each Ansi is of the form [PG′i,Expli,LogPi],
Expli is the most probable explanation for PGi, PG′i is the (ground) instance of PGi appearing in Expli, and
LogPi is logarithm of the probability of Expli. Furthermore, each PGi is unified with PG′i as done in the
viterbig predicates (§4.5.1).

• predict_mcmc(K,PredGs,Answers) works in the same way as predict_mcmc(PredGs,Answers)
except that it uses K intermediate candidate explanations in reranking (§6.1.4).
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Chapter 7

Generative conditional random fields*

What we aim at in this chapter is to provide the user with a way of discriminative modeling in PRISM and make
conditional random fields (CRFs) available which generally show excellent classification and prediction perfor-
mance compared to generative models. Our approach is based on a generalization of generative-discriminative
pair [63] such as naive Bayes classification and logistic regression to PRISM programs and CRFs by generalizing
probabilities of random switches (msw atoms) to arbitrary weights. The CRFs defined by our approach are called
generative CRFs. In the sequel, we first explain some background of generative CRFs (§7.1), and then describe
how to write PRISM programs for generative CRFs (§7.2) and how to use the built-in utilities provided in the
programming system (§7.3).

7.1 Background

7.1.1 Preliminaries
Classification is one of the major applications of machine learning; we classify an input data x into one of the
predefined classes c just like we classify vertebrates into mammals, birds, fish, reptiles, amphibians and arthropods.
This problem, the classification problem, can be solved by a variety of ways but one typical way is to use a
conditional distribution p(c | x) and predict the class c∗ of x by c∗ = argmaxc p(c | x), i.e., the most probable class
for x.

There are two major approaches to defining p(c | x). One is to define a joint distribution p(c, x) first and then
calculate the conditional distribution

p(c | x) =
p(c, x)
p(x)

=
p(c, x)∑

c′ p(c′, x)
. (7.1)

This approach is called generative modeling because p(c, x) describes, usually, how a class c generates its member
x and p(c, x) is called generative model. A most popular example of generative model would be naive Bayes (NB)
where x = a1, . . . , an is a vector of attributes of data and the joint distribution is given by

p(c, x) = p(a1 | c) · · · p(an | c)p(c). (7.2)

As is seen here, NB assumes attributes are independent given a class. Although this assumption makes computa-
tion and learning extremely easy, we have to keep in mind that it is an unrealistic assumption as attributes have
dependencies.

The other approach is discriminative modeling which directly defines p(c | x), not via p(c, x). In this approach,
we have only to define a non-negative function f (c, x) such that

∑
c f (c, x) = 1 and consider it as p(c | x).

p(c | x) is called discriminative model. One familiar example of discriminative model is logistic regression. In
the case of binary classification of binary attribute data, the input x = a1, . . . , an is a vector of binary attributes
(ai ∈ {1, 0}, 1 ≤ i ≤ n) and classified into two categories c ∈ {1, 0}. The conditional probability for c = 1 takes the
form

p(c = 1 | x) =
1

1 + exp
{
−(λc=1,0 +

∑n
i=1 λc=1,iai)

} . (7.3)
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Here notice that NB can derive logistic regression; substitute p(c, x) in Eq. 7.2 for Eq. 7.1

p(c = 1 | x) =
p(c = 1, x)

p(x)
=

1

1 + p(c=0,a1,...,an)
p(c=1,a1,...,an)

=
1

1 + exp
{
− ln
(

p(a1 |c=1)···p(an |c=1)p(c=1)
p(a1 |c=0)···p(an |c=1)p(c=0)

)}
=

1

1 + exp
{
−
(
ln p(c=1)

p(c=0) +
∑n

i=1 ln p(ai |c=1)
p(ai |c=0)

)} (7.4)

and let λc=1,0 ≡ ln p(c=1)
p(c=0) +

∑n
i=1 ln p(ai=0|c=1)

p(ai=0|c=0) and λc=1,i ≡ ln p(ai=1|c=1)
p(ai=1|c=0) − ln p(ai=0|c=1)

p(ai=0|c=0) (1 ≤ i ≤ n). Then Eq. 7.4
coincides with Eq. 7.3.

In general, a pair of generative model and discriminative model, NB classification and logistic regression for
instance, is said to form a generative-discriminative pair [40] when the former’s joint distribution p(y, x) derives
the latter’s conditional distribution p(y | x). There are generative-discriminative pairs other than NB and logistic
regression such as HMMs and linear-chain CRFs.

Note that while the generative and discriminative models in a generative-discriminative pair are closely related,
their learning behaviors as well as classification and prediction performance are rather different because their
parameterization and parameter learning are different.1 For example, theoretically, logistic regression outperforms
NB in view of classification accuracy when enough data is available but NB achieves its highest performance more
quickly than logistic regression [40]. Practically, however, which of the two is better for a given dataset is difficult
to decide and, ideally, we need to test both of them.

7.1.2 Conditional random fields
Conditional random fields (CRFs) [33] are a generalization of logistic regression and quite popular for modeling
sequence data. CRFs define a conditional distribution p(y | x) over the output sequence y given an input sequence
x which takes the following form:

p(y | x) ≡ 1
Z(x)

exp

 K∑
k=1

λk fk(x, y)

 . (7.5)

Here fk(x, y) and λk (1 ≤ k ≤ K) are respectively feature functions and the associated weights (parameters) which
are arbitrary numbers. Z(x) is a normalizing constant. We use λ = λ1, . . . , λK to collectively denote (a vector of)
weights.

Suppose a set of complete data D = {(x(1), y(1)),. . .,(x(T ), y(T ))} is given where x(t) is an input and y(t) the output
(1 ≤ t ≤ T ). The weights λ of a CRF are learned discriminatively, i.e., as the maximizer of the regularized
conditional log-likelihood L(λ | D) which is given by

L(λ | D) ≡
T∑

t=1

log p(y(t) | x(t)) − µ
2

K∑
k=1

λ2
k =

T∑
t=1

 K∑
k=1

λk fk(x(t), y(t)) − log Z(x(t))

 − µ2
K∑

k=1

λ2
k (7.6)

where µ
2
∑K

k=1 λ
2
k is a penalty term. L(λ | D) is convex w.r.t. λ and its optimization is performed by various

algorithms such as the steepest descent algorithm and the L-BFGS algorithm.
Viterbi inference for CRFs is simple. We infer the most probable output y∗ for an input sequence x by

y∗ ≡ argmax
y

p(y | x) = argmax
y

1
Z(x)

exp

 K∑
k=1

λk fk(x, y)

 = argmax
y

K∑
k=1

λk fk(x, y).

7.1.3 Basic models
There are three basic CRF models, logistic regression, linear-chain CRFs and CRF-CFGs.

Logistic regression is a CRF such that the input x = x1, . . . , xN is a vector of attributes and the output is a
scalar y denoting a class. Logistic regression given as Eq. 7.3 can be straightforwardly rewritten to Eq. 7.5 using
a unit function 1{y′=y} = 1 if y′ = y and 1{y′=y} = 0 otherwise.

1 For a given set D = {(c(1), x(1)), . . . , (c(T ), x(T ))} of complete data, logistic regression learns weights λ = λc=1,0, . . . , λc=1,n discriminatively,
i.e., as the maximizer of

∏T
t=1 p(c(t) | x(t), λ) but NB learns probabilities θ = p(c), p(a1 | c), . . . , p(an | c) generatively as the maximizer of

likelihood
∏T

t=1 p(c(t), x(t) | θ).
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Another useful class is linear-chain CRFs that form generative-discriminative pairs with HMMs. They define
a conditional distribution of the output sequence y = y1, . . . , yN for a given input sequence x = x1, . . . , xN by

p(y | x) ≡ 1
Z(x)

exp

 K∑
k=1

λk

N∑
i=2

fk(x, yi, yi−1)


Z(x) =

∑
y

exp

 K∑
k=1

λk

N∑
i=2

fk(x, yi, yi−1)


where Z(x) is a normalizing constant. Feature functions are restricted to the form f (x, yi, yi−1) which only refers to
two adjacent yis and never refers to the whole y. Thanks to this restriction, probability is efficiently computed in
linear-chain CRFs by a variant of the forward-backward algorithm for HMMs in time linear in the output length
N.

CRFs were originally proposed as graphical models where the graph size is fixed and finite, hence cannot deal
with sequence data with unbounded length such as sentences generated by CFGs. It is possible however to trans-
form CFGs to discriminative models called conditional random field context free grammars (CRF-CFGs) [18]
where the conditional probability p(τ | s) of a parse tree τ given a sentence s is defined by

p(τ | s) ≡ 1
Z(s)

exp

 K∑
k=1

λk

∑
r∈τ

fk(r, s)

 .
Here Z(s) is a normalizing constant. λ1, . . . , λK are weights and r ∈ τ is a CFG rule (possibly enriched with other
information) appearing in the parse tree τ of s and fk(r, s) is a feature function.

When comparing PCFGs and CRF-CFGs in terms of the prediction task which predicts a correct parse tree τ
for a given sentence s, the latter’s prediction tends to be more accurate [18], though both use the same form of
conditional distribution p(τ | s) for prediction.

7.1.4 Generative CRFs
PRISM programs are used to encode generative models but we can reuse them to define CRFs just by allowing
random switches to have arbitrary weights. The defined CRFs, generative CRFs, form generative-discriminative
pairs with the original PRISM programs and include the above mentioned basic models.

To introduce generative CRFs, we first replace probability θi,v for msw(i,v) with arbitrary weight wi,v =

exp(λi,v) and compute an unnormalized distribution q(x, y) = q(Gx,y) defined by

q(Gx,y) ≡ exp

∑
i,v

λi,vσi,v(Ex,y)

 .
Here (x, y) stands for a complete data (x: input, y: output), Gx,y is the top-goal to specify the relationship between x
and y, Ex,y is a unique explanation for Gx,y, and σi,v(E) is the number of msw(i,v)’s appearing in an explanation
E. We assume Gx,y always has only one explanation Ex,y w.r.t. a PRISM program for a complete data (x, y).2 By
definition q(Gx,y) is non-negative. Since q(x, y) = q(Gx,y) is a non-negative function of x and y, we can introduce
a CRF p(y | x) using wi,v = exp(λi,v), by

p(y | x) ≡ q(x, y)∑
y q(x, y)

=
q(Gx,y)∑
y q(Gx,y)

=
1

Z(Gx)
exp

∑
i,v

λi,vσi,v(Ex,y)

 = 1
Z(Gx)

∏
i,v

wσi,v(Ex,y)
i,v (7.7)

Z(Gx) =
∑

Ex,y∈ψ(Gx)

exp

∑
i,v

λi,vσi,v(Ex,y)

 = ∑
Ex,y∈ψ(Gx)

∏
i,v

wσi,v(Ex,y)
i,v , (7.8)

where Gx = ∃y Gx,y and ψ(G) is a set of explanations for an observed goal G.
We call CRFs defined by Eq. 7.7 and Eq. 7.8 generative CRFs. In principle, since they are defined through a

general programming language, PRISM, they can express a conditional distribution over infinitely many (struc-
tured) objects unlike CRFs defined by graphical models. Another thing to note is that thanks to normalization,
we may use arbitrary PRISM programs to define generative CRFs even if they do not satisfy the exclusiveness
condition (§2.4.6). Here are some further remarks:

2 Usually this is the case. Think of a parse tree y in a PCFG and the sentence x yielded by y. (x, y) is a complete data and the tree y uniquely
determines the set of CFG rules, hence, the set of random switches. So the explanation for x is unique.
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• The most computationally demanding task in generative CRFs is the computation of a normalizing constant
Z(Gx) in Eq. 7.8 because there usually are exponentially many y’s or explanations Ex,y generated by SLD
search for the top-goal Gx = ∃y Gx,y. However, for a PRISM program representing a (computationally
tractable) generative model such as HMMs and PCFGs, the computation of Eq. 7.8 is efficiently carried
out by dynamic programming just by replacing probability θi,v in probability computation of PRISM with
weight wi,v. For example, probability computation in linear-chain CRFs and CRF-CFGs are possible in
linear time and cubic time respectively w.r.t. the input length.

• From the viewpoint of discriminative modeling, a default feature function in generative CRFs is σi,v(Ex,y),
the count of msw(i,v) in Ex,y.3 For other binary feature functions f (x, y) ∈ {1, 0}, we rely on a small
programming trick as follows. We may assume that there is a corresponding goal F(x,y) provable in
PRISM if and only if f (x, y) = 1. Prepare a dummy random switch msw(f(x,y),1). Then a compound
goal (F(x,y) -> msw(f(x,y),1) ; true) realizes the desired function f (x, y).

• Parameters of generative CRFs are learned discriminatively from complete data by maximizing the regu-
larized conditional log-likelihood (Eq. 7.6). We can use any numerical optimization but currently L-BFGS
[35] and the steepest descent algorithm are available in PRISM.4

• Viterbi inference for generatively defined CRFs is straightforward. The most probable explanation E∗x,y for
the top-goal Gx, is computed by dynamic programming just like ordinary PRISM:

E∗x,y = argmax
Ex,y∈ψ(Gx)

p(Ex,y | Gx) = argmax
Ex,y∈ψ(Gx)

1
Z(Gx)

exp

∑
i,v

λi,vσi,v(Ex,y)

 = argmax
Ex,y∈ψ(Gx)

∑
i,v

λi,vσi,v(Ex,y). (7.9)

7.2 PRISM programs for generative CRFs
Now we briefly explain how to write a generative CRF (using default feature functions), let it learn and perform
Viterbi inference to obtain the most probable output for a given input.

To specify a generative CRF, we need a PRISM program that defines two predicates appearing in Eq. 7.7,
one for Gx,y which is a two-place predicate for x and y and the other for Gx = ∃y Gx,y which is a one-place
predicate for x where x is an input and y the output. Gx,y defines an unnormalized distribution q(x, y) and so does
Gx a marginalized unnormalized distribution q(x) =

∑
y q(x, y) respectively and the defined CRF is p(y | x) =

q(x, y)/q(x).
A program for Gx,y is an ordinary PRISM program that generatively specifies the relationship between x and y.

At this point however be warned that the role of x and y are “opposite” in generative modeling and in discriminative
modeling. The input x in discriminative model represents what is observed which is an output of some generative
process from the viewpoint of generative modeling. Likewise the output y in a discriminative model is a hidden
variable from which x is generated in generative modeling.5

Once a PRISM program for Gx,y is written, adding a clause Gx :- Gx,y to the original program is enough,
theoretically, to define a predicate for Gx. In practice however, except for simple cases such as NB, the modified
program becomes a prohibitively inefficient program for computing the unnormalized marginalized distribution
q(x). This is because ?- Gx causes ?- Gx,y with y being free and hence goal sharing by tabling in the latter
computation scarcely occurs due to the inherited y with divergent instantiations. So what is recommended is to
write a specialized PRISM program for Gx, independently of Gx,y, so that goals are maximally shared by tabling
and dynamic programming by the resulting explanation graph is effective.

Figure 7.1 is an example of PRISM program defining a generative CRF. It is a CRF version of Bayesian
network (BN) which forms a generative-discriminative pair. So we call it CRF-BN. The predicate bn(As,C) is
a two-place predicate defining a Bayesian network, generative model, for the car evaluation dataset in the UCI
machine learning repository (http://archive.ics.uci.edu/ml/).

It says a data with attributes As belongs to a class C. There are four classes (unacc, acc, good, and vgood)
and six attributes (buying, maint, ..., safety). Some attributes are interdependent even given a class C
unlike NB. The task is to predict the class C for an input data As, a list of attributes.

Since bn(As,C) is a usual Bayesian network program, we can draw a sample for example by ?- sample(
bn(As,C)) if need be and if msws are assigned normal probabilities. However to define a CRF, we allow the
msws to have weights so that bn(As,C) defines an unnormalized distribution q(As,C) in Eq. 7.7. We also need

3 Since we assume that the top-goal Gx,y has only one explanation Ex,y for a complete data (x, y), (x, y) uniquely determines σi,v(Ex,y).
4 PRISM gratefully uses Naoki Okazaki’s library for L-BFGS optimization (http://www.chokkan.org/software/liblbfgs/).
5 For example, think of a PCFG and let s be a sentence and τ a parse tree. In discriminative modeling, s is an input and τ is an output.

However a PRISM program for the PCFG generates s from τ as if s were an output and τ the input.
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values(class,[unacc,acc,good,vgood]).
values(attr(buying,_),[vhigh,high,med,low]).
...
values(attr(safety,_),[low,med,high]).

bn(As,C):- % for unnormalized distribution q(As,C)
As = [B,M,D,P,L,S],
msw(class,C),
msw(attr(buying,[C]),B),
msw(attr(maint,[B,C]),M),
msw(attr(doors,[B,C]),D),
msw(attr(persons,[D,C]),P),
msw(attr(lug_boot,[D,P,C]),L),
msw(attr(safety,[B,M,C]),S).

bn(As):- bn(As,_). % for unnormalized marginal distribution q(As)

Figure 7.1: CRF-BN program for the car evaluation dataset

a program for the unnormalized marginalized distribution q(As) =
∑
C q(As,C) in Eq. 7.7. In the current example,

as the program is so simple, adding the clause bn(As) :- bn(As,_) for the one-place predicate bn(As) is
enough. As a more complicated case, §10.7 shows a PRISM program encoding a linear-chain CRF.

7.3 Built-in utilities
The programming system provides convenient built-in predicates for discriminative modeling (i.e. for generative
CRFs). They all have a prefix crf_ and the predicate crf_pred/n has basically the same functionality as the
corresponding predicate pred/n for generative modeling like crf_viterbi(G) and viterbi(G) except that
crf_pred/n deals with weights instead of probabilities. Also there are execution flags introduced for generative
CRFs, mostly related to learning. These flags have a prefix crf_ as well. In this section, we only explain the case
with the car evaluation program (Figure 7.1). To find further information, please consult §4.13.2 for execution
flags and §10.7 for actual use.

Weight learning is done by a built-in predicate crf_learn/1, where learning means the minimization of
−L(λ | D) in Eq. 7.6. It takes a list Gs of ground goals representing complete data and learns weights associated
with random switches. In the current case, Gs = [bn(a1, c1), ..., bn(aT, cT)]where at = [b, m, d,
p, l, s] is a list of six attributes and ct is the correct class for at (1 ≤ t ≤ T ). A query ?- crf_learn(Gs)
runs under the control of various flags. For example the crf_learn_mode flag specifies a learning mode which
is either lbfgs or fg. They are set for example by ?- set_prism_flag(crf_learn_mode, lbfgs).
The lbfgs mode uses L-BFGS as a learning algorithm whereas the fg mode uses the steepest descent algorithm.
The latter mode has another set of flags to control its learning process (see §4.13.2 for details). Probabilistic
inferences for CRFs are also carried out by built-in predicates crf_viterbi/1, crf_prob/2 and so on. For
example, ?- crf_viterbi(G) prints out a Viterbi explanation and ?- crf_prob(G,W) returns the weight
W of the goal G. There are also a group of top-n Viterbi predicates. For example, ?- crf_n_viterbi(3,G)
prints out three explanations in the order of higher weight of goal G.
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Chapter 8

Cyclic explanation graphs*

Cyclic explanation graphs provide interesting and useful computation for probabilistic models containing cyclic
structures such as loops in Markov chains and some types of infinite recursion in PCFGs. For example reachability
probabilities in discrete time Markov chains are computed by cyclic explanation graphs and applied to probabilis-
tic model checking. They also enable us to compute prefix and infix probabilities in probabilistic context free
grammars (PCFGs) which are applicable to plan recognition. PRISM’s probability computation over cyclic ex-
planation graphs unifies these examples and computes an infinite sum of probabilities by solving a set of linear or
nonlinear equations. In the following, we first give an overview of cyclic explanation graphs in the programming
system (§8.1) and then describe the basic usage of built-in utilities related to cyclic explanation graphs (§8.2).
In §10.8 and §10.9, we Additionally illustrate how to perform probability computation using cyclic explanation
graphs.

