An Introduction to
PRISM

® \What is PRISM?
acronym of PRogramming In Statistical Viodeling
programming language for symbolic-statistical modeling
downloadable at http://mi.cs.titech.ac.jp/prism/

® Modeling targets
complex phenomena governed by rules and probabilities
gene-inheritance, stochastic NLP, consumer-behavior,...
® Features
programs as statistical models

probabilities and most likely paths computed
parameter learning by the EM algorithm

® See [Sato '01] for theoretical background
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Development of PRISM
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Basic idea

e PRISM = Prolog + probability +
parameter learning

(sampling)

T&ts

(search)

Clauses
If-then,recursion

program ming/

Simple events by dice throwing
with statistical parameters 0

Qlearning of 0
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An example of PRISM
modeling

PPPPP




Gene Inheritance

father mother




Program DB = rules +
distribution P. over msws

btype(X) :- pg_table(X, [Gf,Gm]) ,gtype(Gf,Gm) .

pg_table(X,GT) :-
((X=a;X=b), (GT=[X,0] ;GT=[0,X] ;GT=[X,X])
:X=0,GT=[o0,0]
:X=ab, (GT=[a,b] ;GT=[b,al)).

gtype (Gf,Gm) : - msw(abo,Gf) ,mws(abo,Gm) .

Pr(msw(abo,a)) = 0 (abo,a) = 0.3

= Ppp(btype(a)) = 0.4
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Observation Explanation
search Prob. computation

7 observation (top-event)
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Three modes of execution

| ?- prob(btype(a)).
The probability of btype(a) is: 0.4

| ?- probf(btype(a)).
btype(a) <=> gtype(a,a) v gtype(a,o0) v gtype(o,a)
gtype(a,a) <=> msw(gene,a) & msw(gene,a)
gtype(a,0) <=> msw(gene,a) & msw(gene,0)
gtype(o,a) <=> msw(gene,0) & msw(gene,a)

| ?- sample(btype(X)).
X =a?




Learning parameters

| 7- Gs =[btype(a),btype(0),btype(ab),btype(0),...],learn(Gs).

Finished learning
Number of iterations: 5.
Final likelihood:-12.800480
Total learning time: 0.0 seconds.
All solution search time: 0.0 seconds.

| ?- show_sw(abo).
Switch abo: a (0.292380) b (0.163031) o (0.544588)
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Statistical modeling it

500 samples

btype(a) :195
btype(b) : 97

btype(o) :159 Learned parameters
btype(ab): 49 prob(msw(abo,a))=0.283

prob(msw(abo,b))=0.158

_ prob(msw(abo,0))=0.558
Calculation by the model

prob(btype(a)) =0.397

prob(btype(b)) =0.201 e
brob(btype(oy) =0.311 \ Fitting test
prob(btype(ab))=0.089 Zzl = 0.65

(accepted, level=0.05)
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Declarative semantics
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Parameterized logic
programs

® Program DB = F' U R
Prob. mea_sure over 'Fhe
R definite clauses (rules) ametered with g
F' probabilistic facts with Pr(- | 8)

o Prob. measure over the
Herbrand interpretations of DB

Pr(-]6) is extended by DB to Ppg(- | 6)
Ppi(- | 0) is the denotation of DB

6 is set manually or learned from data
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Distribution semantics (1)
[Sato 95]

e Ground atom = random variable taking on{1,0}
e Program represents a set of ground clauses

DB FUR
{Al,AQ, .. } U {Bl +— Whq,.. }
e \Why semantic difficulty?
Infinite symbols Infinite Herbrand universe
Recursion Infinitely many random variables

D-semantics allows for recursion and infinite domains,
and unconditionally definable (even for looping
programs)
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Distribution semantics (2)

e Assume
Pp(A1 = 21, Ax = x5, A3 = 23,... | 0)
IS givenover F' = {A1, As, A3, ...} (; =0,1)
e Sample Pr and get (A1 = 1,4, =0,43=1,...)
S Pickup F' = {A;, As,...} asetoftrue facts
L The least Herbrand model M(F’ U R) is defined
& Every ground atom has a truth value depending on
F" and hence considered as a random variable
S Ppp(A1 =21,B1 =y1,A> = 22,Bo = yo,... | 6)
IS defined



Distribution semantics (3)

e Ppp(-|6)is ac-additive probability measure on
2 = {w | W = <Zl,22,. >aZZ ~ {07 1}}
where o corresponds to an Herbrand interpretation

e ¥ closed formula: Ppp(y) = Ppp({w | w

— ©})

Globally consistent probs are assigned to all closed

formulas

e Continuity by c-additivity

PDB(ELGCQO(ZC)) = ||mn_>oo PDB(QO(t]_) V..

