
NBCT: A Toolkit for Naive Bayes Clustering
(version 0.3)

Yoshitaka Kameya
Tokyo Institute of Technology

September 4, 2007

Contents
1 Introduction 1

2 Getting started 2
2.1 Problem domain . 2
2.2 Naive Bayes models 2
2.3 Running NBCT . 3

3 Clustering algorithms 5
3.1 ML/MAP based clustering 5

3.1.1 Parameter estimation based on ML 5
3.1.2 Parameter estimation based on MAP 5
3.1.3 Membership distribution 6
3.1.4 Dissimilarity 7
3.1.5 Clustering 7
3.1.6 Relevance analysis 7
3.1.7 Model selection 8
3.1.8 Random restarts 8
3.1.9 Deterministic annealing EM algorithm 8
3.1.10 Split-merge EM algorithm 9

3.2 VB based clustering 10
3.2.1 Model selection based on VB 10
3.2.2 Clustering 11
3.2.3 Other inference tasks 12
3.2.4 Random restarts and the split-merge EM al-

gorithm . 12
3.2.5 Deterministic annealing EM algorithm 12

4 How to use NBCT 12
4.1 Overall organization of NBCT 12
4.2 Installation . 12

4.2.1 Preliminary installation (GNU libiconv) . . . 12
4.2.2 Contents of the package 13
4.2.3 Using configure 13
4.2.4 Using Makefile.msvc 13

4.3 ML/MAP based clustering 13
4.3.1 General description 13
4.3.2 File format 14
4.3.3 Command line options 14

4.4 VB based clustering 17
4.5 Auxiliary tools . 18
4.6 Notes on computing environments 18

4.6.1 Computation time and space 18
4.6.2 Settings for the EM algorithms 19

4.6.3 Precision of floating-point numbers 19
4.6.4 Parallelization via OpenMP 19

1 Introduction
NBCT (Naive Bayes Clustering Toolkit) is a C implementation
of several probabilistic inference algorithms related to naive
Bayes clustering — probabilistic clustering based on a naive
Bayes model [1]. Currently NBCT includes a discrete version
of AutoClass [4, 5] augmented with the deterministic anneal-
ing EM (DAEM) algorithm and the split-merge EM (SMEM)
algorithm [20].1 Besides, NBCT provides the following func-
tions for each of three statistical frameworks — ML (maximum
likelihood), MAP (maximum a posteriori) and VB (Variational
Bayes):

• EM learning

– Random restarts

– Deterministic annealing EM algorithm

– Split-merge EM algorithm

• Clustering

• Other probabilistic inferences

– Computing membership distributions

– Computing dissimilarities between objects, or be-
tween attribute values

– Relevance analysis

• Model scoring

It is empirically shown in recent researches that the VB
approach often works better than ML/MAP approaches in
model selection (e.g. determining the optimal number of clus-
ters) [2, 12], though ML/MAP is simpler and would be easier

1Currently, both the DAEM algorithm and the SMEM algorithm are con-
sidered to be experimental. Furthermore, in a future version, it is planned to
incorporate Ueda and Ghahramani’s SMEM algorithm that aims to simulta-
neously solve the problems of avoiding undesirable local maxima and finding
the optimal number of clusters [18].

1

to work with. NBCT can be applied to many of discrete do-
mains such as document clustering with bag-of-words repre-
sentation [1] or distributional clustering of words [14].

The rest of this document is comprised of three parts. First,
in Section 2, we will see a typical usage of NBCT with an
exemplar artificial dataset included in the released package.
Section 3 then gives a (rough) description of the algorithms
used in NBCT. Section 4 is the third part which describes the
detailed usage of NBCT.

2 Getting started
Let us try NBCT with an artificial dataset included in the re-
leased package. It is assumed here that the installation of
NBCT (see §4.2 for the procedure) has been successfully done,
and we are working in the example directory of the unfolded
package.

In this section, we just focus on the look and feel of NBCT,
and do not aim at listing all functions. We first describe the
problem domain and probabilistic models applied to the do-
main (i.e. naive Bayes models). The users who are familiar
with naive Bayes clustering or classification may skip the fol-
lowing two sections (§2.1 and §2.2), and jump to §2.3, which
demonstrates NBCT.

2.1 Problem domain
Given a dataset D of objects, clustering is a task to group sim-
ilar objects in D, or typically, to partition D into disjoint sets,
called classes or clusters, of similar objects. So each of these
objects uniquely belongs to one of K predefined classes. Also
we consider that each object is represented by an vector of val-
ues of J predefined attributes. Please note that in the released
program we will use the term ‘case’ instead of ‘object’ (just
for a historical reason).

To be concrete, let us open test1_freq.csv in the di-
rectory by some text viewer:

V1,W1,X1,Y1,Z1
V1,W1,X1,Y1,Z1
V1,W1,X1,Y1,Z1

:
V1,W1,X1,Y1,Z2
V1,W1,X1,Y1,Z2

:

Each line in the file corresponds to an object, and each of
comma-separated values in the line corresponds to a value of
an attribute of the object. In the above, we can see that the first
object is represented by the vector x = (V1,W1,X1,Y1,Z1)
of attribute values.

As above, there are cases where several objects have the
same attribute values. In NBCT, these objects will be re-
garded as the same object since there is no way to distin-

guish them. Then the data D will be a multiset of ob-
jects. test2_freq.txt contains the same dataset as that
of test1_freq.csv, but the objects who have the same
vector x of attribute values are suppressed, and instead their
count N(x) is added to the right-most column:

V1 W1 X1 Y1 Z1 201
V1 W1 X1 Y1 Z2 237
V1 W1 X1 Y1 Z3 30
V1 W1 X1 Y1 Z4 116

:

For example, we have N(x) = 237 for x = (V1,W1,X1,Y1,
Z2).

To make notations simple, we give indices 1, 2, . . . to at-
tributes from left to right, and refer to each attribute by its
index. Also, independently for each attribute, we give indices
1, 2, . . . to the attribute values according to the order of ap-
pearances. Then each attribute value will be referred to by its
index. For example, we will refer Y1, Y2, Y3 and Y4 by their
indices 1, 2, 3 and 4, respectively.

2.2 Naive Bayes models
To build clusters of objects in the dataset D, we attempt to use
a probabilistic model called a naive Bayes model. In naive
Bayes models, it is considered that the objects in D were gen-
erated in a causal way depicted as a Bayesian network (Fig. 1),
which has random variables C and X j (1 ≤ j ≤ J). C is called
a class variable, and X j (1 ≤ j ≤ J) are called attribute vari-
ables. In such a naive Bayes model, the class of each object
is firstly determined as k under the class distribution p(C = k),
and then each attribute value x j (1 ≤ j ≤ J) is conditionally
determined under the attribute distribution p(X j = x j | C = k).
We let V j denote the number of possible values of the j-th
attribute. The probability that an object with attribute values
x = (x1, x2, . . . , xJ) belongs to the class k is simply computed
as:

p(C=k, X1= x1, X2= x2, . . . , XJ = xJ)

= p(C=k)
J∏

j=1

p(X j= x j | C=k), (1)

where 1 ≤ k ≤ K and 1 ≤ x j ≤ V j (1 ≤ j ≤ J).
Furthermore, we hereafter simplify the above as:

p(k, x) = p(k, x1, x2, . . . , xJ) = p(k)
J∏

j=1

p(x j | k), (2)

where p(C = k, . . .) and p(X j = x j, . . .) are abbreviated as
p(k, . . .) and p(x j, . . .), respectively. Since the probabilities
p(k) and p(x j | k) in the right hand side can be seen as parame-
ters of p(k, x), we write them explicitly as θk and θ j,k,x j , respec-
tively. Then, p(k, x) takes a parameterized form (1 ≤ k ≤ K,

2

C

X X X1 2 J

Figure 1: Bayesian network representation of a naive Bayes
model.

1 ≤ j ≤ J, 1 ≤ x j ≤ V j):

p(k, x | θ) = θk
J∏

j=1

θ j,k,x j , (3)

where θ is a vector consisting of θk and θ j,k,x j . p(k, x | θ)
is called the joint distribution specified by the naive Bayes
model, and is used for various probabilistic inferences includ-
ing clustering, which are described later.

Under some parameter settings, new objects can be
sampled from the naive Bayes model. The dataset in
test1_freq.csv or test2_freq.txt has been artifi-
cially generated by sampling under the parameters shown in
Tab. 1, where K = 5, J = 5, V1 = 2, V2 = 2, V3 = 3, V4 = 4
and V5 = 5.

2.3 Running NBCT

At this point, we can try NBCT with the dataset contained
in test1_freq.csv or test2_freq.txt. Let us as-
sume here that the true number of classes is known (i.e.
K = 5 is known). Then, to get the (five) clusters of objects
in test2_freq.csv, we invoke an executable named nbc
with specifying a couple of option flags (‘%’ is the prompt sym-
bol):

% nbc -f test2 -k 5 -x 5 -t mp

The option ‘-f test2’ specifies the names of input/output
files including test2_freq.txt. Besides, the options ‘-k
5’ and ‘-x 5’ indicate that the number of clusters is 5 (i.e.
K = 5), and that the number of attributes is 5 (i.e. J = 5),
respectively. The option ‘-t mp’ enables clustering based on
the membership probabilities (see §3.1.3 and §3.1.5 for de-
tails). When invoking the program, we may see the messages
as follows:

#classes = 5:
#iterations 0.........50.........100...

......150.........200.........250........

.300.........350.........400.........450.