8.1 Background
Cyclic explanation graphs are explanation graphs having cycles in their goal dependency graph.1 Although they
are violating the acyclicity condition imposed by the programming system (§2.4.6), they can be generated by
controlling tabling behavior by an execution flag.

Goals in an explanation graph are partitioned into equivalence classes where an equivalence class consists of
all goals in a cycle in the goal dependency graph, i.e., mutually recursive goals in the explanation graph. Goals
not in a cycle constitute equivalence classes having themselves as only members. Each equivalence class is called
strongly connected component (SCC).

In view of SCCs, the programming system divides explanation graphs into three types: acyclic explanation
graphs, linear cyclic explanation graphs and nonlinear cyclic explanation graphs. Acyclic explanation graphs are
ordinary explanation graphs and their dependency graphs have no cycles. So every SCC is a singleton.

A linear cyclic explanation graph has at least one cycle in the dependency graph and satisfies two conditions.
The first one is that it has a sub-explanation graph for some goal A whose right hand side has a disjunct containing
a goal B such that A and B belong to the same SCC, i.e., B calls A directly or indirectly in the explanation graph.
The second one is that no sub-explanation graph has a goal A on the left hand side while having goals B1 and B2
in some disjunct on the right hand side which belong to the same SCC as A. Below is an example of linear cyclic
explanation graph.

reach(s1,s4)
<=> tr(s1,s2) & reach(s2,s4)

v tr(s1,s1) & reach(s1,s4)
reach(s2,s4)

<=> tr(s2,s3) & reach(s3,s4)
v tr(s2,s1) & reach(s1,s4)
v tr(s2,s2) & reach(s2,s4)

Here reach(s1,s4) and reach(s2,s4) call each other and form an SCC. Each disjunct on the right hand
side of every sub-explanation graph contains at most one goal belonging to this SCC.

The third type is nonlinear cyclic explanation graphs. They have at least one cycle in their dependency graphs
like linear ones but unlike linear ones, they contain a sub-explanation graph such that the goal A on the left hand

1 A goal dependency graph is a directed graph whose nodes are goals in the explanation graph. A goal A is connected to B by an arrow
from A to B iff B occurs in the right hand side of a sub-explanation graph for A (see §2.4.2 for a description on sub-explanation).
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side and goals B1 and B2 occurring together in some disjunct on the right hand side belong to the same SCC.
Below is an example of nonlinear cyclic explanation graph.

infix_pcfg(0,0,[s,s])
<=> infix_pcfg(0,0,[s,s]) & infix_pcfg(0,0,[s]) & msw(s,[s,s])

v infix_pcfg(0,0,[s]) & msw(s,[b])
infix_pcfg(0,0,[s])

<=> infix_pcfg(0,0,[s,s]) & msw(s,[s,s])
v msw(s,[b])

Here the sub-explanation graph for infix_pcfg(0,0,[s,s]) has infix_pcfg(0,0,[s,s]) and
infix_pcfg(0,0,[s]) in the first disjunct of the right hand side which belong to the same SCC as infix_
pcfg(0,0,[s]).

8.2 Built-in utilities
The programming system provides special built-in predicates to perform probability computation for tabled prob-
abilistic goals which generate linear or nonlinear cyclic explanation graphs.2 They compute probabilities in a
dynamic programming way by solving systems of linear or nonlinear equations derived from SCCs3 constructed
from an explanation graph.

lin_prob(G) computes the probability of a tabled probabilistic goal G when probf(G) returns a linear
cyclic explanation graph. If it returns a nonlinear cyclic explanation graph, we should use nonlin_prob(G).
To use lin_prob(G) and nonlin_prob(G) however, the error_on_cycle flag needs to be set to ‘off’
beforehand4 as follows:

:- set_prism_flag(error_on_cycle,off).

We list all special built-in predicates for cyclic explanation graphs in the following.

• lin_prob(G) displays the probability of G that has a linear cyclic explanation graph.

• lin_prob(G,P) returns as P the probability of G that has a linear cyclic explanation graph.

• lin_probfi(G) displays the explanation graph for G as a Prolog term and probabilities of subgoals.
The display format is the same as probfi(G).

• lin_probfi(G,Expl) returns the explanation graph for G as a Prolog term and probabilities of subgoals
as Expl. The return format is the same as probfi(G,Expl).

• lin_probefi(G) behaves like lin_probfi(G) but displays an encoded explanation graph. The
display format is the same as probefi(G).

• lin_probefi(G,Expl) behaves like lin_probfi(G,Expl) but returns an encoded explanation graph.
The return format is the same as probefi(G,Expl).

• lin_learn(Gs) learns parameters from goals Gs. Currently maximum likelihood estimation using EM
learning and Viterbi training is possible. The learning framework is switched by the learn_mode flag
(§4.13.2) as done in the acyclic case.

• nonlin_prob(G) displays the probability of G that has a nonlinear cyclic explanation graph.

• nonlin_prob(G,P) returns as P the probability of G that has a nonlinear cyclic explanation graph.

Note that lin_prob/1 is backward compatible to prob/1 and applicable to acyclic explanation graphs as
well. However since it computes probabilities by iteratively solving a system of linear equations from one SCC to
another by matrix operation, it is less efficient than prob/1when applied to acyclic explanation graphs. Similarly
nonlin_prob/1 subsumes lin_prob/1 in functionality but the former computes probabilities by solving a
set of nonlinear (multivariate polynomial) equations using a general iterative method, and hence should be avoided
for acyclic or linear cyclic explanation graphs for which a more efficient computation is possible. Furthermore, it
is remarkable that lin_learn/1 enables us to conduct parameter learning even from linear cyclic explanation
graphs. §10.8 and §10.9 illustrate how to use these built-in predicates using an example on probabilistic context-
free grammars.

2 prob(G) works only when probf(G) generates an acyclic explanation graph described in §4.4.
3 SCCs themselves form a partially ordered set and so do these systems of equations.
4 The default value for error_on_cycle is ‘on’ to avoid unintended generation of cyclic explanation graphs.
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Chapter 9

Parallel EM learning*

9.1 Background
In these days, there are more and more opportunities for us to work in parallel computing environments such as
computer grids. To benefit from those environments on large-scale EM learning, the programming system provides
a parallel learning utility, which is characterized by the following features:

• Data parallelism. Since we assume that observed goals in training data are i.i.d. (independent and identi-
cally distributed), the major part of the learning procedure, the explanation search (§2.4.2) and a large part
of the EM algorithm (§4.7.1), can be conducted independently for each observed goal.

• Master-slave model. Our implementation is supposed to run with one master process and many (one or
more) slave processes, which are allocated over processors. The master process controls the entire proce-
dure, whereas the slave processes perform the substantial tasks of the explanation search and the expectation
step of the EM algorithm. The expected occurrences of random switches are accumulated among the pro-
cesses before every maximization step, then the parameters are updated on each process.

• Dynamic load balancing. The computation time required for each observed goal G is linear in the size of
the explanation graph for G, but in general the size is unknown before the explanation search. This makes it
difficult to partition the entire observed data into the subsets which require an almost equal amount of efforts
to complete. To cope with such difficulty, we take a work-pool approach (also known as a processor-farm
approach), in which all observed goals are firstly put into a work pool, and then the master process picks up
observed goals one by one and assigns each of them to a slave process that becomes available.

• Distributed memory computing. The algorithm used in this utility is primarily designed for parallel computer
systems in which each processor has a local memory of its own. The communications among the processes
are realized by message passing via MPI (message-passing interface) [19]. Thanks to this design, we would
be able to collectively utilize memory resources which are distributed among computers.

The parallel learning algorithm implemented in this system is empirically shown in [22] to have an advantage
in computation time and space for hidden Markov models (HMMs) and probabilistic context-free grammars
(PCFGs).1

9.2 Requirements
The parallel learning utility is provided as an experimental feature and only for Linux systems (32-bit and 64-bit)
with the following runtime libraries installed:

• glibc version 2.4 or higher, and

• MPICH version 1.x with the ch_p4 device.

MPICH is one of open-source MPI implementations and is available at its authors’ website (http://www-unix.
mcs.anl.gov/mpi/mpich1/). Many Linux distributions also provide official and/or unofficial packages for
MPICH, and we believe most of these packages are suitable for running the utility. All binaries for parallel learning

1Due to the removal of some redundant computations in version 1.11, the speed-up might not be so drastic as reported in [22].
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in the released package of PRISM were built with GCC 4.4.1 and MPICH 1.2.7p1 provided as part of openSUSE
11.2. The PATH environment variable should contain the directory where the commands mpicc and mpirun is
located.

In addition to the above requirements, the programming system needs to be installed into a directory accessible
from all computers used for parallel learning. The utility is expected to work well even in the environments that
consist of heterogeneous (but not so much different) computers, except that mixed use of 32-bit and 64-bit systems
is not supported.

It is also possible to run the utility on a single computer with a multi-core processor (or multiple processors)
in order to reduce the learning time (§9.3.3), as long as the required libraries are available in that computer. Note
that, however, parallel learning requires more memory space in total than non-parallel learning (§9.4).

9.3 Usage

9.3.1 Running the utility
The parallel learning utility provides no interactive sessions. All programs therefore have to run via batch execu-
tion (§3.7). Also, the utility needs to be started on a directory shared among the computers, since all processes
require access to byte-code files of compiled PRISM programs.2

The utility can be started by invoking mpprism instead of prism and upprism. Basically, its usage is
the same as upprism. The user who is familiar with running MPI programs should note that mpirun is called
inside mpprism. Here are a couple of example commands:

mpprism foo
mpprism foo 5893421 1000
mpprism load:foo

The utility runs with four processes on the local machine by default. The number of processes can be changed
by the environment variable NPROCS. For example, the command below starts the utility with twelve processes:

env NPROCS=12 mpprism foo

Also, the name of the machine file (the file that contains the name of machines where the distributed processes
work) is specified by the environment variable MACHINES. For example, if you wish to distribute the processes to
three machines named host1, host2 and host3, you need to create a file which contains the following lines:

host1
host2
host3

Suppose that the name of this file is machines. Then, you start the utility with the following command:

env MACHINES=machines mpprism foo

If you are familiar with the usage of mpirun, and you have options you wish to pass, you can specify
them in the variable PRISM_MPIRUN_OPTS. Note that the -np option (the number of processes) and the
-machinefile option (the machine file) should not be included in this variable. For example, you may pass an
option “-bar xxxx” by:

env PRISM_MPIRUN_OPTS="-bar xxxx" mpprism foo

9.3.2 Writing programs for parallel learning
Most PRISM programs are expected to run without changes, provided batch clauses (prism_main/0-1) are
defined. Note here that only parameter learning is conducted in parallel. The other computations are simply
performed on a (single) master process and thus no performance improvement will be made. There are also some
limitations in functionalities (§9.4).

2PRISM programs given to mpprism are firstly compiled on the master process, and then the resulting byte-code files are loaded by each
process (master and slave).
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9.3.3 Some remarks for effective use
Here are some remarks on the use of the parallel learning utility:

• The parallel learning utility is not yet so reliable as the non-parallel one in many aspects. It is highly
recommended to make sure that your program works on prism or upprism before using mpprism.

• It is often a good idea to have a single processor (or computer) shared between a master process and one of
slave processes, in particular if the number of available processors is limited. The influence of the master
process is considered to be small, since the master process is usually at a very low load throughout parameter
learning. Moreover, the influence is mostly adjusted by dynamic load balancing (§9.1). This can be done by
specifying (n + 1) as the number of processes where n is the number of available processors. Accordingly,
for learning on a single computer with a dual-core processor (or dual processors), you can gain the best
time performance by running with three processes. In this setting, the first processor is expected to work for
the master and one slave processes, and the second processor for the other slave process. Be warned that
sufficient memory space is needed on that computer (§9.4).

• If possible, order the observed goals (training data) so that larger ones precede shorter. Here, large goals
mean ones which consume much time in the explanation search and the expectation steps of the EM al-
gorithm. The work-pool approach works more effectively when heavy subtasks enqueued first in the work
pool. In PCFG programs (§10.2), for instance, we can list training sentences in the decreasing order of their
lengths.

• The degree of speed-up compared to the number of processors depends on programs. For some programs,
the learning time is reduced simply as the number of processors increases. On the other hand, there are
even cases in which learning with less processors is faster than with more processors. It is therefore not
recommended to stick on the as-many-as-possible strategy.

• The amount of memory consumed by each process is expected to be roughly proportional to the speed of
processor on which it runs. Recall this property when you wish to make full use of memory resources
distributed among multiple computers.

• The resulting parameters of parallel learning can be saved by calling save_sw/0-1 (§4.1.10) in the batch
clause (prism_main/0-1). Then they can be restored on interactive sessions (of the normal prism
command) by restore_sw/0-1 to be utilized on sampling, probability calculation, Viterbi computation,
and hindsight computation. This also applies to the cases with pseudo counts (hyperparameters).

9.4 Limitations and known problems
The parallel learning utility has the following limitations and known problems (note that many of them have
already been mentioned above):

• No computations other than parameter learning are parallelized.

• The utility has not been tested sufficiently yet.

• When the utility is aborted by some error, there occasionally remain defunct processes. This is due to diffi-
culty in aborting MPI programs cleanly. When you face this situation, please kill those processes manually.

• Parallel learning requires, in total, more memory resources than non-parallel learning. This might be critical
when the utility is run on a single computer or shared-memory systems.

• The learning time might not be reduced as expected for some programs, in particular those with failure
(§4.10).

• The statistics on the explanation graph (§4.8) can be different from those obtained on the non-parallel utility,
and even can vary from execution to execution.3

• The explanation graphs will not be displayed even with the verb flag set to ‘graph’ or ‘full’.

• The total table space used for learning will not be displayed.
3 The reason is as follows. In the constructed explanation graphs, there can be subgoals which are shared among distinct observed goals

(this mechanism is called inter-goal sharing [28]). In parallel learning, however, such sharing will be made only within each slave process,
and therefore the number of subgoals in the entire graph varies depending on how the observed goals are assigned to the slave processes.
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• The learning time is given by elapsed time, not by CPU time as on the non-parallel utility (this is not actually
a limitation).

• The programming system may be crushed if there is a process that are not assigned any goal. Accordingly,
the number of observed goals should not be smaller than the number of processes.

99



Chapter 10

Examples

PRISM is suited for building complex systems that involve both symbolic and probabilistic elements such as
discrete hidden Markov models, stochastic string/graph grammars, game analysis, data mining and bio-sequence
analysis. In this chapter, we describe several program examples including the ones that can be found under the
directories named ‘exs’ or ‘exs_fail’ in the released package.

10.1 Hidden Markov models
The HMM (hidden Markov model) program has been fragmentarily picked up throughout this manual. In this
section, on the other hand, we attempt to collect the previous descriptions as a single session of an artificial
experiment.

10.1.1 Writing an HMM program
As described in §1.3, the HMM we consider has only two states ‘s0’ and ‘s1’, and two emission symbols ‘a’ and
‘b’. In top-down writing such an HMM, we make a couple of multi-valued switch declarations first:

values(init,[s0,s1]). % state initialization
values(out(_),[a,b]). % symbol emission
values(tr(_),[s0,s1]). % state transition

These declarations declare three types of switches: switch init chooses ‘s0’ or ‘s1’ as an initial state to start
with, the symbol emission switches out(·) chooses ‘a’ or ‘b’ as an emitted symbol at each state, and the state
transition switches tr(·) chooses the next state ‘s0’ or ‘s1’.

We then proceed to the modeling part. The modeling part is described only with four clauses:

hmm(L):- % To observe a string L:
str_length(N), % Get the string length as N
msw(init,S), % Choose an initial state randomly
hmm(1,N,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop
hmm(T,N,S,[Ob|Y]) :- % Loop: The state is S at time T

msw(out(S),Ob), % Output Ob at the state S
msw(tr(S),Next), % Transit from S to Next.
T1 is T+1, % Count up time
hmm(T1,N,Next,Y). % Go next (recursion)

str_length(10). % String length is 10

As described in the comments, the modeling part expresses a probabilistic generation process for an output string
in the HMM. The observed goals take the form hmm(L) where L is an output string, i.e. a list of emitted symbols.
As long as possible, we recommend such a purely generative fashion in writing the modeling part. One of its
benefits here is that the modeling part works both in sampling execution and explanation search.1

1 If we wish, we can confirm even at this point whether it is possible to run sampling or the explanation search. To be more concrete, let us
include only the declarations and the modeling part to the file named ‘hmm.psm’, and load the program:
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Optionally we can add the utility part. In the utility part, we can write an arbitrary Prolog program which
may use built-ins of the programming system. Here, we conduct a simple and artificial learning experiment. That
is, in this experiment, we first give some predefined parameters to the HMM, and generate 100 strings under the
parameters. Then we learn the parameters from such sampled strings. Instead of running each step interactively,
we write the following utility part that makes a batch execution of the learning procedure:

hmm_learn(N):-
set_params,!, % Set parameters manually
get_samples(N,hmm(_),Gs),!, % Get N samples
learn(Gs). % learn with the samples

set_params :-
set_sw(init, [0.9,0.1]),
set_sw(tr(s0), [0.2,0.8]),
set_sw(tr(s1), [0.8,0.2]),
set_sw(out(s0),[0.5,0.5]),
set_sw(out(s1),[0.6,0.4]).

hmm_learn(N) is a batch predicate for the experiment, where N is the number of samples used for learning.
set_params/0 specifies the parameters of each switch manually. Since hmm/1 works in sampling execution,
we can use a PRISM’s built-in get_samples/3 (§4.2) that calls hmm/1 for N times.

10.1.2 EM learning
Let us run the program. We first load the program:

% prism
:

?- prism(hmm).

compiled in 4 milliseconds
loading::hmm.psm.out

yes

Then we run the batch predicate to generate 100 samples and to learn the parameters from them:

?- hmm_learn(100).

#goals: 0.........(93)
Exporting switch information to the EM routine ...
#em-iters: 0......(63) (Converged: -683.493898022)
Statistics on learning:

Graph size: 5520
Number of switches: 5
Number of switch instances: 10
Number of iterations: 63
Final log likelihood: -683.493898022
Total learning time: 0.020 seconds
Explanation search time: 0.008 seconds
Total table space used: 728832 bytes

Type show_sw or show_sw_b to show the probability distributions.

We can confirm the learned parameters by the built-in show_sw/0 (§4.1.8):2

% prism
:
?- prism(hmm).

Then, for example, we may run the following to sample a goal with a string X and get the explanations for it:

?- sample(hmm(X)),probf(hmm(X)).

It should be noted that sample/1 and probf/1 simulate sampling execution and explanation search, respectively. Also one may notice
that, since we have no specific parameter settings for switches here, the sampling is made under the (default) uniform parameters.

2 At least there are many local maxima for ML estimation, so it is not guaranteed that we can recover the parameters that have been set by
set_params/0.
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?- show_sw.

