
NBCT: A Toolkit for Naive Bayes Clustering
(version 0.2)

Yoshitaka Kameya
Tokyo Institute of Technology

August 19, 2007

Contents
1 Introduction 1

2 Getting started 2
2.1 Problem domain 2
2.2 Naive Bayes models 2
2.3 Running NBCT 3

3 Clustering algorithms 6
3.1 ML/MAP based clustering 6

3.1.1 Parameter estimation based on ML . . . 6
3.1.2 Parameter estimation based on MAP . . 6
3.1.3 Membership distribution 7
3.1.4 Dissimilarity 8
3.1.5 Clustering 8
3.1.6 Relevance analysis 8
3.1.7 Model selection 9
3.1.8 Random restarts 9
3.1.9 The split-merge EM algorithm 10

3.2 VB based clustering 11
3.2.1 Model selection based on VB 11
3.2.2 Clustering 12
3.2.3 Other inference tasks 13
3.2.4 Random restarts and the split-merge

EM algorithm 13

4 How to use NBCT 13
4.1 Overall organization of NBCT 13
4.2 Installation 13

4.2.1 Preliminary installation (GNU libiconv) 13
4.2.2 Contents of the package 13
4.2.3 Using configure 14
4.2.4 Using Makefile.msvc 14

4.3 ML/MAP based clustering 14
4.3.1 General description 14
4.3.2 File format 14
4.3.3 Command line options 15

4.4 VB based clustering 18
4.5 Auxiliary tools 19
4.6 Notes on computing environments 20

4.6.1 Computation time and space 20
4.6.2 Settings for the EM algorithms 20
4.6.3 Precision of floating-point numbers . . 20
4.6.4 Parallelization via OpenMP 20

1 Introduction

NBCT (Naive Bayes Clustering Toolkit) is a C imple-
mentation of several probabilistic inference algorithms
related to naive Bayes clustering — probabilistic cluster-
ing based on a naive Bayes model [1]. Currently NBCT
includes a discrete version of AutoClass [4, 5] augmented
with the split-merge EM (SMEM) algorithm [18].1 Be-
sides, NBCT provides the following functions for each
of three statistical frameworks — ML (maximum like-
lihood), MAP (maximum a posteriori) and VB (Varia-
tional Bayes):

• EM learning
(with random restarts or the SMEM algorithm)

• Clustering

• Other probabilistic inferences

– Computing membership distributions

– Computing dissimilarities between objects
(cases), or between attribute values

– Relevance analysis

• Model scoring
1Currently, the SMEM algorithm is considered to be experimen-

tal. Furhtermore, in a future version, it is planned to incorporate
Ueda and Ghahramani’s SMEM algorithm that aims to simultane-
ously solve the problems of avoiding undesirable local maxima and
finding the optimal number of clusters [17].

1

It is empirically shown in recent researches that the VB
approach often works better than ML/MAP approaches
in model selection (e.g. determining the optimal num-
ber of clusters) [2, 11], though ML/MAP is simpler and
would be easier to work with. NBCT can be applied
to many of discrete domains such as document cluster-
ing with bag-of-words representation [1] or distributional
clustering of words [13].

The rest of this document is comprised of three parts.
First, in Section 2, we will see a typical usage of NBCT
with an exemplar artificial dataset included in the re-
leased package. Section 3 then gives a (rough) descrip-
tion of the algorithms used in NBCT. Section 4 is the
third part which describes the detailed usage of NBCT.

2 Getting started

Let us try NBCT with an artificial dataset included in the
released package. It is assumed here that the installation
of NBCT (see §4.2 for the procedure) has been success-
fully done, and we are working in the example direc-
tory of the unfolded package.

In this section, we just focus on the look and feel of
NBCT, and do not aim at listing all functions. We first
describe the problem domain and probabilistic models
applied to the domain (i.e. naive Bayes models). The
users who are familiar with naive Bayes clustering or
classification may skip the following two sections (§2.1
and §2.2), and jump to §2.3, which demonstrates NBCT.

2.1 Problem domain

Given a dataset D of objects, clustering is a task to group
similar objects in D, or typically, to partition D into dis-
joint sets, called classes or clusters, of similar objects.
So each of these objects uniquely belongs to one of K
predefined classes. Also we consider that each object is
represented by an vector of values of J predefined at-
tributes. Please note that in the released program we will
use the term ‘case’ instead of ‘object’ (just for a historical
reason).

To be concrete, let us open test1_freq.csv in the
directory by some text viewer:

V1,W1,X1,Y1,Z1
V1,W1,X1,Y1,Z1
V1,W1,X1,Y1,Z1

:

V1,W1,X1,Y1,Z2
V1,W1,X1,Y1,Z2

:

Each line in the file corresponds to an object, and each
of comma-separated values in the line corresponds to a
value of an attribute of the object. In the above, we can
see that the first object is represented by the vector x =
(V1,W1,X1,Y1,Z1) of attribute values.

As above, there are cases where several objects have
the same attribute values. In NBCT, these objects will
be regarded as the same object since there is no way to
distinguish them. Then the data D will be a multiset of
objects. test2_freq.txt contains the same dataset
as that of test1_freq.csv, but the objects who have
the same vector x of attribute values are suppressed, and
instead their count N(x) is added to the right-most col-
umn:

V1 W1 X1 Y1 Z1 201
V1 W1 X1 Y1 Z2 237
V1 W1 X1 Y1 Z3 30
V1 W1 X1 Y1 Z4 116

:

For example, we have N(x) = 237 for x = (V1,W1,X1,
Y1,Z2).

To make notations simple, we give indices 1, 2, . . . to
attributes from left to right, and refer to each attribute by
its index. Also, independently for each attribute, we give
indices 1, 2, . . . to the attribute values according to the
order of appearances. Then each attribute value will be
referred to by its index. For example, we will refer Y1,
Y2, Y3 and Y4 by their indices 1, 2, 3 and 4, respectively.

2.2 Naive Bayes models

To build clusters of objects in the dataset D, we attempt
to use a probabilistic model called a naive Bayes model.
In naive Bayes models, it is considered that the objects in
D were generated in a causal way depicted as a Bayesian
network (Fig. 1), which has random variables C and X j

(1 ≤ j ≤ J). C is called a class variable, and X j

(1 ≤ j ≤ J) are called attribute variables. In such a naive
Bayes model, the class of each object is firstly deter-
mined as k under the class distribution p(C=k), and then
each attribute value x j (1 ≤ j ≤ J) is conditionally deter-
mined under the attribute distribution p(X j = x j | C = k).

2

C

X X X1 2 J

Figure 1: Bayesian network representation of a naive
Bayes model.

We let V j denote the number of possible values of the j-
th attribute. The probability that an object with attribute
values x = (x1, x2, . . . , xJ) belongs to the class k is simply
computed as:

p(C=k, X1= x1, X2= x2, . . . , XJ= xJ)

= p(C=k)
J∏

j=1

p(X j= x j | C=k), (1)

where 1 ≤ k ≤ K and 1 ≤ x j ≤ V j (1 ≤ j ≤ J).
Furthermore, we hereafter simplify the above as:

p(k, x) = p(k, x1, x2, . . . , xJ) = p(k)
J∏

j=1

p(x j | k), (2)

where p(C = k, . . .) and p(X j = x j, . . .) are abbreviated as
p(k, . . .) and p(x j, . . .), respectively. Since the probabili-
ties p(k) and p(x j | k) in the right hand side can be seen as
parameters of p(k, x), we write them explicitly as θk and
θ j,k,x j , respectively. Then, p(k, x) takes a parameterized
form (1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j):

p(k, x | θ) = θk
J∏

j=1

θ j,k,x j , (3)

where θ is a vector consisting of θk and θ j,k,x j . p(k, x | θ)
is called the joint distribution specified by the naive
Bayes model, and is used for various probabilistic infer-
ences including clustering, which are described later.

Under some parameter settings, new objects can be
sampled from the naive Bayes model. Indeed, the dataset
in test1_freq.csv or test2_freq.txt has been
artificially generated by sampling under the parameters
shown in Tab. 1, where K = 5, J = 5, V1 = 2, V2 = 2,
V3 = 3, V4 = 4 and V5 = 5.

2.3 Running NBCT

At this point, we can try NBCT with the dataset con-
tained in test1_freq.csv or test2_freq.txt.

