Kidney Cancer Detection from CT Images by Transformer-Based Classifiers

Toru Tanaka*1 Takaki Fukazawa*1 ^OYoshitaka Kameya*1 Keiichi Yamada*1 Kazuhiro Hotta*1 Tomoichi Takahashi*2 Naoto Sassa*3 Yoshihisa Matsukawa*4 Shingo Iwano*4 Tokunori Yamamoto*4

^{*1} Meijo University

^{*2} Meis Technology Inc.

^{*3} Aichi Medical University School of Medicine

^{*4} Nagoya University Graduate School of Medicine

Outline

- Background
- Methods
- Experimental Results
- Conclusion

Outline

- Background
- Methods
- Experimental Results
- Conclusion

Background: Kidney Cancer Detection (1)

- Convolutional neural networks (CNNs) have been widely adopted in medical image analysis
- CNNs have also been applied to diagnoses on kidney cancer based on abdominal CT images:
 - Detecting kidney cancer
 [Hussain+ 17][Takahashi+ 20]
 - Discriminating between benign and malignant renal masses
 [Oberai+ 20]

kidneys

Identifying the subtypes of kidney cancer
 [Han+ 19][Uhm+ 21]

Background: Kidney Cancer Detection (2)

Challenges:

- Texture of cancerous tumors and normal tissues can be very similar
- Locations of abdominal organs can vary depending on individual patients
- Some cancerous tumors (called endophytic tumors) can grow inside kidneys

Exophytic tumors

Endophytic tumors

Background: Kidney Cancer Detection (3)

 Human experts conventionally use some substances called contrast agents to enhance the contrast among tissues

30 seconds after injecting a contrast agent to the patient

UCT (Unenhanced CT) image

CECT (Contrast-enhanced CT) image

- Some patients have allergy to contrast agents
- Contrast agents may worsen the renal function.

High clinical cost

 It was reported that masking all organs around a kidney is effective [Takahashi+ 20]

High annotation cost

Background: Our Motivation

 In NLP and CV, Transformer-based deep neural networks have demonstrated high predictive performance

This work:

Various types of CT images with different clinical/annotation costs

Outline

- √ Background
- Methods
- Experimental Results
- Conclusion

Methods: Datasets (1)

- CT values stored in DICOM-formatted files were converted into digital images
- Area of size 256 x 256 was cropped at a fixed position where the majority of kidneys were centered Cropped
- CT images were labelled as positive or negative:

Original

(256 x 256)

(512 x 512)

Methods: Datasets (2)

- CT images containing a left kidney were horizontally flipped
 - Supposed that right and left kidneys are symmetric
 - One patient having two kidneys = Two virtual patients
- Entire dataset was split in our experiment:

Dataset	# of (virtua	al) patients	# of CT images			
Dataset	Present	Absent	Present	Absent		
Training	148	146	728	5,212		
Validation	30	30	141	1,027		
Evaluation	39	40	196	1,397		
Total	217	216	1,065	7,636		
	43	33	8,7	01		

- Data augmentation at the beginning of each epoch
 - Shift, Rotation, Shear transformation, and Zooming-in/out

Methods: Datasets (3)

 Virtually colorized version of all CT images were created based on the CT values in the Hounsfield Unit scale

		Range of CT value (HU)	Tissue
Grayscale		-110 ~ 190	All
	Red	− 70 ~ 50	Fat and water
Virtual color (3ch)	Green	− 10 ~ 110	Water and soft tissue
[Takeuchi+ 21]	Blue	50 ~ 170	Soft tissue and bone

 Masked version of all CT images were created manually

Methods: Datasets (4)

- Consequently, we can consider 8 variations of CT images with different clinical/annotation costs
- From the results of a preliminary experiment,
 we decided to omit the cases with CECT + 3ch

Methods: DNNs for Image Classification (2)

- Convolutional neural networks (CNNs)
 - We used VGG-16, ResNet-50
- Vision Transformer (ViT) [Dosovitskiy+ 21]
 - Uses the encoder part of the original Transformer
 - Splits an input image into patches of a fixed size
 - Applies multi-head self-attention (MSA) repeatedly
 - Can capture long-range dependency in the input image

Methods: DNNs for Image Classification (3)

- Swin Transformer [Liu+ 21]
 - Inherits the basic architecture from ViT
 - Introduces a CNN-like hierarchical and local structure via patch merging
 - Performs window-based MSA (W-MSA) and shifted window-based MSA (SW-MSA) alternately