Switch init: unfixed_p: s0 (p: 0.722841424) s1 (p: 0.277158576)
Switch out(s0): unfixed_p: a (p: 0.623359863) b (p: 0.376640137)
Switch out(s1): unfixed_p: a (p: 0.497027993) b (p: 0.502972007)
Switch tr(s0): unfixed_p: s0 (p: 0.554684130) s1 (p: 0.445315870)
Switch tr(s1): unfixed_p: s0 (p: 0.550030827) s1 (p: 0.449969173)

10.1.3 Other probabilistic inferences
Here we can make some probabilistic inferences based on the parameters estimated as above. To compute the most
probable explanation (the Viterbi explanation) and its probability (the Viterbi probability) for a given observation,
we can use the built-in viterbif/1 (§4.5).

?- viterbif(hmm([a,a,a,a,a,b,b,b,b,b])).

hmm([a,a,a,a,a,b,b,b,b,b])
<= hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]) & msw(init,s0)

hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b])
<= hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(2,10,s0,[a,a,a,a,b,b,b,b,b])
<= hmm(3,10,s0,[a,a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(3,10,s0,[a,a,a,b,b,b,b,b])
<= hmm(4,10,s0,[a,a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

hmm(4,10,s0,[a,a,b,b,b,b,b])
<= hmm(5,10,s0,[a,b,b,b,b,b]) & msw(out(s0),a) & msw(tr(s0),s0)

...omitted...

hmm(8,10,s1,[b,b,b])
<= hmm(9,10,s1,[b,b]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(9,10,s1,[b,b])
<= hmm(10,10,s1,[b]) & msw(out(s1),b) & msw(tr(s1),s1)

hmm(10,10,s1,[b])
<= hmm(11,10,s0,[]) & msw(out(s1),b) & msw(tr(s1),s0)

hmm(11,10,s0,[])

Viterbi_P = 0.000002081735251

On the other hand, to compute the hindsight probabilities (§4.6) of subgoals for a goal hmm([a,
a,a,a,a,b,b,b,b,b]), we may run:

?- hindsight(hmm([a,a,a,a,a,b,b,b,b,b])).

hindsight probabilities:
hmm(1,10,s0,[a,a,a,a,a,b,b,b,b,b]): 0.000710038386251
hmm(1,10,s1,[a,a,a,a,a,b,b,b,b,b]): 0.000216848626541
hmm(2,10,s0,[a,a,a,a,b,b,b,b,b]): 0.000564388970965
hmm(2,10,s1,[a,a,a,a,b,b,b,b,b]): 0.000362498041827
hmm(3,10,s0,[a,a,a,b,b,b,b,b]): 0.000563735498733
hmm(3,10,s1,[a,a,a,b,b,b,b,b]): 0.000363151514060

...omitted...

hmm(8,10,s0,[b,b,b]): 0.000444735040586
hmm(8,10,s1,[b,b,b]): 0.000482151972207
hmm(9,10,s0,[b,b]): 0.000444736503096
hmm(9,10,s1,[b,b]): 0.000482150509696
hmm(10,10,s0,[b]): 0.000445050456081
hmm(10,10,s1,[b]): 0.000481836556711
hmm(11,10,s0,[]): 0.000511887384988
hmm(11,10,s1,[]): 0.000414999627805

According to the purpose, the queries above can be included into the batch predicate in the utility part.
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10.1.4 Execution flags and MAP estimation
By specifying the execution flags (§4.13), we can add some variations to learning or the other probabilistic infer-
ences. For example, we may conduct an MAP estimation with the pseudo count being 0.5, and try 10 runs of the
EM algorithm. To do this, we first set the flags for multiple run of the EM algorithm as follows:

?- set_prism_flag(restart,10).

Next we set all pseudo counts to 0.5:

?- set_sw_all_d(_,0.5).

Now the batch predicate and the routines for later probabilistic inferences can be run in the same way as above:

?- hmm_learn(100).

#goals: 0.........(98)
Exporting switch information to the EM routine ...
[0] #em-iters: 0.........100.(115) (Converged: -692.022272523)
[1] #em-iters: 0.........100.(115) (Converged: -692.022846163)
[2] #em-iters: 0.........100..(130) (Converged: -692.028058623)
[3] #em-iters: 0.........100.........200...(240) (Converged: -692.0
24704657)
[4] #em-iters: 0.......(79) (Converged: -692.022673972)
[5] #em-iters: 0......(62) (Converged: -692.024814351)
[6] #em-iters: 0.........100.........(192) (Converged: -692.0231354
79)
[7] #em-iters: 0.........100.(111) (Converged: -692.020478776)
[8] #em-iters: 0.........100.........200..(228) (Converged: -692.03
1937456)
[9] #em-iters: 0(2) (Converged: -692.010584638)
Statistics on learning:

Graph size: 5840
Number of switches: 5
Number of switch instances: 10
Number of iterations: 2
Final log of a posteriori prob: -692.010584638
Total learning time: 0.148 seconds
Explanation search time: 0.008 seconds
Total table space used: 770832 bytes

Type show_sw or show_sw_b to show the probability distributions.

If we always use the above flag values, it should be useful to include the following queries into the utility part:

:- set_prism_flag(restart,10).
:- set_prism_flag(default_sw_d,0.5).

By the latter query we can give the default pseudo counts as 0.5, instead of setting the pseudo counts manually
using set_sw_all_d/2.

10.1.5 Batch execution
Furthermore, let us conduct a batch execution of learning at the shell (or command prompt) level. As a preparation,
we define a clause with prism_main/1 (see §3.7) as follows:

prism_main([Arg]):-
parse_atom(Arg,N),
hmm_learn(N).

With this definition, the system receives one argument Arg from the shell an atomic symbol (for example, ’100’)
and then converts such a symbol to the data N which can be numerically handled (i.e. as an integer), and finally
the batch predicate used above is invoked with the argument N. So if we run the command upprism at the shell
prompt with specifying the filename of the program and the argument to be passed to prism_main/1 above:

% upprism hmm 50
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then a learning with 50 samples will be conducted:

% upprism hmm 50
:

#goals: 0....(49)
Exporting switch information to the EM routine ...
[0] #em-iters: 0.........100......(163) (Converged: -347.326727176)
[1] #em-iters: 0.........100.....(151) (Converged: -347.326798056)
[2] #em-iters: 0.........100.........200........(289) (Converged: -347
.330719096)
[3] #em-iters: 0.........100.........(194) (Converged: -347.326873331)
[4] #em-iters: 0.........100.........200.........(293) (Converged: -34
7.330935748)
[5] #em-iters: 0.........100.........200........(287) (Converged: -347
.330848992)
[6] #em-iters: 0.........100........(185) (Converged: -347.327995530)
[7] #em-iters: 0.........100.......(180) (Converged: -347.327563031)
[8] #em-iters: 0.........100........(189) (Converged: -347.327339025)
[9] #em-iters: 0.........100......(163) (Converged: -347.327150784)
Statistics on learning:

Graph size: 3400
Number of switches: 5
Number of switch instances: 10
Number of iterations: 163
Final log of a posteriori prob: -347.326727176
Total learning time: 0.124 seconds
Explanation search time: 0.004 seconds
Total table space used: 447392 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
%

It is worth noting that the control is returned back to the shell after the execution, so we can make more flexible
experiments by combining this batch execution with the other facilities in a shell script.

10.2 Probabilistic context-free grammars
Probabilistic context-free grammars (PCFGs) are another well-known model class that can handle sequences of
symbols. A PCFG is a context-free grammar whose production rules are annotated probabilities. Starting from the
start symbol and applying production rules one by one, with a probability annotated to the rule, we can generate a
sequence of terminal symbols (i.e. a sentence). Figure 10.1 shows an example of a PCFG introduced in [5], where
‘s’ is the start symbol.

Now let us write a PRISM program that represents the PCFG in Figure 10.1. We first show the declarations:

values(s,[[np,vp],[vp]]).
values(np,[[noun],[noun,pp],[noun,np]]).
values(vp,[[verb],[verb,np],[verb,pp],[verb,np,pp]]).
values(pp,[[prep,np]]).
values(verb,[[swat],[flies],[like]]).
values(noun,[[swat],[flies],[ants]]).
values(prep,[[like]]).

:- p_not_table proj/2.

It is seen from the values declarations that we use random switches whose instances take the form msw(A,
[B1,B2,...,Bn]), which represents a probabilistic event “a production rule A → B1B2 · · · Bn is chosen.”
Then, the parameter of a switch instance msw(A,[B1,B2,...,Bn]) corresponds to the rule probability of
A → B1B2 · · · Bn. In this example, we will not table the probabilistic predicates proj/2 (this is just for making
the inference results simple and readable; see §2.6.3). We may write the modeling part as follows:

pcfg(L):- pcfg(s,L-[]).

104



s → np vp (0.8) pp → prep np (1.0)
s → vp (0.2)

np → noun (0.4) verb → swat (0.2)
np → noun pp (0.4) verb → flies (0.4)
np → noun np (0.2) verb → like (0.4)
vp → verb (0.3) noun → swat (0.05)
vp → verb np (0.3) noun → flies (0.45)
vp → verb pp (0.2) noun → ants (0.5)
vp → verb np pp (0.2) prep → like (1.0)

Figure 10.1: Example of a probabilistic context-free grammar from [5].

pcfg(LHS,L0-L1):-
( nonterminal(LHS) -> msw(LHS,RHS),proj(RHS,L0-L1)
; L0 = [LHS|L1]
).

proj([],L-L).
proj([X|Xs],L0-L1):-

pcfg(X,L0-L2),proj(Xs,L2-L1).

nonterminal(s).
nonterminal(np).
nonterminal(vp).
nonterminal(pp).
nonterminal(verb).
nonterminal(noun).
nonterminal(prep).

In this program, we observe pcfg(Words), where Words is a sentence to be generated. pcfg/1-2 and proj/2
are generic in the sense that these predicates can be applied to any underlying context-free grammar which does
not include ε-rules.3 Also, as is usually done for definite clause grammars, we use difference lists to represent the
substrings. The if-then statement nonterminal(LHS) -> ... in the body of pcfg/2 is used to check if
LHS is a non-terminal symbol. Lastly, in the utility part, we assign the rule probabilities by using query statements:

:- set_sw(s,[0.8,0.2]).
:- set_sw(np,[0.4,0.4,0.2]).
:- set_sw(vp,[0.3,0.3,0.2,0.2]).
:- set_sw(pp,[1.0]).
:- set_sw(verb,[0.2,0.4,0.4]).
:- set_sw(noun,[0.05,0.45,0.5]).
:- set_sw(prep,[1.0]).

Let us run the program. First, we compute the generative probability of a sentence “swat flies like ants.”
prob/1 can be utilized for this purpose:

?- prob(pcfg([swat,flies,like,ants])).

Probability of pcfg([swat,flies,like,ants]) is: 0.001010560000000

We can also get the most probable parse tree for “swat flies like ants.” This is nothing but probabilistic parsing
using a PCFG model. From the result of viterbit/1 shown below, it is found that the most probable parse tree
is [[swatverb[fliesnoun[likeprep [antsnoun]np]pp]np]vp]s, and its generative probability is 0.000432.

?- viterbit(pcfg([swat,flies,like,ants]))

pcfg([swat,flies,like,ants])
| pcfg(s,[swat,flies,like,ants]-[])
| | pcfg(vp,[swat,flies,like,ants]-[])
| | | pcfg(verb,[swat,flies,like,ants]-[flies,like,ants])

3 We also assume that the underlying grammar does not produce a unit chain A
∗⇒ A.

105



| | | | pcfg(swat,[swat,flies,like,ants]-[flies,like,ants])
| | | | msw(verb,[swat])
| | | pcfg(np,[flies,like,ants]-[])
| | | | pcfg(noun,[flies,like,ants]-[like,ants])
| | | | | pcfg(flies,[flies,like,ants]-[like,ants])
| | | | | msw(noun,[flies])
| | | | pcfg(pp,[like,ants]-[])
| | | | | pcfg(prep,[like,ants]-[ants])
| | | | | | pcfg(like,[like,ants]-[ants])
| | | | | | msw(prep,[like])
| | | | | pcfg(np,[ants]-[])
| | | | | | pcfg(noun,[ants]-[])
| | | | | | | pcfg(ants,[ants]-[])
| | | | | | | msw(noun,[ants])
| | | | | | msw(np,[noun])
| | | | | msw(pp,[prep,np])
| | | | msw(np,[noun,pp])
| | | msw(vp,[verb,np])
| | msw(s,[vp])

Viterbi_P = 0.000432000000000

Furthermore, using n_viterbit/2, we can get the three most probable parse trees for “swat flies like ants” as
follows:

?- n_viterbit(3,pcfg([swat,flies,like,ants])).

10.3 Discrete Bayesian networks

10.3.1 Representing Bayesian networks
Bayesian networks have become a popular representation for encoding and reasoning about uncertainty in various
applications. A Bayesian network is a directed acyclic graph whose nodes are considered as random variables
and whose directed edges indicate conditional dependencies/independencies among such variables. Conditional
probability tables (CPTs) in a Bayesian network can be represented by switches with complex names in PRISM.
To be more specific, let B and C be two random variables, and assume B (resp. C) has the k (resp. n) possible
values. Then a conditional distribution P(B|C) can be represented by n switches: msw(b(ci),·) (i = 1, . . . , n),
each of which has k outcomes: vi, j ( j = 1, . . . , k).4 Then it is easily seen that each switch parameter corresponds
to one entry of the CPT.

For illustration, let us consider an example from [41], shown in Figure 10.2. In this network, we assume that
all random variables take on yes or no (i.e. they are binary), and also assume that only two nodes, Smoke and
Report, are observable. This Bayesian network defines a joint distribution:

P(Fire, Tampering, Smoke,Alarm,Leaving,Report).

From the conditional independencies indicated by the graph structure, this joint distribution is reduced to a com-
putationally feasible form:

P(Fire,Tampering, Smoke,Alarm,Leaving,Report)
= P(Fire)P(Tampering)P(Smoke | Fire) ·

P(Alarm | Fire,Tampering)P(Leaving | Alarm)P(Report | Leaving). (10.1)

The factored probabilities in the RHS will be stored in CPTs, where P(Fire) and P(Tampering) are seen as condi-
tional probabilities with an empty condition. On the other hand, the observable distribution on Smoke and Report
is computed by marginalizing the joint distribution:

P(Smoke,Report)

=
∑

Fire, Tampering, Alarm, Leaving

P(Fire,Tampering, Smoke,Alarm, Leaving,Report). (10.2)

4 In other words, we have (n × k) switch instances: msw(b(ci),vi, j) (i = 1, . . . , n and j = 1, . . . , k).
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Figure 10.2: Example of a discrete Bayesian network.

It is easy to notice that the marginalization above takes an exponential time with respect to the number of variable
to marginalize. In the literature of research on Bayesian networks, efficient algorithms are known to compute such
marginalization, but in this section, we concentrate on how we represent Bayesian networks in PRISM. Indeed, for
a certain class called singly-connected Bayesian networks, it is shown in [52] that we can write a PRISM program
that can simulate the Pearl’s propagation algorithm.

Now we start to describe the Bayesian network in Figure 10.2. Also for this case, a generative way of thinking
should be useful in writing the modeling part. For example, we first get the value of Fire by flipping a coin (i.e.
sampling) according to P(Fire). We then proceed to flip a coin for Smoke according to P(Smoke | Fire), and so on.
Here we represent such a coin flipping by msw(I,V), and define the joint distribution (Eq. 10.1) with a predicate
world/6:

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi),
msw(ta,Ta),
msw(sm(Fi),Sm),
msw(al(Fi,Ta),Al),
msw(le(Al),Le),
msw(re(Le),Re).

This clause indicates that we flip the coins in the order of Fire, Tampering, Smoke, Alarm, Leaving and Report. As
is declared later, the switches above are assumed here to output yes or no. The switch named fi corresponds to
the coin flipping for Fire, and switch sm(Fi) corresponds to the coin flipping for Smoke, given the value of Fire as
Fi. Recall here that each parameter of these switches corresponds to one entry of the CPTs in the target Bayesian
network. For instance, the parameter θsm(yes),no, the probability of a switch instance msw(sm(yes),no)
being true, corresponds to the conditional probability P(Smoke = no | Fire = yes).

The observable distribution is defined by world/2:

world(Sm,Re) :- world(_,_,_,Sm,_,Re).

The probability of world(yes,no) corresponds to P(Smoke = yes,Report = no). We can find that, for
world(yes,no), all instantiations of the body are probabilistically exclusive to each other, so we can com-
pute the probability of world(yes,no) by summing up the probabilities of these instantiations. This fact
corresponds to Eq. 10.2, so we can say the program precisely express what we would like to model. The model
part of our Bayesian network program consists of the two clauses above.

We add a multi-valued switch declaration which specifies all switches have outcomes yes and no as follows:

values(_,[yes,no]).

Now let us make a similar experiment to one with the HMM program (§10.1). Namely, we first generate goals
by sampling as training data under some predefined parameters, and then learn the parameters from such training
data. The difference is that we attempt to fix (or preserve) one parameter in learning. Such a parameter can be
considered as a constant parameter in the model. The utility part may contain the following batch predicate for the
experiment:

alarm_learn(N) :-
unfix_sw(_), % Make all parameters changeable
set_params, % Set parameters as you specified
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get_samples(N,world(_,_),Gs), % Get N samples
fix_sw(fi), % Preserve the parameter values
learn(Gs). % for {msw(fi,yes), msw(fi,no)}

The experimental steps are written as comments. In this predicate, set_params/0 (which specifies the param-
eters of all switches; §4.1.6), get_samples/3 (which generate training data; §4.2), and learn/1 (§4.7.5)
are used similarly to those in the batch routine for the experiments with HMMs (§10.1). set_params/0 is a
user-defined predicate:

set_params :-
set_sw(fi,[0.1,0.9]),
set_sw(ta,[0.15,0.85]),
set_sw(sm(yes),[0.95,0.05]),
set_sw(sm(no),[0.05,0.95]),
set_sw(al(yes,yes),[0.50,0.50]),
set_sw(al(yes,no),[0.90,0.10]),
set_sw(al(no,yes),[0.85,0.15]),
set_sw(al(no,no),[0.05,0.95]),
set_sw(le(yes),[0.88,0.12]),
set_sw(le(no),[0.01,0.99]),
set_sw(re(yes),[0.75,0.25]),
set_sw(re(no),[0.10,0.90]).

As described above, the additional functionality is that we do not learn (i.e. fix or preserve) the parameters for
switch fi. This is done by using the built-ins unfix_sw/1 and fix_sw/1 (§4.1.7).

Now our PRISM program has been completed, and we are ready to run the program. Let us assume that the
program is contained in the file ‘alarm.psm’, then load the program by the command prism(alarm):

?- prism(alarm).

We conduct learning with 500 samples by alarm_learn/1 which is previously defined:

?- alarm_learn(500).

#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -464.034430688)
Statistics on learning:

Graph size: 448
Number of switches: 12
Number of switch instances: 24
Number of iterations: 2
Final log likelihood: -464.034430688
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 47008 bytes

Type show_sw or show_sw_b to show the probability distributions.

We can confirm the learned parameters as follows:

?- show_sw.