Table 1: Parameters used in generating test1_freq.
csv or test2_freq.txt

θ1 0.1
θ2 0.5
θ3 0.2
θ4 0.05
θ5 0.15
θ1,1,1 0.9
θ1,1,2 0.1
θ1,2,1 0.7
θ1,2,2 0.3
θ1,3,1 0.1
θ1,3,2 0.9
θ1,4,1 0.2
θ1,4,2 0.8
θ1,5,1 0.5
θ1,5,2 0.5
θ2,1,1 0.8
θ2,1,2 0.2
θ2,2,1 0.99
θ2,2,2 0.01
θ2,3,1 0.7
θ2,3,2 0.3
θ2,4,1 0.05
θ2,4,2 0.95
θ2,5,1 0.4
θ2,5,2 0.6

θ3,1,1 0.3
θ3,1,2 0.3
θ3,1,3 0.4
θ3,2,1 0.8
θ3,2,2 0.1
θ3,2,3 0.1
θ3,3,1 0.05
θ3,3,2 0.9
θ3,3,3 0.05
θ3,4,1 0.3
θ3,4,2 0.6
θ3,4,3 0.1
θ3,5,1 0.2
θ3,5,2 0.1
θ3,5,3 0.7

θ4,1,1 0.05
θ4,1,2 0.05
θ4,1,3 0.3
θ4,1,4 0.6
θ4,2,1 0.2
θ4,2,2 0.05
θ4,2,3 0.5
θ4,2,4 0.25
θ4,3,1 0.1
θ4,3,2 0.8
θ4,3,3 0.05
θ4,3,4 0.05
θ4,4,1 0.8
θ4,4,2 0.05
θ4,4,3 0.05
θ4,4,4 0.1
θ4,5,1 0.7
θ4,5,2 0.1
θ4,5,3 0.1
θ4,5,4 0.1

θ5,1,1 0.15
θ5,1,2 0.1
θ5,1,3 0.2
θ5,1,4 0.5
θ5,1,5 0.05
θ5,2,1 0.3
θ5,2,2 0.4
θ5,2,3 0.05
θ5,2,4 0.2
θ5,2,5 0.05
θ5,3,1 0.4
θ5,3,2 0.1
θ5,3,3 0.1
θ5,3,4 0.1
θ5,3,5 0.3
θ5,4,1 0.95
θ5,4,2 0.01
θ5,4,3 0.01
θ5,4,4 0.02
θ5,4,5 0.01
θ5,5,1 0.8
θ5,5,2 0.05
θ5,5,3 0.05
θ5,5,4 0.05
θ5,5,5 0.05

Let us assume here that the true number of classes is
known (i.e. K = 5 is known). Then, to get the (five)
clusters of objects in test2_freq.csv, we invoke an
executable named nbc with specifying a couple of op-
tion flags (‘%’ is the prompt symbol):

% nbc -f test2 -k 5 -x 5 -t mp

The option ‘-f test2’ specifies the names of in-
put/output files including test2_freq.txt. Besides,
the options ‘-k 5’ and ‘-x 5’ indicate that the number
of clusters is 5 (i.e. K = 5), and that the number of at-
tributes is 5 (i.e. J = 5), respectively. The option ‘-t
mp’ enables clustering based on the membership proba-
bilities (see §3.1.3 and §3.1.5 for details). When invoking
the program, we may see the messages as follows:

#classes = 5:
#iterations 0.........50.........100...

......150.........200.........250........

.300.........350.........400.........450.

........500. (Converged: 508 iterations)
L=-46204.232086

3

In advance of clustering, the program runs the EM
(expectation-maximization) algorithm (§3.1.1) to esti-
mate the parameters of the naive Bayes model. The
EM algorithm is an iterative, hill-climbing algorithm for
parameter estimation. The messages above report the
progress of the EM algorithm. To use test1_freq.
csv instead of test2_freq.txt, the -i flag will be
required to deal with the CSV (comma-separated values)
format.

% nbc -f test1 -k 5 -x 5 -r 12345 -i

After the run, three files named test2_param.
txt, test2_cluster.txt and test2_log.txt
will have been created. The first file, test2_param.
txt, contains the parameters estimated by the EM algo-
rithm:

ID:PARAM-CLASS
Class k, Class parameter P(k)
####
0 0.164739744393
1 0.048580087144
2 0.511626472252
3 0.196216832015
4 0.078836864196
ID:PARAM-ATT0
Class k, Attr. value x0, Attr. parameter
P(x0|k)
####
0 V1 0.522947982507
0 V2 0.477052017493
1 V1 0.145922471394

:
4 V1 0.949635445666
4 V2 0.050364554334
ID:PARAM-ATT1
Class k, Attr. value x1, Attr. parameter
P(x1|k)
####
0 W1 0.389463446381
0 W2 0.610536553619
1 W1 0.068199167665

:

We can see from the above that θ1, θ2, . . . were estimated
as 0.165, 0.049, . . . , respectively. In general, each out-
put file contains several data matrices, each of which has
header lines beginning with ‘#’.

The second file, test2_cluster.txt, contains
the data matrices on the correspondences between clus-
ters and objects:

ID:CLUSTER-CASE-BY-CASE

Case ID, Cluster k, Attr. x1, ... Attr.
x5, Membership prob. P(k|x)
####
0 2 V1 W1 X1 Y1 Z1 0.805043454811
1 2 V1 W1 X1 Y1 Z2 0.981302362520
2 2 V1 W1 X1 Y1 Z3 0.863899435937
3 2 V1 W1 X1 Y1 Z4 0.912873199926

:

It is found that the object 0, x = (V1,W1,X1,Y1,Z1),
belongs to the cluster 2, and so on. One may also no-
tice that the rows in the data matrix whose identifier is
‘CLUSTER-CASE-BY-CASE’ is ordered by the indices
of objects. On the other hand, the rows in the data matrix
named ‘CLUSTER-CASE-BY-CLUSTER’ is ordered by
the indices of clusters:

ID:CLUSTER-CASE-BY-CLUSTER
Cluster k, Case ID, Attr. x1, ... Attr.
x5, Membership prob. P(k|x)
####
0 22 V1 W1 X2 Y1 Z3 0.359072973437
0 33 V1 W1 X2 Y3 Z4 0.379421817602
0 37 V1 W1 X2 Y4 Z3 0.827169179316

:

The above tell us that the cluster 0 includes the objects
22, 23, 37, and so on. Finally, the third file, test2_
log.txt, contains the additional information on the
last execution.

NBCT provides many options for the EM algorithm.
For example, there are cases where we would like to
restart with several different initial settings of the EM
algorithm. This is because the EM algorithm is a hill-
climbing algorithm, and is known to be often trapped in
undesirable local maxima. In NBCT, this method is en-
abled by giving the number of restarts to the -n flag:

% nbc -f test2 -k 5 -x 5 -t mp -n 10
#classes = 5:

[0] #iterations 0.........50.........100....
.....150.........200.........250..300.
........350......... (Converged: 399 iteration
s) L=-46204.232085

[1] #iterations 0.........50.........100....
.....150.........200.........250..300.
........350.........400.........450 (Converged
: 452
iterations) L =-46204.232084

[2] #iterations 0.........50.........100....
.....150.........200.........250..300.
........350.........400.... (Converged: 422 it
erations) L=-46204 .232089

:
[9] #iterations 0.........50.........100....

4

% vnbc -f test2 -k 2:10:1 -x 5 -t mp -c 1.0 -w 1.0
|Classes| = 2:

#iterations 0.........50. (Converged: 59 iterations) F=-47697.146904
[2] Free Energy = -47697.146904 (temporarily optimal)

:
|Classes| = 5:

#iterations 0.........50.........100.........150.........200.........250.........300....
.....350.........400.... (Converged: 421 iterations) F=-46458.661401

[5] Free Energy = -46458.661401 (temporarily optimal)
:

|Classes| = 10:
#iterations 0.........50.........100.........150.........200.........250.........300....

.....350.........400.........450.........500.........550.........600.........650.........7
00.........750.........800.........850.........900 (Converged: 900 iterations) F=-46519.8
96105

[10] Free Energy = -46519.896105
Optimal |Classes| = 5

Figure 2: Messages from vnbc.

.....150.........200.........250.........300..

.......350.........400.........450.........500

.........550.........600.........650.........7
00.........750.........800.........850........
.900.........950.........1000.........1050....
.....1100.........1150.........1200......... 1
250...... (Converged: 1284 iterations) L=-4625
9.088233

<<Resumed best parameter set #1>>
[1] #iterations (Converged: 453 iterations)

L=-46204.232074

We can find from the above the second initial setting (in-
dexed by 1) provides the best estimate of parameters.

To be precise, the parameter estimation method we
have run is called ‘maximum likelihood (ML) estima-
tion.’ On the other hand, maximum a posteriori (MAP)
estimation is said to be more robust against the problem
of data-sparseness, which often arises with a small data.
In MAP estimation, we should tell the ‘pseudo counts’
to the program. If the pseudo counts are uniformly set to
1 for all parameters, the estimation is commonly called
Laplace’s estimation. In NBCT, it is possible to specify
arbitrary pseudo counts for the class parameters θk by the
-c flag, and for the attribute parameters θ j,k,x j by the -w
flag. For example, to perform Laplace’s estimation, we
may run:

% nbc -f test2 -k 5 -x 5 -t mp -c 1.0 -w 1.0
#classes = 5:

#iterations 0.........50.........100........
.150.........200.........250.........300......
...350.........400.........450.........500....
.....550.........600...... (Converged: 630 ite

rations) L=-46218.658868

We have assumed so far that the true number K of clus-
ters is known in advance, but in more realistic situations,
it is of course unknown. So finding the optimal number
of clusters (based on the dataset) is a key issue in cluster-
ing. This can be seen a kind of model selection problem,
which has been intensively discussed in the literature of
machine learning. NBCT provides a facility that com-
putes the scores on K based on the marginal likelihood
P(D | K), the plausibility of D given the number K of
clusters.

Although the scores on K are provided for the frame-
works of ML and MAP estimation, we here use varia-
tional free energy instead as a score on K in the frame-
work of variational Bayes (VB). In VB, we use an-
other executable named vnbc. The execution log is
shown in Fig. 2, where the number of clusters to be
examined ranges from 2 to 10. If we specify ‘-k
Kmin:Kmax:Kstep’, NBCT will be switched into the
‘model selection’ mode. One may find that, in this exam-
ple, we fortunately recovered the true number of clusters
(i.e. K̂ = K = 5).