PRISM
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Note

e Pr(-|86) is constructed from finite distributions
P (z1,...,2, | 0) (n=1,2,...)
(: Z$n+1 Pén-l_l)(ml, ey Ly Tnd1 | 9))

e Prob. mass distributes only over the set of possible
least H-models {M(F'UR) | F' C F}

e Distribution semantics covers logic programming,
discrete Bayesian net, HMMs, PCFGs,...

e Definable for (unlike other approaches:-)
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Tabled search
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Explanation graphs

e We compute probabilities using explanation
graphs which are a compact representation of
among events.

e In an explanation graph, subgraphs are partially
ordered and by super-graphs.

e Sharing of subgraphs causes sharing of
computations by

e Thus efficient computation is achievable.
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Computation sharing

e E-graph represents
all explanations for G G: msw—msw— Ty \
G < (msw Amsw A 71) 7, —mow s 7 3
V(1o Amsw A 71) /
V(msw A 13 A 7o) msw—s T3 — T,

71 < (msw A msw) _
V(T3 A T4) 7 -

o mSW—>msw\
P(G) = P(msw)P(msw)P(m1) < Ty— 2'4/
+P(72)P(msw)P(71) :

—-P(mSW)P(Tg,)P(\TQ)

P(r1) = P(msw)P(msw) a

+P(T3)P(T4) : ‘\—\"/




Tabling

e An explanation graph for G is obtainable by searching
for all explanations of G using

e Tabling remembers successful goals and reuses them to
avoid recomputation of the same goal.

e There are two ways of tabling in logic programming;
Suspension & resumption of multiple processes

based on search, difficult to implement (see XSB)
Single process with iterative search
Based on , easy to implement (see B-Prolog)

Adopted in PRISM
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Linear Tabling (zhou o4

e Advantages
easy to implement
overhead-free
space efficient
cut is easy to handle

Top-down left-right execution

l

Pioneer A
(first occurrence) l

table e Disadvantage
l iterative computation
Follower  A'... e Optimizations
(looping subgoal) L
subgoal optimization

e A’ is a descendant of A but
identical to A.
e A’ immediately fails after consuming
existing answers in the table

semi-naive
optimization possible
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Learning parameters
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000
000
o0
[
g EM [kKemeya 00]
e To learn parameters in a program, we apply ML (maximum
likelihood) estimation to observed data (top-goal G)
e Usually we do not know which of G’s explanation is true one Gis
an incomplete data Use the EM algorithm.
e PRISM uses the which is a generic EM

algorithm for PRISM programs unlike specialized ones such as the
BW (Baum-Welch) algorithm and the 10 (Inside-Outside) algorithm.

gEM is derived from distribution semantics.

gEM runs on explanation graphs in the manner of dynamic
programming.

gEM achieves the same time complexity as BW and 10 when

OLDT search [Tamaki & Sato 86] is used for explanation graph
construction.
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Search-and-learn schema
with tabulation

e Tabled search + the graphical EM algorithm
= efficient parameter learning

Tabled @

gEM
search 00
O"O\ -
Observed atoms %8270 Explanation

graphs
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EM learning in PRISM

e Old approach:
Design a new EM algorithm for each application

e Our approach:
Write a PRISM program for each application

specify HMMs

» Baum-Welch
by proaram
e ram. 8 rElplEEL » Inside-Outside
by proaram
specify BNs EM
b)F/) pr algorithm »  EM for BN

New EM
algorithm for
your model

specify your
model

by program

v
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Time complexity of geM | 2
+ OLDT

e Total time = OLDT search time + iterations * time/iteration
e O(OLDT) = O(explanation graphs) = O(updata-time/iteration)
e Equal to existing (specialized) EM algorithms