........500. (Converged: 508 iterations)
L=-46204.232086

Table 1: Parameters used in generating test1_freq.
csv or test2_freq.txt

θ1 0.1
θ2 0.5
θ3 0.2
θ4 0.05
θ5 0.15
θ1,1,1 0.9
θ1,1,2 0.1
θ1,2,1 0.7
θ1,2,2 0.3
θ1,3,1 0.1
θ1,3,2 0.9
θ1,4,1 0.2
θ1,4,2 0.8
θ1,5,1 0.5
θ1,5,2 0.5
θ2,1,1 0.8
θ2,1,2 0.2
θ2,2,1 0.99
θ2,2,2 0.01
θ2,3,1 0.7
θ2,3,2 0.3
θ2,4,1 0.05
θ2,4,2 0.95
θ2,5,1 0.4
θ2,5,2 0.6

θ3,1,1 0.3
θ3,1,2 0.3
θ3,1,3 0.4
θ3,2,1 0.8
θ3,2,2 0.1
θ3,2,3 0.1
θ3,3,1 0.05
θ3,3,2 0.9
θ3,3,3 0.05
θ3,4,1 0.3
θ3,4,2 0.6
θ3,4,3 0.1
θ3,5,1 0.2
θ3,5,2 0.1
θ3,5,3 0.7

θ4,1,1 0.05
θ4,1,2 0.05
θ4,1,3 0.3
θ4,1,4 0.6
θ4,2,1 0.2
θ4,2,2 0.05
θ4,2,3 0.5
θ4,2,4 0.25
θ4,3,1 0.1
θ4,3,2 0.8
θ4,3,3 0.05
θ4,3,4 0.05
θ4,4,1 0.8
θ4,4,2 0.05
θ4,4,3 0.05
θ4,4,4 0.1
θ4,5,1 0.7
θ4,5,2 0.1
θ4,5,3 0.1
θ4,5,4 0.1

θ5,1,1 0.15
θ5,1,2 0.1
θ5,1,3 0.2
θ5,1,4 0.5
θ5,1,5 0.05
θ5,2,1 0.3
θ5,2,2 0.4
θ5,2,3 0.05
θ5,2,4 0.2
θ5,2,5 0.05
θ5,3,1 0.4
θ5,3,2 0.1
θ5,3,3 0.1
θ5,3,4 0.1
θ5,3,5 0.3
θ5,4,1 0.95
θ5,4,2 0.01
θ5,4,3 0.01
θ5,4,4 0.02
θ5,4,5 0.01
θ5,5,1 0.8
θ5,5,2 0.05
θ5,5,3 0.05
θ5,5,4 0.05
θ5,5,5 0.05

In advance of clustering, the program runs the EM
(expectation-maximization) algorithm (§3.1.1) to estimate the
parameters of the naive Bayes model. The EM algorithm is
an iterative, hill-climbing algorithm for parameter estimation.
The messages above report the progress of the EM algorithm.
To use test1_freq.csv instead of test2_freq.txt,
the -i flag will be required to deal with the CSV (comma-
separated values) format.

% nbc -f test1 -k 5 -x 5 -r 12345 -i

After the run, three files named test2_param.txt,
test2_cluster.txt and test2_log.txt will have
been created. The first file, test2_param.txt, contains
the parameters estimated by the EM algorithm:

ID:PARAM-CLASS
Class k, Class parameter P(k)
####
0 0.164739744393
1 0.048580087144
2 0.511626472252
3 0.196216832015
4 0.078836864196
ID:PARAM-ATT0
Class k, Attr. value x0, Attr. parameter
P(x0|k)
####
0 V1 0.522947982507

3

0 V2 0.477052017493
1 V1 0.145922471394

:
4 V1 0.949635445666
4 V2 0.050364554334
ID:PARAM-ATT1
Class k, Attr. value x1, Attr. parameter
P(x1|k)
####
0 W1 0.389463446381
0 W2 0.610536553619
1 W1 0.068199167665

:

We can see from the above that θ1, θ2, . . . were estimated as
0.165, 0.049, . . . , respectively. In general, each output file
contains several data matrices, each of which has header lines
beginning with ‘#’.

The second file, test2_cluster.txt, contains the data
matrices on the correspondences between clusters and objects:

ID:CLUSTER-CASE-BY-CASE
Case ID, Cluster k, Attr. x1, ... Attr.
x5, Membership prob. P(k|x)
####
0 2 V1 W1 X1 Y1 Z1 0.805043454811
1 2 V1 W1 X1 Y1 Z2 0.981302362520
2 2 V1 W1 X1 Y1 Z3 0.863899435937
3 2 V1 W1 X1 Y1 Z4 0.912873199926

:

It is found that the object 0, x = (V1,W1,X1,Y1,Z1), belongs
to the cluster 2, and so on. One may also notice that the rows
in the data matrix whose identifier is ‘CLUSTER-CASE-BY-
CASE’ is ordered by the indices of objects. On the other hand,
the rows in the data matrix named ‘CLUSTER-CASE-BY-
CLUSTER’ is ordered by the indices of clusters:

ID:CLUSTER-CASE-BY-CLUSTER
Cluster k, Case ID, Attr. x1, ... Attr.
x5, Membership prob. P(k|x)
####
0 22 V1 W1 X2 Y1 Z3 0.359072973437
0 33 V1 W1 X2 Y3 Z4 0.379421817602
0 37 V1 W1 X2 Y4 Z3 0.827169179316

:

The above tell us that the cluster 0 includes the objects 22,
23, 37, and so on. Finally, the third file, test2_log.txt,
contains the additional information on the last execution.

NBCT provides many options for the EM algorithm. For
example, there are cases where we would like to restart with
several different initial settings of the EM algorithm. This is
because the EM algorithm is a hill-climbing algorithm, and
is known to be often trapped in undesirable local maxima. In
NBCT, this method is enabled by giving the number of restarts
to the -n flag:

% nbc -f test2 -k 5 -x 5 -t mp -n 10
#classes = 5:
[0] #iterations 0.........50.........100....

.....150.........200.........250..300.

........350......... (Converged: 399 iteration

s) L=-46204.232085
[1] #iterations 0.........50.........100....

.....150.........200.........250..300.

........350.........400.........450 (Converged
: 452
iterations) L=-46204.232084

[2] #iterations 0.........50.........100....
.....150.........200.........250..300.
........350.........400.... (Converged: 422 it
erations) L=-46204.232089

:
[9] #iterations 0.........50.........100....

.....150.........200.........250.........300..

.......350.........400.........450.........500

.........550.........600.........650.........7
00.........750.........800.........850........
.900.........950.........1000.........1050....
.....1100.........1150.........1200......... 1
250...... (Converged: 1284 iterations) L=-4625
9.088233

<<Resumed best parameter set #1>>
[1] #iterations (Converged: 453 iterations)

L=-46204.232074

We can find from the above the second initial setting (indexed
by 1) provides the best estimate of parameters.

To be precise, the parameter estimation method we have run
is called ‘maximum likelihood (ML) estimation.’ On the other
hand, maximum a posteriori (MAP) estimation is said to be
more robust against the problem of data-sparseness, which of-
ten arises with a small data. In MAP estimation, we should tell
the ‘pseudo counts’ to the program. If the pseudo counts are
uniformly set to 1 for all parameters, the estimation is com-
monly called Laplace’s estimation. In NBCT, it is possible to
specify arbitrary pseudo counts for the class parameters θk by
the -c flag, and for the attribute parameters θ j,k,x j by the -w
flag. For example, to perform Laplace’s estimation, we may
run:

% nbc -f test2 -k 5 -x 5 -t mp -c 1.0 -w 1.0
#classes = 5:

#iterations 0.........50.........100........
.150.........200.........250.........300......
...350.........400.........450.........500....
.....550.........600...... (Converged: 630 ite
rations) L=-46218.658868

We have assumed so far that the true number K of clusters
is known in advance, but in more realistic situations, it is of
course unknown. So finding the optimal number of clusters
(based on the dataset) is a key issue in clustering. This can be
seen a kind of model selection problem, which has been inten-
sively discussed in the literature of machine learning. NBCT
provides a facility that computes the scores on K based on the
marginal likelihood P(D | K), the plausibility of D given the
number K of clusters.

Although the scores on K are provided for the frameworks
of ML and MAP estimation, we here use variational free en-
ergy instead as a score on K in the framework of variational
Bayes (VB). In VB, we use another executable named vnbc.
The execution log is shown in Fig. 2, where the number of

4

% vnbc -f test2 -k 2:10:1 -x 5 -t mp -c 1.0 -w 1.0
|Classes| = 2:
#iterations 0.........50. (Converged: 59 iterations) F=-47697.146904
[2] Free Energy = -47697.146904 (temporarily optimal)

:
|Classes| = 5:
#iterations 0.........50.........100.........150.........200.........250.........300....

.....350.........400.... (Converged: 421 iterations) F=-46458.661401
[5] Free Energy = -46458.661401 (temporarily optimal)

:
|Classes| = 10:
#iterations 0.........50.........100.........150.........200.........250.........300....

.....350.........400.........450.........500.........550.........600.........650.........7
00.........750.........800.........850.........900 (Converged: 900 iterations) F=-46519.8
96105
[10] Free Energy = -46519.896105

Optimal |Classes| = 5

Figure 2: Messages from vnbc.

clusters to be examined ranges from 2 to 10. If we specify ‘-k
Kmin:Kmax:Kstep’, NBCT will be switched into the ‘model
selection’ mode. One may find that, in this example, we fortu-
nately recovered the true number of clusters (i.e. K̂ = K = 5).

At the end of this section, we will mention on an auxiliary
tool nbcsep for post-processing the output files generated by
nbc and vnbc. As is described before, each output file con-
tains several data matrices, each of which has a unique iden-
tifier. nbcsep extracts these data matrices, and puts each of
them into an individual file. The name of such a new file in-
cludes the ID of the corresponding data matrix. For example,
let us apply nbcsep to test2_param.txt:

% nbcsep -f foo test2_param.txt
Output: foo_PARAM-CLASS.txt
Output: foo_PARAM-ATT0.txt
Output: foo_PARAM-ATT1.txt
Output: foo_PARAM-ATT2.txt
Output: foo_PARAM-ATT3.txt
Output: foo_PARAM-ATT4.txt

Please note here that the common prefix of the names of newly
created files was given by the -f flag.

3 Clustering algorithms
This section gives the detailed descriptions on the clustering
algorithms and the other related algorithms provided in NBCT.

