
PRISM

An introduction to 
PRISM

What is PRISM?
acronym of PRogramming In Statistical Modeling
programming language for symbolic-statistical modeling 
downloadable at http://mi.cs.titech.ac.jp/prism/

Modeling targets
complex phenomena governed by rules and probabilities
gene-inheritance, stochastic NLP, consumer-behavior,…

Features
programs as statistical models
probabilities and most likely paths computed
parameter learning by the EM algorithm

See [Sato ’01] for theoretical background
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PRISM = Prolog + probability +
parameter learning

TopTop--eventsevents

ClausesClauses
IfIf--then,recursionthen,recursion

Simple events by dice throwingSimple events by dice throwing
with statistical parameters with statistical parameters θθ

programmingprogramming EM learning of EM learning of θθ

(sampling)(sampling) (search)(search)

PRISMPRISM

Basic idea
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An example of PRISM 
modeling
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(parameter)

(computed prob.)

(basic random switch)

Program DB = rules +
distribution PF over msws
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Three modes of execution
Prob.  computation:
| ?- prob(btype(a)).
The probability of btype(a) is: 0.4

Search for explanation graph:
| ?- probf(btype(a)).

btype(a)    <=> gtype(a,a) v gtype(a,o) v gtype(o,a)
gtype(a,a)  <=> msw(gene,a) & msw(gene,a)
gtype(a,o)  <=> msw(gene,a) & msw(gene,o)
gtype(o,a)  <=> msw(gene,o) & msw(gene,a)

Sampling:
| ?- sample(btype(X)).
X = a?
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Learning parameters

| ?- Gs =[btype(a),btype(o),btype(ab),btype(o),…],learn(Gs).
.
Finished learning

Number of iterations: 5.
Final likelihood:-12.800480
Total learning time: 0.0 seconds.
All solution search time: 0.0 seconds.

| ?- show_sw(abo).
Switch abo:  a (0.292380)  b (0.163031)  o (0.544588)

observed data

learned parameters

parameter learning
by the EM algorithm
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Statistical modeling
500 samples

Fitting test

= 0.65
(accepted, level=0.05)

2χ
1

prob(btype(a)) =0.397
prob(btype(b)) =0.201
prob(btype(o)) =0.311
prob(btype(ab))=0.089

Calculation by the model

prob(msw(abo,a))=0.283
prob(msw(abo,b))=0.158
prob(msw(abo,o))=0.558

Learned parameters
EM learning

btype(a) :195
btype(b) : 97
btype(o) :159
btype(ab): 49
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Declarative semantics
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Parameterized logic 
programs

Program

definite clauses (rules)

probabilistic facts with

Distribution semantics

is extended by        to  

is the denotation of

is set manually or learned from data

Prob. measure over the 
Herbrand interpretations of F
parameterized with θ

Prob. measure over the 
Herbrand interpretations of DB
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Ground atom = random variable taking on
Program represents a set of ground clauses

Why semantic difficulty?
infinite symbols         infinite Herbrand universe
Recursion       infinitely many random variables
D-semantics allows for recursion and infinite domains, 
and unconditionally definable (even for looping 
programs)

Distribution semantics (1) 
[Sato 95]
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Distribution semantics (2)

Assume a parameterized basic distribution

is given over
Sample       and get
Pick up                                   a set of true facts
The least Herbrand model                      is defined
Every ground atom has a truth value depending on

and hence considered as a random variable

is defined
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Distribution semantics (3)

is a σ-additive probability measure on

where ω corresponds to an Herbrand interpretation

closed formula:

Globally consistent probs are assigned to all closed 
formulas

Continuity by σ-additivity
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Note
is constructed from finite distributions

Prob. mass distributes only over the set of possible 
least H-models       

Distribution semantics covers logic programming, 
discrete Bayesian net, HMMs, PCFGs,…

Definable for any DB (unlike other approaches:-)
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Tabled search
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We compute probabilities using explanation 
graphs which are a compact representation of 
statistical-logical dependency among events.
In an explanation graph, subgraphs are partially 
ordered and shared by super-graphs.
Sharing of subgraphs causes sharing of 
computations by dynamic programming.
Thus efficient computation is achievable.

Explanation graphs
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E-graph represents
all explanations for G

Computation sharing

:1τ

3τ 4τ
end

start end

msw
1τG:

1τ

3τ
2τ

2τ

msw

msw

msw

msw

msw

start

computation is shared!



PRISM

An explanation graph for G is obtainable by searching 
for all explanations of G using tabling.
Tabling remembers successful goals and reuses them to 
avoid recomputation of the same goal.
There are two ways of tabling in logic programming;

Suspension & resumption of multiple processes
based on OLDT search, difficult to implement (see XSB)

Single process with iterative search
Based on linear-tabling, easy to implement (see B-Prolog)
Adopted in PRISM

Tabling
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Linear Tabling [Zhou 04]

A...

A’...

...

Pioneer
(first occurrence)

Follower
(looping subgoal)

table

• A’ is a descendant of A but
identical to A.

