Contrastive Relevance Propagation for Interpreting Predictions by a Single-Shot Object Detector

Hideomi Tsunakawa¹, <u>Yoshitaka Kameya</u>¹, Hanju Lee², Yosuke Shinya², and Naoki Mitsumoto²

¹Department of Information Engineering, Meijo University ²DENSO CORPORATION

Outline

- Background
- Proposed method: CRP
- Experiments

Outline

- Background
- Proposed method: CRP
- Experiments

Background: SSD (1)

- Object detection is a well-known task in computer vision
- SSD (Single-Shot MultiBox Detector) [Liu+ ECCV-16]:
 - Known for its high speed and accuracy
 - Outputs:
 - Confidences for classes Classification

Localization Location offsets (center on x-axis, center on y-axis, width, height)

Input:

Output:

Background: SSD (2)

SSD:

Based on a (large) single convolutional network

 Layers for classification and layers for localization are connected from several convolutional layers

- LRP (Layer-wise Relevance Propagation) [Bach+ 15]:
 - Often used for interpreting predictions of DNNs

Input:

Output:

- LRP (Layer-wise Relevance Propagation) [Bach+ 15]:
 - Often used for interpreting predictions of DNNs
 - Propagates relevance backward from the output to the input features
 - Creates a heatmap using relevance at the input features

- LRP is equipped with several propagation rules:
 - Common:

 $R_j^{(l+1)}$: distributed to lower units

 $R_i^{(l)} := \sum_j R_{i \leftarrow j}$

 $R_{i \leftarrow i}$: passed through connection

- LRP is equipped with several propagation rules:
 - Common:

 $R_j^{(l+1)}$: distributed to lower units $R_i^{(l)} := \sum_j R_{i \leftarrow j}$ $R_{i \leftarrow j}$: passed through connection

- LRP is equipped with several propagation rules:
 - Common:

 $R_{j}^{(l+1)}$: distributed to lower units $R_{i}^{(l)} := \sum_{j} R_{i \leftarrow j}$ $R_{i \leftarrow j}$: passed through connection

- LRP is equipped with several propagation rules:
 - Common:

$$R_j^{(l+1)}$$
: distributed to lower units

$$R_i^{(l)} := \sum_j R_{i \leftarrow j}$$

 $R_{i \leftarrow i}$: passed through connection

– Simple LRP:

$$R_{i \leftarrow j} = \frac{w_{ij} x_i}{\sum_{i'} w_{i'j} x_{i'}} R_j$$

 $-\varepsilon$ -LRP:

$$R_{i \leftarrow j} = \frac{w_{ij} x_i}{\sum_{i'} w_{i'j} x_{i'} + \varepsilon \cdot \operatorname{sign}\left(\sum_{i'} w_{i'j} x_{i'}\right)} R_j$$

 $-\alpha\beta$ -LRP:

$$R_{i \leftarrow j} = \left(\alpha \frac{w_{ij}^{+} x_{i}}{\sum_{i'} w_{i'j}^{+} x_{i'}} + \beta \frac{w_{ij}^{-} x_{i}}{\sum_{i'} w_{i'j}^{-} x_{i'}} \right) R_{j} \stackrel{ij}{=} \min\{w_{ij}, 0\}$$

 $w_{ij}^+ \stackrel{\text{def}}{=} \max\{w_{ij}, 0\}$

Background: Indistinguishable Heatmaps (1)

- Heatmaps are almost invariant even when the target class has been changed
- Heatmaps obtained with $\alpha\beta$ -LRP ($\alpha = 1, \beta = 0$):

Target class: "dog" (actually predicted)

Target class: "cat" ("what-if" analysis)

Background: Indistinguishable Heatmaps (2)

Relevance propagated in each layer:

	Relevance for 'dog'				Relevance for 'cat'			
Layer	Max.	95%-tile	Median	Min.	Max.	95%-tile	Median	Min.
Cls8	1.82E-02	0	0	0	2.61E-02	0	0	0
Conv8_2	3.32E-03	3.03E-05	0	0	2.89E-03	3.00E-05	0	0
Conv8_1	3.23E-03	5.54E-06	0	0	3.19E-03	5.41E-06	0	0
Conv7	6.70E-03	0	0	0	7.17E-03	0	0	0
Conv6	2.61E-03	1.22E-05	0	0	2.78E-03	1.16E-05	0	0
Pool5	1.67E-02	0	0	0	1.61E-02	0	0	0
Conv5_3	3.33E-03	9.27E-06	0	0	3.32E-03	8.93E-06	0	0
Conv5_2	4.32E-03	1.00E-05	0	0	4.13E-03	9.66E-06	0	0
Conv5_1	3.05E-03	2.03E-05	0	0	2.92E-03	1.99E-05	0	0
Pool4	3.05E-03	0	0	0	2.92E-03	0	0	0
Conv4_3	9.78E-04	2.89E-06	0	0	9.61E-04	2.82E-06	0	0
Conv4_2	6.41E-04	3.46E-06	0	0	6.35E-04	3.38E-06	0	0
Conv4_1	9.04E-04	1.19E-05	0	0	8.87E-04	1.17E-05	0	0
Pool3	9.04E-04	3.47E-08	0	0	8.87E-04	3.11E-08	0	0
Conv3_3	3.63E-04	2.93E-06	0	0	3.80E-04	2.90E-06	0	0
Conv3_2	1.93E-04	3.27E-06	0	0	2.02E-04	3.25E-06	0	0
Conv3_1	3.71E-04	7.21E-06	0	0	3.89E-04	7.17E-06	0	0
Pool2	3.71E-04	2.76E-07	0	0	3.89E-04	2.63E-07	0	0
Conv2_2	1.41E-04	1.73E-06	0	0	1.38E-04	1.72E-06	0	0
Conv2_1	1.90E-04	3.54E-06	2.04E-11	0	1.99E-04	3.52E-06	1.79E-11	0
Pool1	1.90E-04	2.06E-07	0	0	1.99E-04	2.00E-07	0	0
Conv1_2	1.13E-04	6.88E-07	0	0	1.19E-04	6.85E-07	0	0
Conv1_1	3.60E-04	2.20E-05	2.37E-08	0	3.79E-04	2.21E-05	2.09E-08	0
Input	3.60E-04	2.20E-05	2.37E-08	0	3.79E-04	2.21E-05	2.09E-08	0

Background: Indistinguishable Heatmaps (3)

- Recent works that seem to support our observation:
 - [Adebayo+ NeurIPS-18]:
 - Uses Inception v3 (a large network)
 - If relevance = gradient × input, the input part dominates
 - → Heatmaps will be invariant (since the input is of course fixed)
 - [Ancona+ ICLR-18]:
 - Several methods tend to return similar heatmaps (theoretically or empirically):
 - Gradient × input
 - DeepLIFT (Rescale)
 - Integrated Gradients
 - Simple LRP

Background: Our Motivation

 We introduce contrastive relevance that highlights the more important part to the target class

- We design the meaning of relevance to be consistent in two heterogeneous tasks in SSD:
 - Classification
 - Localization (Regression)

Outline

- √ Background
- Proposed method: CRP
- Experiments

Contrastive Relevance Propagation (CRP)

- CRP: LRP tailored for SSD
 - Classifies SSD's layers into 4 types
 - Applies semantically appropriate propagation rules to each layer type

 In both classification and localization, the meanings of "relevance" are the same

Contrastive Relevance Propagation (CRP)

- CRP: LRP tailored for SSD
 - Classifies SSD's layers into 4 types
 - Applies semantically appropriate propagation rules to each layer type

 In both classification and localization, the meanings of "relevance" are the same

Contrastive Relevance Propagation (CRP)

- CRP: LRP tailored for SSD
 - Classifies SSD's layers into 4 types
 - Applies semantically appropriate propagation rules to each layer type

 In both classification and localization, the meanings of "relevance" are the same

At this moment, we can compute a **class-specific** relevance $R_i[k^*]$ for the target class k^* by summing up the passed relevance

Low-level feature High-level feature layer layer

We compute **contrastive relevance**

$$Q_i = R_i[k^*] - \frac{1}{K-1} \sum_{k:k \neq k^*} R_i[k]$$

"average relevance" over other classes

to find units that make a **significantly positive** or a **significantly negative** contribution to the target class k^*

Until the input layer, we use w^+ -rule

$$Q_{i \leftarrow j} = \frac{w_{ij}^{+} x_{i}}{\sum_{i'} w_{i'j}^{+} x_{i'}} Q_{j}$$

to distribute the positivity or the negativity of contrastive relevance

(activations x_i are non-negative due to ReLU)

Until the input layer, we use w^+ -rule

$$Q_{i \leftarrow j} = \frac{w_{ij}^{+} x_{i}}{\sum_{i'} w_{i'j}^{+} x_{i'}} Q_{j}$$

to distribute the positivity or the negativity of contrastive relevance

(activations x_i are non-negative due to ReLU)

Sign-based rule switching:

We switch two rules according to the sign of x_i

If x_j is **positive**, use w^+ -rule $(\alpha\beta$ -LRP with $\alpha = 1$, $\beta = 0$)

$$R_{i \leftarrow j} = \frac{w_{ij}^{+} x_{i}}{\sum_{i'} w_{i'j}^{+} x_{i'}} R_{j}$$

to find units that **positively** contribute to center on y-axis

Sign-based rule switching:

We switch two rules according to the sign of x_i

If x_j is **negative**, use w^- -rule $(\alpha\beta$ -LRP with $\alpha=0, \beta=1)$

$$R_{i \leftarrow j} = \frac{w_{ij}^{-} x_i}{\sum_{i'} w_{i'j}^{-} x_{i'}} R_j$$

to find units that **negatively** contribute to center on y-axis

We compute **contrastive relevance**

class-specific relevance

$$Q_i = \underbrace{R_i - \frac{1}{K} \sum_{k} R_i[k]}$$

relevance from the localization layer

"overall average"

Until the input layer, we use w^+ -rule

$$Q_{i \leftarrow j} = \frac{w_{ij}^{+} x_{i}}{\sum_{i'} w_{i'j}^{+} x_{i'}} Q_{j}$$

as in classification

IJCNN-19 33

as in classification

Outline

- √ Background
- ✓ Proposed method: CRP

• Experiments

Experimental Settings

- Dataset: Pascal VOC 2012
- We ported the TensorFlow implementation of LRP (https://github.com/VigneshSrinivasan10/interprettensor) into a TensorFlow implementation of SSD (https://github.com/balancap/SSD-Tensorflow)
- SSD implementation includes a learned model (We conducted no learning)
- We added CRP-specific routines
- Relevance was normalized before creating heatmaps

(See the paper for details)

Numerical Example

Relevance is almost symmetrically distributed at zero

	Relevance for 'dog'								
Layer	Max.	95%-tile	Median	5%-tile	Min.				
Cls8	1.82E-02	0	0	0	0				
Conv8_2	9.51E-04	0	0	-1.86E-06	-3.45E-04				
Conv8_1	1.55E-04	0	0	0	-1.07E-04				
Conv7	6.69E-04	0	0	0	-2.56E-04				
Conv6	1.91E-04	0	0	-6.30E-08	-1.05E-04				
Pool5	9.07E-04	0	0	0	-4.38E-04				
Conv5_3	1.30E-04	0	0	-1.08E-07	-1.39E-04				
Conv5_2	1.72E-04	0	0	-1.11E-07	-9.79E-05				
Conv5_1	1.06E-04	6.21E-08	0	-1.42E-07	-7.24E-05				
Pool4	1.06E-04	0	0	0	-7.24E-05				
Conv4_3	3.35E-05	0	0	-1.41E-08	-4.99E-05				
Conv4_2	1.34E-05	1.11E-10	0	-2.20E-08	-3.85E-05				
Conv4_1	2.38E-05	6.59E-08	0	-8.12E-08	-4.42E-05				
Pool3	2.38E-05	0	0	0	-4.42E-05				
Conv3_3	6.15E-06	1.40E-08	0	-1.97E-08	-2.10E-05				
Conv3_2	3.81E-06	2.03E-08	0	-2.62E-08	-2.29E-05				
Conv3_1	6.44E-06	7.46E-08	0	-6.31E-08	-1.75E-05				
Pool2	6.44E-06	0	0	-2.29E-10	-1.75E-05				
Conv2_2	4.21E-06	1.65E-08	0	-1.74E-08	-1.11E-05				
Conv2_1	3.28E-06	3.85E-08	0	-3.29E-08	-1.04E-05				
Pool1	3.28E-06	0	0	-4.92E-10	-1.04E-05				
Conv1_2	2.47E-06	5.59E-09	0	-5.09E-09	-3.42E-06				
Conv1_1	6.47E-06	3.26E-07	-1.57E-14	-2.52E-07	-1.17E-05				
Input	6.47E-06	3.26E-07	-1.57E-14	-2.52E-07	-1.17E-05				

Target class: "dog"

Different Colors in Heatmap:

Positives

 ≈ 0

Negatives

Error Analysis (1)

A dog was misclassified as a sheep

Error Analysis (2)

A dog was misclassified as a sheep

Target class: "dog"

Target class: "sheep"

Error Analysis (3)

A dog was misclassified as a sheep

<85%tile values masked

Target class: "sheep"

Error Analysis (4)

- Unwanted localizations:
 - Horizontal shift to left with widening
 - Vertical shift to top with heightening

Before localization

After localization

Error Analysis (5)

- Unwanted localizations:
 - Horizontal shift to left with widening
 - Vertical shift to top with heightening

Target offset: center on x-axis

Target offset: center on y-axis

Error Analysis (6)

- Unwanted localizations:
 - Horizontal shift to left with widening
 - Vertical shift to top with heightening

Target offset: width

Target offset: height

Summary

- CRP (contrastive relevance propagation) as an LRP method tailored for SSD:
 - Can highlight only significantly important features for a target class
 - Can deal with SSD's heterogeneous outputs (classification and localization)
- Some error analyses using CRP were conducted

Future work

- Applying CRP to other object detectors such as YOLO
- Applying CRP (retrospectively) to standard CNNs

Thank you for your attention!