Switch fi: fixed_p: yes (p: 0.100000000) no (p: 0.900000000)
Switch ta: unfixed_p: yes (p: 0.682231979) no (p: 0.317768021)
Switch le(no): unfixed_p: yes (p: 0.419688112) no (p: 0.580311888)
Switch le(yes): unfixed_p: yes (p: 0.476437741) no (p: 0.523562259)
Switch re(no): unfixed_p: yes (p: 0.283975504) no (p: 0.716024496)
Switch re(yes): unfixed_p: yes (p: 0.167325271) no (p: 0.832674729)
Switch sm(no): unfixed_p: yes (p: 0.130802678) no (p: 0.869197322)
Switch sm(yes): unfixed_p: yes (p: 0.122775877) no (p: 0.877224123)
Switch al(no,no): unfixed_p: yes (p: 0.480950708) no (p: 0.519049292)
Switch al(no,yes): unfixed_p: yes (p: 0.451939009) no (p: 0.548060991)
Switch al(yes,no): unfixed_p: yes (p: 0.472514062) no (p: 0.527485938)
Switch al(yes,yes): unfixed_p: yes (p: 0.380557386) no (p: 0.619442614)

It is also possible to get the frequencies of the sampled goals:
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?- show_goals.

Goal world(yes,yes) (count=34, freq=6.800%)
Goal world(no,no) (count=353, freq=70.600%)
Goal world(yes,no) (count=31, freq=6.200%)
Goal world(no,yes) (count=82, freq=16.400%)
Total_count=500

10.3.2 Computing conditional probabilities
Furthermore, for the Bayesian network program described in this section, conditional probabilities can be com-
puted as conditional hindsight probabilities (§4.6). Let us recall that a conditional hindsight probability is denoted
as Pθ(G′|G) = Pθ(G′)/Pθ(G), where G is a given top goal and G′ is one of its subgoals. For instance, let us
consider to compute the conditional probability P(Alarm | Smoke = yes,Report = no) by using conditional
hindsight probabilities. Since the target conditional probability P(Alarm = x | Smoke = yes,Report = no)
can be computed as P(Alarm = x, Smoke = yes,Report = no)/P(Smoke = yes,Report = no), if we let G =
world(_,_,_,yes,_,no) and G′ = world(_,_,x,yes,_,no), it can be seen that Pθ(G′|G) is equal to
the target conditional probability. To get the conditional distribution on Alarm, we run chindsight_agg/2
with specifying the third argument in world/6 (which corresponds to Alarm) as a query argument:5

?- chindsight_agg(world(_,_,_,yes,_,no),world(_,_,query,yes,_,no)).
conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

Of course, from the definition of world/2, we can make the same computation with world/2:

?- chindsight_agg(world(yes,no),world(_,_,query,yes,_,no)).
conditional hindsight probabilities:

world(*,*,no,yes,*,no): 0.620773027495463
world(*,*,yes,yes,*,no): 0.379226972504537

As mentioned before, the definition of world/6 is computationally naive, so we need to write a different rep-
resentation of Bayesian networks which takes into account the computational effort for conditional hindsight
probabilities, as shown in the next section.

10.3.3 Bayesian networks in junction-tree form
For probabilistic inferences on Bayesian networks, especially, on multiply-connected Bayesian networks (BNs),
several sophisticated techniques have been proposed so far. As another example of a BN, let us consider a Bayesian
network called the Asia network [34], which is illustrated in Figure 10.3. This network can be said to be a multiply-
connected BN since there are two paths from S to D: S → L → TL → D and S → B → D. One of the most
popular inference methods for such multiply-connected BNs is the junction-tree algorithm. In the junction-tree
algorithm, we first convert the original network to an undirected tree-structured network called a junction tree,
whose node corresponds to a set consisting of one or more original nodes. Figure 10.4 depicts a junction tree for
the Asia network. For example, α2 in Figure 10.4 corresponds to a set {S , L, B} of the original nodes in Figure 10.3.

We can write a ‘naive’ version of the PRISM program that represents the Asia network as did in the previous
section. Also in this program, all switches are supposed to be binary, i.e. they take values ‘t’ (true) and ‘f’ (false).
incl_or/3 represents the inclusive OR. We set the parameters given in [34] by set_params/0.

values(bn(_,_),[t,f]).

world(A,S,X,D):- world(A,_,S,_,_,X,_,D).

world(A,T,S,L,TL,X,B,D) :-
msw(bn(a,[]),A),msw(bn(t,[A]),T),
msw(bn(s,[]),S),msw(bn(l,[S]),L),
incl_or(T,L,TL),
msw(bn(x,[TL]),X),msw(bn(b,[S]),B),
msw(bn(d,[TL,B]),D).

5 In this computation, it is assumed that the parameters are set by set_params/0 in advance.
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Figure 10.3: Example of a multiply-connected Bayesian network (known as the Asia network).
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Figure 10.4: Junction tree for the Asia network.

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

:- set_params.

set_params:-
set_sw(bn(a,[]),[0.01,0.99]),
set_sw(bn(t,[t]),[0.05,0.95]),
set_sw(bn(t,[f]),[0.01,0.99]),
set_sw(bn(s,[]),[0.5,0.5]),
set_sw(bn(l,[t]),[0.1,0.9]),
set_sw(bn(l,[f]),[0.01,0.99]),
set_sw(bn(x,[t]),[0.98,0.02]),
set_sw(bn(x,[f]),[0.05,0.95]),
set_sw(bn(b,[t]),[0.60,0.40]),
set_sw(bn(b,[f]),[0.30,0.70]),
set_sw(bn(d,[t,t]),[0.90,0.10]),
set_sw(bn(d,[t,f]),[0.70,0.30]),
set_sw(bn(d,[f,t]),[0.80,0.20]),
set_sw(bn(d,[f,f]),[0.10,0.90]).

After loading the program, for example, we can compute the conditional distribution P(T = true | A = false,D =
true) = 0.018 and P(T = false | A = false,D = true) = 0.982 as follows:

?- chindsight_agg(world(f,_,_,t),world(_,query,_,_,_,_,_,_)).
conditional hindsight probabilities:

world(*,f,*,*,*,*,*,*): 0.981873562361255
world(*,t,*,*,*,*,*,*): 0.018126437638745
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Surely this program returns the consistent results, but is not so efficient. On the other hand, let us see another
PRISM program that represents a junction tree and is expected to run faster than the naive version. For the readers
who are interested in the formal discussion on such PRISM programs in junction-tree form, please consult [48, 55].
For instance, the following is a junction-tree version of the PRISM program for the Asia network:

values(bn(_,_),[t,f]).

world(E):- msg_1_0(E-[]).

msg_1_0(E0-E1) :- node_1(L,TL,B,E0-E1).
msg_2_1(L,B,E0-E1) :- node_2(S,L,B,E0-E1).
msg_3_1(L,TL,E0-E1) :- node_3(T,L,TL,E0-E1).
msg_4_3(T,E0-E1) :- node_4(A,T,E0-E1).
msg_5_1(TL,B,E0-E1) :- node_5(TL,B,D,E0-E1).
msg_6_5(TL,E0-E1) :- node_6(TL,X,E0-E1).

node_1(L,TL,B,E0-E1) :-
msg_2_1(L,B,E0-E2),msg_3_1(L,TL,E2-E3),msg_5_1(TL,B,E3-E1).

node_2(S,L,B,E0-E1) :-
cpt(s,[],S,E0-E2),cpt(l,[S],L,E2-E3),cpt(b,[S],B,E3-E1).

node_3(T,L,TL,E0-E1) :- incl_or(L,T,TL),msg_4_3(T,E0-E1).
node_4(A,T,E0-E1) :- cpt(a,[],A,E0-E2),cpt(t,[A],T,E2-E1).
node_5(TL,B,D,E0-E1) :- cpt(d,[TL,B],D,E0-E2),msg_6_5(TL,E2-E1).
node_6(TL,X,E0-E1) :- cpt(x,[TL],X,E0-E1).

cpt(X,Par,V,E0-E1):- ( E0=[(X,V)|E1] -> true ; E0=E1 ),msw(bn(X,Par),V).

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

In this program, we consider that α1 in Figure 10.4 is the root node of the junction tree. The predicate whose
name is msg_i_ j corresponds to the edge between nodes i and j in the junction tree. We also define a predicate
named node_i for each node i in the junction tree. One may find that the evidences will be kept as difference lists
in the last arguments of the msg_i_ j and the node_i predicates. We can input evidences through the argument
of world/1, but for simplicity, the evidences are assumed here to be given in the same order as that of the
appearances of msw/2 in the top-down execution of world/1. cpt/4 is a wrapper predicate that can handle
evidences. We omit here set_params/0 which is also included in the naive version.

Using this program, let us compute the conditional distribution P(T | A = false,D = true). To realize this, We
attempt to compute the hindsight probabilities for the predicate node_4/3 since α4 includes the original node
(i.e. the random variable) T , as shown in Figure 10.4.

?- chindsight_agg(world([(a,f),(d,t)]),node_4(_,query,_)).
conditional hindsight probabilities:

node_4(*,f,*): 0.981873562361255
node_4(*,t,*): 0.018126437638745

It is proved in [48] that this hindsight computation is equivalent to the belief propagation procedure in a junction
tree.

Instead of using difference lists, we can take evidences into account by adding them into the Prolog database
before making probabilistic inferences. That is, we may write:

world(Es):- assert_evid(Es),msg_1_0.

msg_1_0 :- node_1(_L,_TL,_B).
msg_2_1(L,B) :- node_2(_S,L,B).
msg_3_1(L,TL):- node_3(_T,L,TL).
msg_4_3(T) :- node_4(_A,T).
msg_5_1(TL,B):- node_5(TL,B,_D).
msg_6_5(TL) :- node_6(TL,_X).

node_1(L,TL,B):- msg_2_1(L,B),msg_3_1(L,TL),msg_5_1(TL,B).
node_2(S,L,B) :- cpt(s,[],S),cpt(l,[S],L),cpt(b,[S],B).
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Table 10.1: CPT for Alarm constructed by the noisy-OR rule
Fire Tampering P(alarm) P(¬alarm)
true true 0.94 = 1 − 0.3 × 0.2 0.06 = 0.3 × 0.2
true false 0.7 = 1 − 0.3 0.3
false true 0.8 = 1 − 0.2 0.2
false false 0 1

node_3(T,L,TL):- incl_or(L,T,TL),msg_4_3(T).
node_4(A,T) :- cpt(a,[],A),cpt(t,[A],T).
node_5(TL,B,D):- cpt(d,[TL,B],D),msg_6_5(TL).
node_6(TL,X) :- cpt(x,[TL],X).

cpt(X,Par,V):- ( evid(X,V) -> true ; true ),msw(bn(X,Par),V).

incl_or(t,t,t).
incl_or(t,f,t).
incl_or(f,t,t).
incl_or(f,f,f).

assert_evid(Es):- retractall(evid(_,_)),assert_evid0(Es).
assert_evid0([]).
assert_evid0([(X,V)|Es]):- assert(evid(X,V)),!,assert_evid0(Es).

It is obvious that this program is simpler and more flexible than the one with difference lists. On the other hand,
we should note that the program’s declarative semantics has been lost, and that in learning, the subgoals are
inappropriately shared among the observed goals, each of which is associated with a different set of evidences.6

It is possible to implement a translator (including a junction-tree constructor) from a network specification
in some standard format (e.g. XMLBIF) to a PRISM program of the corresponding junction tree. Since version
1.12.1, a Java implementation of such a translator, named BN2Prism, is included under the exs/jtree di-
rectory in the released package. BN2Prism uses a tree-decomposition technique described in [29] to generate
a PRISM program in junction-tree form7 and such a decomposition technique can be a bridge from PRISM to
probabilistic-logical modeling/inference systems based on Bayesian networks.

10.3.4 Using noisy OR
In modeling with Bayesian networks, we sometimes use combination rules to make the CPTs simpler, and noisy
OR is one of the most well-known combination rules [44]. To be specific, let us consider the alarm network
(Figure 10.2) again, and suppose that the Alarm node in the alarm network has a CPT defined with the noisy-OR
rule. Also we suppose that the individual inhibition probabilities are given as follows:8

P(¬alarm | fire,¬tampering) = 0.3
P(¬alarm | ¬fire, tam − paring) = 0.2.

Then we have a CPT for Alarm shown in Table 10.1. To write the alarm network program that deals with the noisy-
OR rules, we modify the definitions of world/6 and introduce the predicates named cpt_x for each variable
named x. Then world/6 calls such cpt_x predicates instead of directly calling random switches. The modeling
part of the resulting program is as follows:

world(Fi,Ta,Al,Sm,Le,Re) :-
cpt_fi(Fi),
cpt_ta(Ta),
cpt_sm(Fi,Sm),
cpt_al(Fi,Ta,Al),

6 This optimization is called inter-goal sharing, and unconditionally enabled in the current programming system. An ad-hoc workaround is
to introduce an ID for each set of evidences and keep the ID through the arguments (e.g. we define world(ID,E), msg_2_1(ID,L,B),
and so on).

7 To be exact, a PRISM program generated by BN2Prism has a graph structure called a bucket tree. For details, please see the docu-
ments under the exs/jtree/bn2prism/doc directory. The bucket-tree elimination algorithm is a message-passing algorithm on a bucket
tree [29].

8 We denote the propositions Alarm = true, Alarm = false, Fire = true, and so on by alarm, ¬alarm, fire, and so on, respectively.
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cpt_le(Al,Le),
cpt_re(Le,Re).

cpt_fi(Fi):- msw(fi,Fi).
cpt_ta(Ta):- msw(ta,Ta).
cpt_sm(Fi,Sm):- msw(sm(Fi),Sm).
cpt_al(Fi,Ta,Al):-

( Fi = yes, Ta = yes ->
msw(cause_al_fi,N_Al_Fi),
msw(cause_al_ta,N_Al_Ta),
( N_Al_Fi = no, N_Al_Ta = no -> Al = no
; Al = yes
)

; Fi = yes, Ta = no -> msw(cause_al_fi,Al)
; Fi = no, Ta = yes -> msw(cause_al_ta,Al)
; Fi = no, Ta = no -> Al = no
).

cpt_le(Al,Le):- msw(le(Al),Le).
cpt_re(Le,Re):- msw(re(Le),Re).

It can be seen that cpt_al/3 is an implementation of the noisy-OR rule. The key step is to consider the gen-
eration process underlying the noisy-OR rule. For example, when Fire = true and Tampering = true, we make
choices twice by random switches named cause_al_fi and cause_al_ta according to the corresponding
inhibition probabilities. Then, if one of these choices returns yes, we consider that Alarm becomes true.

Let us further write a more generic version. We first write the network-specific part of the model by modifying
the definition of world/6 and by adding noisy_or/3 for the specifications of noisy-OR nodes:

world(Sm,Re):- world(_,_,_,Sm,_,Re).

world(Fi,Ta,Al,Sm,Le,Re) :-
cpt(fi,[],Fi),
cpt(ta,[],Ta),
cpt(sm,[Fi],Sm),
cpt(al,[Fi,Ta],Al),
cpt(le,[Al],Le),
cpt(re,[Le],Re).

noisy_or(al,[fi,ta],[[0.7,0.3],[0.8,0.2]]).

In the above, cpt/3 in the clause body of world/6 is an abstract (or a wrapper) predicate that can deal with the
noisy-OR rule, and its definition is included in the network-independent part of the model:

:- p_not_table choose_noisy_or/4, choose_noisy_or/6.

cpt(X,PaVs,V):-
( noisy_or(X,Pa,_) -> choose_noisy_or(X,Pa,PaVs,V)
; msw(bn(X,PaVs),V)
).

choose_noisy_or(X,Pa,PaVs,V):- choose_noisy_or(X,Pa,PaVs,no,no,V).

choose_noisy_or(_,[],[],yes,V,V).
choose_noisy_or(_,[],[],no,_,no).
choose_noisy_or(X,[Y|Pa],[PaV|PaVs],PaHasYes0,ValHasYes0,V):-

( PaV=yes ->
msw(cause(X,Y),V0),
PaHasYes=yes,
( ValHasYes0=no, V0=no -> ValHasYes=no
; ValHasYes=yes
)

; PaHasYes=PaHasYes0,
ValHasYes=ValHasYes0

),
choose_noisy_or(X,Pa,PaVs,PaHasYes,ValHasYes,V).
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choose_noisy_or/4 is a generalization of cpt_al/3 described above. Some might feel this network-
independent part procedural, but conversely we can say that this exhibits the flexibility of the PRISM (and un-
derlying Prolog) language. It is also possible to put the definition of choose_noisy_or/4 into a separate
library file loaded by the inclusion declaration (§2.6.4), and then the network-specific part (namely, the definitions
of world/2, world/6 and noisy_or/3) will be left more declarative. The PRISM language only provides
a simple built-in probabilistic predicate implementing random switches, but as long as we deal with generative
models, there seems to be ways to construct a more abstract formalism combining these random switches. The
p_not_table declarations are added for making the inference results simple and readable.

The utility part should be modified accordingly. First, we add a couple of batch routines for setting parameters:

set_params:-
set_sw(bn(fi,[]),[0.1,0.9]),
set_sw(bn(ta,[]),[0.15,0.85]),
set_sw(bn(sm,[yes]),[0.95,0.05]),
set_sw(bn(sm,[no]),[0.05,0.95]),
set_sw(bn(le,[yes]),[0.88,0.12]),
set_sw(bn(le,[no]),[0.01,0.99]),
set_sw(bn(re,[yes]),[0.75,0.25]),
set_sw(bn(re,[no]),[0.10,0.90]).

set_nor_params:-
( noisy_or(X,Pa,DistList),

set_nor_params(X,Pa,DistList),
fail

; true
).

set_nor_params(_,[],[]).
set_nor_params(X,[Y|Pa],[Dist|DistList]):-

set_sw(cause(X,Y),Dist),!,
set_nor_params(X,Pa,DistList).

:- set_params.
:- set_nor_params.

In the above, set_nor_params/0 sets the switch parameters according to the specifications of the noisy-OR
nodes. To confirm whether the network-independent part of the model works well, let us introduce the following
routines:

print_dist_al:-
( member(Fi,[yes,no]),

member(Ta,[yes,no]),
member(Al,[yes,no]),
get_cpt_prob(al,[Fi,Ta],Al,P),
format("P(al=˜w | fi=˜w, ta=˜w):˜t˜6f˜n",[Al,Fi,Ta,P]),
fail

; true
).

print_expl_al:-
( member(Fi,[yes,no]),

member(Ta,[yes,no]),
member(Al,[yes,no]),
get_cpt_probf(al,[Fi,Ta],Al),
fail

; true
).

get_cpt_prob(X,PaVs,V,P):-
( prob(cpt(X,PaVs,V),P)
; P = 0.0
),!.

get_cpt_probf(X,PaVs,V):-
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( probf(cpt(X,PaVs,V))
; format("cpt(˜w,˜w,˜w): always false˜n",[X,PaVs,V])
),!.

print_dist_al/0 shows the distribution of the Alarm node for each instantiations of its parents by a failure-
driven loop, and print_expl_al/0 shows a logical expression of the probabilistic behavior of the Alarm node.
get_cpt_prob/4 and get_cpt_probf/3 are just introduced for dealing with the cases that prob/2 or
probf/1 fails. Finally, we can confirm that the generic version of the alarm network program with the noisy-OR
rule works correctly:

?- print_dist_al.