HMMs

PCFGs

Singly connected
Bayesian net

Pseudo PCSGs

N = #symbols, #states, L=sentence length, T = #data, |V| = #nodes




Conditions for fast EM
learning

e Each observation has finitely many explanations:

comp(R)FG& E1 V...V E,
where E;, = msw; A ... A mswy,

e Exclusiveness of explanations:
Ppp(E; NE;j) =0, (1% 7)
e Unigueness of observable goals:
Ppp(Gi NGj) =0;(i # j) and > Ppp(Gi) =1
e Acyclicity:
o caller-callee relation is partial ordering

e Independence:
e atoms in an explanation are independent

PRISM




gEM vs. the Inside-Outside
algorithm (1)

e PCFG Is a CFG with probs assigned to rules
NP — N(0.3), NP — AdjN(0.3), NP — SNP(0.4)

e ATR corpus (size=10,995 min=2 ave.=10
max=49)

e PCFG: 860 rules (NT 173, POS 441)

e Parser used for explanation graph construction:
Generalized LR (Tomita) parser

PRISM



Comparing updating time
for sampled 100 sentences (ATR)
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gEM vs. the Inside-Outside
algorithm (2)

e EDR corpus (size=9,900 min=5 ave.=20 max=63)
e PCFG: 2,687 rules / 12,798 rules (CNF),
3*10"™8 parses/sentence at sentence length 20
6.7*107™19 at 38

e Parser used for explanation graph construction:
Generalized LR (Tomita) parser
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Comparing updating time
for sampled 100 sentences (EDR)
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PCFGs In PRISM

e Probabilistic LL(1) parser with O(L3)

target(pdcg,1).
values(vp,[[V],[v,np]D).

pdcg(L):- start_symbol(C), pdcg2([C].L,[]).
pdcg2([Wd|R],[Wd]|LO0],L2):- terminal(Wd), pdcg2(R,L0,L2).
pdcg2([A|R],[Wd|LO],L2):-

first(A,Wd),

msw(A,RHS),

pdcg2(RHS,[Wd|LO],L1), pdcg2(R,L1,L2).
pdcg2([],L1,L1).

e Parameter learning of PDCG form + ATR corpus
completes in 3 min by a PC (3.4Ghz,2GB)
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Exploring diverse modeling
and parameter learning

e Nalve Bayes

e Profile HMM

e Linkage analysis one report so far
e PCFGs (PDCG, PLC,PGLR(k))

¢ _IPSGS no report so far
e Graph grammars (HR, NLC)

e Shogi palyer

PPPPP




Negation and
probabilistic
constraint modeling

PPPPP




Fallure by constraints
[Sato 05]

e Generative models
e simulate how observations are generated
e no failure assumed (e.g.BNs,HMMs,PCFGSs)
e Complex models use constraints
e failure is inevitable (e.g.HPSGSs)
e Let’'s model probabilistic agreement in number

agree(A):-
msw(coin0,A),
msw(coinl,B),
A=B.

agree(A) succeeds only
when A=B. O.w. fails

PRISM



000
000
o0
[
The fgeEM algorithm
e Failure means loss of probability mass
gEM is not usable
Distribution is log-linear;
P(z | success,0) where P(success) = Zx:proof P(z | 9)

e EM learning of parameters is possible by
fgEM [Sato 04] = gEM [Kameya 00] + FAM [Cussens 01]
FAM computes average count of msws in a failed computation

Flmsw(z,v)|fail]
Dy (expr)=taiy L oB(expl | 0))0(msw(i,v) € expl)
Zx(expl)Zfail p(eXpl | 9)

fgEM requires

PRISM



Failure program

e A failure program is one that explicitly describes
how failure occurs.

agree(A):- failure:-

_ _ failure

msw(coin0,4), msw(coin0,A), = no output generated
msw(coinl,B), msw(coinl,B), - =not(3X agree(X))
A=B. ¥+A=B.

S—

e PRISM1.8 uses FOC to automatically derive a failure
program from the negation of a source program.