At the end of this section, we will mention on an aux-
iliary tool nbcsep for post-processing the output files
generated by nbc and vnbc. As is described before,
each output file contains several data matrices, each of
which has a unique identifier. nbcsep extracts these
data matrices, and puts each of them into an individual
file. The name of such a new file includes the ID of

5

the corresponding data matrix. For example, let us ap-
ply nbcsep to test2_param.txt:

% nbcsep -f foo test2_param.txt
Output: foo_PARAM-CLASS.txt
Output: foo_PARAM-ATT0.txt
Output: foo_PARAM-ATT1.txt
Output: foo_PARAM-ATT2.txt
Output: foo_PARAM-ATT3.txt
Output: foo_PARAM-ATT4.txt

Please note here that the common prefix of the names of
newly created files was given by the -f flag.

3 Clustering algorithms

This section gives the detailed descriptions on the cluster-
ing algorithms and the other related algorithms provided
in NBCT.

3.1 ML/MAP based clustering

3.1.1 Parameter estimation based on ML

In advance of clustering and the other probabilistic infer-
ences based on the joint distribution p(k, x | θ), we need
to estimate the parameters θ from the dataset D. Let us
consider again that we are given a set D of objects where
N(x) is the number of occurrences of objects that have
the attribute values x. We define N as the number of total
occurrences of objects, that is, N =

∑
x N(x). Since in

clustering, we do not know the class to which each ob-
ject belongs, the dataset D contains no information about
k. In this sense, D is often called incomplete data. In
maximum likelihood (ML) estimation, we try to find the
parameters θ that maximize the likelihood p(D | θ). That
is, we have:

θ̂ML = argmax
θ

p(D | θ) = argmax
θ

log p(D | θ)

= argmax
θ

∑
x

N(x) log p(x | θ)

= argmax
θ

∑
x

N(x) log
K∑

k=1

p(k, x | θ). (4)

Due to the lack of the information on k, it is not easy to
analytically maximize p(D | θ) or log p(D | θ). Instead,
we use the EM (expectation-maximization) algorithm [8].

1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and
θ j,k,x j (1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following two steps alternately until the log-
likelihood log p(D | θ) converges (m = 0, 1, 2, . . .):

E-step:

p(k | x, θ(m)) ∝ θ(m)
k

J∏
j=1

V j∏
x j=1

θ(m)
j,k,x j

(5)

E(m)[k] :=
∑

x
N(x)p(k | x, θ(m)) (6)

E(m)
j [k, x j] :=

∑
x′:x′j=x j

N(x′)p(k | x′, θ(m)) (7)

M-step:

θ(m+1)
k ∝ E(m)[k] (8)

θ(m+1)
j,k,x j

∝ E(m)
j [k, x j] (9)

Figure 3: The EM algorithm for ML estimation in naive
Bayes models.

Fig. 3 is the EM algorithm derived for naive Bayes mod-
els.2

3.1.2 Parameter estimation based on MAP

It is well-known in the machine learning literature that
ML estimation often suffers from the problem of data-
sparseness when the data size N is not so large compared
to the number of parameters. One way for avoiding this
problem is to take a Bayesian approach, in which we con-
sider a prior distribution p(θ) on the parameter space Θ.
As is often done, in NBCT, we introduce a Dirichlet dis-
tribution for the prior distribution:

2In this document, the symbol ‘∝’ means a substitution with nor-
malization — that is, we implicitly make the values computed in the
left hand side form a probability distribution (that is, making them
sum to unity). For example, in Eq. 5, p(k | x, θ(m)) is actually com-
puted by:

p(k | x, θ(m)) =
θ(m)

k

∏J
j=1
∏V j

x j=1 θ
(m)
j,k,x j∑K

k′=1 θ
(m)
k′
∏J

j=1
∏V j

x j=1 θ
(m)
j,k′ ,x j

.

6

1. Initialize randomly the parameters θk (1 ≤ k ≤ K) and
θ j,k,x j (1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following two steps alternately until the log
of the a posteriori probability p(θ | D) converges (m =
0, 1, 2, . . .):

E-step:

p(k | x, θ(m)) ∝ θ(m)
k

J∏
j=1

V j∏
x j=1

θ(m)
j,k,x j

(12)

E(m)[k] :=
∑

x
N(x)p(k | x, θ(m)) (13)

E(m)
j [k, x j] :=

∑
x′:x′j=x j

N(x′)p(k | x′, θ(m)) (14)

M-step:

θ(m+1)
k ∝ E(m)[k] + (αk − 1) (15)

θ(m+1)
j,k,x j

∝ E(m)
j [k, x j] + (α j,k,x j − 1) (16)

Figure 4: The EM algorithm for MAP estimation in naive
Bayes models.

p(θ) =
1
Z

K∏
k=1

θαk−1
k

J∏
j=1

V j∏
x j=1

θ
α j,k,x j−1

j,k,x j
(10)

Z =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)
·
∏K

k=1
∏J

j=1
∏V j

x j=1 Γ(α j,k,x j)∏K
k=1
∏J

j=1 Γ(
∑V j

x j α j,k,x j)
,

(11)

where Z is a normalizing constant, and αk and α j,k,x j are
called hyper-parameters, each of which corresponds to
θk and θ j,k,x j , respectively (1 ≤ k ≤ K, 1 ≤ j ≤ J,
1 ≤ x j ≤ V j).

Instead of maximizing p(D | θ), we try to maximize
p(θ | D), an a posteriori probability of θ given the dataset
D. That is, we also have:

θ̂MAP = argmax
θ

p(θ | D) = argmax
θ

log p(θ | D)

= argmax
θ

log
p(θ)p(D | θ)

p(D)

= argmax
θ

{
log p(θ) + log p(D | θ)

}
. (17)

This procedure is usually called MAP (maximum a pos-
teriori) estimation.

The EM algorithm for MAP estimation is shown in
Fig. 4. The algorithm is obtained by modifying the con-
vergence condition and the procedure in M-step of the
ML version (Fig. 3). Let us introduce δk

def
= αk − 1 and

δ j,k,x j

def
= α j,k,x j −1 as the pseudo counts or the smoothing

constants in estimating the corresponding parameters. If
we let δk and δ j,k,x j be positive, the estimated parameters
will also be positive, so we would be able to avoid the
problem of data-sparseness.

For simplicity, these pseudo counts are set to be uni-
form. When specifying all δk and δ j,k,x j to be 1.0, the
estimation procedure is sometimes called Laplace’s esti-
mation. In AutoClass [4], all δk are fixed at 1/K, and all
δ j,k,x j are fixed at 1/V j (1 ≤ k ≤ K, 1 ≤ j ≤ J). The
BDeu metric [3, 9] assumes that αk (= 1+δk) = α/K and
α j,k,x j (= 1 + δ j,k,x j) = α/KV j for some common α > 0,3

where α is called the equivalent sample size.

3.1.3 Membership distribution

Given the estimated parameters θ̂ (θ̂ML or θ̂MAP) and an
attribute vector x of some object, we can obtain a mem-
bership distribution p(k | x, θ) under which the object
belongs to the class k. The probabilities are computed
by:

p(k | x, θ̂) = p(k, x | θ̂)
p(x | θ̂)

∝ p(k, x | θ̂) = θ̂k
J∏

j=1

θ̂ j,k,x j . (18)

Since we often consider that a class summarizes some
(hidden) characteristic of an object, membership distri-
butions play an important role in probabilistic inferences
based on naive Bayes models.

In addition, we may consider the attribute membership
distributions p(k | x j), where x j is the j-th attribute value
of an object, and k is the class to which the object be-
longs. Similarly to the above, the probabilities are com-
puted as follows:

p(k | x j, θ̂) ∝ θ̂kθ̂ j,k,x j . (19)

3Of course this is a specialized form for naive Bayes models.

7

3.1.4 Dissimilarity

Since the membership distributions (§3.1.3) p(k | x, θ̂)
can be considered to characterize the object represented
by x, we may measure the dissimilarity ∆ between two
objects x and x′ by the Kullback-Liebler divergence be-
tween the corresponding membership distributions:

∆(x, x′) = KL(p(k | x, θ̂) || p(k | x′, θ̂))

=

K∑
k=1

p(k | x, θ̂) log
p(k | x, θ̂)
p(k | x′, θ̂)

.

(20)

3.1.5 Clustering

As is mentioned above, clustering is a task to partition
the objects in the dataset D into clusters of similar ones.
One way is to regard each class as a cluster, and then to
classify each object, whose attribute values are x, into its
most probable cluster (class) k∗. More specifically, based
on the estimated parameters θ̂, we compute k∗ by using a
membership probability as a score for clustering:

k∗ = argmax
k:1≤k≤K

p(k | x, θ̂) = argmax
k:1≤k≤K

p(k, x | θ̂).

(21)

In this sense, naive Bayes clustering can be seen as an
unsupervised classification task based on a naive Bayes
model.

Furthermore, another clustering score can be consid-
ered. First, we rewrite the dissimilarity ∆(x, x′) as fol-
lows:

∆(x, x′) =
∑K

k=1 ∆k(x, x′), (22)

∆k(x, x′) = p(k | x, θ̂) log
p(k | x, θ̂)
p(k | x′, θ̂)

, (23)

where each ∆k(x, x′) can be interpreted as the signifi-
cance of class k’s contribution to the dissimilarity be-
tween x and x′. Then, the cluster k∗ for the object x is
obtained by:

k∗ = argmax
k:1≤k≤K

∆k(x,¬x)

= argmax
k:1≤k≤K

p(k | x, θ̂) log
p(k | x, θ̂)

p(k | ¬x, θ̂)
, (24)

where we consider that k∗ is the most contributing class
to make x and ¬x, the objects other than x, being dis-
similar. To compute ∆k(x,¬x), it should be noted that

p(k,¬x | θ̂) = p(k | θ̂) − p(k, x | θ̂) and p(¬x | θ̂) =
1 − p(x | θ̂). ∆k(x,¬x), the second clustering score in
NBCT, can be seen as the weighted log-odds ratio. This
score is just a modification of the relevance score be-
tween a particular class and a particular attribute value,
proposed in [7] (see the next section).