P(al=yes | fi=yes, ta=yes): 0.940000
P(al=no | fi=yes, ta=yes): 0.060000
P(al=yes | fi=yes, ta=no): 0.700000
P(al=no | fi=yes, ta=no): 0.300000
P(al=yes | fi=no, ta=yes): 0.800000
P(al=no | fi=no, ta=yes): 0.200000
P(al=yes | fi=no, ta=no): 0.000000
P(al=no | fi=no, ta=no): 1.000000

?- print_expl_al.

cpt(al,[yes,yes],yes)
<=> msw(cause(al,fi),yes) & msw(cause(al,ta),yes)

v msw(cause(al,fi),yes) & msw(cause(al,ta),no)
v msw(cause(al,fi),no) & msw(cause(al,ta),yes)

cpt(al,[yes,yes],no)
<=> msw(cause(al,fi),no) & msw(cause(al,ta),no)

cpt(al,[yes,no],yes)
<=> msw(cause(al,fi),yes)

cpt(al,[yes,no],no)
<=> msw(cause(al,fi),no)

cpt(al,[no,yes],yes)
<=> msw(cause(al,ta),yes)

cpt(al,[no,yes],no)
<=> msw(cause(al,ta),no)

cpt(al,[no,no],yes): always false
cpt(al,[no,no],no)

Here, one may think from the iff-formula for cpt(al,[yes,yes],yes) that the number of sub-explanations
for cpt(al,·,yes) can exponentially grows as the Alarm node has more parent nodes. This problem comes
from the modeling assumption (i.e. the exclusiveness condition) that the sub-explanations should be exclusive to
each other. On the other hand, if we could use inclusive OR, the iff-formula will be much simplified as follows:

cpt(al,[yes,yes],yes)⇔ msw(cause(al,fi),yes) ∨ msw(cause(al,ta),yes).
Recent works [16, 20, 21] introduce binary decision diagrams (BDDs) for probability inferences based on logical
expressions, where inclusive disjunctions are automatically converted into exclusive disjunctions in a compressed
form. The programming system should incorporate such mechanisms in future.

10.4 Statistical analysis
PRISM is a suitable tool for analyzing statistical data. In this section, we present three examples. In the first
example, we consider gene inheritance of human’s blood type again, and show a typical way to answer the question
of model selection. The second example attempts to find a probabilistic justification for a common practice seen
in tennis games: players serve second services more conservatively than first services. We write a program to
demonstrate that the percentage of points won would normally decline should a player serve second services as
hard as first ones. The third example attempts to obtain statistics that can be used to tune the unification procedure.

10.4.1 Another hypothesis on blood type inheritance
The ABO gene model on the inheritance of ABO blood type, described in §1.2, was introduced in early 20th
century [12]. Around that time, there was another hypothesis that we have two loci for ABO blood type with
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dominant alleles A/a and B/b. According to this hypothesis, genotypes aabb, A∗bb, aaB∗ and A∗B∗ correspond
to the blood types (phenotypes) O, A, B and AB, respectively, where ∗ stands for a “don’t care” symbol. In this
section, let us call this hypothesis the AaBb gene model. The following is a PRISM program for the AaBb gene
model:

%%%% Declarations:

:- set_prism_flag(data_source,file(’bloodtype.dat’)).

values(locus1,[’A’,a]).
values(locus2,[’B’,b]).

%%%% Modeling part:

bloodtype(P) :-
genotype(locus1,X1,Y1),
genotype(locus2,X2,Y2),
( X1=a, Y1=a, X2=b, Y2=b -> P=o
; ( X1=’A’ ; Y1=’A’ ), X2=b, Y2=b -> P=a
; X1=a, Y1=a, ( X2=’B’ ; Y2=’B’) -> P=b
; P=ab
).

genotype(L,X,Y) :- msw(L,X),msw(L,Y).

In this program, we use two random switches each of which represents a random pick-up of a gene in the corre-
sponding locus. The question here is which hypothesis from these two hypotheses on blood type inheritance (i.e.
the ABO gene model and the AaBb gene model) is more plausible. To answer this question, we consider to use a
Bayesian model score called BIC (Bayesian Information Criterion). One may notice that this is an example of a
model selection problem.

Suppose that bloodABO.psm and bloodAaBb.psm are the program files for the ABO gene model (given
in §1.2) and for the AaBb gene model (given just above), respectively. We also assume that a data file named
bloodtype.dat which contains 38 persons of blood type A, 22 persons of blood type B, 31 persons of blood
type O and 9 persons of blood type AB. The ratio of frequencies of blood types in this data is almost the same as
that in Japanese people. Lastly, for simplicity, we consider that both programs have the following flag specification:

:- set_prism_flag(data_source,file(’bloodtype.dat’)).

Under these settings, we first load bloodABO.psm, and then call a built-in for EM learning. Finally we can
get the BIC value as −132.667082:

?- prism(bloodABO).
:

?- learn.
#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iters: 0(5) (Converged: -128.061911600)
Statistics on learning:

Graph size: 27
Number of switches: 1
Number of switch instances: 3
Number of iterations: 5
Final log likelihood: -128.061911600
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 5888 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
Switch gene: unfixed_p: a (p: 0.272288804) b (p: 0.169511387) o (p: 0.55
8199809)
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:
?- learn_statistics(bic,BIC).
BIC = -132.667081786147037 ?

On the other hand, we repeat the same procedure for bloodAaBb.psm, and get the BIC value as −135.649847:

?- prism(bloodAaBb).
:

?- learn.
#goals: 0(4)
Exporting switch information to the EM routine ...
#em-iters: 0(5) (Converged: -131.044676485)
Statistics on learning:

Graph size: 48
Number of switches: 2
Number of switch instances: 4
Number of iterations: 5
Final log likelihood: -131.044676485
Total learning time: 0.004 seconds
Explanation search time: 0.000 seconds
Total table space used: 7808 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
Switch locus1: unfixed_p: A (p: 0.272006612) a (p: 0.727993388)
Switch locus2: unfixed_p: B (p: 0.169341684) b (p: 0.830658316)

:
?- learn_statistics(bic,BIC).
BIC = -135.649846671234258 ?

As a result, the ABO gene model has a larger BIC value, so we can conclude that the ABO gene model is more
plausible than the AaBb gene model according to the data in bloodtype.dat.

10.4.2 Why not serving second services as hard in tennis?
In tennis games, we observe a common practice, namely, players normally serve second services much more
conservatively than serving first services. Most people accept the practice without asking why. We write a program
to model the statistical relationship between serving and winning in tennis games and use real statistics of Andy
Roddick, one of top players, to answer the question.

In tennis, a player has at most two chances to serve in each point. If the first service is a fault, he has another
chance to serve. If both services are faults, he loses the point. The following program models this process.

values(serve(_),[in,out]). % switches serve(1) serve(2)
values(result(_),[win,loss]). % switches result(1) result(2)

play(Res):- % the predicate to be observed
msw(serve(1),S1),
( S1 == in -> msw(result(1),Res)
; msw(serve(2),S2),

( S2 == in -> msw(result(2),Res)
; Res = loss
)

).

We use two switches, serve(1) and serve(2), to represent the outcomes of services, and use another two
switches, result(1) and result(2), to represent the results: result(1) gives the result of the point when
the first service is legal and result(2) the result of the point when the second service is legal. The result is loss
if both services are faults.

The following sets the parameters of the switches based on Andy Roddick’s statistics: his serving percentages
are 61 and 95 at first and second services, respectively, and his percentages of points won at two services are 81
and 56, respectively.
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roddick:-
set_sw(serve(1),[0.61,0.39]),
set_sw(serve(2),[0.95,0.05]),
set_sw(result(1),[0.81,0.19]),
set_sw(result(2),[0.56,0.44]).

From the program and the switch parameters, we know Andy Roddick’s wining probability is 0.70158.

?- prob(play(win),Prob)
Prob = 0.70158

If Andy Roddick served second services like first services, the predicate play should be redefined as follows:

play(Res):-
msw(serve(1),S1),
( S1 == in -> msw(result(1),Res)
; msw(serve(1),S2),

( S2 == in -> msw(result(1),Res)
; Res = loss
)

).

His winning probability would decline to 0.686799. This explains why serious tennis players serve second services
much more conservatively than first services although the percentage of points won at first services is much higher
than that at second services.

10.4.3 Tuning the unification procedure
Given two terms, the unification procedure determines if they are unifiable, and if so finds a substitution for the
variables in the two terms to make them identical. A term is one of the following four types: variable, atomic, list,
and structure. The unification procedure behaves as follows:

unify(t1,t2) {
if (t1 is variable) bind t1 to t2;
else if (t1 is atomic) {

if (t2 is variable) bind t2 to t1;
else return t1==t2;

} else if (t1 is a list) {
if (t2 is variable) bind t2 to t1;
else if (t2 is a list)

return unify(car(t1),car(t2)) && unify(cdr(t1),cdr(t2));
else return false;

} else if (t1 is a structure) {
if (t2 is variable) bind t2 to t1;
else if (t2 is a structure) {

let t1 be f(a1,. . . ,an) and t2 be g(b1,. . . ,bm);
if (f != g || m != n) return false;
return unify(a1,b1) && . . . && unify(an,bn);

} else return false;
}

}

Since the order of tests affects the speed of the unification procedure, one question arises: how to tune the proce-
dure such that it performs fewest tests on a set of sample data.

The following shows a PRISM program written for this purpose:

values(s1,[var,atom,list,struct]).
values(s2(_),[var,atom,list,struct]). %switches: s2(var),s2(atom),...

:- set_prism_flag(data_source,file(’unification.dat’)).
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prob_unify(T1,T2,Res) :- % the predicate to be observed
get_type(T1,Type1),
msw(s1,Type1),
get_type(T2,Type2),
msw(s2(Type1),Type2),
unify(T1,T2,Res).

unify(T1,T2,Res) :- var(T1), !, T1 = T2, Res = true.
unify(T1,T2,Res) :- var(T2), !, T1 = T2, Res = true.
unify(T1,T2,Res) :- atomic(T1), !, (T1 == T2 -> Res = true ; Res = false).
unify([H1|T1],[H2|T2],Res) :- !,

prob_unify(H1,H2,Res1),
(Res1 = true -> prob_unify(T1,T2,Res) ; Res = false).

unify(T1,T2,Res) :-
functor(T1,F1,N1),
functor(T2,F2,N2),!,
( (F1 \= F2 ; N1 \= N2) -> Res = false
; unify(T1,T2,1,N1,Res)
).

unify(T1,T2,N0,N,Res) :- N0 > N, !, Res = true.
unify(T1,T2,N0,N,Res) :-

arg(N0,T1,A1),
arg(N0,T2,A2),
prob_unify(A1,A2,Res1),
N1 is N0+1,
( Res1 = true -> unify(T1,T2,N1,N,Res)
; Res = false
).

get_type(T,var) :- var(T),!.
get_type(T,atom) :- atomic(T),!.
get_type(T,list) :- nonvar(T), T = [_|_],!.
get_type(T,struct) :- nonvar(T), functor(T,F,N), N > 0.

In learning mode, this program basically counts the occurrences of each type encountered in execution. The switch
s1 gives the probability distribution of the types of the first argument, and for each type of the first argument T
the switch s2(T) gives the probability distribution of the second argument.

Let us suppose that we have the following observed data stored in ’unification.dat’:

prob_unify(f(A,B,1,C),f(0,0,0,1),false).
prob_unify(A,def,true).
prob_unify(g(A,B),g(A,fin),true).

Then, we can conduct learning and see the results of learning as follows:

?- learn.

#goals: 0(3)
Exporting switch information to the EM routine ...
#em-iters: 0(2) (Converged: -9.704060528)
Statistics on learning:

Graph size: 35
Number of switches: 4
Number of switch instances: 16
Number of iterations: 2
Final log likelihood: -9.704060528
Total learning time: 0.000 seconds
Explanation search time: 0.000 seconds
Total table space used: 12688 bytes

Type show_sw or show_sw_b to show the probability distributions.

yes
?- show_sw.
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Figure 10.5: Bayesian network representation of a naive Bayes model.

Switch s1: unfixed_p: var (p: 0.625000000) atom (p: 0.125000000) list
(p: 0.000000000) struct (p: 0.250000000)
Switch s2(atom): unfixed_p: var (p: 0.000000000) atom (p: 1.000000000)
list (p: 0.000000000) struct (p: 0.000000000)
Switch s2(struct): unfixed_p: var (p: 0.000000000) atom (p: 0.00000000
0) list (p: 0.000000000) struct (p: 1.000000000)
Switch s2(var): unfixed_p: var (p: 0.200000000) atom (p: 0.800000000)
list (p: 0.000000000) struct (p: 0.000000000)

From this result, we know how to order the tests of types so that the unification procedure performs the best on the
samples.

10.5 n-fold cross validation of a naive Bayes classifier
The main goal in version 1.12 was to add facilities for ease of programming, and under this goal, dozens of built-in
predicates for randomization, statistical operations and list processing were introduced to the programming system
(see §4.14, §4.15 and §4.16, respectively). To demonstrate the usefulness of these built-ins, in this section, we try
to write a compact evaluation routine of a naive Bayes classifier [38] based on n-fold cross validation.

A naive Bayes classifier is a probabilistic classifier based on a naive Bayes model, a special form of a Bayesian
network (see Figure 10.5). First, the attribute values ⟨a1, a2, . . . , am⟩ of an example are considered as a realization
of a random vector ⟨A1, A2, . . . , Am⟩, and also the class c to which the example belongs is a realization of a random
variable C. Then, in naive Bayes models, the joint probability distribution is simplified under the conditional
independence among attributes:

P(c, a1, a2, . . . , am) = P(c)
m∏

j=1

P(a j | c),

where we abbreviate P(A j = a j, . . .) as P(a j, . . .), and P(C = c, . . .) as P(c, . . .). After the probabilities P(c)
and P(a j | c) estimated from training examples, we get the most probable class c∗ for a test example having
⟨a1, a2, . . . , am⟩ by:

c∗ = argmax
c

P(c | a1, a2, . . . , am)

= argmax
c

P(c, a1, a2, . . . , am)

= argmax
c

P(c)
m∏

j=1

P(a j | c). (10.3)

To conduct an n-fold cross validation for a naive Bayes classifier, we have at least five types of tasks: (1)
estimation of the probabilities P(c) and P(a j | c) from training examples, (2) computation of the most probable
class c∗, (3) rotated splitting of the whole dataset into training examples and test examples, (4) computation of
predictive accuracy, and (5) iteration of the tasks (1)–(4) for n times. Using the built-ins for EM learning and
Viterbi computation, we can realize the tasks (1) and (2), respectively. For the task (3), new built-in predicates
for shuffling and splitting lists can be used. The task (4) will be easily implemented by a new built-in predicate
for average operation. Finally, to realize the loops for the task (5) compactly, we use map functions instead of
recursive predicates.

Now let us see the program. The target is the congressional voting records dataset, which is available from
UCI machine learning repository (http://archive.ics.uci.edu/ml/). We suppose that the data file
house-votes-84.data has been downloaded and is placed ‘as is’ under the current directory. First of all, we
declare random switches:
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values(class,[democrat,republican]).
values(attr(_,_),[y,n]).

The random switch class takes two values that indicate the class labels democrat and republican. The
probabilities P(c) correspond to θclass,c, the parameters of a random switch class (c = democrat, republican).
On the other hand, since all attributes only take ‘y’ or ‘n’ (here ‘?’ is treated as a missing value9), all random
switches named attr( j,c) also take on values ‘y’ and ‘n’. The probabilities P(a j | c) correspond to θattr( j,c),a j

( j = 1, . . . ,m).
The modeling part only includes four clauses. Since a naive Bayes model is a special form of a Bayesian

network, the programming is basically done in the manner described in §10.3:

nbayes(C,Vals):- msw(class,C),nbayes(1,C,Vals).

nbayes(_,_,[]).
nbayes(J,C,[V|Vals]):-

choose(J,C,V),
J1 is J+1,
nbayes(J1,C,Vals).

choose(J,C,V):-
( V == ’?’ -> msw(attr(J,C),_)
; msw(attr(J,C),V)
).

In this program, the logical variables C and Vals in nbayes(C,Vals) correspond to the random variable C and
the random vector ⟨A1, A2, . . . , Am⟩. Also, instead of calling msw(attr(J,C),V) directly, we use a wrapper
choose(J,C,V) which has an additional if-then branch for handling missing values.

Let us move to the utility part, which includes evaluation routines. First, we can conduct an N-fold cross
validation by running the top predicate votes_cv(N):

votes_cv(N):-
random_set_seed(81729), % Fix the random seed to keep the same splitting
load_data_file(Gs0), % Load the entire data
random_shuffle(Gs0,Gs), % Randomly reorder the data
numlist(1,N,Ks), % Get Ks = [1,...,N] (B-Prolog built-in)
maplist(K,Rate,votes_cv(Gs,K,N,Rate),Ks,Rates),

% Call votes_cv/2 for K=1...N
avglist(Rates,AvgRate), % Get the avg. of the precisions
maplist(K,Rate,format("Test #˜d: ˜2f%˜n",[K,Rate*100]),Ks,Rates),
format("Average: ˜2f%˜n",[AvgRate*100]).

Please see the comments to understand the behavior. load_data_file(Gs0) reads the whole dataset from
house-votes-84.data and returns a list of nbayes(C,Vals) to Gs0 (the definition will be given later).
The examples Gs0 are shuffled into Gs by random_shuffle/2, a built-in predicate newly introduced in ver-
sion 1.12. The first call of maplist/5 invokes votes_cv(Gs,K,N,Rate) for each K in Ks = [1,...,N],
and stores its output Rate into a list Rates. Here votes_cv(Gs,K,N,Rate) takes as input Gs, K and N,
and returns the predictive accuracy Rate for the K-th splitting. We finally get the average predictive accuracy
AvgRate by avglist(Rates,AvgRate), a built-in for average operation. It is important to note that, by
using maplist/5, we can often avoid writing a definition of the recursive clause representing a loop for K, and
keep the program compact.

The predicate votes_cv(Gs,K,N,Rate), which we have seen above, works on EM learning and Viterbi
computation for the K-th splitting:

votes_cv(Gs,K,N,Rate):-
format("<<<< Test #˜d >>>>˜n",[K]),
separate_data(Gs,K,N,Gs0,Gs1), % Gs0: training data, Gs1: test data
learn(Gs0), % Learn by PRISM’s built-in
maplist(nbayes(C,Vs),R,(viterbig(nbayes(C0,Vs)),(C0==C->R=1;R=0)),Gs1,Rs),

% Predict the class by viterbig/1 for each test example

9 The data description file house-votes-84.names, also downloadable from the repository, contains a warning — It is important to
recognize that “?” in this database does not mean that the value of the attribute is unknown. It means simply, that the value is not “yea” or
“nay” (. . . ). In this section, on the other hand, we consider ‘?’ as a missing value just for demonstration.
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% and evaluate it with the answer class label
avglist(Rs,Rate), % Get the accuracy for the K-th splitting
format("Done (˜2f%).˜n˜n",[Rate*100]).

In the clause body, separate_data(Gs,K,N,Gs0,Gs1) splits the whole dataset Gs into training examples
Gs0 and test examples Gs1. We train the naive Bayes model in a usual manner by learn/1 and make predic-
tions for test examples one by one using viterbig/1. Here we use maplist/5 again for repeated testings.
Furthermore, the predicted classes are evaluated with the answer class labels, and the evaluation results will be
stored as a list of 1 (correct) and 0 (incorrect). Lastly, by interpreting these 1s and 0s numerically and taking their
average, we get the predictive accuracy as Rate.

The remaining predicates are defined as follows:

separate_data(Data,K,N,Learn,Test):-
length(Data,L),
L0 is L*(K-1)//N, % L0: offset of the test data (// - integer division)
L1 is L*(K-0)//N-L0, % L1: size of the test data
splitlist(Learn0,Rest,Data,L0), % Length of Learn0 = L0
splitlist(Test,Learn1,Rest,L1), % Length of Test = L1
append(Learn0,Learn1,Learn).

load_data_file(Gs):-
load_csv(’house-votes-84.data’,Gs0),
maplist(csvrow([C|Vs]),nbayes(C,Vs),true,Gs0,Gs).