Methods: Image/Patient-wise Detection

Image-wise detection

Patient-wise detection

2023.7.12 15

Methods: Configuration for Training

- Loss: Weighted cross-entropy (for coping with class imbalance)
- AdaGrad with initial learning rate of 10⁻⁵
- Mini-batch size: 32
- # of epochs:
 - 150 for VGG-16/ResNet-50 with UCT images
 - 200 for VGG-16/ResNet-50 with CECT images
 - 50 for ViT
 - 100 for Swin Transformer
- Pre-trained models:
 - VGG-16 with ImageNet-1K (# of parameters: 134M)
 - ResNet-50 with ImageNet-1K (24M)
 - ViT with ImageNet-21K (303M)
 - Swin Transformer with ImageNet-21K (195M)

Outline

- √ Background
- ✓ Methods
- Experimental Results
- Conclusion

Results: Evaluation Metrics

- We evaluated classifiers using Precision, Recall, F-measure, and AUROC of:
 - Image-wise detection to evaluate the classifiers directly

 Patient-wise detection to evaluate the classifier from a practical viewpoint

	CT Images	Model	Precision	Recall	F-measure	AUROC
6		VGG-16	0.374	0.174	0.237	0.679
Total V	UCT	ResNet-50	0.280	0.398	0.328	0.713
	UCI	ViT	0.284	0.485	0.358	0.735
		SwinT	0.510	0.270	0.353	0.746
		VGG-16	0.262	0.327	0.291	0.678
	UCT	ResNet-50	0.315	0.378	0.343	0.729
	+ 3ch	ViT	0.344	0.367	0.356	0.749
		SwinT	0.417	0.357	0.384	0.747
*		VGG-16	0.439	0.519	0.476	0.816
	UCT	ResNet-50	0.450	0.508	0.477	0.820
	+ Mask	ViT	0.449	0.567	0.501	0.825
_		SwinT	0.586	0.476	0.525	0.854
	UCT	VGG-16	0.484	0.567	0.522	0.846
	+ 3ch	ResNet-50	0.453	0.540	0.493	0.818
		ViT	0.487	0.594	0.535	0.841
_	+ Mask	SwinT	0.620	0.594	0.607	0.854
LU		VGG-16	0.500	0.464	0.482	0.818
19	CECT	ResNet-50	0.528	0.538	0.529	0.823
Y	CLCT	ViT	0.748	0.546	0.631	0.906
		SwinT	0.855	0.480	0.614	0.901
		VGG-16	0.711	0.500	0.587	0.845
	CECT	ResNet-50	0.638	0.589	0.612	0.853
10 g dec	+ Mask	ViT	0.754	0.672	0.711	0.926
12 -		SwinT	0.785	0.703	0.742	0.944

	CT Images	Model	Precision	Recall	F-measure	AUROC	
		VGG-16	0.374	0.174	0.237	0.679	
The same of	UCT	ResNet-50	0.280	0.398	0.328	0.713	
	UCT	ViT	0.284	0.485	0.358	0.735	
		SwinT	0.510	0.270	0.353	0.746	
	LICT	VGG-16	0.262	0.327	0.291	0.678	
	UCT	ResNet-50	0.315	0.378	0.343	0.729	
	+ 3ch	ViT	<u> </u>	በ 367	N 356	<u>n 740</u>	Щ,
St. Parkerson		At the p	orice of cli	nical co	sts for som	e patien	ıts,
		the acc	uracies fo	r CECT i	images wer	e	
	UCT + Mask	1))	than those				
							ightharpoonup
		SwinT	0.586	0.476	0.525	0.854	_
	UCT	VGG-16	0.484	0.567	0.522	0.846	
2	+ 3ch	ResNet-50	0.453	0.540	0.493	0.818	▶ ■
		ViT	0.487	0.594	0.535	0.841	
	+ Mask	SwinT	0.620	0.594	0.607	0.854	J
		VGG-16	0.500	0.464	0.482	0.818)
-63	CECT	ResNet-50	0.528	0.538	0.529	0.823	
Y	CLCT	ViT	0.748	0.546	0.631	0.906	^
		SwinT	0.855	0.480	0.614	0.901	
		VGG-16	0.711	0.500	0.587	0.845	
	CECT	ResNet-50	0.638	0.589	0.612	0.853	
2"	+ Mask	ViT	0.754	0.672	0.711	0.926	
12		SwinT	0.785	0.703	0.742	0.944	ノ