PRISM



FOC (first-order compiler)

e Full automatic program synthesis for logic programs with
negation [Sato 89]

e Compiled program DB*® positively computes the finite
failure of DB

If DBC is ,

failure = negation and

M(DB¢)= HB-M(DB)
M(DB) M(DB®)

The program terminates
for every ground goal

HB

PRISM



Negation elimination by
FOC

Source program DB,

even(0).
even(s(X)) :- not(even(X)).

Compiled program DB even

even(0).
even(s(A)):- closure_evenO(A,f0).
closure_even0(s(A), ):- even(A).

PRISM




Extension

e Original FOC = for non-probabilistic programs

e Extended for PRISM programs containing
negation

=3 X (msw(abo, X) A X = a)
= X msw(abo, X) A (X # a))

This transformation is meaning-preserving in view
of a new distribution semantics (not included in
slides)

PRISM



Constrained HMMs and
a dieting professor

® Constrained HMMs are an instance of p.S h,s
probabilistic constraint modeling. BN | s
B They are HMMs with constrains that 0 o~ 1

may fail. U U

Suppose a professor wishes to diet.
There are two restaurants RO and R1

He visits them and orders pizza or B Given: we have a list of
sandwich at RO, and hamburger or his successful records.
sandwich at R1, probabilstically. M Task: infer the failure

He records lunches like [s,s,h,p,s,h,s]. probability.

He tries to keep the total lunch calories
iIn a week < 4000.

Only successful records are kept.
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000
- - 000
Program for the dieting s
professor
.- not(success).
success:- success( ). DS h.s
success(L):- diet(L,r0,0,7). _. °
diet(L,R,C,N):-
N=>0,
msw(lunch(R),D), 9% order lunch
(R ==1r0, % pizza or sandwich
(D=p,C2isC+900; D =s, C2is C+400)
; R==rl, % hamburger or sandwich
(D=h,C2isC+400; D =s, C2is C+500) ),
L=[D|L2],
N2 is N-1,
msw(tr(R),R2), % next restaurant

diet(L2,R2,R2,N2).
diet([], ,C,0):- C < 4000. % calorie constraint must be met



Failure program by FOC

fallure:- closure_successO(f0).

closure_successO(A):- closure_chmmO(r0,0,7,A).
closure_chmmO(R,B,C,D):-

( C>0,
msw(tr(R),R2), msw(lunch(R),F),
( R¥==r0

- R==r0,
( ¥+F=p ; F=p, G is B+900,H is C-1, closure_chmmO(R2,G,H,D)),
( ¥+F=s ; F=s, |is B+400,J is C-1,closure_chmmO(R2,1,J,D))),
(R¥==r1
"R ==r1,
( ¥+F=h ; F=h, K is B+400,L is C-1,closure_chmmO(R2,K,L,D)),
( ¥+F=s ; F=s, M is B+500,N is C-1,closure_chmmO(R2,M,N,D)))
; C=<0),
( ¥+C=0 ; C=0, B>=4000).




fgEM learning

| ?- prismn(‘prof.psm’),set_sw,
generate _goals(500,Gs),learn(] |Gs]).
success([s,s,p,p,s,h,s])

......... 50..(Converged: -2905.412443514)
Finished learning

Number of iterations: 63

Total learning time: 0.2 seconds

All solution search time: 0.08 seconds

Switch lunch(r0): p (0.4014) s (0.5986)
Switch lunch(rl): h (0.5339)s (0.4661)
Switch tr(r0): r0 (0.7190) r1 (0.2810)

Switch tr(rl): rl (0.7236) 0 (0.2764)
M If failure is not assumed, the

estimated failure probability

. .
?- prob(failure). deteriorates to 0.0823.

The probability of failure is: 0.3448



Note

e Failure programs can be obtainable by other methods
Manual derivation
traces all failed paths of computation by inspection and
represent them as a program.
Negation technigue [Sato 89]
gives better code than FOC but there are restrictions on
applicability
e More complex probabilistic constraint modeling than
constrained HMMs is possible.
Finite PCFGs = PCFGs with failure constraints [Sato 04]

HPSGs = unification based constraint grammar, approximated
by PCFGs
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Future plan

e More sophisticated learning

Conditional random fields
DAEM
Better tabled search

e More computer power

Parallel search on a grid machine
64bit

e More applications

Graph grammars
User modeling
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