Some may be interested in clustering of attribute val-
ues for each attribute. Given an attribute value x j of j-th
attribute, the most probable cluster is predicted as fol-
lows:

k∗ = argmax
k:1≤k≤K

p(k | x j, θ̂) = argmax
k:1≤k≤K

p(k, x j | θ̂)

= argmax
k:1≤k≤K

θkθ j,k,x j . (25)

3.1.6 Relevance analysis

Using the estimated parameters θ = θ̂, we may want to
know the most relevant objects to the class k of interest.
One promising way is to rank the objects x(1), x(2), . . .

according to the magnitude of RMP(k, x) def
= p(k | x),

i.e. the membership probability [16]. To understand this
ranking, let us transform the probability as follows:

RMP(k, x) = p(k | x, θ)

=
p(k | θ)p(x | k, θ)

p(x | θ) ∝ p(x | k, θ)
p(x | θ) .

(26)

Then, RMP(k, x) can be seen as the significance of p(x |
k, θ) compared to p(x | θ) = ∑K

k=1 p(k | θ)p(x | k, θ),
the unconditional (or averaged) probability of x being
occurred. In some applications, these relevant objects
would be a help for characterizing the cluster [10, 16].

Another ranking score is the weighted log-odds ra-
tio [7]. That is, for the target class k, the weighted log-
odds ratio w.r.t. x, denoted by RWODD(k, x), is computed
as follows:

RWODD(k, x) def
= p(x | k, θ) log

p(x | k, θ)
p(x | ¬k, θ)

. (27)

Similarly to the discussion made in §3.1.5, we can see
that
∑

x RWODD(k, x) = KL(p(x | k, θ) || p(x | ¬k, θ)),
and hence RWODD(k, x) is a contribution by x to the dis-
similarity between k and the classes other than k. In other
words, ranking by RWODD(k, x) means that the most rel-
evant objects to the class k are the ones that discriminate
k most significantly from the others.

8

Also we can consider the attribute-wise version of
the two ranking scores above. Both R j

MP(k, x j) and
R j

WODD(k, x j) indicate the relevance between the class k
and the value x j of the attribute j, and are defined as fol-
lows:

R j
MP(k, x j)

def
= p(k | x j, θ) (28)

R j
WODD(k, x j)

def
= p(x j | k, θ) log

p(x j | k, θ)
p(x j | ¬k, θ)

.

(29)

These scores measure the degree of relevance between
a particular class and a particular attribute value, and so
would be useful in the case where we are interested in
the behavior of each attribute (e.g. in distributional clus-
tering [13]).

3.1.7 Model selection

In clustering, we are often in question of how to deter-
mine the number of clusters. This problem can be seen
as a special case of model selection, and in NBCT, we
attempt to find a solution in a Bayesian approach. To be
specific, we first consider the joint distribution p(D,M, θ)
of complete data D, a probabilistic model M, and its pa-
rameters θ. p(D,M, θ) is factored as p(D | M, θ)p(θ |
M)p(M) by the chain rule, where p(M) is the prior distri-
bution of the model M, p(θ | M) is the prior distribution
of the parameters θ of the model M, and p(D | M, θ) is
the likelihood of the data D based on the model M with
the parameters θ. In naive Bayes models, for instance,
each d ∈ D corresponds to the attribute vector x of an
object. Also M corresponds to K, the number of classes
(clusters), though it has been omitted in the descriptions
so far.

Then, from the settings above, our goal is to find the
most probable model M∗ based on the data D at hand,
that is, we attempt to find M∗ such that:

M∗ = argmaxM p(M | D)

= argmaxM
p(D | M)p(M)

p(D)
= argmaxM p(D | M)p(M)

= argmaxM p(D | M), (30)

where we assume p(M) to be uniform for simplicity.
Now the goal is reduced to finding M (= M∗) that max-
imizes p(D | M). p(D | M) is commonly called the

marginal likelihood of D given M, and is used as a score
for model selection. The marginal likelihood can be in-
terpreted as the expectation (or the average) of the like-
lihood p(D | M, θ) with respect to the prior distribution
p(θ | M):

p(D | M) =
∫
Θ

p(D, θ | M)dθ

=
∫
Θ

p(D | M, θ)p(θ | M)dθ

=
〈
p(D | M, θ)〉p(θ|M) . (31)

If the dataset were complete data Dc, where each d ∈ Dc

is a pair (k, x) of the attribute vector x of an object and
the class k to which the object belongs, then p(Dc | M)
is obtained in closed form (see [6, 9] for the case with
a Bayesian network). On the other hand, when the data
is incomplete, as in the case of probabilistic clustering,
the integral in Eq. 31 is difficult to compute. So, includ-
ing MCMC (Markov chain Monte Carlo) sampling, sev-
eral approximation methods of the marginal likelihood
are proposed so far [5]. Bayesian information criterion
(BIC) [15] should be the most popular ‘deterministic’
approximation method, in which Laplace approximation
is introduced based on the large-data assumption. The
Cheeseman-Stutz score [4, 5] is used in AutoClass. The
general forms of these two scores are respectively written
as follows:

ScoreBIC(M) def
= p(D | M, θ̂MAP) − |θ|

2
log N (32)

ScoreCS(M) def
= p(D̃c | M) − p(D̃c | M, θ̂MAP)

+p(D | M, θ̂MAP), (33)

where N is the total size of dataset, |θ| denotes the num-
ber of free parameters, and D̃c is pseudo complete data
whose sufficient statistics are the expected counts ob-
tained by the EM algorithm.

3.1.8 Random restarts

Since the EM algorithm is just a hill-climbing algorithm,
being trapped in undesirable local maxima is known as
one of practical problems in the EM algorithm. NBCT
provides two facilities for avoiding such local maxima
— random restarts [14] and the split-merge EM (SMEM)
algorithm [18].

In random restarts, we first prepare n different initial
parameter sets. Then, from each initial parameter set,
we run a series of EM iterations, and record the con-
verged likelihood p(D | θ) or the a posteriori probability

9

split
(b)

merge
(a)

Figure 5: Image of a merge operation and a split opera-
tion, where the dots and the ovals stand for objects and
clusters, respectively.

p(θ | D). Finally we pick up the estimated parameters
that bring the highest likelihood or the highest a posteri-
ori probability.

3.1.9 The split-merge EM algorithm

The SMEM algorithm is applicable to mixture models,
including naive Bayes models. In the SMEM algorithm,
we attempt to escape from the local maxima by forcedly
applying the split operation and the merge operation to
unpromising clusters.

To be more specific, we merge two clusters, say k1
and k2, that closely overlap with each other (Fig. 5 (a)),
and split a cluster, say k3, that excessively covers objects
(Fig. 5 (b)). In the paper that firstly proposed the SMEM
algorithm [18], the split operation and the merge opera-
tion are always paired, so the number of resultant clus-
ters will not change. After a split-merge operation pair
executed, the EM algorithm is conducted until the con-
vergence of likelihood p(D | θ) or the a posteriori proba-
bility p(θ | D).

The possible triplets of clusters (k1, k2, k3) are kept as
prioritized candidates for the next split-merge operation.
If the converged likelihood or a posteriori probability is
improved with the first candidate (i.e. the candidate is
said to be accepted), we will proceed to further split-
merge operations. If there is no (significant) improve-
ment with the first candidate, we will discard the result
of the EM algorithm (i.e. the candidate is said to be re-
jected) and try the next candidate.

� Prioritizing the split-merge candidates

To prioritize the split-merge candidates, we first get the
pairs {(k1, k2) | 1 ≤ k1 < k2 ≤ K} of classes to be merged,
in the descending order of heuristic scores Jmerge(k1, k2 |

θ). The score is defined as follows:

Jmerge(k1, k2 | θ)
def
= pk1(θ)T pk2(θ)

=
∑

x N(x)p(k1 | x, θ)p(k2 | x, θ),
(34)

where we have a multiset of objects D = {x(1), x(2), . . . ,

x(N)} as the observed data, and pk(θ) is the vector of the
membership probabilities to the class k:

pk(θ) = (p(k | x(1), θ), p(k | x(2), θ), . . . , P(k | x(N), θ))T .

(35)
Intuitively, Jmerge(k1, k2 | θ) measures a (partially empiri-
cal) similarity between the classes k1 and k2 based on the
data D. Besides, we may use the normalized version:

J̃merge(k1, k2 | θ)
def
=

pk1(θ)T pk2(θ)
||pk1(θ)|| · ||pk2(θ)|| . (36)

Then, for each (k1, k2) pair to be merged, we also get
the classes {k3 | 1 ≤ k3 ≤ K, k3 , k1, k3 , k2} to be
split, in the descending order of another heuristic score
Jsplit(k3 | θ):

Jsplit(k3 | θ)
def
= KL(p̃(x | k3, θ) || p(x | k3, θ))

=
∑

x
p̃(x | k3, θ) log

p̃(x | k3, θ)
p(x | k3, θ)

,

(37)

where p̃(x | k3, θ) is a local empirical probability com-
puted by:

p̃(x | k3, θ) ∝ p̃(x)p(k3 | x, θ)
∝ N(x)p(k3 | x, θ). (38)

In the above, p̃(x) denotes N(x)/N, the empirical uncon-
ditional probability of x. So using Jsplit(k3 | θ), the class
that does not fit to the data will be split earlier.