• A’ immediately fails after consuming
existing answers in the table

Advantages
easy to implement
overhead-free
space efficient
cut is easy to handle

Disadvantage
iterative computation

Optimizations
subgoal optimization
semi-naïve        

optimization possible

Top-down left-right execution
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Learning parameters
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To learn parameters in a program, we apply ML (maximum 
likelihood) estimation to observed data (top-goal G)
Usually we do not know which of G’s explanation is true one       G is 
an incomplete data        Use the EM algorithm.
PRISM uses the gEM (graphical EM) algorithm which is a generic EM 
algorithm for PRISM programs unlike specialized ones such as the
BW (Baum-Welch) algorithm and the IO (Inside-Outside) algorithm.

gEM is derived from distribution semantics.
gEM runs on explanation graphs in the manner of dynamic 
programming.
gEM achieves the same time complexity as BW and IO when
OLDT search [Tamaki & Sato 86] is used for explanation graph 
construction.

gEM [Kemeya 00]
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Search-and-learn schema
with tabulation

Tabled search + the graphical EM algorithm
= efficient parameter learning

Tabled
search

Explanation 
graphs

Observed atoms

gEM
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EM learning in PRISM
Old approach: 

Design a new EM algorithm for each application
Our approach:

Write a PRISM program for each application

specify HMMs
by program Baum-Welch

specify PCFGs
by program Inside-Outside

specify BNs
by program EM for BN

specify your
model

by program

New EM 
algorithm for 
your model

graphical

EM
algorithm
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Time complexity of gEM
+ OLDT

Total time = OLDT search time + iterations * time/iteration
O(OLDT)    O(explanation graphs) = O(updata-time/iteration)
Equal to existing (specialized) EM algorithms

[Charniak & Carroll 94]

[Castillo et al. 97]

Inside-Outside

Baum-Welch

Specialized EM

Pseudo PCSGs

Singly connected 
Bayesian net

PCFGs

HMMs

gEMOLDT

)( 2LTNO

)( 33 TLNO

)( TVO

)( 34 TLNO

)( 2LTNO

)( 33 TLNO

)( TVO

)( 34 TLNO
N = #symbols, #states, L=sentence length, T = #data, |V| = #nodes

≥
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Conditions for fast EM 
learning

Each observation has finitely many explanations:

Exclusiveness of explanations:

Uniqueness of observable goals:

Acyclicity:
caller-callee relation is partial ordering

Independence:
atoms in an explanation are independent
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gEM vs. the Inside-Outside 
algorithm (1)

PCFG is a CFG with probs assigned to rules

ATR corpus (size=10,995 min=2 ave.=10 
max=49)

PCFG: 860 rules (NT 173, POS 441) 

Parser used for explanation graph construction: 
Generalized LR (Tomita) parser

gEM is 850 times faster than IO per iteration
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Comparing updating time
for sampled 100 sentences (ATR)

time per iteration

sentence length

850 : 1
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EDR corpus (size=9,900 min=5 ave.=20 max=63)

PCFG: 2,687 rules / 12,798 rules (CNF), 

3*10^8  parses/sentence at sentence length 20 

6.7*10^19 at 38

Parser used for explanation graph construction: 
Generalized LR (Tomita) parser

gEM is 1300 times faster than IO per iteration

gEM vs. the Inside-Outside 
algorithm (2)
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Comparing updating time
for sampled 100 sentences (EDR)

1,300 : 1

time per iteration

sentence length
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PCFGs in PRISM
Probabilistic LL(1) parser with

Parameter learning of PDCG form + ATR corpus 
completes in 3 min by a PC (3.4Ghz,2GB)

target(pdcg,1).                  % we observe pdcg([boys,run]),…
values(vp,[[v],[v,np]]).       % vp has two rules {vp->v, vp->v np}
… % one of {msw(vp,[v]), msw(vp,[v,np])}

% is probabilistically chosen

pdcg(L):- start_symbol(C), pdcg2([C],L,[]).
pdcg2([Wd|R],[Wd|L0],L2):- terminal(Wd), pdcg2(R,L0,L2).
pdcg2([A|R],[Wd|L0],L2):-

first(A,Wd),                    % Wd is in first(A)
msw(A,RHS),                  % probabilistic choice
pdcg2(RHS,[Wd|L0],L1), pdcg2(R,L1,L2).

pdcg2([],L1,L1). Meta-interpreter
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Naïve Bayes
Profile HMM
Linkage analysis
PCFGs (PDCG, PLC,PGLR(k))
HPSGs
Graph grammars (HR, NLC)
Shogi palyer

Exploring diverse modeling 
and parameter learning

one report so far

no report so far
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Negation and
probabilistic 

constraint modeling
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Failure by constraints
[Sato 05]

Generative models
simulate how observations are generated
no failure assumed (e.g.BNs,HMMs,PCFGs)

Complex models use constraints
failure is inevitable (e.g.HPSGs)
Let’s model probabilistic agreement in number

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

agree(A) succeeds only 
when A=B. O.w. fails
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The fgEM algorithm
Failure means loss of probability mass

gEM is not usable
Distribution is log-linear; 

EM learning of parameters is possible by fgEM
fgEM [Sato 04] = gEM [Kameya 00] + FAM [Cussens 01]

FAM computes average count of msws in a failed computation

fgEM requires a failure program
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A failure program is one that explicitly describes 
how failure occurs.