In the definition of separate_data/5, we use splitlist/4, a new built-in for splitting lists. Another user
predicate load_data_file/1 uses load_csv/2 to read a CSV file (house-votes-84.data) directly
and maplist/5 to convert each row in the CSV file into an observed goal nbayes(C,Vs) in the model.

It has been claimed that one advantage of PRISM programming is the compactness of the modeling part.
Besides, as we have seen, with the built-ins introduced in version 1.12, we can make the utility part compact
as well. It is also interesting to see that we can write a routine for n-fold cross validation just by combining
general-purpose built-in predicates. Now let us run the program:

% prism
:

?- prism(votes).
:

?- votes_cv(10).

<<<< Test #1 >>>>
#goals: 0.........100.........200.........300.(312)
Exporting switch information to the EM routine ... done
#em-iters: 0(8) (Converged: -3076.540683710)
Statistics on learning:

Graph size: 6284
Number of switches: 33
Number of switch instances: 66
Number of iterations: 8
Final log likelihood: -3076.540683710
Total learning time: 0.024 seconds
Explanation search time: 0.016 seconds
Total table space used: 1671056 bytes

Type show_sw or show_sw_b to show the probability distributions.
Done (81.40%).

:

<<<< Test #10 >>>>
#goals: 0.........100.........200.........300.(311)
Exporting switch information to the EM routine ... done
#em-iters: 0(8) (Converged: -3134.945195139)
Statistics on learning:

Graph size: 6260
Number of switches: 33
Number of switch instances: 66
Number of iterations: 8
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Figure 10.6: State transition diagram of the dieting professor.

Final log likelihood: -3134.945195139
Total learning time: 0.028 seconds
Explanation search time: 0.016 seconds
Total table space used: 1663976 bytes

Type show_sw or show_sw_b to show the probability distributions.
Done (90.91%).

Test #1: 81.40%
Test #2: 88.64%
Test #3: 90.70%
Test #4: 93.18%

:
Test #9: 95.35%
Test #10: 90.91%
Average: 90.11%

yes

10.6 Dieting professor*
The last example is a program that deals with failures in the generation process. Let us consider a scenario as
follows. There is a professor who takes a lunch everyday at one of two restaurants ‘s0’ and ‘s1’, and he changes
the restaurant to visit probabilistically. Also as he is on a diet, he needs to satisfy a constraint that the total calories
for lunch in a week are less than 4K calories. He probabilistically orders pizza (which is denoted by ‘p’ and has
900 calories) or sandwich (‘s’; 400 calories) at the restaurant ‘s0’, and hamburger (‘h’; 400 calories) or sandwich
(‘s’; 500 calories) at the restaurant ‘s1’. He records what he has eaten like [p,s,s,p,h,s,h] in a week and
he preserves the record only if he succeeds in keeping the constraint. For example, we have a list of preserved
records, and attempt to estimate the probability that he violates the constraint.

First of all, let us introduce a two-state hidden Markov model (HMM), shown in Figure 10.6, as a basic model
that captures the professor’s probabilistic behavior. We then try to write a PRISM program which represents this
basic model with the additional constraint on the total calories. Hereafter we call the model a constrained HMM.
Let us describe the program. From Figure 10.6, we can see that four switches are required as follows:

values(tr(s0),[s0,s1]).
values(tr(s1),[s1,s0]).
values(lunch(s0),[p,s]). % pizza:900, sandwich:400
values(lunch(s1),[h,s]). % hamburger:400, sandwich:500

where the switches named tr(·) choose the next restaurant, and those named lunch(·) select the menu of lunch
at the chosen restaurant.

The central part of the model is chmm/4, which is defined as follows:

chmm(L,S,C,N):- N>0,
msw(tr(S),S2),
msw(lunch(S),D),
( S == s0,

( D = p, C2 is C+900
; D = s, C2 is C+400 )
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; S == s1,
( D = h, C2 is C+400
; D = s, C2 is C+500 )

),
L=[D|L2],
N2 is N-1,
chmm(L2,S2,C2,N2).

chmm([],_,C,0):- C < 4000.

This predicate behaves similarly to hmm/3 (§10.1), a recursive routine, except that chmm/4 has an additional
argument that accumulates the total calories in a week. It is important to notice here that, when the recursion
terminates, the total calories will be checked in the second clause, and if the total calories violate the constraint,
the predicate chmm/4 totally fails. This corresponds to the scenario that the professor only preserves the record
only if he succeeds to keep the constraint.

To learn the parameters from his records, or to know the probability that he fails to keep the constraint, we
need to make further settings. For example, we may define the four predicates as follows:

failure:- not(success).
success:- success(_).
success(L):- chmm(L,s0,0,7).
failure(L):- not(success(L)).

From the definition of chmm/4, success(L) says that the professor succeeds to keep the constraint with the
menus L. So success/0 indicates the fact that he succeeds to keep the constraint. failure/0 is the negation
of success/0 and therefore means that he fails to satisfy the constraint. failure(L) is optional here but says
that he fails to keep the constraint due to the menus L.
We consider the predicates success/1 and failure/0 as observable predicates, and we use learn/1 as a
learning command.

The experiment we attempt is artificial, similarly to those with HMMs (§10.1) and discrete Bayesian networks
(§10.3) — we first generate samples under the predefined parameters, and then learn the parameters from the
generated samples. For this experiment, we define a predicate in the utility part, that specifies some predefined
parameters:

set_params:-
set_sw(tr(s0),[0.7,0.3]),
set_sw(tr(s1),[0.7,0.3]),
set_sw(lunch(s0),[0.4,0.6]),
set_sw(lunch(s1),[0.5,0.5]).

Now we are in a position to start the experiment. We first load the program with the built-in prismn/1
(please note ‘n’ at the last of the predicate name):

?- prismn(chmm).

step1.
step2.
step3.
Compilation done by FOC

compiled in 12 milliseconds
loading::temp.out

yes

Let us recall that the definition clauses of failure/0 and failure/1 have negation not/1 in their bodies.
This is not negation as failure (NAF), and we need a special treatment for such negation. prismn/1 calls
an implementation of First Order Compiler (FOC) [45] to eliminate negation not/1. In the messages above,
the messages from “step1” to “Compilation done by FOC” are produced by the FOC routine, and we
may notice that the predicates whose names start with ‘closure_’ are newly created by the FOC routine and
registered as table predicates (because they are probabilistic).

After loading, we set the parameters by set_params/0, and confirm the specified parameters:
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?- set_params,show_sw.

Switch lunch(s0): unfixed_p: p (p: 0.400000000) s (p: 0.600000000)
Switch lunch(s1): unfixed_p: h (p: 0.500000000) s (p: 0.500000000)
Switch tr(s0): unfixed_p: s0 (p: 0.700000000) s1 (p: 0.300000000)
Switch tr(s1): unfixed_p: s1 (p: 0.700000000) s0 (p: 0.300000000)

We can compute the probability that the professor fails to keep the constraint under the parameters above:

?- prob(failure).
Probability of failure is: 0.348592596784000

From this, we can say that the professor skips preserving the record once in three weeks.
To make it sure that the program correctly represents our model (in particular, the definition of the failure

predicate), we may give a couple of queries. For example, the following query confirms whether the sum of the
probability that the professor satisfy the constraint and the probability that he does not becomes unity:10

?- prob(success,Ps),prob(failure,Pf),X is Ps+Pf.

Pf = 0.348592596784
Ps = 0.651407403215999
X = 0.999999999999998 ?

Or we have a similar query which is limited to some specific menu (obtained as L by sampling):

?- sample(success(L)),
prob(success(L),Ps),prob(failure(L),Pf),
X is Ps+Pf.

Pf = 0.9999321868
Ps = 0.0000678132
L = [s,p,h,s,h,p,h]
X = 1.0 ?

It is confirmed for each goal appearing in the queries above that the sum of probabilities of the goal and its negation
is always unity, so we can proceed to a learning experiment. To conduct it, we use the built-in get_samples_c/4
to generate 500 samples (note that we cannot simply use get_samples/3 since a sampling of success(L)
may fail), and invoke the learning command with the samples:

?- get_samples_c([inf,500],success(L),true,Gs),learn([failure|Gs]).

sampling -- #success = 500
sampling -- #failure = 249
#goals: 0.........100.........200......(266)
Exporting switch information to the EM routine ...
#em-iters: 0........(83) (Converged: -2964.788301553)
Statistics on learning:

Graph size: 9328
Number of switches: 4
Number of switch instances: 8
Number of iterations: 83
Final log likelihood: -2964.788301553
Total learning time: 0.036 seconds
Explanation search time: 0.016 seconds
Total table space used: 1486208 bytes

Type show_sw or show_sw_b to show the probability distributions.
Gs = [success([s,s,s,h,s,h,h]),success([s,p,h,s,h,h,s]),

... omitted ...
success([s,p,h,h,s,p,s]),success([p,s,s,s,h,s,s])] ?

yes

10 Unfortunately, as shown here, the actual result of the sum will not always be unity for precision errors.
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It should be noted that, if a special symbol failure is included to the goals in learn/1, the EM algorithm
considering failure called the failure-adjusted maximization (FAM) algorithm will be invoked. After learning, we
can confirm the learned parameters as usual:

?- show_sw.

Switch lunch(s0): unfixed_p: p (p: 0.380041828) s (p: 0.619958172)
Switch lunch(s1): unfixed_p: h (p: 0.537922906) s (p: 0.462077094)
Switch tr(s0): unfixed_p: s0 (p: 0.714988121) s1 (p: 0.285011879)
Switch tr(s1): unfixed_p: s1 (p: 0.677016948) s0 (p: 0.322983052)

10.7 Linear-chain CRFs*
Linear-chain CRFs are well-known discriminative models for sequence data used in natural language processing,
image processing, bioinformatics and so on. Their generative counter part is HMMs which form generative-
discriminative pairs with linear-chain CRFs. Here we define a simple linear-chain CRF as a generative CRF by
our approach. So we begin by writing code for a two-place predicate hmm0/2 that specifies an HMM program
for complete data and then write specialized code for a one-place predicate hmm0/1 to compute the marginalized
unnormalized distribution.

The PRISM program below represents a linear-chain CRF with two states, s0 and s1, and two output symbols,
a and b. Two predicates, hmm0/2 and hmm0/1, are defined there. The two-place predicate hmm0(Xs,Ys)
specifies generatively a complete data consisting of two sequences, a sequence Xs of output symbols and the
corresponding sequence Ys of hidden states. Likewise the one-place predicate hmm0(Xs) specifies a usual
HMM where Xs is a sequence of observed symbols. Note that these predicates have isomorphic code and once
hmm0/2 is encoded, it is relatively easy to encode hmm0/1 as their codes are isomorphic.

values(init,[s0,s1]).
values(tr(_),[s0,s1]).
values(out(_),[a,b]).

hmm0([X0|Xs],[Y0|Ys]):- % for unnormalized distribution
msw(init,Y0),msw(out(Y0),X0),hmm1(Y0,Xs,Ys).

hmm1(_,[],[]).
hmm1(Y0,[X|Xs],[Y|Ys]):-

msw(tr(Y0),Y),msw(out(Y),X),hmm1(Y,Xs,Ys).

hmm0([X|Xs]):- % for marginalized unnormalized distribution
msw(init,Y0),msw(out(Y0),X),hmm1(Y0,Xs).

hmm1(_,[]).
hmm1(Y0,[X|Xs]):-

msw(tr(Y0),Y1),msw(out(Y1),X),hmm1(Y1,Xs).

Now let us test weight learning using crf_learn/1.11 We first set flags for learning. Then we draw a
sample _Gs of size 50 from hmm0(Xs,Ys)12 such that the length of Xs and Ys is five using get_samples/3
and learn the weights λ in Eq. 7.6 by crf_learn(_Gs) from the sample.

?- set_prism_flag(crf_penalty,1.0).
?- set_prism_flag(crf_learn_mode,lbfgs).
?- get_samples(50,hmm0(Xs,[_,_,_,_,_]),_Gs), crf_learn(_Gs).

#goals: 0.......(72)
Exporting switch information to the CRF-learn routine ... done
L-BFGS mode
#crf-iters: 0.......(79) (Converged: -168.571830502)
Statistics on learning:

Graph size: 987

11 When the PRISM system runs crf_learn/1 for a complete dataset, say r(x1,y1),. . . ,r(xT,xT), it searches the program for the
companion predicate r(X) and its defining clauses as well as clauses for r(X,Y) to compute the marginalized unnormalized distribution.

12 Sampling is possible because at the point of running get_samples/3 command, the switch database holds (default) probabilities.
However, after running crf_learn/1, probabilities are replaced by weights and sampling is (usually) impossible. Sampling becomes
possible again if msws are reset for example by ?- set_prism_flag(default_sw,uniform), set_sw_all.
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Number of switches: 5
Number of switch instances: 10
Number of iterations: 79
Final log likelihood: -168.571830502
Total learning time: 0.007 seconds
Explanation search time: 0.002 seconds
Total table space used: 97696 bytes

Type show_sw to show the lambdas.

After learning, we print out the switch database to see learned weights (λ in Eq. 7.6).

?- show_sw
Switch init: unfixed_p: s0 (p: 0.149259244) s1 (p: -0.149259244)
Switch out(s0): unfixed_p: a (p: 0.159373024) b (p: 0.058738941)
Switch out(s1): unfixed_p: a (p: -0.159373024) b (p: -0.058738941)
Switch tr(s0): unfixed_p: s0 (p: -0.064599964) s1 (p: -0.337089215)
Switch tr(s1): unfixed_p: s0 (p: 0.133452685) s1 (p: 0.268236494)

Next we compute the weight W of hmm0([a,b,b]).

?- set_prism_flag(log_scale,off).
?- crf_prob(hmm0([a,b,b]),W).

W = 8.42869

We further print out the Viterbi explanation and its weight for the same goal using crf_viterbi/1.

?- crf_viterbif(hmm0([a,b,b]))
hmm0([a,b,b])

<= hmm1(s0,[b,b]) & msw(init,s0) & msw(out(s0),a)
hmm1(s0,[b,b])

<= hmm1(s0,[b]) & msw(tr(s0),s0) & msw(out(s0),b)
hmm1(s0,[b])

<= hmm1(s0,[]) & msw(tr(s0),s0) & msw(out(s0),b)
hmm1(s0,[])

CRF-Viterbi_P = 0.445365332417886

Of course, we are able to know the most probable instantiation and the most probable top-n instantiations as
follows using crf_viterbig/1 and n_crf_viterbig/2 respectively.13.

?- crf_viterbig(hmm0([X,b,Y])).
X = a
Y = a

?- bagof([X,Y],n_crf_viterbig(3,hmm0([X,b,Y])),Zs).
Zs = [[a,a],[a,b],[b,a]]

10.8 Linear cyclic explanation graph*
Cyclic explanation graphs (Chapter 8) enable us to deal with useful models of cyclic probabilistic relations. For
example, a reachability relation in discrete time Markov chains and infinite recursion associated with the compu-
tation of prefix probability in PCFGs yield cyclic explanation graphs [59].

To have a close look at cyclic explanation graphs, we introduce a sample program that describes the reachability
relation on a discrete time Markov chain shown in Figure 10.7, where a state transition is made by a probabilistic
choice of next state by msw/2:

:- set_prism_flag(error_on_cycle,off).

values(t(s0),[s0,s1,s2],[0.5,0.3,0.2]).
values(t(s1),[s1,s3,s4],[0.4,0.1,0.5]).
values(t(s2),[s2],[1.0]).

13 n_crf_viterbig/2 is a backtrackable predicate.
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Figure 10.7: An example of discrete time Markov chains

values(t(s3),[s3],[1.0]).
values(t(s4),[s4],[1.0]).

tr(S,T) :- get_values(t(S),OS),member(T,OS),msw(t(S),T).
reach(S,S).
reach(S,T) :- \+S==T,tr(S,U),reach(U,T).

Since this Markov chain has a self-loop at each state, probf(reach(s0,s3)) returns a cyclic explanation
graph as follows:

?- probf(reach(s0,s3)).
reach(s0,s3)

<=> tr(s0,s1) & reach(s1,s3)
v tr(s0,s0) & reach(s0,s3)

reach(s1,s3)
<=> tr(s1,s3) & reach(s3,s3)

v tr(s1,s1) & reach(s1,s3)
reach(s3,s3)
tr(s1,s3)

<=> msw(t(s1),s3)
tr(s1,s1)

<=> msw(t(s1),s1)
tr(s0,s1)

<=> msw(t(s0),s1)
tr(s0,s0)

<=> msw(t(s0),s0)

In this graph, reach(s0,s3) simultaneously occurs in the left and right hand sides of the first sub-explanation
graph and forms a self-loop. So the graph is a linear cyclic explanation graph and we use special predicates
lin_prob/1 and lin_probfi/2 to compute the reachability probability from s0 to s3 and obtain 0.1 as
follows:

?- lin_prob(reach(s0,s3)).
Probability of reach(s0,s3) is: 0.100000000000000

?- lin_probfi(reach(s0,s3)).
reach(s0,s3) [0.1]

<=> tr(s0,s1) [0.3] & reach(s1,s3) [0.166667] {0.05}
v tr(s0,s0) [0.5] & reach(s0,s3) [0.1] {0.05}

reach(s1,s3) [0.166667]
<=> tr(s1,s3) [0.1] & reach(s3,s3) [1] {0.1}

v tr(s1,s1) [0.4] & reach(s1,s3) [0.166667] {0.0666667}
reach(s3,s3) [1]
tr(s1,s3) [0.1]

<=> msw(t(s1),s3) [0.1] {0.1}
tr(s1,s1) [0.4]

<=> msw(t(s1),s1) [0.4] {0.4}
tr(s0,s1) [0.3]
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<=> msw(t(s0),s1) [0.3] {0.3}
tr(s0,s0) [0.5]

<=> msw(t(s0),s0) [0.5] {0.5}

As another example of probability computation using linear cyclic explanation graphs, let us consider prefix
probability computation in PCFGs. A prefix u is an initial substring of a sentence and the prefix probability
Pprefix(u) of u is defined as the sum of probabilities of sentences containing u, i.e. Pprefix(u) =

∑
v P(uv) where v

is a string such that uv is a sentence. So Pprefix(u) (usually) becomes an infinite sum. This sum however can be
computed by solving a system of linear equations derived from a linear cyclic explanation graph. The graph is
generated by a prefix parser program shown below:

:- set_prism_flag(error_on_cycle,off).
values(s,[[s,s],[a],[b]],[0.4,0.3,0.3]).

prefix_pcfg(L) :- prefix_pcfg([s],L,[]). % L is a prefix
prefix_pcfg([A|R],L0,L2):- % L0 is ground when called

( get_values(A,_) % if A is a nonterminal
-> msw(A,RHS), % then select rule A->RHS

prefix_pcfg(RHS,L0,L1)
; L0=[A|L1] % else consume A in L0
),
( L1=[] -> L2=[] % (pseudo) success
; prefix_pcfg(R,L1,L2) % recursion
).

prefix_pcfg([],L1,L1). % termination

This parser is a slight generalization of usual top-down PCFG parser where the only difference is the insertion of
one line code commented as “(pseudo) success.” By the declaration of a random switch swith values/2,
the underlying grammar is defined as {s → ss (0.4), s → a (0.3), s → a (0.3)} where the number following each
rule is an initial application probability.