3.1 ML/MAP based clustering
3.1.1 Parameter estimation based on ML

In advance of clustering and the other probabilistic inferences
based on the joint distribution p(k, x | θ), we need to estimate
the parameters θ from the dataset D. Let us consider again
that we are given a set D of objects where N(x) is the number

of occurrences of objects that have the attribute values x. We
define N as the number of total occurrences of objects, that
is, N =

∑
x N(x). Since in clustering, we do not know the

class to which each object belongs, the dataset D contains no
information about k. In this sense, D is often called incomplete
data. In maximum likelihood (ML) estimation, we try to find
the parameters θ that maximize the likelihood p(D | θ). That
is, we have:

θ̂ML = argmax
θ

p(D | θ) = argmax
θ

log p(D | θ)

= argmax
θ

∑
x

N(x) log p(x | θ)

= argmax
θ

∑
x

N(x) log
K∑

k=1

p(k, x | θ). (4)

Due to the lack of the information on k, it is not easy to ana-
lytically maximize p(D | θ) or log p(D | θ). Instead, we use
the EM (expectation-maximization) algorithm [8]. Fig. 3 is the
EM algorithm derived for naive Bayes models.2

3.1.2 Parameter estimation based on MAP

It is well-known in the machine learning literature that ML
estimation often suffers from the problem of data-sparseness
when the data size N is not so large compared to the number
of parameters. One way for avoiding this problem is to take a
Bayesian approach, in which we consider a prior distribution

2In this document, the symbol ‘∝’ means a substitution with normalization
— that is, we implicitly make the values computed in the left hand side form
a probability distribution (that is, making them sum to unity). For example, in
Eq. 5, p(k | x, θ(m)) is actually computed by:

p(k | x, θ(m)) =
θ(m)

k
∏J

j=1
∏V j

x j=1 θ
(m)
j,k,x j∑K

k′=1 θ
(m)
k′
∏J

j=1
∏V j

x j=1 θ
(m)
j,k′ ,x j

.

5

1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and θ j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following two steps alternately until the log-
likelihood log p(D | θ) converges (m = 0, 1, 2, . . .):

E-step:

p(k | x, θ(m)) ∝ θ(m)
k

J∏
j=1

V j∏
x j=1

θ(m)
j,k,x j

(5)

E(m)[k] :=
∑

x

N(x)p(k | x, θ(m)) (6)

E(m)
j [k, x j] :=

∑
x′ :x′j=x j

N(x′)p(k | x′, θ(m)) (7)

M-step:

θ(m+1)
k ∝ E(m)[k] (8)

θ(m+1)
j,k,x j

∝ E(m)
j [k, x j] (9)

Figure 3: The EM algorithm for ML estimation in naive Bayes
models.

p(θ) on the parameter space Θ. As is often done, in NBCT, we
introduce a Dirichlet distribution for the prior distribution:

p(θ) =
1
Z

K∏
k=1

θαk−1
k

J∏
j=1

V j∏
x j=1

θ
α j,k,x j−1
j,k,x j

(10)

Z =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)
·
∏K

k=1
∏J

j=1
∏V j

x j=1 Γ(α j,k,x j)∏K
k=1
∏J

j=1 Γ(
∑V j

x j α j,k,x j)
,

(11)

where Z is a normalizing constant, and αk and α j,k,x j are called
hyperparameters, each of which corresponds to θk and θ j,k,x j ,
respectively (1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

Instead of maximizing p(D | θ), we try to maximize p(θ |
D), an a posteriori probability of θ given the dataset D. That
is, we also have:

θ̂MAP = argmax
θ

p(θ | D) = argmax
θ

log p(θ | D)

= argmax
θ

log
p(θ)p(D | θ)

p(D)

= argmax
θ

{
log p(θ) + log p(D | θ)

}
. (17)

This procedure is usually called MAP (maximum a posteriori)
estimation.

The EM algorithm for MAP estimation is shown in Fig. 4.
The algorithm is obtained by modifying the convergence con-
dition and the procedure in M-step of the ML version (Fig. 3).

1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and θ j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following two steps alternately until the log of the a
posteriori probability p(θ | D) converges (m = 0, 1, 2, . . .):

E-step:

p(k | x, θ(m)) ∝ θ(m)
k

J∏
j=1

V j∏
x j=1

θ(m)
j,k,x j

(12)

E(m)[k] :=
∑

x

N(x)p(k | x, θ(m)) (13)

E(m)
j [k, x j] :=

∑
x′ :x′j=x j

N(x′)p(k | x′, θ(m)) (14)

M-step:

θ(m+1)
k ∝ E(m)[k] + (αk − 1) (15)

θ(m+1)
j,k,x j

∝ E(m)
j [k, x j] + (α j,k,x j − 1) (16)

Figure 4: The EM algorithm for MAP estimation in naive
Bayes models.

Let us introduce δk
def
= αk − 1 and δ j,k,x j

def
= α j,k,x j − 1 as the

pseudo counts or the smoothing constants in estimating the
corresponding parameters.3 If we let δk and δ j,k,x j be positive,
the estimated parameters will also be positive, so we would be
able to avoid the problem of data-sparseness.

For simplicity, these pseudo counts are set to be uniform.
When specifying all δk and δ j,k,x j to be 1.0, the estimation
procedure is sometimes called Laplace’s estimation. In Au-
toClass [4], all δk are fixed at 1/K, and all δ j,k,x j are fixed at
1/V j (1 ≤ k ≤ K, 1 ≤ j ≤ J). The BDeu metric [3, 9] assumes
that αk (= 1 + δk) = α/K and α j,k,x j (= 1 + δ j,k,x j) = α/KV j for
some common α > 0,4 where α is called the equivalent sample
size.

3.1.3 Membership distribution

Given the estimated parameters θ̂ (θ̂ML or θ̂MAP) and an at-
tribute vector x of some object, we can obtain a membership
distribution p(k | x, θ) under which the object belongs to the

3In NBCT, we use the term ‘pseudo counts’ in the sense of ones used in
the MAP estimator, and for compatibility, it is designed that the users are
expected to configure the hyperparameters αk and α j,k,x j through the corre-
sponding pseudo counts δk and δ j,k,x j (even in VB learning). In the Bayesian
estimator, on the other hand, hyperparameters αk and α j,k,x j themselves can
be considered as pseudo counts. Another confusing issue in NBCT is that the
current version does not allow δ j,k,x j to be negative. Of course this restriction
is reasonable for MAP estimation, but theoretically it should be noted that the
prior distribution p(θ) is defined for αk ≥ 0 and α j,k,x j ≥ 0.

4Of course this is a specialized form for naive Bayes models.

6

class k. The probabilities are computed by:

p(k | x, θ̂) =
p(k, x | θ̂)
p(x | θ̂)

∝ p(k, x | θ̂) = θ̂k
J∏

j=1

θ̂ j,k,x j . (18)

Since we often consider that a class summarizes some (hidden)
characteristic of an object, membership distributions play an
important role in probabilistic inferences based on naive Bayes
models.

In addition, we may consider the attribute membership dis-
tributions p(k | x j), where x j is the j-th attribute value of an
object, and k is the class to which the object belongs. Similarly
to the above, the probabilities are computed as follows:

p(k | x j, θ̂) ∝ θ̂kθ̂ j,k,x j . (19)

3.1.4 Dissimilarity

Since the membership distributions (§3.1.3) p(k | x, θ̂) can
be considered to characterize the object represented by x, we
may measure the dissimilarity ∆ between two objects x and x′
by the Kullback-Liebler divergence between the correspond-
ing membership distributions:

∆(x, x′) = KL(p(k | x, θ̂) || p(k | x′, θ̂))

=

K∑
k=1

p(k | x, θ̂) log
p(k | x, θ̂)
p(k | x′, θ̂)

. (20)

3.1.5 Clustering

As is mentioned above, clustering is a task to partition the ob-
jects in the dataset D into clusters of similar ones. One way is
to regard each class as a cluster, and then to classify each ob-
ject, whose attribute values are x, into its most probable cluster
(class) k∗. More specifically, based on the estimated parame-
ters θ̂, we compute k∗ by using a membership probability as a
score for clustering:

k∗ = argmax
k:1≤k≤K

p(k | x, θ̂) = argmax
k:1≤k≤K

p(k, x | θ̂). (21)

In this sense, naive Bayes clustering can be seen as an unsu-
pervised classification task based on a naive Bayes model.

Furthermore, another clustering score can be considered.
First, we rewrite the dissimilarity ∆(x, x′) as follows:

∆(x, x′) =
∑K

k=1 ∆k(x, x′), (22)

∆k(x, x′) = p(k | x, θ̂) log
p(k | x, θ̂)
p(k | x′, θ̂)

, (23)

where each ∆k(x, x′) can be interpreted as the significance of
class k’s contribution to the dissimilarity between x and x′.

Then, the cluster k∗ for the object x is obtained by:

k∗ = argmax
k:1≤k≤K

∆k(x,¬x)

= argmax
k:1≤k≤K

p(k | x, θ̂) log
p(k | x, θ̂)

p(k | ¬x, θ̂)
, (24)

where we consider that k∗ is the most contributing class to
make x and ¬x, the objects other than x, being dissimilar. To
compute ∆k(x,¬x), it should be noted that p(k,¬x | θ̂) = p(k |
θ̂) − p(k, x | θ̂) and p(¬x | θ̂) = 1 − p(x | θ̂). ∆k(x,¬x), the
second clustering score in NBCT, can be seen as the weighted
log-odds ratio. This score is just a modification of the rele-
vance score between a particular class and a particular attribute
value, proposed in [7] (see the next section).

Some may be interested in clustering of attribute values for
each attribute. Given an attribute value x j of j-th attribute, the
most probable cluster is predicted as follows:

k∗ = argmax
k:1≤k≤K

p(k | x j, θ̂) = argmax
k:1≤k≤K

p(k, x j | θ̂)

= argmax
k:1≤k≤K

θkθ j,k,x j . (25)

3.1.6 Relevance analysis

Using the estimated parameters θ = θ̂, we may want to know
the most relevant objects to the class k of interest. One promis-
ing way is to rank the objects x(1), x(2), . . . according to the
magnitude of RMP(k, x) def

= p(k | x), i.e. the membership prob-
ability [17]. To understand this ranking, let us transform the
probability as follows:

RMP(k, x) = p(k | x, θ)

=
p(k | θ)p(x | k, θ)

p(x | θ) ∝ p(x | k, θ)
p(x | θ) (26)

(note that k is given here). Then, RMP(k, x) can be seen as the
significance of p(x | k, θ) compared to p(x | θ) = ∑K

k=1 p(k |
θ)p(x | k, θ), the unconditional (or averaged) probability of x
being occurred. In some applications, these relevant objects
would be a help for characterizing the cluster [10, 17].