PRISM1.8 uses FOC to automatically derive a failure 
program from the negation of a source program.

Failure program

failure
= no output generated
= not(∃X agree(X))

failure:-
msw(coin0,A),
msw(coin1,B),
¥+A=B.

failure:-
msw(coin0,A),
msw(coin1,B),
¥+A=B.

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.

agree(A):-
msw(coin0,A),
msw(coin1,B),
A=B.
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FOC (first-order compiler)
Full automatic program synthesis for logic programs with 
negation [Sato 89]

Compiled program DBc positively computes the finite 
failure of DB

M(DB) M(DBc)

HB

If DBc is terminating,
failure = negation and
M(DBc)= HB-M(DB)

The program terminates 
for every ground goal
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Negation elimination by 
FOC

even(0).
even(s(X)) :- not(even(X)).

even(0).
even(s(A)):- closure_even0(A,f0).
closure_even0(s(A),_):- even(A).

Source program DBeven

Compiled program DBc
even
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Extension
Original FOC = for non-probabilistic programs
Extended for PRISM programs containing 
negation

This transformation is meaning-preserving in view 
of a new distribution semantics (not included in 
slides)
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Constrained HMMs and
a dieting professor

R0
R1

p,s h,s

Suppose a professor wishes to diet.
There are two restaurants R0 and R1
He visits them and orders pizza or 
sandwich at R0, and hamburger or 
sandwich at R1, probabilstically.
He records lunches like [s,s,h,p,s,h,s].
He tries to keep the total lunch calories 
in a week < 4000.
Only successful records are kept.

Given: we have a list of   
his successful records.

Task: infer the failure 
probability.

Constrained HMMs are an instance of 
probabilistic constraint modeling.
They are HMMs with constrains that 
may fail.
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failure:- not(success).
success:- success(_).
success(L):- diet(L,r0,0,7).

diet(L,R,C,N):-
N>0,
msw(lunch(R),D),   % order lunch
( R == r0,      % pizza or sandwich

( D = p, C2 is C+900 ; D = s, C2 is C+400 )
; R == r1,      % hamburger or sandwich

( D = h, C2 is C+400 ; D = s, C2 is C+500 ) ),
L=[D|L2],
N2 is N-1,
msw(tr(R),R2),       % next restaurant
diet(L2,R2,R2,N2).

diet([],_,C,0):- C < 4000.  % calorie constraint must be met

Program for the dieting 
professor

R0
R1

p,s h,s
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Failure program by FOC
failure:- closure_success0(f0).
closure_success0(A):- closure_chmm0(r0,0,7,A).
closure_chmm0(R,B,C,D):-

( C>0,
msw(tr(R),R2), msw(lunch(R),F),
( R¥==r0
; R==r0,

( ¥+F=p ; F=p, G is B+900,H is C-1, closure_chmm0(R2,G,H,D)),
( ¥+F=s ; F=s,  I is B+400,J is C-1,closure_chmm0(R2,I,J,D))),

( R¥== r1
; R == r1,

( ¥+F=h ; F=h, K is B+400,L is C-1,closure_chmm0(R2,K,L,D)),
( ¥+F=s ; F=s, M is B+500,N is C-1,closure_chmm0(R2,M,N,D)))

; C=<0 ),
( ¥+C=0 ; C=0, B>=4000 ).

tail recursive just like
positive case

dynamic programming
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| ?- prismn(‘prof.psm'),set_sw,
generate_goals(500,Gs),learn([failure|Gs]).

success([s,s,p,p,s,h,s])
...
.........50..(Converged: -2905.412443514)
Finished learning 
Number of iterations: 63
Total learning time: 0.2 seconds
All solution search time: 0.08 seconds

Switch lunch(r0): p  (0.4014) s  (0.5986)
Switch lunch(r1): h  (0.5339) s  (0.4661)
Switch tr(r0):    r0 (0.7190)  r1 (0.2810)
Switch tr(r1):    r1 (0.7236)  r0 (0.2764)

?- prob(failure).
The probability of failure is: 0.3448

sampled goal

fgEM learning

0.3486

0.4 0.6

0.5 0.5

0.7 0.3
0.7 0.3

original values

If failure is not assumed, the 
estimated failure probability 
deteriorates to 0.0823.
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Note
Failure programs can be obtainable by other methods

Manual derivation
traces all failed paths of computation by inspection and
represent them as a program.

Negation technique [Sato 89]
gives better code than FOC but there are restrictions on 
applicability

More complex probabilistic constraint modeling than 
constrained HMMs is possible.

Finite PCFGs = PCFGs with failure constraints [Sato 04]
HPSGs = unification based constraint grammar, approximated 
by PCFGs



PRISM
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More sophisticated learning
Conditional random fields
DAEM
Better tabled search

More computer power
Parallel search on a grid machine
64bit

More applications
Graph grammars
User modeling

Future plan