Now think of a prefix [a,b] in this PCFG, represented by a top-goal prefix_pcfg([a,b]). By probf/1
we obtain an explanation graph for the goal as follows:

?- probf(prefix_pcfg([a,b]))
prefix_pcfg([a,b])

<=> prefix_pcfg([s],[a,b]-[])
prefix_pcfg([s],[a,b]-[])

<=> prefix_pcfg([s,s],[a,b]-[]) & msw(s,[s,s])
prefix_pcfg([s,s],[a,b]-[])

<=> prefix_pcfg([a],[a,b]-[b]) & prefix_pcfg([s],[b]-[]) & msw(s,[a])
v prefix_pcfg([s,s],[a,b]-[]) & msw(s,[s,s])

prefix_pcfg([s],[b]-[])
<=> prefix_pcfg([s,s],[b]-[]) & msw(s,[s,s])

v prefix_pcfg([b],[b]-[]) & msw(s,[b])
prefix_pcfg([s,s],[b]-[])

<=> prefix_pcfg([b],[b]-[]) & msw(s,[b])
v prefix_pcfg([s,s],[b]-[]) & msw(s,[s,s])

prefix_pcfg([b],[b]-[])
prefix_pcfg([a],[a,b]-[b])

<=> prefix_pcfg([],[b]-[b])
prefix_pcfg([],[b]-[b])

Since this explanation graph has self-loops of prefix_pcfg([s,s],[a,b]-[]) and prefix_pcfg(
[s,s],[b]-[]) and are linear, we apply lin_prob/1 to compute the prefix probability of [a,b] as fol-
lows:

?- lin_prob(prefix_pcfg([a,b]))
Probability of prefix_pcfg([a,b]) is: 0.100000000000000

Although these are small examples and the explanation graphs have only self-loops, lin_prob/1,2 can deal
with much larger linear cyclic explanation graphs containing tens of thousands of nodes and long cycles.

Furthermore, using lin_learn/1, we can learn parameters from prefix substrings. To show this, let us
conduct an artificial experiment. In the experiment, we first generate sentences using a PCFG with the parameters
given by hand, and if necessary, trancate them into prefix substrings of a limited length. Then we learn parameters
of the same PCFG from such artificial prefix substrings.
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For this experiment, we need some settings. First, to generate sample sentences, we define an ordinary PCFG
program similar to the one shown in §10.2:

pcfg(L) :- pcfg(s,L-[]).
pcfg(LHS,L0-L1) :-
( get_values(LHS,_) -> msw(LHS,RHS),proj(RHS,L0-L1)
; L0 = [LHS|L1]
).

proj([],L-L).
proj([X|Xs],L0-L1) :-
pcfg(X,L0-L2),proj(Xs,L2-L1).

Note here that random switch s is shared with prefix_pcfg/1-2 above. Then, we add a couple of utility
routines. That is, trunc_prefix(S,P,Len) below is used to trancate a sentence S into a prefix substring P
no longer than Len:

trunc_prefix(S,S,Len) :- length(S,L),L < Len.
trunc_prefix(S,P,Len) :- length(P,Len),append(P,_,S).

We also define learn_prefix(N,Len) which learns parameters from N prefix substrings no longer than Len:

learn_prefix(N,Len) :-
set_prism_flag(restart,10),
set_sw(s,[0.4,0.3,0.3]),
get_samples(N,pcfg(_),S),
maplist(X,Y,(X=pcfg(L),trunc_prefix(L,P,Len),Y=prefix_pcfg(P)),S,Gs),
lin_learn(Gs),
show_sw,
learn(S),
show_sw.

where get_samples/1 generates N sentences by forward sampling, maplist/4 converts them into N pre-
fix substrings, and lin_learn/1 learns parameters from such prefix substrings. In addition, for comparison,
learn/1 is called in an ordinary way with the originally generated sentences.

Based on the settings above, we can conduct EM learning as follows:

| ?- prism(prefix_pcfg_learn).
loading::prefix_pcfg_learn.psm.out

yes
| ?- learn_with_em(100,3).
#goals: 0.(12)
Exporting switch information to the EM routine ... done
[0] #cyc-em-iters: 0.....(omitted).....1200........(1284) (Converged: -113.214812386)
[1] #cyc-em-iters: 0.....(omitted).....1200........(1284) (Converged: -113.214797895)

:
[9] #cyc-em-iters: 0.....(omitted).....1200........(1285) (Converged: -113.214816905)
Statistics on learning:

Graph size: 156
Number of switches: 1
Number of switch instances: 3
Number of iterations: 1285
Final log likelihood: -113.214769365
Total learning time: 8.388 seconds
Explanation search time: 0.000 seconds
Total table space used: 42392 bytes

Type show_sw to show the probability distributions.
Switch s: unfixed_p: [s,s] (p: 0.997053923) [a] (p: 0.001819636) [b] (p: 0.001126441)
#goals: 0..(25)
Exporting switch information to the EM routine ... done
[0] #em-iters: 0(2) (Converged: -392.151359107)
[1] #em-iters: 0(2) (Converged: -392.151359107)
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:
[9] #em-iters: 0(2) (Converged: -392.151359107)
Statistics on learning:

Graph size: 66563
Number of switches: 1
Number of switch instances: 3
Number of iterations: 2
Final log likelihood: -392.151359107
Total learning time: 0.120 seconds
Explanation search time: 0.080 seconds
Total table space used: 7265784 bytes

Type show_sw to show the probability distributions.
Switch s: unfixed_p: [s,s] (p: 0.409420290) [a] (p: 0.335144928) [b] (p: 0.255434783)

yes

We can see from this result that the parameter of rule ‘s → ss’ learned from prefix substrings is rather different
from the one learned from the whole sentences. This is not surprising, because applying ‘s→ ss’ more will yield
a longer sentence, and learning from prefix substrings takes into account longer sentences behind such substrings.

10.9 Nonlinear cyclic explanation graphs*
Nonlinear cyclic explanation graphs (Chapter 8) enable the user to perform yet another challenging probability
computation such as infix probability computation in PCFGs [39]. As previously explained, a nonlinear cyclic ex-
planation graph is an explanation graph containing a sub-explanation graph such that two or more goals occurring
together in some right hand disjunct and their caller on the left hand side belong to the same SCC like:

pred(a)<=> pred(a) & pred(a) & ...
v....

PRISM supports nonlin_prob(G) to compute the probability of G that generates a nonlinear cyclic explana-
tion graph. To exemplify them, we introduce a program that computes infix probabilities in PCFGs. An infix u is
a substring that occur in the middle of a sentence. The infix probability Pinfix(u) of infix u is accordingly defined
as the sum of probabilities of sentences containing u, i.e. Pinfix(u) =

∑
w,v P(wuv) where v and w are strings such

that wuv is a sentence.
The following program encodes an infix parser for infix probability computation by the Nederhof and Satta’s

algorithm [39]. Roughly this program constructs a finite automaton (FA) for the input infix L and takes the
intersection of FA and a given PCFG while preserving probabilistic structure of the PCFG.

:- set_prism_flag(error_on_cycle,off).
values(s,[[s,s],[a],[b]],[0.4,0.3,0.3]).

infix_pcfg(L):- % L : input infix
build_FA(L), % FA asserted in the memory
last_state(L,End), % End is last_state of FA
start_symbol(C),
infix_pcfg(0,End,[C]). % FA transits from state 0 to End

infix_pcfg(S0,S2,[A|R]):-
( get_values(A,_) -> % A : nonterminal

msw(A,RHS), % use A -> RHS to expand A
infix_pcfg(S0,S1,RHS)

; tr(S0,A,S1) % state transition by A from S0 to S1
),
infix_pcfg(S1,S2,R).

infix_pcfg(S,S,[]).

By running a command ?- probf(infix_pcfg([a,b])), we obtain an explanation graph for infix_
pcfg([a,b]) as follows:

infix_pcfg([a,b])
<=> infix_pcfg(0,2,[s])

infix_pcfg(0,2,[s])
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<=> infix_pcfg(0,2,[s,s]) & infix_pcfg(2,2,[]) & msw(s,[s,s])
...
infix_pcfg(0,0,[s,s])

<=> infix_pcfg(0,0,[b]) & infix_pcfg(0,0,[s]) & msw(s,[b])
v infix_pcfg(0,0,[s,s]) & infix_pcfg(0,0,[s]) & msw(s,[s,s])

infix_pcfg(0,0,[s])
<=> infix_pcfg(0,0,[b]) & infix_pcfg(0,0,[]) & msw(s,[b])

v infix_pcfg(0,0,[s,s]) & infix_pcfg(0,0,[]) & msw(s,[s,s])
infix_pcfg(0,0,[b])

<=> infix_pcfg(0,0,[])
infix_pcfg(0,0,[])

This is a nonlinear cyclic explanation graph. To spot the non-linearity of this graph, we remove infix_pcfg(
0,0,[]) and infix_pcfg(0,0,[b]) from the graph and show part of the simplified graph below:

infix_pcfg(0,0,[s,s])
<=> infix_pcfg(0,0,[s]) & msw(s,[b])

v infix_pcfg(0,0,[s,s]) & infix_pcfg(0,0,[s]) & msw(s,[s,s])
infix_pcfg(0,0,[s])

<=> msw(s,[b])
v infix_pcfg(0,0,[s,s]) & msw(s,[s,s])

As can be seen, infix_pcfg(0,0,[s]) and infix_pcfg(0,0,[s,s]) are mutually recursive and hence
belong to the same SCC. Also they occur together in the second disjunct of the first sub-explanation graph for
infix_pcfg(0,0,[s,s]). So this is a nonlinear cyclic explanation graph. Then, nonlin_prob(infix_
pcfg([a,b])) computes the infix probability of [a,b] as follows:

?- nonlin_prob(infix_pcfg([a,b]))
Probability is 0.235363
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ε (threshold for convergence), 52

a posteriori distribution, 6, 7, 59, 78
a posteriori probability, 6, 53, 56, 59

unnormalized —, 55, 58
acyclicity condition, 13, 19, 64
AND/OR graph, 12
annealing schedule, 57

B-Prolog, 24
backoff smoothing, 38
backward probability computation, 5
batch execution, 8, 29, 60, 96, 102
Baum-Welch algorithm, 5, 46
Bayesian Information Criterion, 58, 59, 115
Bayesian network, 19, 59, 76, 105

multiply-connected —, 108, 109
singly-connected —, 106

Bayesian score, 59
BDD, see binary decision diagram
belief propagation, 110
BIC, see Bayesian Information Criterion
big array, 72
binary decision diagram, 114
BN, see Bayesian network
bucket tree, 111

— elimination, 111
burn-in period, 65, 84

CAR condition, see coarsened-at-random condition
Cheeseman-Stutz score, 38, 58, 59
coarsened-at-random condition, 18
combination rule, 111
compilation (of the program), 25
complete data, 38, 52, 53, 55, 75, 83
completion, 13
conditional probability table, 105, 106
conditional random field context free grammars, 90
conditional random fields, 88

generative —, see generative conditional ran-
dom fields

linear-chain —, 89, 125
conditions on the model, see modeling assumption
constraint, 5, 122, 123
control stack + heap, 26, 64
CPT, see conditional probability table
CRF, see conditional random fields
CRF-CFGs, see conditional random field context free

grammars
cross validation, 119
CS score, see Cheeseman-Stutz score
CSV format, 73
cut symbol, 1, 11
cyclic explanation graph, 93

linear —, 93, 94
nonlinear —, 93, 94

DAEM algorithm, see deterministic annealing EM
algorithm

data file declaration, 19, 20, 63
data parallelism, 8, 95
data sparseness, 6, 53, 75
debugging, 26
declaration, 1, 9
definite clause grammar, 104
deterministic annealing EM algorithm, 56, 60, 63,

64, 79
difference list, 104, 110
Dirichlet distribution, 5, 31, 53, 55, 75, 83
discrete time Markov chains, 126
discriminative model, 88
distributed memory computing, 95
distribution semantics, 9, 10, 19
dynamic load balancing, 95
dynamic programming, 5, 13, 45, 76, 78

eager strategy (in linear tabling), 16
EM algorithm, see expectation-maximization algo-

rithm
EM learning, see expectation-maximization algorithm
estimated log marginal likelihood, 59, 84, 87
evidence, 110
exact log marginal likelihood, 86
exclusiveness condition, 5, 19, 90, 114
executable model, 11
execution flag, 6, 25, 61
execution message, 27
expectation-maximization algorithm, 5, 17, 52, 53,

56, 63–66, 95, 125
convergence of —, 52, 55, 64, 65
deterministic annealing —, see deterministic an-

nealing EM algorithm
expectation step of —, 52, 95
initialization step of —, 52
maximization step of —, 52, 95
multiple runs of —, see restart
variational Bayesian —, see variational Bayesian

EM algorithm
expected occurrence, 6, 38–40, 52, 76, 95
explanation, 12, 19, 52

— path, see sub-explanation
most probable —, see Viterbi explanation
sub- —, 13
Viterbi —, see Viterbi explanation

explanation graph, 12, 13, 43, 58, 66
acyclic —, 93
cyclic —, see cyclic explanation graph

explanation search, 11–14, 16, 26, 27, 31, 42, 52, 61,
62, 66, 95, 99

failure (in the generation process), 5, 17, 53, 60, 77,
122, 125

failure probability, 60
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failure-adjusted maximization algorithm, 5, 17, 125
failure-driven loop, 12
FAM algorithm, see failure-adjusted maximization

algorithm
feature function, 89–91
file IO, 72
finite geometric distribution, 33, 35, 63
finiteness condition, 12, 19
First Order Compiler, 5, 17, 60, 123
FOC, see First Order Compiler
foreach, 69
forward probability computation, 5
forward sampling, 11, 27
forward-backward algorithm, see Baum-Welch algo-

rithm
free energy

— in statistical mechanics, 56, 79
variational —, see variational free energy

fully observing situation, 3

garbage collection, 64
general clause, 17
generalized inside-outside algorithm, 5
generation process, 4, 5, 17, 60, 99, 112, 122
generative conditional random fields, 63, 88, 90, 91,

125
generative manner in programming, 4, 10, 19
generative model, 4, 5, 19, 60, 88
generative-discriminative pair, 89–91
goal, see probabilistic goal
goal dependency graph, 93
goal-count pair, 54, 58

hidden Markov model, 3, 5, 19, 76, 95, 99, 122
Mealy-type —, 14
Moore-type —, 14

hindsight computation, 10, 12, 49, 66
hindsight probability, 49, 66

conditional —, 51, 108
HMM, see hidden Markov model
hyperparameter, 5, 31, 36, 64, 65, 76, 78–80

if-then statement (->), 1, 11
(ordered) iff-formula, 13, 16, 43
inclusion declaration, 19, 23, 113
incomplete data, 52, 53, 55, 75, 83
independence condition, 10, 19
independent and identically distributed (i.i.d.), 17,

95
infinite term, 17
infix probability, 130
inside probability, 45, 46, 49
installation, 24
inter-goal sharing, 97, 111
inverse temperature, 56, 57, 60, 64, 66, 79

increasing rate of —, 57
initial value of —, 57

junction tree, 108, 109

— algorithm, 108

Kullback-Leibler divergence, 76
kurtosis, 68

L-BFGS algorithm, 62, 89, 91, 92
Laplace smoothing, 53
lazy strategy (in linear tabling), 16
likelihood, 17, 52, 56, 58, 59
linear tabling, 5, 12, 16
list comprehension, 69
loading (the program), 19, 21, 22, 25, 60
local maximum, 56, 66, 100
logarithmic-scaled probability, 43, 61, 65
logical variable, 2, 9, 18
logistic regression, 88, 89

machine file, 96
MAP estimation, see maximum a posteriori estima-

tion
map function, 69, 119
MAR condition, see missing-at-random condition
marginal likelihood, 59, 75, 76, 83, 84

approximation of —, 76
estimated log —, 84, 87
exact log —, 86

master process, 95–97
master-slave model, 95
maximum a posteriori estimation, 6, 53, 55, 61, 64,

102
maximum likelihood estimation, 3, 6, 17, 52, 53, 64
MCMC sampling, 83
mean

arithmetic —, 68
geometric —, 68
harmonic —, 68

median, 68
memory area, 26

automatic expansion of —, 26
Mersenne Twister, 66
Metropolis-Hasting sampler, 84
missing value, 18
missing-at-random condition, 5, 18, 19
missing-data cell, 18, 73
missing-data mechanism, 18

ignorable —, 18
non-ignorable —, 18

ML estimation, see maximum likelihood estimation
MLE, see maximum likelihood estimation
mode, 68

probabilistic —, 68
model selection, 6, 59, 75, 115
modeling assumption, 11, 19
modeling part, 4, 9, 11, 59, 99, 122
MPI (message passing interface), 95
MPICH, 95
multi-valued switch declaration, 19, 20, 31, 34

naive Bayes classifier, 88, 119
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NB, see naive Bayes classifier
negation, 60
negation as failure, 17, 123
negative binomial distribution, 60
no-failure condition, 17, 19
noisy OR, 111

inhibition probability in —, 111, 112
non-probabilistic predicate, 4, 9
non-tabled predicate, 22

observation process, 18, 19
observed data, see observed goal, see observed goal
observed goal, 3, 52, 54, 58, 95, 99
occur check, 17
outside probability, 46, 49

parallel EM learning, 8
parameter, 2, 5, 6, 9, 17, 21, 31, 34, 36, 38–40, 52–

54, 64, 79
fixed —, 36, 55
mean value of a —, 78, 79
point-estimated —, 6, 78–80

parameter distinctness condition, 18
parameter learning, 3, 5, 11, 12, 18, 19, 31, 52, 53,

100, 106, 123
partially observing situation, 3, 4, 52
PCFG, see probabilistic context-free grammar
penalty term, 63
prefix probability, 126, 128
prior distribution, 5, 31, 53, 59, 75, 83

uninformative —, 76
prior probability, 58
probabilistic choice, 1
probabilistic context-free grammar, 19, 76, 95, 103
probabilistic goal, 3, 11
probabilistic inference, 10
probabilistic model, 9
probabilistic parsing, 104
probabilistic predicate, 1, 9, 25
probability calculation, 10, 12, 43
processor-farm approach, 95
program area, 26
program transformation, 60
propositionalization, 12
pseudo count, 6, 22, 31, 35, 37–40, 53, 55, 63–65,

102
pseudo counts, 36

query, 19, 102

random seed, 66
random switch, see switch
reduction operation, 69
regularized conditional log-likelihood, 89
reranking, 65, 78, 80
restart, 55, 56, 58, 66, 102

sampling, 2, 10, 11, 27, 42
sampling execution, 11, 12, 14, 26, 31, 42, 99
SCC, see strongly connected component

skewness, 68
slave process, 95–97
solution table, 12, 16, 61

automatic cleaning of —, 61, 62
sorting, 71
spy point, 27
standard deviation, 68
standard error of the mean, 68
statistics on probabilistic inferences, 59
steepest descent algorithm, 63, 89
steepest descent method, 91, 92
strongly connected component, 93
sub-explanation, 13, 43
subgoal, 13

encoded —, 44
substructure sharing, 13, 16
supervised learning, 52
switch, 1, 9, 31, 34, 36–38, 40

default distribution of a —, 21, 35, 63
default pseudo counts of a —, 35, 36, 63
definition of a — for backtrackable sampling

execution, 41
definition of a — for explanation search, 13, 31
definition of a — for sampling execution, 11,

31
hyperparameter of a —, see hyperparameter
name of a —, 9, 31
outcome of a —, 9, 31
outcome space of a —, 1, 9, 20, 38–40