Another ranking score is the weighted log-odds ratio [7].
That is, for the target class k, the weighted log-odds ratio w.r.t.
x, denoted by RWODD(k, x), is computed as follows:

RWODD(k, x) def
= p(x | k, θ) log

p(x | k, θ)
p(x | ¬k, θ)

. (27)

Similarly to the discussion made in §3.1.5, we can see that∑
x RWODD(k, x) = KL(p(x | k, θ) || p(x | ¬k, θ)), and hence

RWODD(k, x) is a contribution by x to the dissimilarity between
k and the classes other than k. In other words, ranking by
RWODD(k, x) means that the most relevant objects to the class
k are the ones that discriminate k most significantly from the
others.

7

Also we can consider the attribute-wise version of the two
ranking scores above. Both R j

MP(k, x j) and R j
WODD(k, x j) indi-

cate the relevance between the class k and the value x j of the
attribute j, and are defined as follows:

R j
MP(k, x j)

def
= p(k | x j, θ) (28)

R j
WODD(k, x j)

def
= p(x j | k, θ) log

p(x j | k, θ)
p(x j | ¬k, θ)

. (29)

These scores measure the degree of relevance between a par-
ticular class and a particular attribute value, and so would be
useful in the case where we are interested in the behavior of
each attribute (e.g. in distributional clustering [14]).

3.1.7 Model selection

In clustering, we are often in question of how to determine the
number of clusters. This problem can be seen as a special case
of model selection, and in NBCT, we attempt to find a solution
in a Bayesian approach. To be specific, we first consider the
joint distribution p(D,M, θ) of complete data D, a probabilis-
tic model M, and its parameters θ. p(D,M, θ) is factored as
p(D | M, θ)p(θ | M)p(M) by the chain rule, where p(M) is the
prior distribution of the model M, p(θ | M) is the prior distri-
bution of the parameters θ of the model M, and p(D | M, θ)
is the likelihood of the data D based on the model M with the
parameters θ. In naive Bayes models, for instance, each d ∈ D
corresponds to the attribute vector x of an object. Also M cor-
responds to K, the number of classes (clusters), though it has
been omitted in the descriptions so far.

Then, from the settings above, our goal is to find the most
probable model M∗ based on the data D at hand, that is, we
attempt to find M∗ such that:

M∗ = argmaxM p(M | D)

= argmaxM
p(D | M)p(M)

p(D)
= argmaxM p(D | M)p(M)
= argmaxM p(D | M), (30)

where we assume p(M) to be uniform for simplicity. Now the
goal is reduced to finding M (= M∗) that maximizes p(D |
M). p(D | M) is commonly called the marginal likelihood of
D given M, and is used as a score for model selection. The
marginal likelihood can be interpreted as the expectation (or
the average) of the likelihood p(D | M, θ) with respect to the
prior distribution p(θ | M):

p(D | M) =
∫
Θ

p(D, θ | M)dθ

=
∫
Θ

p(D | M, θ)p(θ | M)dθ
=
〈
p(D | M, θ)〉p(θ|M) . (31)

If the dataset were complete data Dc, where each d ∈ Dc is a
pair (k, x) of the attribute vector x of an object and the class

k to which the object belongs, then p(Dc | M) is obtained
in closed form (see [6, 9] for the case with a Bayesian net-
work). On the other hand, when the data is incomplete, as
in the case of probabilistic clustering, the integral in Eq. 31
is difficult to compute. So, including MCMC (Markov chain
Monte Carlo) sampling, several approximation methods of log
of the marginal likelihood are proposed so far [5]. Bayesian
information criterion (BIC) [16] should be the most popular
‘deterministic’ approximation method, in which Laplace ap-
proximation is introduced based on the large-data assumption.
The Cheeseman-Stutz score [4, 5] is used in AutoClass. The
general forms of these two scores are respectively written as
follows:

ScoreBIC(M) def
= p(D | M, θ̂MAP) − |θ|

2
log N (32)

ScoreCS(M) def
= p(D̃c | M) − p(D̃c | M, θ̂MAP)

+p(D | M, θ̂MAP), (33)

where N is the total size of dataset, |θ| denotes the number of
free parameters, and D̃c is pseudo complete data whose suf-
ficient statistics are the expected counts obtained by the EM
algorithm.

3.1.8 Random restarts

Since the EM algorithm is just a hill-climbing algorithm, being
trapped in undesirable local maxima is known as one of prac-
tical problems in the EM algorithm. NBCT provides two facil-
ities for avoiding such local maxima — random restarts [15]
and the split-merge EM (SMEM) algorithm [20].

In random restarts, we first prepare n different initial param-
eter sets. Then, from each initial parameter set, we run a series
of EM iterations, and record the converged likelihood p(D | θ)
or the a posteriori probability p(θ | D). Finally we pick up the
estimated parameters that bring the highest likelihood or the
highest a posteriori probability.

3.1.9 Deterministic annealing EM algorithm

Since the final estimate of the parameters depends on the
choice of initial parameters, in deterministic annealing EM
(DAEM) algorithm [19], we attempt to reduce an undesirable
influence from the initial parameters in the early stage of EM
iterations. To achieve this, from analogy to statistical mechan-
ics, the free energy is introduced as:

Fβ = −
1
β

log
K∑

k=1

p(k, x | θ)β, (34)

where β is the inverse temperature which controls the influ-
ence from the initial parameters. Then we can obtain the
DAEM algorithm, which tries to minimize the free energy Fβ
at each temperature 1

β
. Fig. 5 shows an expected behavior of

the DAEM algorithm, where Lβ is introduced as −Fβ (then we

8

parameter space
�

: small

: large
�

(close to 1)

L �

Figure 5: Image of the deterministic annealing EM algorithm.

will try to maximize Lβ). In the DAEM algorithm, we start
from the small β, under which the free energy is expected to
have a smooth shape, and hopefully has only one local maxi-
mum (i.e. the global maximum). So under the smaller β, we
may be able to find the global maximum or good local max-
ima. When β increases, on the other hand, the shape of the
free energy changes (becomes sharper), and hence we should
continue to update the parameters by EM iterations. However
please note that the starting point of these EM iterations is ex-
pected to be more promising than the initial parameters. Fi-
nally we perform EM iterations at β = 1, which is equivalent
to the usual EM iterations.

To be more concrete, the DAEM algorithm for ML estima-
tion in naive Bayes models is shown in Fig. 6. The differences
from the non-DA version are that we have added the loop for
the inverse temperature β (Step 2), and that the E-step is mod-
ified so that it takes β into account.

For an effective use of DAEM algorithm, the temperature
schedule is important. In NBCT, following [19], we start from
β0 = βinit and then update β by the update rule βt+1 ← βt · βrate,
where βinit and βrate are given by the user (the default values
are 0.1 and 1.2, respectively).

3.1.10 Split-merge EM algorithm

The SMEM algorithm is applicable to mixture models, includ-
ing naive Bayes models. In the SMEM algorithm, we attempt
to escape from the local maxima by forcedly applying the split
operation and the merge operation to unpromising clusters.

To be more specific, we merge two clusters, say k1 and k2,
that closely overlap with each other (Fig. 7 (a)), and split a
cluster, say k3, that excessively covers objects (Fig. 7 (b)). In
the paper that firstly proposed the SMEM algorithm [20], the
split operation and the merge operation are always paired, so
the number of resultant clusters will not change. After a split-
merge operation pair executed, the EM algorithm is conducted

1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and θ j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat Step 3 for each β = β0, β1, β2, . . . , 1.0

3. Repeat the following two steps alternately until the log-
likelihood log p(D | θ) converges (m = 0, 1, 2, . . .):

E-step:

p(k | x, θ(m)) ∝ (θ(m)
k)β

J∏
j=1

V j∏
x j=1

(θ(m)
j,k,x j

)β (35)

E(m)[k] :=
∑

x

N(x)p(k | x, θ(m)) (36)

E(m)
j [k, x j] :=

∑
x′ :x′j=x j

N(x′)p(k | x′, θ(m)) (37)

M-step:

θ(m+1)
k ∝ E(m)[k] (38)

θ(m+1)
j,k,x j

∝ E(m)
j [k, x j] (39)

Figure 6: The DAEM algorithm for ML estimation in naive
Bayes models.

split
(b)

merge
(a)

Figure 7: Image of a merge operation and a split operation,
where the dots and the ovals stand for objects and clusters,
respectively.

until the convergence of likelihood p(D | θ) or the a posteriori
probability p(θ | D).

The possible triplets of clusters (k1, k2, k3) are kept as prior-
itized candidates for the next split-merge operation. If the con-
verged likelihood or a posteriori probability is improved with
the first candidate (i.e. the candidate is said to be accepted),
we will proceed to further split-merge operations. If there is
no (significant) improvement with the first candidate, we will
discard the result of the EM algorithm (i.e. the candidate is
said to be rejected) and try the next candidate.

� Prioritizing the split-merge candidates

To prioritize the split-merge candidates, we first get the pairs
{(k1, k2) | 1 ≤ k1 < k2 ≤ K} of classes to be merged, in the
descending order of heuristic scores Jmerge(k1, k2 | θ). The

9

score is defined as follows:

Jmerge(k1, k2 | θ)
def
= pk1 (θ)T pk2 (θ)
=
∑

x N(x)p(k1 | x, θ)p(k2 | x, θ),
(40)

where we have a multiset of objects D = {x(1), x(2), . . . , x(N)}
as the observed data, and pk(θ) is the vector of the membership
probabilities to the class k:

pk(θ) = (p(k | x(1), θ), p(k | x(2), θ), . . . , P(k | x(N), θ))T . (41)

Intuitively, Jmerge(k1, k2 | θ) measures a (partially empirical)
similarity between the classes k1 and k2 based on the data D.
Besides, we may use the normalized version:

J̃merge(k1, k2 | θ)
def
=

pk1 (θ)T pk2 (θ)
||pk1 (θ)|| · ||pk2 (θ)|| . (42)

Then, for each (k1, k2) pair to be merged, we also get the
classes {k3 | 1 ≤ k3 ≤ K, k3 , k1, k3 , k2} to be split, in the
descending order of another heuristic score Jsplit(k3 | θ):

Jsplit(k3 | θ)
def
= KL(p̃(x | k3, θ) || p(x | k3, θ))

=
∑

x
p̃(x | k3, θ) log

p̃(x | k3, θ)
p(x | k3, θ)

, (43)

where p̃(x | k3, θ) is a local empirical probability computed
by:

p̃(x | k3, θ) ∝ p̃(x)p(k3 | x, θ)
∝ N(x)p(k3 | x, θ). (44)

In the above, p̃(x) denotes N(x)/N, the empirical uncondi-
tional probability of x. So using Jsplit(k3 | θ), the class that
does not fit to the data will be split earlier.