� Partial EM iterations

After a split-merge operation, we should re-initialize the
parameters of the modified classes. Let k′1 be the new
class obtained by merging k1 and k2. Also we consider
two classes k′2 and k′3 which are obtained by splitting k3.
Then, for the merged class k′1, we re-initialize the param-
eters related to k′1 as follows:

θk′1 :=
E[k1]θk1 + E[k2]θk2

E[k1] + E[k2]
(39)

θ j,k′1,x j := θ j,k1,x j + θ j,k2,x j (40)

(1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

10

-50000

-49500

-49000

-48500

-48000

-47500

-47000

-46500

-46000

 0 100 200 300 400 500 600 700 800

Log-likelihood

Total number of iterations

1st split-merge operation 2nd 3rd 4th 5th final

Usual EM algorithm

Figure 6: Changes in log-likelihood by the SMEM algo-
rithm.

On the other hand, for the split classes k′2 and k′3, we re-
initialize θk′2 := 1

2θk3 , θk′3 := 1
2θk3 , θ j,k′2,x j := θ j,k3,x j + ε

and θ j,k′3,x j := θ j,k3,x j + ε
′ (1 ≤ j ≤ J, 1 ≤ x j ≤ V j), where

ε and ε′ are some random noises.

In partial EM iterations, to make it reasonable to com-
pute E-step and M-step only for the modified classes (k′1,
k′2 and k′3), M-step is modified as follows (1 ≤ j ≤ J,
1 ≤ x j ≤ V j and k′ = k′1, k

′
2, k
′
3):

θ j,k′,x j =
E[k′]∑

k′′=k′1,k
′
2,k
′
3

E[k′′]
·
∑

k′′=k′1,k
′
2,k
′
3

θ j,k′′,x j

(41)

� Behavior of the SMEM algorithm

Fig. 6 shows a typical pattern on the changes in log-
likelihood by the SMEM algorithm, where we apply five
split-merge operations. Please note here that we have
only plotted a sequence with accepted split-merge op-
erations. It is seen from Fig. 6 that the log-likelihood
decreases at the moment of applying a split-merge op-
eration, but as a whole, the log-likelihood steadily in-
creases, and finally we can obtain the estimates with a
higher log-likelihood than the one obtained by the usual
EM algorithm.

3.2 VB based clustering

3.2.1 Model selection based on VB

As described in §3.1.7, to obtain the model M∗ that ex-
plains best the data D at hand, we consider M = M∗ is the
model that maximizes the marginal likelihood p(D | M).
In naive Bayes models, the optimal number K∗ of classes
is the number of classes in M∗. It has been also known
that if D is complete data Dc, p(D | M) can be obtained in
closed form. However, when D is incomplete, i.e. there
is some hidden data z such that Dc = (D, z) (for instance,
in naive Bayes clustering, the classes of the objects are
hidden in D), some approximation method is required.
In this section, we briefly describe the approximation via
the VB approach.

First, let us consider log of the marginal likelihood
L(D) def

= log p(D | M), and then we have:

L(D) = log
∑

z

∫
Θ

p(D, z, θ | M)dθ

= log
∑

z

∫
Θ

q(z, θ | D,M)
p(D, z, θ | M)
q(z, θ | D,M)

dθ

≥
∑

z

∫
Θ

q(z, θ | D,M) log
p(D, z, θ | M)
q(z, θ | D,M)

dθ.(
from Jensen’s inequality

)
(42)

For the space limitation, we fix the model M for the mo-
ment, and simply write p(· | M) = p(·) and q(· | D,M) =
q(· | D), and then obtain:

L(D) ≥ F[q]
def
=
∑

z

∫
Θ

q(z, θ | D) log
p(D, z, θ)
q(z, θ | D)

dθ,

(43)

where F[q] can be seen as a lower limit of L(D), and is
called the free energy. So to get a good approximation of
L(D), we attempt to find a distribution function q = q∗

that maximizes a functional F[q]. In model selection, we
use the free energy F[q] as a model score.

Besides, to get another view, we have the following by

11

considering L(D) =
∑

z
∫
Θ

q(z, θ | D) log p(D)dθ:

L(D) − F[q]

=
∑

z

∫
Θ

q(z, θ | D) log
{

p(D) · q(z, θ | D)
p(D, z, θ)

}
dθ

=
∑

z

∫
Θ

q(z, θ | D) log
q(z, θ | D)
p(z, θ | D)

dθ

= KL(q(z, θ | D) || p(z, θ | D)). (44)

From the above, maximizing F[q] implies minimizing
the Kullback-Liebler divergence between q(z, θ | D) and
p(z, θ | D). So finding q∗ is to make a good approxima-
tion of p(z, θ | D), the conditional distribution of hidden
variables and the parameters.

In VB learning, we further assume q(z, θ | D) ≈ q(z |
D)q(θ | D), and obtain a generic form of variational
Bayesian EM (VB-EM) algorithm as an iterative proce-
dure consisting of the following two update rules:

q(z | D) ∝ exp
(∫
Θ

q(θ | D) log p(D, z | θ)dθ
)
,

(45)

q(θ | D) ∝ p(θ) exp
(∑

z q(z | D) log p(D, z | θ)) .
(46)

Now we can derive a VB-EM algorithm specific to
naive Bayes clustering, shown in Fig. 7, by substituting
the distribution form of a naive Bayes model (Eq. 3) to
the generic VB-EM procedure above. In Fig. 7, π(m)

k and
π(m)

j,k,x j
are defined as follows:

π(m)
k

def
= exp

(
Ψ
(
α(m)

k

)
− Ψ
(∑K

k′=1 α
(m)
k′
))
, (47)

π(m)
j,k,x j

def
= exp

(
Ψ

(
α(m)

j,k,x j

)
− Ψ
(∑V j

x′j=1 α
(m)
j,k,x′j

))
,

(48)

where Ψ(·) is the digamma function. It can be noticed
that the resultant VB-EM algorithm receives the data D
as input, and outputs the learned hyper-parameters α∗ (or
the pseudo counts δ∗).

In NBCT, α(0)
k and α(0)

j,k,x j
are given as follows, where

αk and α j,k,x j are specified by the user, and εk and ε j,k,x j

are small random noises:

α(0)
k := αk + εk , (49)

α(0)
j,k,x j

:= α j,k,x j + ε j,k,x j . (50)

1. Initialize randomly the hyper-parameters α(0)
k (1 ≤ k ≤

K) and α(0)
j,k,x j

(1 ≤ k ≤ K, 1 ≤ j ≤ J, 1 ≤ x j ≤ V j).

2. Repeat the following two steps alternately until the free
energy F[q] converges (m = 0, 1, 2, . . .):

E-step:

q(m)(k | x) ∝ π(m)
k

J∏
j=1

π(m)
j,k,x j

(51)

E(m)[k] :=
∑

x
N(x)q(m)(k | x) (52)

E(m)
j [k, x j] :=

∑
x′:x′j=x j

N(x′)q(m)(k | x′) (53)

M-step:

α(m+1)
k := α(0)

k + E(m)[k] (54)

α(m)
j,k,x j

:= α(0)
j,k,x j
+ E(m)

j [k, x j] (55)

Figure 7: The VB-EM algorithm in naive Bayes models.

3.2.2 Clustering

As in the ML/MAP case (§3.1.5), we may regard the
cluster k∗ which has the highest membership probabil-
ity for an object x as the cluster to which the object
belongs. The difference is that we use the distribution
p(k, x) =

∫
Θ

q∗(θ | D)p(k, x | θ)dθ, an averaged distri-
bution on the prior distribution q∗(θ | D) with learned
hyper-parameters α∗, instead of p(k, x | θ̂) which relies
on the point-estimated value θ̂. That is, we have:

k∗ = argmax
k:1≤k≤K

p(k | x) = argmax
k:1≤k≤K

p(k, x)

= argmax
k:1≤k≤K

∫
Θ

q∗(θ | D)p(k, x | θ)dθ

= argmax
k:1≤k≤K

θ̄k

J∏
j=1

θ̄ j,k,x j , (56)

where θ̄k and θ̄ j,k,x j are obtained in closed form:

θ̄k = α∗k/
∑

k′ α
∗
k′ (57)

θ̄ j,k,x j = α∗j,k,x j
/
∑

x′j
α∗j,k,x′j

. (58)

12

3.2.3 Other inference tasks

In VB learning, it seems not easy in straightforward ways
to conduct the probabilistic inferences other than clus-
tering based on the membership distribution (§3.2.2) —
clustering based on the weighted log-odds ratio (Eq. 24),
computing dissimilarities (Eq. 20), or relevance analy-
sis (Eqs. 26 and 27). One compromise is to use the pa-
rameters θ̄ obtained by Eqs. 57 and 58 instead of θ̂, the
point-estimated parameters in ML/MAP [2], and actu-
ally NBCT adopts this method. It is important to note
however that the resultant probabilistic inferences are not
guaranteed to be good approximations of the inferences
based on a posteriori quantities.

3.2.4 Random restarts and the split-merge EM algo-
rithm

Basically, random restarts and the SMEM algorithm for
VB-EM (say, VB-SMEM) follow almost the same pro-
cedures as the ones for the ML/MAP-EM algorithms
(§3.1.8 and §3.1.9). The difference is that we need to use
the parameters θ̄ obtained by Eqs. 57 and 58 to compute
two heuristic scores Jmerge and Jsplit (Eqs. 34–37).