— that dynamically changes, 20
parameter of a —, see parameter
pseudo count of a —, see pseudo count
registration of a —, 6, 32, 35, 37

switch information, 37–40
switch instance, 2, 5, 6, 9, 12, 43

encoded —, 44

table area, 26, 61
table declaration, 19, 22
tabled predicate, 22
tabling, 9, 12, 13
test distribution, 76, 77, 83
the estimated log marginal liklihood, 58
trace mode, 14, 27
trail stack, 26
training data, 52

underflow problem, 47, 61, 65
uniform distribution, 2, 34, 35, 63
uniqueness condition, 5, 19
utility part, 4, 9, 19, 100, 106, 120, 123

variance, 68
variational Bayesian EM algorithm, 64, 76, 79

expectation step of —, 76
initialization step of —, 76
maximization step of —, 76
repeated runs of —, 65

variational Bayesian learning, 6
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variational Bayesian Viterbi training algorithm, 77
initialization step of —, 77
maximization step of —, 77
repeated runs of —, 65
Viterbi-computation step of —, 77

variational Bayesian VT algorithm, 65
variational free energy, 58, 59, 76, 79

— for Viterbi training, 77
VB learning, see variational Bayesian learning
VB-EM algorithm, see variational Bayesian EM al-

gorithm
VB-VT algorithm, see variational Bayesian Viterbi

training algorithm
Viterbi computation, 6, 7, 10, 12, 46, 61, 75

log-scaled —, 61
N- —, see top-N Viterbi computation
top-N —, 47, 80

Viterbi explanation, 46, 47, 61, 80, 101
top-N —, 47, 78

Viterbi probability, 46, 61, 101
top-N —, 47

Viterbi training, 52, 56
Viterbi training algorithm, 53

initialization step of —, 53
maximization step of —, 53
variational Bayesian —, see variational Bayesian

Viterbi training algorithm
Viterbi-computation step of —, 53

Viterbi tree, 48
VT algorithm, see Viterbi training algorithm

warning message, 66
work pool, 95, 97
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Programming Index

.out (file suffix), 25

.psm (file suffix), 25
??*/1, 28
??+/1, 28
??-/1, 29
??/1, 28
??</1, 28
??>/1, 28

agglist/2, 69
amodelist/2, 68
ave_marg_mcmc/2, 86
ave_marg_mcmc/3, 86
ave_marg_mcmc/4, 86
ave_marg_mcmc/5, 86
avg_shared (statistic), 58
avglist/2, 68

b_msw/2, 41
bic (statistic), 58
bigarray_get/3, 72
bigarray_length/2, 72
bigarray_put/3, 72
bigarray_to_list/2, 72

catch/3 (B-Prolog built-in), 30
chindsight/1, 51, 74
chindsight/2, 51
chindsight/3, 51
chindsight_agg/2, 51, 108–110
chindsight_agg/3, 51
clean_table (execution flag), 61, 62
compile (prism/2 option), 25
compile/1 (B-Prolog built-in), 25
consult (prism/2 option), 15, 25, 27
count/2, 54
countlist/2, 71
countlist/3, 70
crf_enable (execution flag), 62
crf_golden_b (execution flag), 62
crf_init (execution flag), 62
crf_learn/1, 92, 125
crf_learn_mode (execution flag), 62, 125
crf_learn_mode/1 (execution flag), 92
crf_learning_rate (execution flag), 63
crf_ls_c1 (execution flag), 63
crf_ls_rho (execution flag), 63
crf_penalty (execution flag), 63, 125
crf_prob/1, 126
crf_prob/2, 92
crf_viterbi/1, 92, 126
crf_viterbig/1, 126
cs (statistic), 58
custom_sort/3, 71
custom_sort/5, 71

daem (execution flag), 57, 63, 82
data/1, 20, 117
data_source (execution flag), 54, 63
default (built-in distribution), 33
default (built-in pseudo counts), 34
default_sw (execution flag), 34, 35, 63
default_sw_a (execution flag), 7, 32, 36, 63, 81
default_sw_d (execution flag), 6, 35, 55, 63
disable_write_call (declaration), 23, 29

egrouplist/3, 70
em_progress (execution flag), 63
em_time (statistic), 58
epsilon (execution flag), 52, 64, 82
error_on_cycle (execution flag), 64, 94, 126,

128, 130
expand_probs/2, 33
expand_probs/3, 33
expand_pseudo_counts/2, 33
expand_pseudo_counts/3, 33
expand_values/2, 21, 32
explicit_empty_expls (execution flag), 43, 47,

64

f_geometric (built-in distribution), 33, 34
f_geometric (built-in pseudo counts), 34
failure (Prolog atom used in learn/1), 18, 60,

125
failure/0, 17, 30, 60, 123
filter/3, 71
filter/4, 71
filter_not/3, 71
filter_not/4, 71
fix_init_order (execution flag), 64
fix_sw/1, 36, 106
fix_sw/2, 22, 37
fix_sw_a/1, 37
fix_sw_a/2, 22, 37
fix_sw_d/1, 37
fix_sw_d/2, 22, 37
foc/2, 60
force_gc (execution flag), 64
foreach (B-Prolog built-in), 69
free_energy (statistic), 58

get_goal_counts/1, 58
get_goals/1, 58
get_prism_flag/2, 26, 62
get_reg_sw/1, 32
get_reg_sw_list/1, 32
get_samples/3, 4, 42, 100, 106, 124
get_samples_c/3, 42
get_samples_c/4, 42, 124
get_samples_c/5, 42
get_subgoal_hashtable/1, 44
get_sw/1, 38
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get_sw/2, 38
get_sw/4, 38
get_sw/5, 38
get_sw_a/1, 39
get_sw_a/2, 39
get_sw_a/4, 39
get_sw_a/5, 39
get_sw_d/1, 39
get_sw_d/2, 38
get_sw_d/4, 39
get_sw_d/5, 39
get_sw_pa/1, 40
get_sw_pa/2, 39
get_sw_pa/5, 40
get_sw_pa/6, 40
get_sw_pd/1, 39
get_sw_pd/2, 39
get_sw_pd/5, 39
get_sw_pd/6, 39
get_switch_hashtable/1, 44
get_values/2, 20, 34
get_values0/2, 34
get_values1/2, 11, 31, 34
get_version/1, 25
gmeanlist/2, 68
goal_counts (statistic), 58
goals (statistic), 58
graph_statistics/0, 57
graph_statistics/2, 57
grouplist/4, 70

halt/0 (B-Prolog built-in), 25
hindsight/1, 49, 50, 74, 101
hindsight/2, 49, 51, 52
hindsight/3, 26, 49
hindsight_agg/2, 50, 51
hindsight_agg/3, 51
hmeanlist/2, 68

include (declaration), 23, 25
infer_calc_time (statistic), 58
infer_search_time (statistic), 58
infer_statistics/0, 57
infer_statistics/2, 57
infer_time (statistic), 58
init (execution flag), 64, 66
initialize_table/0 (B-Prolog built-in), 61
is_bigarray/1, 72
is_prob_pred/1, 27
is_prob_pred/2, 27
is_tabled_pred/1, 27
is_tabled_pred/2, 27
itemp_init (execution flag), 57, 64, 82
itemp_rate (execution flag), 57, 64, 82

kurtlist/2, 68
kurtlistp/2, 68

lambda (statistic), 58

learn/0, 26, 54, 79, 115, 116, 118
learn/1, 3, 4, 7, 26, 29, 30, 54, 55, 60, 79, 100,

106, 124
learn_b/0, 79
learn_b/1, 79
learn_h/0, 79
learn_h/1, 79
learn_message (execution flag), 64
learn_mode (execution flag), 7, 56, 64, 79–82
learn_p/0, 79
learn_p/1, 79
learn_search_time (statistic), 58
learn_statistics/0, 57
learn_statistics/2, 57, 59, 115, 116
learn_time (statistic), 58
length/2 (B-Prolog built-in), 68
lin_learn/1, 94, 128, 129
lin_prob/1, 94, 127, 128
lin_prob/2, 94
lin_probefi/1, 94
lin_probefi/2, 94
lin_probfi/1, 94
lin_probfi/2, 94, 127
list_to_bigarray/2, 72
load (prism/2 option), 25
load/1 (B-Prolog built-in), 25
load_clauses/3, 72
load_csv/2, 73
load_csv/3, 73
log_likelihood (statistic), 58
log_post (statistic), 58
log_prior (statistic), 58
log_prob/1, 43, 74
log_prob/2, 43
log_scale (execution flag), 47, 61, 65, 126

MACHINES (environment variable), 8, 96
maplist/3, 69
maplist/5, 16, 69
maplist/7, 69
maplist_func/2, 69
maplist_func/3, 69
maplist_func/4, 69
maplist_math/3, 69
maplist_math/4, 70
marg_exact/1, 86
marg_exact/2, 86
marg_mcmc/0, 87
marg_mcmc/1, 87
marg_mcmc_full/1, 85
marg_mcmc_full/2, 85
marg_mcmc_full/3, 85
max_iterate (execution flag), 65, 82
maxlist/2, 68
mcmc/1, 87
mcmc/1-2, 65
mcmc/2, 87
mcmc_b (execution flag), 65, 86, 87
mcmc_e (execution flag), 65, 86, 87
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mcmc_exact_time (statistic), 58
mcmc_marg_time (statistic), 58
mcmc_message (execution flag), 65
mcmc_pred_time (statistic), 58
mcmc_progress (execution flag), 65
mcmc_s (execution flag), 65, 86, 87
mcmc_sample_time (statistic), 58
mcmc_statistics/0, 57
mcmc_statistics/2, 57
meanlist/2, 68
medianlist/2, 68
member/1 (B-Prolog built-in), 31
minlist/2, 68
modelist/2, 68
mpprism (system command/file), 8, 24, 96
msw/2, 1, 9–11, 13, 27, 31, 43, 99

n_crf_viterbig/2, 126
n_viterbi/2, 47
n_viterbi/3, 47
n_viterbif/2, 47, 80
n_viterbif/3, 47
n_viterbig/2, 47
n_viterbig/3, 47
n_viterbit/2, 48, 105
n_viterbit/3, 48
new_bigarray/2, 72
noisy_u (built-in distribution), 33
nonlin_prob/1, 94, 131
nonlin_prob/2, 94
nospy/0 (B-Prolog built-in), 27
nospy/1 (B-Prolog built-in), 27
not/1, 17, 60, 123
not/1 (B-Prolog built-in), 17
notrace/0, 27
NPROCS (environment variable), 8, 96
num_goal_nodes (statistic), 58
num_iterations (statistic), 58
num_nodes (statistic), 58
num_parameters (statistic), 58
num_subgraphs (statistic), 58
num_switch_nodes (statistic), 58
num_switch_values (statistic), 58
num_switches (statistic), 58
number_sort/2, 71
nv (prism/2 option), 25

p_not_table (declaration), 22, 103, 113
p_table (declaration), 22
parse_atom/2 (B-Prolog built-in), 30
pmodelist/2, 68
predict_mcmc/2, 87
predict_mcmc/3, 87
predict_mcmc_full/3, 86
predict_mcmc_full/4, 86
predict_mcmc_full/5, 86
print_graph/1, 44, 47
print_graph/2, 44, 47
print_graph/3, 45

print_tree/1, 48
print_tree/2, 48
print_tree/3, 48
print_version/0, 25
prism (system command/file), 1, 24–26, 29, 99,

100
prism.bat (system command/file), 26
prism/1, 1, 2, 17, 25, 99, 100, 107
prism/2, 25
prism_help/0, 26
prism_main/0, 8, 29, 97
prism_main/1, 8, 30, 97, 102
PRISM_MPIRUN_OPTS (environment variable), 96
prism_statistics/0, 57
prism_statistics/2, 57
prismn/1, 17, 60, 123
prismn/2, 60
prob/1, 3, 43, 74, 94, 104, 113, 124
prob/2, 26, 43, 117, 124
probef/1, 44
probef/2, 44
probefi/1, 46
probefi/2, 46
probefio/1, 46
probefio/2, 46
probefo/1, 46
probefo/2, 46
probefv/1, 46
probefv/2, 46
probf/1, 12, 27, 43, 44, 74, 94, 100, 113, 127
probf/2, 12, 13, 22, 26, 27, 43, 64
probfi/1, 27, 46, 74
probfi/2, 27, 45
probfio/1, 46, 74
probfio/2, 46
probfo/1, 27, 46, 74
probfo/2, 27, 46
probfv/1, 27, 46, 74
probfv/2, 27, 46

random (built-in distribution), 33
random_gaussian/1, 67
random_gaussian/3, 67
random_get_seed/1, 66
random_group/3, 68
random_int/2, 67
random_int/3, 67
random_int_excl/3, 67
random_int_incl/3, 67
random_multiselect/3, 68
random_select/2, 67
random_select/3, 67
random_set_seed/0, 66
random_set_seed/1, 29, 30, 67
random_shuffle/2, 68
random_uniform/1, 67
random_uniform/2, 67
random_uniform/3, 67
reducelist/7, 70
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reducelist_func/4, 70
reducelist_math/4, 70
rerank (execution flag), 65, 80, 81
reset_hparams (execution flag), 65, 82
reset_prism_flags/0, 62
restart (execution flag), 56, 66, 82
restore_sw/0, 40
restore_sw/1, 40
restore_sw_a/0, 41
restore_sw_a/1, 40
restore_sw_d/0, 40
restore_sw_d/1, 40
restore_sw_pa/0, 41
restore_sw_pa/2, 41
restore_sw_pd/0, 40
restore_sw_pd/2, 40
rmodelist/2, 68

sample/1, 2, 11, 26, 42, 74, 100, 123, 124
save_clauses/3, 72
save_csv/2, 74
save_csv/3, 74
save_sw/0, 40, 97
save_sw/1, 40, 97
save_sw_a/0, 40
save_sw_a/1, 40
save_sw_d/0, 40
save_sw_d/1, 40
save_sw_pa/0, 40
save_sw_pa/2, 40
save_sw_pd/0, 40
save_sw_pd/2, 40
Saved_SW (system command/file), 40
Saved_SW_A (system command/file), 40, 41
Saved_SW_D (system command/file), 40
search_progress (execution flag), 66
semlist/2, 68
semlistp/2, 68
set_prism_flag/2, 6, 26, 35, 55, 61, 62, 102
set_sw/1, 34
set_sw/2, 2, 4, 22, 26, 31, 34, 35, 100, 104, 107,

116, 123
set_sw_a/1, 36
set_sw_a/2, 22, 31, 36
set_sw_a_all/0, 36
set_sw_a_all/1, 36
set_sw_a_all/2, 36
set_sw_all/0, 35
set_sw_all/1, 35
set_sw_all/2, 35
set_sw_all_a/0, 36
set_sw_all_a/1, 36
set_sw_all_a/2, 36
set_sw_all_d/0, 35
set_sw_all_d/1, 35
set_sw_all_d/2, 35, 55, 102
set_sw_d/1, 35
set_sw_d/2, 22, 31, 35
set_sw_d_all/0, 35

set_sw_d_all/1, 35
set_sw_d_all/2, 35
show_goals/0, 58, 107
show_itemp (execution flag), 57, 66
show_prism_flags/0, 62
show_prob_preds/0, 27
show_reg_sw/0, 32
show_sw/0, 2, 3, 37, 54, 55, 100, 107, 123, 125,

126
show_sw/1, 37
show_sw_a/0, 38
show_sw_a/1, 38
show_sw_d/0, 37
show_sw_d/1, 37
show_sw_pa/0, 38
show_sw_pa/1, 38
show_sw_pd/0, 6, 38
show_sw_pd/1, 38
show_tabled_preds/0, 27
show_values/0, 27
skewlist/2, 68
skewlistp/2, 68
soft_msw/2, 41
sort_hindsight (execution flag), 51, 52, 66
splitlist/4, 70
spy/1, 27
statistics/0 (B-Prolog built-in), 26
std_ratio (execution flag), 33, 64, 66, 80, 82
stdlist/2, 68
stdlistp/2, 68
strip_switches/2, 43
sublist/2, 70
sublist/4, 70
sumlist/2 (B-Prolog built-in), 68

table (B-Prolog built-in), 22
temp (system command/file), 60
throw/1 (B-Prolog built-in), 30
times/2, 55
trace/0, 15, 27

unfix_sw/1, 37, 106
unfix_sw_a/1, 37
unfix_sw_d/1, 37
uniform (built-in distribution), 33, 34
uniform (built-in pseudo counts), 33
upprism (system command/file), 8, 24, 29, 30, 60,

102

v (prism/2 option), 25
values/2, 1, 11, 20, 21, 31, 99, 103, 106, 116,

117, 122
values/3, 21, 22, 32
varlist/2, 68
varlistp/2, 68
verb (execution flag), 66, 97
viterbi/1, 46, 74
viterbi/2, 46
viterbi_mode (execution flag), 7, 66, 80–82
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viterbi_subgoals/2, 16, 47
viterbi_switches/2, 47
viterbif/1, 5, 46, 48, 74, 80, 101
viterbif/3, 16, 22, 26, 47
viterbif_h/1, 80
viterbif_h/3, 80
viterbif_p/1, 80
viterbif_p/3, 80
viterbig/1, 47, 74
viterbig/2, 47
viterbig/3, 47, 86
viterbit/1, 48, 104
viterbit/2, 104
viterbit/3, 48

warn (execution flag), 66
write_call/1, 23, 28, 29, 66
write_call/2, 23, 28, 29, 66
write_call_events (execution flag), 28, 29, 66
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Example Index

AaBb gene model, 115
ABO gene model, 114
agree/1, 17, 60
agreement program, 17, 60
alarm network program, 105–108

— using noisy OR, 111
alarm_learn/1, 107
Asia network program

junction-tree version of —, 110–111
naive version of —, 108–109

assert_evid/1, 110

Bayesian network program, 105–114
blood type, 2
blood type program, 2, 6–7, 10–12, 51, 52

AaBb —, 114–116
bloodtype/1, 2, 10–12, 115
BN2Prism, 111

car evaluation program, 92
choose/3, 120
choose_noisy_or/4, 112
choose_noisy_or/6, 112
congressional voting records dataset, 119
cpt/3, 110
cpt/4, 110
cpt_al/3, 111, 112

dieting professor program, 122–125
direction program, 1, 27, 37, 42, 43, 54, 55, 58
direction/1, 1, 2, 42, 43, 54, 55

failure/1, 123

genotype, 2
genotype/2, 2, 10, 11
genotype/3, 115

Hardy-Weinberg’s law, 2
HMM program, 3–5, 7, 8, 13, 14, 16, 42–44, 49, 51,

57, 99–103
— with an auxiliary argument, 15
— with two state variables, 49
constrained —, 122
Mealy-type —, 14
Moore-type —, 14

hmm/1, 3–5, 13, 43, 44, 49, 99
hmm/2, 15
hmm/4, 3, 13, 43, 44, 49, 99
hmm/5, 15
hmm_learn/1, 4, 8, 100

incl_or/3, 108

linear-chain CRF program, 125–126
load_data_file/1, 121

msg_i_ j predicates, 110

nbayes/2, 120
nbayes/3, 120
node_i predicates, 110
noisy_or/3, 112
nonterminal/1, 103

PCFG program, 97, 103–105
pcfg/1, 103, 104
pcfg/2, 103, 104
phenotype, 2
proj/2, 103

random mating, 2, 3

separate_data/2, 121
set_params/0, 4, 100, 108
success/0, 17, 123
success/1, 123

tennis program, 116–117

UCI machine learning repository, 91, 119
unification program, 117–119

viterbi_states/2, 16
votes_cv/1, 120, 121
votes_cv/4, 120

world/1, 110
world/2, 78, 106, 108, 112
world/4, 108
world/6, 78, 106, 108, 111, 112
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