� Partial EM iterations

After a split-merge operation, we should re-initialize the pa-
rameters of the modified classes. Let k′1 be the new class ob-
tained by merging k1 and k2. Also we consider two classes
k′2 and k′3 which are obtained by splitting k3. Then, for the
merged class k′1, we re-initialize the parameters related to k′1 as
follows:

θk′1 :=
E[k1]θk1 + E[k2]θk2

E[k1] + E[k2]
(45)

θ j,k′1,x j := θ j,k1,x j + θ j,k2,x j (46)
(1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

On the other hand, for the split classes k′2 and k′3, we re-
initialize θk′2 := 1

2θk3 , θk′3 := 1
2θk3 , θ j,k′2,x j := θ j,k3,x j + ε and

θ j,k′3,x j := θ j,k3,x j + ε
′ (1 ≤ j ≤ J, 1 ≤ x j ≤ V j), where ε and ε′

are some random noises.

-50000

-49500

-49000

-48500

-48000

-47500

-47000

-46500

-46000

 0 100 200 300 400 500 600 700 800

Log-likelihood

Total number of iterations

1st split-merge operation 2nd 3rd 4th 5th final

Usual EM algorithm

Figure 8: Changes in log-likelihood by the SMEM algorithm.

In partial EM iterations, to make it reasonable to compute
E-step and M-step only for the modified classes (k′1, k′2 and
k′3), M-step is modified as follows (1 ≤ j ≤ J, 1 ≤ x j ≤ V j and
k′ = k′1, k

′
2, k
′
3):

θ j,k′,x j =
E[k′]∑

k′′=k′1,k
′
2,k
′
3

E[k′′]
·
∑

k′′=k′1,k
′
2,k
′
3

θ j,k′′,x j (47)

� Behavior of the SMEM algorithm

Fig. 8 shows a typical pattern on the changes in log-likelihood
by the SMEM algorithm, where we apply five split-merge op-
erations. Please note here that we have only plotted a se-
quence with accepted split-merge operations. It is seen from
Fig. 8 that the log-likelihood decreases at the moment of apply-
ing a split-merge operation, but as a whole, the log-likelihood
steadily increases, and finally we can obtain the estimates with
a higher log-likelihood than the one obtained by the usual EM
algorithm.

3.2 VB based clustering
3.2.1 Model selection based on VB

As described in §3.1.7, to obtain the model M∗ that explains
best the data D at hand, we consider M = M∗ is the model
that maximizes the marginal likelihood p(D | M). In naive
Bayes models, the optimal number K∗ of classes is the number
of classes in M∗. It has been also known that if D is complete
data Dc, p(D | M) can be obtained in closed form. However,
when D is incomplete, i.e. there is some hidden data z such
that Dc = (D, z) (for instance, in naive Bayes clustering, the
classes of the objects are hidden in D), some approximation
method is required. In this section, we briefly describe the
approximation via the VB approach.

10

First, let us consider log of the marginal likelihood L(D) def
=

log p(D | M), and then we have:

L(D) = log
∑

z

∫
Θ

p(D, z, θ | M)dθ

= log
∑

z

∫
Θ

q(z, θ | D,M)
p(D, z, θ | M)
q(z, θ | D,M)

dθ

≥
∑

z

∫
Θ

q(z, θ | D,M) log
p(D, z, θ | M)
q(z, θ | D,M)

dθ.(
from Jensen’s inequality

)
(48)

For the space limitation, we fix the model M for the moment,
and simply write p(· | M) = p(·) and q(· | D,M) = q(· | D),
and then obtain:

L(D) ≥ F[q]
def
=
∑

z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ, (49)

where F[q] can be seen as a lower limit of L(D), and is called
the variational free energy. So to get a good approximation
of L(D), we attempt to find a distribution function q = q∗ that
maximizes a functional F[q]. In model selection, we use the
free energy F[q] as a model score.

Besides, to get another view, we have the following by con-
sidering L(D) =

∑
z
∫
Θ

q(z, θ | D) log p(D)dθ:

L(D) − F[q]

=
∑

z

∫
Θ

q(z, θ | D) log
{

p(D) · q(z, θ | D)
p(D, z, θ)

}
dθ

=
∑

z

∫
Θ

q(z, θ | D) log
q(z, θ | D)
p(z, θ | D)

dθ

= KL(q(z, θ | D) || p(z, θ | D)). (50)

From the above, maximizing F[q] implies minimizing the
Kullback-Liebler divergence between q(z, θ | D) and p(z, θ |
D). So finding q∗ is to make a good approximation of p(z, θ |
D), the conditional distribution of hidden variables and the pa-
rameters.

In VB learning, we further assume q(z, θ | D) ≈ q(z |
D)q(θ | D), and obtain a generic form of variational Bayesian
EM (VB-EM) algorithm as an iterative procedure consisting of
the following two updating rules:

q(z | D) ∝ exp
(∫
Θ

q(θ | D) log p(D, z | θ)dθ
)
, (51)

q(θ | D) ∝ p(θ) exp
(∑

z q(z | D) log p(D, z | θ)) .
(52)

Now we can derive a VB-EM algorithm specific to naive
Bayes clustering, shown in Fig. 9, by substituting the distribu-
tion form of a naive Bayes model (Eq. 3) to the generic VB-
EM procedure above. In Fig. 9, π(m)

k and π(m)
j,k,x j

are defined as

1. Initialize randomly the hyperparameters α(0)
k (1 ≤ k ≤ K) and

α(0)
j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following two steps alternately until the free energy
F[q] converges (m = 0, 1, 2, . . .):

E-step:

q(m)(k | x) ∝ π(m)
k

J∏
j=1

π(m)
j,k,x j

(57)

E(m)[k] :=
∑

x

N(x)q(m)(k | x) (58)

E(m)
j [k, x j] :=

∑
x′ :x′j=x j

N(x′)q(m)(k | x′) (59)

M-step:

α(m+1)
k := α(0)

k + E(m)[k] (60)

α(m)
j,k,x j

:= α(0)
j,k,x j
+ E(m)

j [k, x j] (61)

Figure 9: The VB-EM algorithm in naive Bayes models.

follows:

π(m)
k

def
= exp

(
Ψ
(
α(m)

k

)
− Ψ
(∑K

k′=1 α
(m)
k′

))
, (53)

π(m)
j,k,x j

def
= exp

(
Ψ

(
α(m)

j,k,x j

)
− Ψ
(∑V j

x′j=1 α
(m)
j,k,x′j

))
, (54)

where Ψ(·) is the digamma function. It can be noticed that the
resultant VB-EM algorithm receives the data D as input, and
outputs the learned hyperparameters α∗ (or the pseudo counts
δ∗).

In NBCT, α(0)
k and α(0)

j,k,x j
are given as follows, where αk and

α j,k,x j are specified by the user, and εk and ε j,k,x j are small ran-
dom noises:

α(0)
k := αk + εk , (55)

α(0)
j,k,x j

:= α j,k,x j + ε j,k,x j . (56)

3.2.2 Clustering

As in the ML/MAP case (§3.1.5), we may regard the cluster
k∗ which has the highest membership probability for an object
x as the cluster to which the object belongs. The difference is
that we use the distribution p(k, x) =

∫
Θ

q∗(θ | D)p(k, x | θ)dθ,
an averaged distribution on the prior distribution q∗(θ | D) with
learned hyperparameters α∗, instead of p(k, x | θ̂) which relies

11

on the point-estimated value θ̂. That is, we have:

k∗ = argmax
k:1≤k≤K

p(k | x) = argmax
k:1≤k≤K

p(k, x)

= argmax
k:1≤k≤K

∫
Θ

q∗(θ | D)p(k, x | θ)dθ

= argmax
k:1≤k≤K

θ̄k

J∏
j=1

θ̄ j,k,x j , (62)

where θ̄k and θ̄ j,k,x j are obtained in closed form:

θ̄k = α∗k/
∑

k′ α
∗
k′ (63)

θ̄ j,k,x j = α∗j,k,x j
/
∑

x′j
α∗j,k,x′j

. (64)

3.2.3 Other inference tasks

In VB learning, it seems not easy in straightforward ways
to conduct the probabilistic inferences other than clustering
based on the membership distribution (§3.2.2) — clustering
based on the weighted log-odds ratio (Eq. 24), computing
dissimilarities (Eq. 20), or relevance analysis (Eqs. 26 and
27). One compromise is to use the parameters θ̄ obtained by
Eqs. 63 and 64 instead of θ̂, the point-estimated parameters in
ML/MAP [2], and actually NBCT adopts this method. It is
important to note however that the resultant probabilistic in-
ferences are not guaranteed to be good approximations of the
inferences based on a posteriori quantities.

3.2.4 Random restarts and the split-merge EM algorithm

Basically, random restarts and the SMEM algorithm for VB-
EM (say, VB-SMEM) follow almost the same procedures
as the ones for the ML/MAP-EM algorithms (§3.1.8 and
§3.1.10). The difference is that we need to use the parame-
ters θ̄ obtained by Eqs. 63 and 64 to compute two heuristic
scores Jmerge and Jsplit (Eqs. 40–43).

3.2.5 Deterministic annealing EM algorithm

Since version 0.3, the deterministic-annealing version of VB-
EM has been introduced. To be specific, following [11], let us
revisit the definition of the variational free energy (Eq. 49):

F[q] def
=
∑

z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ

=
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ

−
∑

z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ (65)

Again, from an analogy to statistical mechanics, we corre-
spond F[q] with −F (F : the free energy), the first term in
Eq. 65 with −U (U: the internal energy) and the second term

with S (S: the entropy). Then we newly introduce the varia-
tional free energy that takes into account the (inverse) temper-
ature:

Fβ[q] def
=
∑

z

∫
Θ

q(z, θ | D) log p(D, z, θ)dθ

−1
β

∑
z

∫
Θ

q(z, θ | D) log q(z, θ | D)dθ.