4 How to use NBCT

4.1 Overall organization of NBCT

NBCT 0.2 provides three executables named nbc, vnbc
and nbcsep:

• nbc covers probabilistic inferences for ML/MAP-
based clustering (§3.1).

• vnbc covers probabilistic inferences for VB-based
clustering (§3.2).

• nbcsep is an auxiliary tool for post-processing of
the output files from nbc or vnbc.

See §4.2 for the installation procedure. The usages of
nbc, vnbc and nbcsep are described in §4.3, §4.4 and
§4.5, respectively.

4.2 Installation

4.2.1 Preliminary installation (GNU libiconv)

To handle the dataset with non-ASCII-safe character
encodings, NBCT provides a way to utilize GNU

libiconv (http://www.gnu.org/software/
libiconv/). If you are sure that the target dataset
only contains ASCII characters or is ASCII-safe, GNU
libiconv will not be required. If GNU libiconv is not
installed on the user’s environment, the user needs to
install GNU libiconv in advance of the installation of
NBCT.

On Windows, a DLL file iconv.dll should be
placed in the folder specified by the PATH environment
variable, or in one of the system folders (such as
c:\WINDOWS\system32). To obtain iconv.dll,
we may download a zip archive http://ftp.gnu.
org/pub/gnu/libiconv/libiconv-1.9.1.
bin.woe32.zip, which includes a couple of executa-
bles and DLL files already built.4 On the other hand, the
latest version can be built from the source files.5

4.2.2 Contents of the package

The original package of NBCT is distributed as a
source tarball (nbct-0.2.tar.gz) or a zip archive
(nbct-0.2_win.zip) including Windows executa-
bles. After the package unfolded, the user may find the
following subdirectories (or sub-folders):

• src/ contains C source code.

• doc/ contains the document files including this
manual.

• bin/ contains executables or script files
(but might be empty just after unfolding).

• example/ contains data examples.

For the users who attempt to use the executables in
nbct-0.2_win.zip on Windows, the installation is
quite easy — that is, you only need to place these exe-
cutables in the folder that appears in the PATH environ-
ment variable. However it should be noted that the exe-
cutables do not link with GNU libiconv, and so are only
applicable to the datasets with ASCII-safe characters.

4It is confirmed that the NBCT binaries built using Visual Studio
.NET 2003 can run with iconv.dll from libiconv-1.9.1.
bin.woe32.

5With MSVC++, please follow the instructions in README.
woe32. However, with Visual Studio .NET 2003, several modifi-
cations seem to be required for GNU libiconv 1.11, the latest version
as of Aug. 14, 2007.

13

4.2.3 Using configure

For Linux, Mac OS X, and Win32 with Cygwin or
MinGW, we can use the configure script in the pack-
age. That is, after moving to the src directory, just type
(if necessary, please specify some appropriate Options to
your system):

% ./configure Options
% make

Note that the symbol ‘%’ is the shell prompt. For the
details on Options, please consult the INSTALL file in
the src directory. Also,

% ./configure --help

will show the detailed descriptions of the options for the
configure script.

4.2.4 Using Makefile.msvc

To build NBCT on Win32 with MSVC++, we attempt to
compile the source code by the cl command of VC++.
Please follow the steps below:

1. Edit src/Makefile.msvc as suitable for your
environment.

2. Invoke the Command Prompt window prepared for
MSVC++. For instance, if you are using MS Vi-
sual Studio .NET 2003, please follow the menus:
[Start]→ [All Programs]→ [Microsoft Visual Stu-
dio .NET 2003] → [Visual Studio .NET Tools] →
[Visual Studio .NET 2003 Command Prompt].

3. At the Command Prompt invoked, visit the src
folder.

4. Type the following command to compile NBCT:

nmake -f Makefile.msvc

5. Type the following command to install NBCT:

nmake -f Makefile.msvc install

By default (i.e. without modifying Makefile.
msvc), all executables will be copied into the bin
directory of the unfolded package.

4.3 ML/MAP based clustering

4.3.1 General description

As is mentioned above, we use the executable nbc for
ML/MAP based clustering. We can pass our settings and
tasks to nbc through the command line arguments:6

nbc -f Base -x NumAttr \
[-k NumClass|-R|-H] Options...

The above says that -f and -x are mandatory.
Here ‘-f Base’ indicates that we have a file named
Base_freq.txt, which contains a set D of the objects
to be clustered. Base will also be used as the base name
of the input/output files listed in Table 2. NumAttr, given
by -x, indicates the number J of attributes of the naive
Bayes model we use (see §2.2 for the description of naive
Bayes models). In addition, one of -k, -R and -H is re-
quired:

• When the number K of classes is given by ‘-k
NumClass’, nbc will first run the EM algorithm
(§3.1.1 and §3.1.2) to estimate the parameters from
Base_freq.txt. Then, probabilistic inferences
including clustering (§3.1.3–§3.1.6) will be con-
ducted based on the estimated parameters.

• When -R is given, nbc will skip the EM algo-
rithm and read the parameters from a file named
Base_param.txt, which may have been created
by manual or by a previous run of nbc. The num-
ber of classes is then determined according to the
content of Base_param.txt.

• When -H is given, nbc will run the MAP-based
EM algorithm (§3.1.2) under the pseudo counts
(the smoothing constants) read from a file named
Base_smooth.txt, which may have been created
by a previous run of vnbc (§4.4). The number of
classes is determined according to the content of
Base_smooth.txt.

Other optional flags will be described in §4.3.3.

4.3.2 File format

Fig. 8 illustrates the file format that is common to all
NBCT’s input/output files. In this format, a file contains

6In this document, the symbol ‘\’ just means a continuation of the
command line, so please do not type ‘\’ itself.

14

Table 2: Input/Output files for nbc.

Filename Content
Input Base_freq.txt Occurrences of

objects
Input/Output Base_param.txt Parameters θ
Input Base_smooth.txt Pseudo counts δ
Output Base_dissim.txt Dissimilarities
Output Base_memp.txt Membership probs.
Output Base_cluster.txt Clustering results
Output Base_rank.txt Result of

relevance analysis
Output Base_log.txt Logs
Output Base_msg.txt Messages on the

display

several data matrices each of which has a header part,
and the header part consists of the lines starting with ‘#’.
A header part includes the identifier to the corresponding
data matrix and gives brief descriptions of columns.

In the area of a data matrix, a line corresponds to a
row of the matrix, and is separated to several fields each
of which corresponds to a column of the matrix. Either
tab characters or commas are allowed to be the delimiters
of fields. A file which uses the tab characters (resp. com-
mas) as delimiters is said to be in the tab-separated for-
mat (resp. the CSV format). Please note that the CSV for-
mat used here is just a restricted one — the current ver-
sion of NBCT does not understand the values enclosed
by double quote characters.

4.3.3 Command line options

� EM algorithm

The ML/MAP-based EM algorithms for naive Bayes
models are described in §3.1.1 and §3.1.2.

-c ClassPseudoCount

This option specifies a uniform pseudo count for
the class variable. That is, for each class k, the
pseudo count δk is equally set to ClassPseudoCount.
When ‘auto’ is specified for ClassPseudoCount,
the pseudo counts are set to the ones used in Auto-
Class (§3.1.2). The default value is 0.

-w AttrPseudoCount

ID: Identifier for data matrix #1
Brief descriptions of columns
####

Data matrix #1

ID: Identifier for data matrix #2
Brief descriptions of columns
####

Data matrix #2

...

Figure 8: Common file format in NBCT.

This option specifies uniform pseudo counts for
the attribute variables. If AttrPseudoCount takes
the form ‘ζ1,ζ2,· · ·,ζJ’, for each attribute j, the
pseudo counts δ j,k,x j are equally set to ζ j. If At-
trPseudoCount is just a non-negative number ζ, all
pseudo counts δ j,k,x j for attributes are equally set to
ζ. When ‘auto’ is specified for ζ or for each ζ j,
the corresponding pseudo counts are set to the ones
used in AutoClass (§3.1.2). The default values are
all 0.

-V MinPseudoCount

With this option, nbc runs the MAP-based EM al-
gorithm under the pseudo counts used in the BDeu
metric (§3.1.2), where MinPseudoCount is the min-
imum among them. That is, nbc first computes
α = KVmax · (1 +MinPseudoCount), where Vmax =

max1≤ j≤J V j, and then sets uniform pseudo counts
δk = α/K − 1 and δ j,k,x j = α/KV j − 1.7 This option
is prioritized over the -c or the -w options.

-r RandomSeed

nbc will use RandomSeed as a random seed for ini-
tialization of parameters in the EM algorithm (Step
1 in Fig. 3 and Fig. 4).

-e Threshold

nbc will use Threshold as the threshold ξ for judg-
ing the convergence of the EM algorithm (Step 2
in Fig. 3 and Fig. 4). That is, if the difference be-
tween the value of log-likelihood (or log of a poste-

7This indirect way to specify the equivalent sample size α would
be useful for the cases where K varies and it is tedious to identify V j

from the data in advance.

15

riori probability) before the update and the one after
the update becomes less than ξ, we will consider
that the parameters have been converged. The de-
fault value is 10−5.

-m MaxIter

This option indicates the maximum number of it-
erations to be performed is MaxIter. That is, nbc
will stop the EM iteration when the number of iter-
ations exceeds MaxIter. If this option is omitted or
MaxIter = 0, the EM iterations will be continued
until the convergence.

-n NumInit

With this option, random restarts will be enabled in
the EM algorithm (§3.1.8), where the number of ini-
tial trials is NumInit. By default, NumInit is set to 1,
that is, nbc will not perform random restarts.