Model

CT Images

+ 3ch

						4
	VGG-16	0.374	0.174	0.237	0.679	
LICT	ResNet-50	0.280	0.398	0.328	0.713	
UCT	ViT	0.284	0.485	0.358	0.735	
	SwinT	0.510	0.270	0.353	0.746	
	VGG-16	0.262	0.327	0.291	0.678	
UCT	ResNet-50	0.315	0.378	0.343	0.729	
+ 3ch	ViT	0.344	0.367	0.356	0.749	
	SwinT	0.417	0.357	0.384	0.747	ر
	VGG-16	0.439	0.519	0.476	0.816	_
UCT	ResNet-50	0.450	0.508	0.477	0.820	
+ Mask	ViT	0.449	0.567	0.501	0.825	
	SwinT	At the price	o of ann	otation co	ctc	
UCT		At the price				
001		the accura	CIOC tor I	macked in	TOOC WIC	Y

Precision

Recall

F-measure

ResNet-50 the accuracies for masked images were

AUROC

+ Mask		VII	nigner than	those for	unmask	ea imag	је
		SwinT	0.020	U.JJT	0.007	U.OJT	
	VGG-16	0.500	0.464	0.482	0.818		
	CECT	ResNet-50	0.528	0.538	0.529	0.823	
	CECT	ViT	0.748	0.546	0.631	0.906	
		SwinT	0.855	0.480	0.614	0.901	7
		VGG-16	0.711	0.500	0.587	0.845	
	CECT	ResNet-50	0.638	0.589	0.612	0.853	
	+ Mask	ViT	0.754	0.672	0.711	0.926	
		SwinT	0.785	0.703	0 742	0 944	ر

	CT Images	Model	Precision	Recall	F-measure	AUROC	
6		VGG-16	0.374	0.174	0.237	0.679	7
	LICT	ResNet-50	0.280	0.398	0.328	0.713	l (
	UCT	ViT	0.284	0.485	0.358	0.735	≻ ■
		SwinT	0.510	0.270	0.353	0.746	J
		VGG-16	0.262	0.327	0.291	0.678	`
	UCT	ResNet-50	0.315	0.378	0.343	0.729	
	+ 3ch	ViT	0.344	0.367	0.356	0.749	
		SwinT	0.417	0.357	0.384	0.747	ノ
		VGG-16	0.439	0.519	0.476	0.816	\
	UCT	ResNet-50	0.450	0.508	0.477	0.820	()
	+ Mask	ViT	0.449	0.567	0.501	0.825	≻ ■
		SwinT	0.586	0.476	0.525	0.854	J
	UCT	VGG-16	0.484	0.567	0.522	0.846)
· **	+ 3ch	ResNet-50	0.453	0.540	0.493	0.818	>.
		ViT	0.487	0.594	0.535	0.841	
	+ Mask	SwinT	0.620	0.594	0.607	0.854	ノ
		VGG-16	0.500	0.464	0.482	0.818	
89 .	CECT	ResNet-50	0.528	0.538	0.529	0.823	
Y	CECT	Virtual col	orization o	of UCT i	images was	benefic	cial,
		considerin					,
	OF 0T						
	CECT	ResNet-50	0.638	0.589	0.612	0.853	
2.	+ Mask	ViT	0.754	0.672	0.711	0.926	
		SwinT	0.785	0.703	0.742	0.944	

SwinT

0.785

0.703

0.742

2023.7.12

0.944

Results: Patient-wise Detection

	CT Images	Model	Precision	Recall	F-measure	AUROC
		VGG-16	0.540	0.692	0.607	0.596
1800/2	LICT	ResNet-50	0.491	0.718	0.583	0.608
	UCT	ViT	0.514	0.949	0.667	0.671
		SwinT	0.595	0.641	0.617	0.699
		VGG-16	0.516	0.846	0.641	0.580
	UCT	ResNet-50	0.676	0.590	0.630	0.695
	+ 3ch	ViT	0.634	0.667	0.650	0.682
		SwinT	0.608	0.795	0.689	0.701
		VGG-16	0.714	0.769	0.741	0.801
	UCT	ResNet-50	0.725	0.744	0.734	0.843
	+ Mask	ViT	0.844	0.692	0.761	0.799
		SwinT	0.833	0.769	0.800	0.848
	UCT	VGG-16	0.682	0.769	0.723	0.798
	+ 3ch	ResNet-50	0.623	0.846	0.717	0.837
		ViT	0.721	0.795	0.756	0.811
	+ Mask	SwinT	0.723	0.872	0.791	0.859
		VGG-16	0.688	0.564	0.620	0.733
	CECT	ResNet-50	0.735	0.641	0.685	0.762
	CLCT	ViT	0.794	0.692	0.740	0.869
		SwinT	0.933	0.718	0.812	0.899
		VGG-16	0.674	0.846	0.750	0.844
es lin	CECT	ResNet-50	0.725	0.744	0.734	0.822
	+ Mask	ViT	0.731	0.974	0.835	0.940
7.7.12		SwinT	0.875	0.897	0.886	0.958