(66)

The VB-EM algorithm that tries to maximize Fβ[q] (i.e. the
DA-version of the VB-EM algorithm) has a similar procedure
to that of the DAEM algorithm for ML/MAP estimation.

4 How to use NBCT

4.1 Overall organization of NBCT

NBCT 0.3 provides three executables named nbc, vnbc and
nbcsep:

• nbc covers probabilistic inferences for ML/MAP-based
clustering (§3.1).

• vnbc covers probabilistic inferences for VB-based clus-
tering (§3.2).

• nbcsep is an auxiliary tool for post-processing of the
output files from nbc or vnbc.

See §4.2 for the installation procedure. The usages of nbc,
vnbc and nbcsep are described in §4.3, §4.4 and §4.5, re-
spectively.

4.2 Installation

4.2.1 Preliminary installation (GNU libiconv)

To handle the dataset with non-ASCII-safe character en-
codings, NBCT provides a way to utilize GNU libiconv
(http://www.gnu.org/software/libiconv/). If
you are sure that the target dataset only contains ASCII char-
acters or is ASCII-safe, GNU libiconv will not be required. If
GNU libiconv is not installed on the user’s environment, the
user needs to install GNU libiconv in advance of the installa-
tion of NBCT.

On Windows, a DLL file iconv.dll should be
placed in the folder specified by the PATH environ-
ment variable, or in one of the system folders (such as
c:\WINDOWS\system32). To obtain iconv.dll,
we may download a zip archive http://ftp.gnu.
org/pub/gnu/libiconv/libiconv-1.9.1.bin.
woe32.zip, which includes a couple of executables and

12

DLL files already built.5 On the other hand, the latest version
can be built from the source files.6

4.2.2 Contents of the package

The original package of NBCT is distributed as a
source tarball (nbct-0.3.tar.gz) or a zip archive
(nbct-0.3_win.zip) including Windows executables.
After the package unfolded, the user may find the following
subdirectories (or sub-folders):

• src/ contains C source code.

• doc/ contains the document files including this manual.

• bin/ contains executables or script files
(but might be empty just after unfolding).

• example/ contains data examples.

For the users who attempt to use the executables in
nbct-0.3_win.zip on Windows, the installation is quite
easy — that is, you only need to place these executables in the
folder that appears in the PATH environment variable. How-
ever it should be noted that the executables do not link with
GNU libiconv, and so are only applicable to the datasets with
ASCII-safe characters.

4.2.3 Using configure

For Linux, Mac OS X, and Win32 with Cygwin or MinGW, we
can use the configure script in the package. That is, after
moving to the src directory, just type (if necessary, please
specify some appropriate Options to your system):

% ./configure Options
% make

Note that the symbol ‘%’ is the shell prompt. For the details
on Options, please consult the INSTALL file in the src di-
rectory. Also,

% ./configure --help

will show the detailed descriptions of the options for the
configure script.

4.2.4 Using Makefile.msvc

To build NBCT on Win32 with MSVC++, we attempt to com-
pile the source code by the cl command of MSVC++. Please
follow the steps below:

5It is confirmed that the NBCT binaries built using Visual Studio .NET
2003 can run with iconv.dll from libiconv-1.9.1.bin.woe32.

6With MSVC++, please follow the instructions in README.woe32.
However, with Visual Studio .NET 2003, several modifications seem to be
required for GNU libiconv 1.11, the latest version as of Aug. 14, 2007.

1. Edit src/Makefile.msvc as suitable for your envi-
ronment.

2. Invoke the Command Prompt window prepared for
MSVC++. For instance, if you are using MS Visual Stu-
dio .NET 2003, please follow the menus: [Start] → [All
Programs] → [Microsoft Visual Studio .NET 2003] →
[Visual Studio .NET Tools]→ [Visual Studio .NET 2003
Command Prompt].

3. At the Command Prompt invoked, visit the src folder.

4. Type the following command to compile NBCT:

nmake -f Makefile.msvc

5. Type the following command to install NBCT:

nmake -f Makefile.msvc install

By default (i.e. without modifying Makefile.msvc),
all executables will be copied into the bin directory of
the unfolded package.

4.3 ML/MAP based clustering
4.3.1 General description

As is mentioned above, we use the executable nbc for
ML/MAP based clustering. We can pass our settings and tasks
to nbc through the command line arguments:7

nbc -f Base -x NumAttr \
[-k NumClass|-R|-H] Options...

The above says that -f and -x are mandatory. Here ‘-f
Base’ indicates that we have a file named Base_freq.txt,
which contains a set D of the objects to be clustered. Base will
also be used as the base name of the input/output files listed
in Table 2. NumAttr, given by -x, indicates the number J of
attributes of the naive Bayes model we use (see §2.2 for the
description of naive Bayes models). In addition, one of -k,
-R and -H is required:

• When the number K of classes is given by ‘-k
NumClass’, nbc will first run the EM algorithm
(§3.1.1 and §3.1.2) to estimate the parameters from
Base_freq.txt. Then, probabilistic inferences includ-
ing clustering (§3.1.3–§3.1.6) will be conducted based on
the estimated parameters.

• When -R is given, nbc will skip the EM algo-
rithm and read the parameters from a file named
Base_param.txt, which may have been created by
manual or by a previous run of nbc. The number of
classes is then determined according to the content of
Base_param.txt.

7In this document, the symbol ‘\’ just means a continuation of the com-
mand line, so please do not type ‘\’ itself.

13

Table 2: Input/Output files for nbc.

Filename Content
Input Base_freq.txt Occurrences of

objects
Input/Output Base_param.txt Parameters θ
Input Base_smooth.txt Pseudo counts δ
Output Base_dissim.txt Dissimilarities
Output Base_memp.txt Membership probs.
Output Base_cluster.txt Clustering results
Output Base_rank.txt Result of

relevance analysis
Output Base_log.txt Logs
Output Base_msg.txt Messages on the

display

• When -H is given, nbc will run the MAP-based EM al-
gorithm (§3.1.2) under the pseudo counts (the smoothing
constants) read from a file named Base_smooth.txt,
which may have been created by a previous run of vnbc
(§4.4). The number of classes is determined according to
the content of Base_smooth.txt.

Other optional flags will be described in §4.3.3.

4.3.2 File format

Fig. 10 illustrates the file format that is common to all NBCT’s
input/output files. In this format, a file contains several data
matrices each of which has a header part, and the header part
consists of the lines starting with ‘#’. A header part includes
the identifier to the corresponding data matrix and gives brief
descriptions of columns.

In the area of a data matrix, each line corresponds to a row
of the matrix, and is separated to several fields each of which
corresponds to a column of the matrix. Either tab characters or
commas are allowed to be the delimiters of fields. A file which
uses the tab characters (resp. commas) as delimiters is said to
be in the tab-separated format (resp. the CSV format). Please
note that the CSV format used here is just a restricted one —
the current version of NBCT does not understand the values
enclosed by double quote characters.

Since version 0.3, missing values are allowed to be included
in the data file Base_freq.txt (or Base_freq.csv). The
nbc or the vnbc commands assume that each missing value
is denoted by ‘?’.

4.3.3 Command line options

� EM algorithm

The ML/MAP-based EM algorithms for naive Bayes models
are described in §3.1.1 and §3.1.2.

-c ClassPseudoCount

ID: Identifier for data matrix #1
Brief descriptions of columns
####

Data matrix #1

ID: Identifier for data matrix #2
Brief descriptions of columns
####

Data matrix #2

...

Figure 10: Common file format in NBCT.

This option specifies a uniform pseudo count for the class
variable. That is, for each class k, the pseudo count δk is
equally set to ClassPseudoCount. When ‘auto’ is spec-
ified for ClassPseudoCount, the pseudo counts are set to
the ones used in AutoClass (§3.1.2). The default value is
0.

-w AttrPseudoCount

This option specifies uniform pseudo counts for the at-
tribute variables. If AttrPseudoCount takes the form
‘ζ1,ζ2,· · ·,ζJ’, for each attribute j, the pseudo counts
δ j,k,x j are equally set to ζ j. If AttrPseudoCount is just a
non-negative number ζ, all pseudo counts δ j,k,x j for at-
tributes are equally set to ζ. When ‘auto’ is specified
for ζ or for each ζ j, the corresponding pseudo counts are
set to the ones used in AutoClass (§3.1.2). The default
values are all 0.

-V MinPseudoCount

With this option, nbc runs the MAP-based EM algo-
rithm under the pseudo counts used in the BDeu metric
(§3.1.2), where MinPseudoCount is the minimum among
them. That is, nbc first computes α = KVmax · (1 +
MinPseudoCount), where Vmax = max1≤ j≤J V j, and then
sets uniform pseudo counts δk = α/K − 1 and δ j,k,x j =

α/KV j − 1.8 This option is prioritized over the -c or the
-w options.

-r RandomSeed

nbcwill use RandomSeed as a random seed for initializa-
tion of parameters in the EM algorithm (Step 1 in Fig. 3
and Fig. 4).

-e Threshold

nbc will use Threshold as the threshold ξ for judging the
convergence of the EM algorithm (Step 2 in Fig. 3 and

8This indirect way to specify the equivalent sample size α would be useful
for the cases where K varies and it is tedious to identify V j from the data in
advance.

14

Fig. 4). That is, if the difference between the value of
log-likelihood (or log of a posteriori probability) before
the update and the one after the update becomes less than
ξ, we will consider that the parameters have been con-
verged. The default value is 10−5.

-m MaxIter

This option indicates the maximum number of iterations
to be performed is MaxIter. That is, nbcwill stop the EM
iteration when the number of iterations exceeds MaxIter.
If this option is omitted or MaxIter = 0, the EM iterations
will be continued until the convergence.

-n NumInit

With this option, random restarts will be enabled in the
EM algorithm (§3.1.8), where the number of initial trials
is NumInit. By default, NumInit is set to 1, that is, nbc
will not perform random restarts.