-l MaxInitIter

With this option, the maximum number of prelimi-
nary EM iterations in random restarts (§3.1.8) will
be set to MaxInitIter.

-I InitClassMethod

This option specifies the initialization method for
the class parameters (Step 1 in Fig. 3 and Fig. 4).
There are two alternatives — ‘noisy_u’ initial-
izes the parameters based on a uniform distribution
with small noises, and ‘random’ initializes the pa-
rameters more randomly. The default method is
‘noisy_u’.

-J InitAttrMethod

This option specifies the initialization method for
the attribute parameters (Step 1 in Fig. 3 and
Fig. 4). Similarly to the -I flag, ‘noisy_u’ ini-
tializes the parameters based on a uniform distri-
bution with small noises, and ‘random’ initial-
ize the parameters more randomly. In addition,
‘v_freq’ initializes the parameters based on the
empirical frequencies with small noises. That is,
each attribute parameter θ j,k,x j will be initialized to
1
N
∑

x′:x′j=x j N(x′) with a small noise. The default
method is ‘noisy_u’.

-M (no argument)

With this option, the EM algorithm will save the
memory space. However it should be noted that this
option may slow down the EM algorithm, and that,
for an implementational reason, this option is not
available in the SMEM algorithm.

�Membership distribution

-D (no argument)

This option enables the computation of the mem-
bership distributions p(k | x) (§3.1.3), and the re-
sults will be written into a file named ‘Base_memp.
txt’.

� Dissimilarity

-d (no argument)

This option enables the computation of the dissim-
ilarities between objects, and the dissimilarities be-
tween attribute values (§3.1.4). The computed dis-
similarities are written into ‘Base_dissim.txt’.
Since nbc will try to compute the dissimilarities
for all possible pairs of objects in the dataset D, it
should take a quite long time for large D.

� Clustering

-t ClusterScore

This option enables clustering (§3.1.5), where the
clustering score is ClusterScore. When Cluster-
Score is given as ‘mp’, we will use the score in
Eq. 21. When ClusterScore is ‘wodd’, we will use
the score in Eq. 24. The results of clustering will be
written into ‘Base_cluster.txt’. The default
score is ‘mp’.

� Relevance analysis

-z NumRank

With this option, nbc will enable the relevance
analysis (§3.1.6), in which the most relevant objects
or attribute values to each class (each cluster) are
written into ‘Base_rank.txt’. NumRank is the
number of such relevant objects or attribute values.
If NumRank is set to 0, the ranking over all objects
or attribute values will be recorded.

16

-Q RelvScore

This option specifies the score for relevance analysis
(§3.1.6). When RelvScore is given as ‘mp’, we will
use the score in Eq. 26. On the other hand, when
RelvScore is given as ‘wodd’, we will use the score
in Eq. 27. The default score is ‘mp’.

�Model selection

If we give an option ‘-k Kmin:Kmax:Kstep’, nbc will
enter into the ‘model scoring’ mode (§3.1.7) — that is, if
we specify ‘-k 3:10:2’, nbc will compute the scores
of the models with the number of classes K = 3, 5, 7, 9.
For the environments in which the character ‘:’ is not
allowed to be used in the command line, we can use ‘,’
or ‘-’ instead.

-g ModelScore

This option specifies the model score as Mod-
elScore. The available model scores are ‘bic’
(BIC, Eq. 32) and ‘cs’ (the Cheeseman-Stutz score,
Eq. 33). The default score is BIC.

� SMEM algorithm

Since the number of split-merge candidates is K(K −
1)(K − 2), where K is the number of classes, the SMEM
algorithm could take a very long time to find a better
set of parameters. nbc provides several (ad-hoc) control
flags not to explore unpromising search space.

-o NumOp

This option enables the SMEM algorithm, where the
number of operations is set to NumOp.

-a NumCand

This option specifies the maximum number of the
split-merge candidates to be examined.

-G NumSplitCand

This option limits the number of the split candidates
to be taken into account for each merge candidate.

-U MinClassPar

This option specifies the lower limit of the class
probability of a class to be split. That is, if the class
probability of a split candidate is lower than Min-
ClassPar, nbcwill skip the candidate. If this option
is omitted, no limit will be set.

-C MinNewClassPar

This option specifies the lower limit of the class
probability of a new class obtained by a split-merge
operation. That is, if one of the probabilities of three
newly obtained classes is lower than MinNewClass-
Par, the result of the split-merge operation will be
discarded. If this option is omitted, no limit will be
set.

-N MinImprove

This option specifies the lower limit of the improve-
ment of a split-merge operation. That is, the im-
provement of such a operation does not exceed Min-
Improve, the result of the operation will be dis-
carded. The default value is 10 × ξ, where ξ is the
threshold for judging convergence of the EM algo-
rithm, which is specified with the -e flag.

-F (no argument)

This option enables the normalized version of Jmerge
(Eq. 36), instead of the original one (Eq. 34).

� Input/Output files

With GNU libiconv, we can handle datasets with non-
ASCII-safe character codes. The default codeset can be
specified at the installation time, by the configure
script (§4.2.3) or Makefile.msvc (§4.2.4). Without
such a configuration, the default codeset will be set to
UTF-8. Running ‘iconv -l’ shows a list of the avail-
able codesets. Also, as described in §4.3.2, each in-
put/output file is either in the CSV format or in the tab-
separated format.

-s Suffix

nbc adds a suffix Suffix to the base name of the out-
put files. For example, ‘Base_param.txt’ will be
changed as ‘Base_Suffix_param.txt’.

-p Charcode (Available only with GNU libiconv)

nbc assumes the character codeset of the input file
is Charcode. If this flag is omitted, the default code-
set will be used.

-q Charcode (Available only with GNU libiconv)

nbc outputs the files with the character codeset
Charcode. If this flag is omitted, the default codeset
will be used.

17

-i (no argument)

nbc assumes the input file is in the CSV format, and
has a file extension ‘csv’. If this flag is omitted, the
tab-separated format will be assumed.

-j (no argument)

nbc outputs the files in the CSV format whose file
extension is ‘csv’. If this flag is omitted, nbc out-
puts them in the tab-separated format.

�Miscellaneous

-E (no argument)

In some domains, the data file ‘Base_freq.txt’
may contain the class information annotated by hu-
man. While a future version of NBCT is planned to
provide a facility for evaluation based on such class
information, in the current version, we will ignore
such class information when this option is given. It
is assumed that the class information is placed in the
left-most column.

-S (no argument)

By default, nbc outputs the messages to the stan-
dard error output. This option switches the output
to a file named ‘Base_msg.txt’. Then the buffer
will not be flushed for each dot symbol, so for a
relatively small dataset, this option would make the
execution of the program more efficient.

-Y (no argument)

By default, the attribute values output from nbc are
ordered according to their character codes. With this
option, on the other hand, nbcwill write them in the
order of appearances in ‘Base_freq.txt’.

-v (no argument)

With this option, the intermediate computed results
are recorded into ‘Base_log.txt’. It should be
noted that the resultant log file may become quite
large.

-h (no argument)

This option displays a short description on the op-
tional flags.

4.4 VB based clustering

Generally speaking, the usage of vnbc is quite similar to
that of nbc. The names of input/output files are shown
in Table 3. Also the file format for vnbc is the same as
that of nbc except the messages in the header parts (see
§4.3.2). The distinguished difference lies in the com-
mand line options for the EM algorithm. First, the -H,
the -g, the -I and the -J flags are not available in vnbc
(‘noisy_u’ is always given to -I and -J). Also, the
meanings of the following optional flags are different as
those of nbc (each symbol ε with some subscript denotes
a small random noise):

-R (no argument)

If this flag is given, vnbc will skip the VB-EM
algorithm and read the hyperparameters from a
file named Base_smooth.txt. The number of
classes is then determined according to the content
of Base_smooth.txt.

-c ClassPseudoCount

This option specifies the initial hyper-parameters for
the class variable. That is, for each class k, the initial
hyper-parameters α(0)

k in Step 1 of Fig. 7 are almost
equally set to (1 + ClassPseudoCount) + εk. The
default value is 0 (i.e. uninformative).

-w AttrPseudoCount

This option specifies the initial hyper-parameters for
the attribute variables. If AttrPseudoCount takes the
form ‘ζ1,ζ2,· · ·,ζJ’, for each attribute j, the initial
hyper-parameters α(0)

j,k,x j
are set to (1 + ζ j) + ε j. If

AttrPseudoCount is just a non-negative number ζ,
all pseudo counts α(0)

j,k,x j
for attributes are set to (1 +

ζ) + ε j,k,x j . The default values are all 0.

-V MinPseudoCount

With this option, vnbc runs the VB-EM algorithm
with the initial hyper-parameters used in the BDeu
metric (§3.1.2), where (1+MinPseudoCount) is the
minimum among them. That is, nbc first com-
putes α = KVmax · (1 + MinPseudoCount), where
Vmax = max1≤ j≤J V j, and then sets pseudo counts
α(0)

k = α/K + εk and α(0)
j,k,x j
= α/KV j + ε j,k,x j . This

option is prioritized over the -c and the -w options.

18

Table 3: Input/Output files for vnbc.