Results: Patient-wise Detection

	CT Images	Model	Precision	Recall	F-measure	AUROC	
		VGG-16	0.540	0.692	0.607	0.596	-
S/ESS/A	LICT	ResNet-50	0.491	0.718	0.583	0.608	
	UCT	ViT	0.514	0.949	0.667	0.671	
		SwinT	0.595	0.641	0.617	0.699	
		VGG-16	0.516	0.846	0.641	0.580	
	UCT	ResNet-50	0.676	0.590	0.630	0.695	
	+ 3ch	ViT	0.634	0.667	0.650	0.682	
		SwinT	0.608	0.795	0.689	0.701	`
		VGG-16	0.714	0.769	0.741	0.801	_
	UCT	ResNet-50	0.725	0.744	0.734	0.843	
	+ Mask	ViT	0.844	0.692	0.761	0.799	4
		SwinT	0.833	0.769	0.800	0.848	_
_	UCT	VGG-16	0.682	0.769	0.723	0.798	
		ResNet-50	0.623	0.846	0.717	0.837	
	+ 3ch	ViT	0.721	0.795	0.756	0.811	4
	+ Mask	SwinT	በ 723	በ 872	ი 791	በ ጸ59	
		VGG- ViT	did not p	erform l	petter than	ResNet-	-50
	CECT		UCT imag				
	CLCT	ViT					
7		SwinT	0.933	0.718	0.812	0.899	_
		VGG-16	0.674	0.846	0.750	0.844	
es lin	CECT	ResNet-50	0.725	0.744	0.734	0.822	
	+ Mask	ViT	0.731	0.974	0.835	0.940	
2 7 1 2		SwinT	0.875	0.897	0.886	0.958	_

Results: Patient-wise Detection

						•	
	CT Images	Model	Precision	Recall	F-measure	AUROC	
		VGG-16	0.540	0.692	0.607	0.596	
	LICT	ResNet-50	0.491	0.718	0.583	0.608	
	UCT	ViT	0.514	0.949	0.667	0.671	
-		SwinT	0.595	0.641	0.617	0.699	
		VGC 16	Λ Γ16	0.046	0.641	0 500	_
	UCT	Resi Swin			erally worke		es
	+ 3ch	VII	0.634	0.667	0.650	0.682	_
		SwinT	0.608	0.795	0.689	0.701	
		VGG-16	0.714	0.769	0.741	0.801	
	UCT + Mask	ResNet-50	0.725	0.744	0.734	0.843	
		ViT	0.844	0.692	0.761	0.799	
		SwinT	0.833	0.769	0.800	0.848	
	UCT	VGG-16	0.682	0.769	0.723	0.798	
		ResNet-50	0.623	0.846	0.717	0.837	
	+ 3ch	ViT	0.721	0.795	0.756	0.811	
	+ Mask	SwinT	0.723	0.872	0.791	0.859	
		VGG-16	0.688	0.564	0.620	0.733	_
	CECT	ResNet-50	0.735	0.641	0.685	0.762	
	CECT	ViT	0.794	0.692	0.740	0.869	
		SwinT	0.933	0.718	0.812	0.899	
		VGG-16	0.674	0.846	0.750	0.844	_
S lin	CECT	ResNet-50	0.725	0.744	0.734	0.822	
	+ Mask	ViT	0.731	0.974	0.835	0.940	

0.875

SwinT

0.897

0.886

0.958

Outline

- √ Background
- ✓ Methods
- ✓ Experimental Results
- Conclusion

Conclusion

- We studied on detection of kidney cancer from CT images for 400+ (virtual) patients
- We examined CNN-based and Transformer-based classifiers (VGG-16, ResNet-50, ViT and Swin Transformer)
- We evaluated the accuracy across various types of CT images:
 - UCT images vs. CECT images
 - Masked vs. Unmasked
 - Grayscale vs. Virtually Colored
- Observations:
 - Predictive performance varied drastically depending on image types and preprocessings
 - Swin Transformer generally worked the best
 - Transformer-based models were effective especially for CECT images

Future Work

- Comparison with:
 - CNN-based models (e.g. EfficientNetV2 [Tan+ 21])
 - MLP-based models (e.g. MLP-Mixer [Tolstikhin+ 21])
 - CNN-Transformer hybrids (e.g. CvT [Wu+ 21])
- Introducing visual explanations methods (e.g. Transformer Explainability [Chefer+ 21])
- Coping with unavailability of CECT images:
 - Synthetic CECT images created by image-to-image models [Hu+ 21][Sassa+ 22]

Thank You for Your Attention!