-l MaxInitIter

With this option, the maximum number of preliminary
EM iterations in random restarts (§3.1.8) will be set to
MaxInitIter.

-I InitClassMethod

This option specifies the initialization method for the
class parameters (Step 1 in Fig. 3 and Fig. 4). There are
two alternatives — ‘noisy_u’ initializes the parameters
based on a uniform distribution with small noises, and
‘random’ initializes the parameters more randomly. The
default method is ‘noisy_u’.

-J InitAttrMethod

This option specifies the initialization method for the at-
tribute parameters (Step 1 in Fig. 3 and Fig. 4). Sim-
ilarly to the -I flag, ‘noisy_u’ initializes the param-
eters based on a uniform distribution with small noises,
and ‘random’ initialize the parameters more randomly.
In addition, ‘v_freq’ initializes the parameters based
on the empirical frequencies with small noises. That
is, each attribute parameter θ j,k,x j will be initialized to
1
N
∑

x′:x′j=x j
N(x′) with a small noise. The default method

is ‘noisy_u’.

-M (no argument)

With this option, the EM algorithm will save the memory
space. However it should be noted that this option may
slow down the EM algorithm, and that, for an implemen-
tational reason, this option is not available in the SMEM
algorithm.

�Membership distribution

-D (no argument)

This option enables the computation of the membership
distributions p(k | x) (§3.1.3), and the results will be writ-
ten into a file named ‘Base_memp.txt’.

� Dissimilarity

-d (no argument)

This option enables the computation of the dissimilarities
between objects, and the dissimilarities between attribute
values (§3.1.4). The computed dissimilarities are written
into ‘Base_dissim.txt’. Since nbc will try to com-
pute the dissimilarities for all possible pairs of objects in
the dataset D, it should take a quite long time for large D.

� Clustering

-t ClusterScore

This option enables clustering (§3.1.5), where the cluster-
ing score is ClusterScore. When ClusterScore is given as
‘mp’, we will use the score in Eq. 21. When ClusterScore
is ‘wodd’, we will use the score in Eq. 24. The results of
clustering will be written into ‘Base_cluster.txt’.
The default score is ‘mp’.

� Relevance analysis

-z NumRank

With this option, nbc will enable the relevance analy-
sis (§3.1.6), in which the most relevant objects or at-
tribute values to each class (each cluster) are written into
‘Base_rank.txt’. NumRank is the number of such rel-
evant objects or attribute values. If NumRank is set to
0, the ranking over all objects or attribute values will be
recorded.

-Q RelvScore

This option specifies the score for relevance analysis
(§3.1.6). When RelvScore is given as ‘mp’, we will use
the score in Eq. 26. On the other hand, when RelvScore
is given as ‘wodd’, we will use the score in Eq. 27. The
default score is ‘mp’.

�Model selection

If we give an option ‘-k Kmin:Kmax:Kstep’, nbc will enter
into the ‘model scoring’ mode (§3.1.7) — that is, if we specify
‘-k 3:10:2’, nbc will compute the scores of the models
with the number of classes K = 3, 5, 7, 9. For the environments
in which the character ‘:’ is not allowed to be used in the
command line, we can use ‘,’ or ‘-’ instead.

15

-g ModelScore

This option specifies the model score as ModelScore. The
available model scores are ‘bic’ (BIC, Eq. 32) and ‘cs’
(the Cheeseman-Stutz score, Eq. 33). The default score is
BIC.

� DAEM algorithm

-b (no argument)

This option enables the DAEM algorithm.

-B InvTempInit:InvTempRate

This option sets the initial value βinit of the inverse tem-
perature as InvTempInit, and the updating coefficient βrate
as InvTempRate. It is required that 0 < βinit ≤ 1 and
βrate > 1. If ‘InvTempInit:’ is given as the argument, the
default value 1.2 is used for βrate. If ‘:InvTempRate’ is
given, the default value 0.1 is used for βinit. However the
appropriate values of βinit and βrate seem quite different
according to the problem domains.

When we enable the DAEM algorithm, the messages like be-
low will be displayed (βinit = 0.5 and βrate = 1.2). In these
messages, each ‘*’ indicates that the inverse temperature has
just been updated.

% nbc -f test2 -k 5 -x 5 -c 0.5 -w 0.5 -e 0.01
-n 3 -b -B 0.5:
#classes = 5:
[0] #iterations *0****.........100.........2

00..... (Converged: 257 iterations) L=-4
6256.426573601
[1] #iterations *0****.........100.........

(Converged: 192 iterations) L=-46257.923
138277
[2] #iterations *0****.........100.........2

00.. (Converged: 228 iterations) L=-46206.429
370481
<<Resumed best parameter set #2>>
[2] #iterations * (Converged: 229 iterations

) L=-46206.419584886

� SMEM algorithm

Since the number of split-merge candidates to be examined
is K(K − 1)(K − 2) at maximum, where K is the number of
classes, the SMEM algorithm could take a very long time to
find a better set of parameters. nbc provides several (ad-hoc)
control flags not to explore unpromising search space.

-o NumOp

This option enables the SMEM algorithm, where the
number of operations is set to NumOp.

-a NumCand

This option specifies the maximum number of the split-
merge candidates to be examined.

-G NumSplitCand

This option limits the number of the split candidates to be
taken into account for each merge candidate.

-U MinClassPar

This option specifies the lower limit of the class probabil-
ity of a class to be split. That is, if the class probability
of a split candidate is lower than MinClassPar, nbc will
skip the candidate. If this option is omitted, no limit will
be set.

-C MinNewClassPar

This option specifies the lower limit of the class proba-
bility of a new class obtained by a split-merge operation.
That is, if one of the probabilities of three newly obtained
classes is lower than MinNewClassPar, the result of the
split-merge operation will be discarded. If this option is
omitted, no limit will be set.

-N MinImprove

This option specifies the lower limit of the improvement
of a split-merge operation. That is, the improvement of
such a operation does not exceed MinImprove, the result
of the operation will be discarded. The default value is
10 × ξ, where ξ is the threshold for judging convergence
of the EM algorithm, which is specified with the -e flag.

-F (no argument)

This option enables the normalized version of Jmerge
(Eq. 42), instead of the original one (Eq. 40).

� Input/Output files

With GNU libiconv, we can handle datasets with non-ASCII-
safe character codes. The default codeset can be specified at
the installation time, by the configure script (§4.2.3) or
Makefile.msvc (§4.2.4). Without such a configuration, the
default codeset will be set to UTF-8. Running ‘iconv -l’
shows a list of the available codesets. Also, as described in
§4.3.2, each input/output file is either in the CSV format or in
the tab-separated format.

-s Suffix

nbc adds a suffix Suffix to the base name of the output
files. For example, ‘Base_param.txt’ will be changed
as ‘Base_Suffix_param.txt’.

-p Charcode (Available only with GNU libiconv)

nbc assumes the character codeset of the input file is
Charcode. If this flag is omitted, the default codeset will
be used.

-q Charcode (Available only with GNU libiconv)

nbc outputs files with the character codeset Charcode. If
this flag is omitted, the default codeset will be used.

16

-i (no argument)

nbc assumes the input file is in the CSV format, and has
a file extension ‘csv’. If this flag is omitted, the tab-
separated format will be assumed.

-j (no argument)

nbc outputs files in the CSV format whose file extension
is ‘csv’. If this flag is omitted, nbc outputs them in the
tab-separated format.

�Miscellaneous

-E (no argument)

In some domains, the data file ‘Base_freq.txt’ may
contain the class information annotated by human. While
a future version of NBCT is planned to provide a facility
for evaluation based on such class information, in the cur-
rent version, we will ignore such class information when
this option is given. It is assumed that the class informa-
tion is placed in the left-most column.

-S (no argument)

By default, nbc outputs the messages to the standard er-
ror output. This option switches the output to a file named
‘Base_msg.txt’. Then the buffer will not be flushed
for each dot symbol, so for a relatively small dataset, this
option would make the execution of the program more
efficient.

-Y (no argument)

By default, the attribute values output from nbc are or-
dered according to their character codes. With this op-
tion, on the other hand, nbc will write them in the order
of appearances in ‘Base_freq.txt’.

-v (no argument)

With this option, the intermediate computed results are
recorded into ‘Base_log.txt’. It should be noted that
the resultant log file may become quite large.

-h (no argument)

This option displays a short description on the optional
flags.

4.4 VB based clustering
Generally speaking, the usage of vnbc is quite similar to that
of nbc. The names of input/output files are shown in Table 3.
Also the file format for vnbc is the same as that of nbc ex-
cept the messages in the header parts (see §4.3.2). The dis-
tinguished difference lies in the command line options for the
EM algorithm. First, the -H, the -g, the -I and the -J flags
are not available in vnbc (‘noisy_u’ is always given to -I
and -J). Also, the meanings of the following optional flags are

Table 3: Input/Output files for vnbc.

Filename Content
Input Base_freq.txt Occurrences of

objects
Output Base_smooth.txt Pseudo counts δ
Output Base_dissim_vb.txt Dissimilarities
Output Base_memp_vb.txt Membership probs.
Output Base_cluster_vb.txt Clustering results
Output Base_rank_vb.txt Result of

relevance analysis
Output Base_log_vb.txt Logs
Output Base_msg_vb.txt Messages on the

display

different as those of nbc (each symbol ε with some subscript
denotes a small random noise):

-R (no argument)

If this flag is given, vnbc will skip the VB-
EM algorithm and read the hyperparameters from a
file named Base_smooth.txt. The number of
classes is then determined according to the content of
Base_smooth.txt.

-c ClassPseudoCount

This option specifies the initial hyperparameters for the
class variable. That is, for each class k, the initial hyper-
parameters α(0)

k in Step 1 of Fig. 9 are almost equally set
to (1 + ClassPseudoCount) + εk. The default value is 0
(i.e. uninformative).

-w AttrPseudoCount

This option specifies the initial hyperparameters for the
attribute variables. If AttrPseudoCount takes the form
‘ζ1,ζ2,· · ·,ζJ’, for each attribute j, the initial hyperpa-
rameters α(0)

j,k,x j
are set to (1+ ζ j)+ ε j. If AttrPseudoCount

is just a non-negative number ζ, all pseudo counts α(0)
j,k,x j

for attributes are set to (1 + ζ) + ε j,k,x j . The default values
are all 0.