Filename Content
Input Base_freq.txt Occurrences of

objects
Output Base_smooth.txt Pseudo counts δ
Output Base_dissim_vb.txt Dissimilarities
Output Base_memp_vb.txt Membership probs.
Output Base_cluster_vb.txt Clustering results
Output Base_rank_vb.txt Result of

relevance analysis
Output Base_log_vb.txt Logs
Output Base_msg_vb.txt Messages on the

display

4.5 Auxiliary tools

NBCT provides an auxiliary tool named nbcsep for
post-processing of the output files from the executables
nbc and vnbc. As described above, an output file con-
tains data matrices each of which has a header part with
a predefined identifier. In a typical case, we use nbcsep
to split the output file into the files whose names have
the corresponding identifiers (Fig. 9). The synopsis of
nbcsep is as follows:

nbcsep Options InputFile [InputFile ...]

If ‘-’ is given as an InputFile, nbcsep assumes that one
input is passed from the standard input. If no options are
given, nbcsep displays all identifiers of the data matri-
ces in InputFiles. The below is a list of available options:

-f Base

nbcsep writes each data matrix in InputFile into
the file named ‘Base_ID.Ext’, where ID is the iden-
tifier of the data matrix, and Ext is the file extension
of InputFile. The default value of Base is out.

-v ID

nbcsep outputs only the data matrices whose iden-
tifiers match with ID, ignoring the case of letters, to
the standard output. The matching criterion can be
configured by the -m flag.

-o ID

This is the same as ‘-v ID’ except that the output
will be saved into the file(s) whose names have a
prefix specified with the -f flag.

ID:XXXX
####
####

ID:YYYY
####
####

ID:ZZZZ
####
####

ID:XXXX
####
####

ID:YYYY
####
####

ID:ZZZZ
####
####

(Data matrix #1)

(Data matrix #2)

(Data matrix #3)

foo.txt
_XXXXbar .txt

_YYYYbar .txt

_ZZZZbar .txt

(Data matrix #1)

(Data matrix #2)

(Data matrix #3)

(generated by nbc/vnbc)

Figure 9: Output file split by nbcsep with an argument
‘-f bar’.

-m Criterion

This option specifies the matching criterion as Cri-
terion for the -v and the -o options. Criterion is
one from exact, infix, prefix and suffix.
The default value is infix.

-s Suffix

nbcsep adds Suffix to the name of the output
file of nbcsep. The resultant filename will be
‘Base_Suffix_ID.Ext’.

-e Ext

nbcsep uses Ext as a new file extension for the out-
put files. If this option is omitted, the file extension
will be set as the one commonly appeared in Input-
Files. If different extensions are used in InputFiles,
‘out’ will be used as the default file extension.

-d (no argument)

nbcsep outputs only the data matrices.

-D (no argument)

nbcsep outputs only the header parts.

-p Charcode (Available only with GNU libiconv)

19

nbcsep assumes the character codeset of the input
file is Charcode.

-q Charcode (Available only with GNU libiconv)

nbcsep outputs the files with the character codeset
Charcode.

-h (no argument)

nbcsep displays a simple help message.

4.6 Notes on computing environments

4.6.1 Computation time and space

The computation time and space required in the EM
learning algorithm is almost linear in each of the num-
ber of classes, the number of attributes, and the num-
ber of distinct objects in the dataset. So, for the domain
that contains many classes or attributes, the required re-
sources will become quite large.

Especially, the amount of memory consumption could
cause a severe problem. So for a remedy, we may reduce
the required memory size by specifying the -M flag to the
nbc or the vnbc commands. Unfortunately, however,
the use of the -M flag may slow down the EM algorithm.8

Besides, for an implementational reason, the -M flag is
not supported in the SMEM algorithm.

4.6.2 Settings for the EM algorithms

For some applications, the default value of the thresh-
old for judging convergence of the EM algorithm, which
is specified by the -e flag (§4.3.3), might be too small.
In the early research of statistical natural language pro-
cessing, it is reported that, at least in ML estimation, a
large number of EM iterations do not necessarily lead to
a good performance in probabilistic inferences after EM
learning (e.g. Section 10.3.2 of [12] discusses the case of
hidden Markov models). So there should be cases where
it is reasonable to give a larger value to the -e flag, or
set the maximum number of iterations with the -m flag
(§4.3.3). In addition, it is empirically observed that the
EM algorithm run with larger pseudo counts tends to con-
verge with a smaller number of iterations.

8This does not necessarily mean that there is inefficiency at the al-
gorithmic level. It is probable that the cache mechanism of the com-
puter does not work effectively with the -M flag.

4.6.3 Precision of floating-point numbers

For large-scale datasets, NBCT might show an un-
expected behavior due to the problems with arith-
metic precision such as underflow or precision er-
rors. To avoid such problems, we may use the long
double type for floating-point numbers, by adding the
‘--enable-long-double’ flag to the configure
script (Linux, Mac OS X, and Win32 with Cyg-
win/MinGW), or by deleting the ‘-DNO_LDOUBLE’
flag from the CFLAGS variable in Makefile.msvc
(Win32 with MSVC++). However, as is well known, the
physical size of long double is system-dependent,
and is only guaranteed not to be smaller than that of
double (i.e. long double is only guaranteed not to
be less precise than double). If you are using long
double, the physical size will be recorded into the log
file (Base_log.txt, etc).

4.6.4 Parallelization via OpenMP

Nowadays a couple of popular C compilers support
OpenMP for shared-memory parallel computing. In
NBCT’s source code, several ‘pragma’ declarations
for OpenMP are added to the ‘for’ loops which re-
quire massive numerical computation. An interested
user may enable these ‘pragma’ declarations by giv-
ing compiler-dependent flags to the C compiler. For
GNU C compiler (version 4.2 or later), for instance, we
may add CFLAGS=’-fopenmp -O3’ and LDFLAGS
=’-lgomp’ to the arguments of the configure
script, and specify the number of threads at runtime by
the OMP_NUM_THREADS environment variable.

Contact information

NBCT is still under development, and bug reports, ques-
tions, suggestions, or any other feedbacks are highly wel-
come. To make a contact with the author, please send an
e-mail to nbct[AT]mi.cs.titech.ac.jp, with
[AT] being replaced with @.

Acknowledgments

First of all, the author would like to thank Masanori
Nakagawa, Taisuke Sato and Asuka Terai for provid-
ing the opportunity to develop this software, and for

20

their valuable suggestions and feedbacks. Special thanks
go to Kenichi Kurihara for the helpful advice on vari-
ational Bayesian learning, and to Yusuke Izumi for
offering C code of the digamma and the log-gamma
functions, which are originally implemented in SPEC-
FUN,9 and for the useful information on the devel-
opment tools on Microsoft Windows. This software
gratefully uses many free software packages includ-
ing GNU libiconv and Free Getopt (http://free
getopt.sourceforge.net/). The development of
this software is supported by the 21st Century COE Pro-
gram “Framework for Systematization and Application
of Large-scale Knowledge Resources” at Tokyo Institute
of Technology.

References
[1] P. Baldi, P. Fransconi, and P. Smyth. Modeling the Inter-

net and the Web. John Wiley & Sons, 2003.

[2] M. J. Beal. Variational Algorithms for Approximate
Bayesian Inference. PhD thesis, University College Lon-
don, 2003.

[3] W. Buntine. Theory refinement on Bayesian networks.
In Proc. of the 7th Conf. on Uncertainty in Artificial In-
telligence, pages 52–60, 1991.

[4] P. Cheeseman and J. Stutz. Bayesian classification (Au-
toClass): Theory and results. In U. Fayyad, G. Pi-
atesky, P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 153–
180. The MIT Press, 1995.

[5] D. Chickering and D. Heckerman. Efficient approxima-
tion for the marginal likelihood of Bayesian networks
with hidden variables. Machine Learning, 29:181–212,
1997.

[6] G. Cooper and E. Herskovits. A Bayesian method for the
induction of probabilistic networks from data. Machine
Learning, 9:309–347, 1992.

[7] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to con-
struct knowledge bases from the World Wide Web. Arti-
ficial Intelligence, 118:69–113, 2000.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, B39:1–38, 1977.

9SPECFUN was developed by W. J. Cody et al. at Argonne Na-
tional Laboratory, and is now available in public domain at http://
www.netlib.org/specfun/ .

[9] D. Heckerman, D. Geiger, and D. M. Chickering. Learn-
ing Bayesian networks: The combination of knowledge
and statistical data. Machine Learning, 20:197–243,
1995.

[10] A. Hotho, S. Staab, and G. Stumme. Explaining text clus-
tering results using semantic structures. In Proc. of the
7th European Conf. on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD-2003), 2003.

[11] K. Kurihara and T. Sato. Variational Bayesian gram-
mar induction for natural language. In Proc. of the
8th Intl. Colloquium on Grammatical Inference (ICGI-
2006), pages 84–95, 2006.

[12] C. Manning and H. Shütze. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[13] F. Pereira, N. Tishby, and L. Lee. Distributional clus-
tering of English words. In Proc. of the 31st Annual
Meeting of the Association for Computational Linguis-
tics, pages 183–190, 1993.

[14] S. Russell and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, 2nd edition, 2002.

[15] G. Schwarz. Estimating the dimension of a model. An-
nals of Statistics, 6(2):461–464, 1978.

[16] A. Terai. From computation to mind: examining
the psychological validity of a computational model of
metaphor understanding — targeting more human-like
systems. In Proc. of Symposium on Large-scale Knowl-
edge Resources (LKR-2005), 2005.

[17] N. Ueda and Z. Ghahramani. Bayesian model search for
mixture models based on optimizing variational bounds.
Neural Networks, 15:1223–1241, 2002.

[18] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton.
SMEM algorithm for mixture models. In Neural Infor-
mation Processing Systems 11 (NIPS11), pages 599–605,
1999.

21