-V MinPseudoCount

With this option, vnbc runs the VB-EM algorithm with
the initial hyperparameters used in the BDeu metric
(§3.1.2), where (1 + MinPseudoCount) is the minimum
among them. That is, nbc first computes α = KVmax ·
(1 + MinPseudoCount), where Vmax = max1≤ j≤J V j, and
then sets pseudo counts α(0)

k = α/K + εk and α(0)
j,k,x j

=

α/KV j + ε j,k,x j . This option is prioritized over the -c and
the -w options.

17

ID:XXXX
####
####

ID:YYYY
####
####

ID:ZZZZ
####
####

ID:XXXX
####
####

ID:YYYY
####
####

ID:ZZZZ
####
####

(Data matrix #1)

(Data matrix #2)

(Data matrix #3)

foo.txt
_XXXXbar .txt

_YYYYbar .txt

_ZZZZbar .txt

(Data matrix #1)

(Data matrix #2)

(Data matrix #3)

(generated by nbc/vnbc)

Figure 11: Output file split by nbcsep with an argument ‘-f
bar’.

4.5 Auxiliary tools
NBCT provides an auxiliary tool named nbcsep for post-
processing of the output files from the executables nbc and
vnbc. As described above, an output file contains data matri-
ces each of which has a header part with a predefined identi-
fier. In a typical case, we use nbcsep to split the output file
into the files whose names have the corresponding identifiers
(Fig. 11). The synopsis of nbcsep is as follows:

nbcsep Options InputFile [InputFile ...]

If ‘-’ is given as an InputFile, nbcsep assumes that one in-
put is passed from the standard input. If no options are given,
nbcsep displays all identifiers of the data matrices in Input-
Files. The below is a list of available options:

-f Base

nbcsep writes each data matrix in InputFile into the file
named ‘Base_ID.Ext’, where ID is the identifier of the
data matrix, and Ext is the file extension of InputFile. The
default value of Base is out.

-v ID

nbcsep outputs only the data matrices whose identifiers
match with ID, ignoring the case of letters, to the standard
output. The matching criterion can be configured by the
-m flag.

-o ID

This is the same as ‘-v ID’ except that the output will be
saved into the file(s) whose names have a prefix specified
with the -f flag.

-m Criterion

This option specifies the matching criterion as Criterion
for the -v and the -o options. Criterion is one from
exact, infix, prefix and suffix. The default
value is infix.

-s Suffix

nbcsep adds Suffix to the name of the output
file of nbcsep. The resultant filename will be
‘Base_Suffix_ID.Ext’.

-e Ext

nbcsep uses Ext as a new file extension for the output
files. If this option is omitted, the file extension will be set
as the one commonly appeared in InputFiles. If different
extensions are used in InputFiles, ‘out’ will be used as
the default file extension.

-d (no argument)

nbcsep outputs only the data matrices.

-D (no argument)

nbcsep outputs only the header parts.

-p Charcode (Available only with GNU libiconv)

nbcsep assumes the character codeset of the input file
is Charcode.

-q Charcode (Available only with GNU libiconv)

nbcsep outputs the files with the character codeset
Charcode.

-h (no argument)

nbcsep displays a simple help message.

4.6 Notes on computing environments
4.6.1 Computation time and space

The computation time and space required in the EM learning
algorithm is almost linear in each of the number of classes,
the number of attributes, and the number of distinct objects in
the dataset. So, for the domain that contains many classes or
attributes, the required resources will become quite large.

Especially, the amount of memory consumption could cause
a severe problem. So for a remedy, we may reduce the re-
quired memory size by specifying the -M flag to the nbc or
the vnbc commands. Unfortunately, however, the use of the
-M flag may slow down the EM algorithm.9 Besides, for an

9This does not necessarily mean that there is inefficiency at the algorithmic
level. It is probable that the cache mechanism of the computer does not work
effectively with the -M flag.

18

implementational reason, the -M flag is not supported in the
SMEM algorithm.

4.6.2 Settings for the EM algorithms

For some applications, the default value of the threshold for
judging convergence of the EM algorithm, which is specified
by the -e flag (§4.3.3), might be too small. In the early re-
search of statistical natural language processing, it is reported
that, at least in ML estimation, a large number of EM iterations
do not necessarily lead to a good performance in probabilistic
inferences after EM learning (e.g. Section 10.3.2 of [13] dis-
cusses the case of hidden Markov models). So there should be
cases where it is reasonable to give a larger value to the -e
flag, or set the maximum number of iterations with the -m flag
(§4.3.3). In addition, it is empirically observed that the EM al-
gorithm run with larger pseudo counts tends to converge with
a smaller number of iterations.

4.6.3 Precision of floating-point numbers

For large-scale datasets, NBCT might show an unexpected
behavior due to the problems with arithmetic precision such
as underflow or precision errors. To avoid such problems,
we may use the long double type for floating-point num-
bers, by adding the ‘--enable-long-double’ flag to
the configure script (Linux, Mac OS X, and Win32 with
Cygwin/MinGW), or by deleting the ‘-DNO_LDOUBLE’ flag
from the CFLAGS variable in Makefile.msvc (Win32 with
MSVC++). However, as is well known, the physical size of
long double is system-dependent, and is only guaranteed
not to be smaller than that of double (i.e. long double is
only guaranteed not to be less precise than double). If you
are using long double, the physical size will be recorded
into the log file (Base_log.txt, etc). Also it should be ad-
dressed that, in the current implementation of the digamma
function Ψ(·), floating-point numbers are treated as double.

4.6.4 Parallelization via OpenMP

Nowadays a couple of popular C compilers support OpenMP
for shared-memory parallel computing. In NBCT’s source
code, several ‘pragma’ declarations for OpenMP are added to
the ‘for’ loops which require massive numerical computation.
An interested user may enable these ‘pragma’ declarations by
giving compiler-dependent flags to the C compiler. For GNU
C compiler (version 4.2 or later), for instance, we may add
CFLAGS=’-fopenmp -O3’ and LDFLAGS=’-lgomp’
to the arguments of the configure script, and specify the
number of threads at runtime by the OMP_NUM_THREADS en-
vironment variable.

Contact information
NBCT is still under development, and bug reports, questions,
suggestions, or any other feedbacks are highly welcome. To
make a contact with the author, please send an e-mail to nbct
[AT]mi.cs.titech.ac.jp, (please replace [AT] with
@).

Acknowledgments
First of all, the author would like to thank Masanori Naka-
gawa, Taisuke Sato and Asuka Terai for providing the opportu-
nity to develop this software, and for their valuable suggestions
and feedbacks. Special thanks go to Kenichi Kurihara for the
helpful advice on variational Bayesian learning, and to Yusuke
Izumi for offering C code of the digamma and the log-gamma
functions, which are originally implemented in SPECFUN,10

and for the useful information on the development tools on
Microsoft Windows. This software gratefully uses many free
software packages including GNU libiconv and Free Getopt
(http://freegetopt.sourceforge.net/). The de-
velopment of this software is supported by the 21st Century
COE Program “Framework for Systematization and Applica-
tion of Large-scale Knowledge Resources” at Tokyo Institute
of Technology.

References
[1] P. Baldi, P. Fransconi, and P. Smyth. Modeling the Internet and

the Web. John Wiley & Sons, 2003.

[2] M. J. Beal. Variational Algorithms for Approximate Bayesian
Inference. PhD thesis, University College London, 2003.

[3] W. Buntine. Theory refinement on Bayesian networks. In Proc.
of the 7th Conf. on Uncertainty in Artificial Intelligence, pages
52–60, 1991.

[4] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass):
Theory and results. In U. Fayyad, G. Piatesky, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pages 153–180. The MIT Press, 1995.

[5] D. Chickering and D. Heckerman. Efficient approximation for
the marginal likelihood of Bayesian networks with hidden vari-
ables. Machine Learning, 29:181–212, 1997.

[6] G. Cooper and E. Herskovits. A Bayesian method for the in-
duction of probabilistic networks from data. Machine Learning,
9:309–347, 1992.

[7] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery. Learning to construct knowl-
edge bases from the World Wide Web. Artificial Intelligence,
118:69–113, 2000.

10SPECFUN was developed by W. J. Cody et al. at Argonne National Lab-
oratory, and is now available in public domain at http://www.netlib.
org/specfun/ .

19

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society, B39:1–38, 1977.

[9] D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and statis-
tical data. Machine Learning, 20:197–243, 1995.

[10] A. Hotho, S. Staab, and G. Stumme. Explaining text clustering
results using semantic structures. In Proc. of the 7th European
Conf. on Principles and Practice of Knowledge Discovery in
Databases (PKDD-2003), 2003.

[11] K. Katahira, K. Watanabe, and M. Okada. Deterministic anneal-
ing in variational Bayesian algorithm. Neurocomputing, IEICE
Technical Report (NC2006-183), 106(589):177–182, 2007. In
Japanese.

[12] K. Kurihara and T. Sato. Variational Bayesian grammar induc-
tion for natural language. In Proc. of the 8th Intl. Colloquium
on Grammatical Inference (ICGI-2006), pages 84–95, 2006.

[13] C. Manning and H. Shütze. Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

[14] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of
English words. In Proc. of the 31st Annual Meeting of the As-
sociation for Computational Linguistics, pages 183–190, 1993.

[15] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2nd edition, 2002.

[16] G. Schwarz. Estimating the dimension of a model. Annals of
Statistics, 6(2):461–464, 1978.

[17] A. Terai. From computation to mind: examining the psycholog-
ical validity of a computational model of metaphor understand-
ing — targeting more human-like systems. In Proc. of Sympo-
sium on Large-scale Knowledge Resources (LKR-2005), 2005.

[18] N. Ueda and Z. Ghahramani. Bayesian model search for mix-
ture models based on optimizing variational bounds. Neural
Networks, 15:1223–1241, 2002.

[19] N. Ueda and R. Nakano. Deterministic annealing EM algorithm.
Neural Networks, 11(2):271–282, 1998.

[20] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. SMEM
algorithm for mixture models. In Neural Information Process-
ing Systems 11 (NIPS11), pages 599–605, 1999.

20

