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Abstract. This paper proposes a cell-suppression based k-anonymization
method which keeps minimal the loss of utility. The proposed method
uses the Kullback-Leibler (KL) divergence as a utility measure derived
from the notions developed in the literature of incomplete data analysis,
including the missing-at-random (MAR) condition. To be more specific,
we plug the KL divergence into an bottom-up, greedy procedure for a
local recoding k-anonymization as a cost function which is efficiently
computed. We focus on classification datasets and experimental results
exhibit that the proposed method yields a small degradation of classifi-
cation performance when combined with naive Bayes classifiers.
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1 Introduction

Generally, in data mining, fine-grained datasets tend to produce sharper, and
accordingly, more useful results. However, when the datasets are human-related,
such fineness may lead to re-identification of a person and disclosure of his/her
privacy. Re-identification is not only possible from explicit identifiers but from a
combination of common personal attributes e.g. age and gender. Such attributes
are called quasi-identifiers or QIDs. In privacy-preserving data publishing [1, 5,
22], we often modify QIDs so that both the risk of re-identification and the loss
of utility of the dataset are kept minimal at the same time.

k-Anonymity [16, 18] is a well-known privacy requirement on a tabular dataset
that, for every combination of QIDs existing in a tuple, at least k−1 other tuples
must have the same combination of QIDs. Under k-anonymity with a sufficiently
large k, the risk of re-identification of a person will be small, since its probability
is at most 1/k. Modifying QIDs in the original dataset so that k-anonymity is
satisfied is called k-anonymization. k-Anonymity is attractive in its simplicity
and intuitiveness, but it is often quite costly in k-anonymization to fully mini-
mize the loss of the utility of the dataset. For instance, minimizing the number
of suppressed cells under k-anonymity is NP-hard [14].

Despite such a discouraging formal result, dozens of practical k-anonymization
methods have been proposed. One grouping criterion among these methods is the
range to which an anonymization operator is applied. In global recoding [2, 13,
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16, 19], we replace all occurrences of a value with another general value, while in
local recoding [7, 12, 21], we just replace an occurrence of a value independently of
other occurrences. Cell suppression is a typical local recoding operator in which
we replace a cell value with a null value. One advantage of suppressing cell values
over generalizing them is that the former requires no hierarchical knowledge, and
another advantage is that there have been statistical tools including classifiers
that can work with suppressed (i.e. missing) data.

In this paper, we propose a cell-suppression based k-anonymization method
which keeps minimal the loss of utility using the notion from incomplete data
analysis, including the missing-at-random (MAR) condition [15, 17]. Kifer and
Gehrke [11] formulated anonymized datasets in a probabilistic setting and intro-
duced as a utility measure the Kullback-Leibler (KL) divergence between two
empirical distributions, one from the original dataset and the other from the
anonymized one. One contribution of this paper is to justify their utility mea-
sure from the viewpoint of preserving the MAR condition. An underlying key
observation here is that anonymization is an artificial, explicit process that forces
the original dataset to be ambiguous or incomplete for avoiding re-identification,
whereas traditional incomplete data analysis deals with incomplete datasets as
they are, assuming a hidden generation process of the datasets [17]. Another con-
tribution is that we plug the KL divergence into an bottom-up, greedy procedure
for a local recoding k-anonymization [7, 21] as a cost function which is efficiently
computed. We focus on classification datasets where different anonymizations
are clearly compared from the viewpoint of utility, though the proposed method
can also deal with non-classification datasets.

The rest of this paper is outlined as follows. First, we introduce several back-
ground notions and notations in Section 2. Then, Section 3 describes the pro-
posed method in detail. Experimental results are presented in Section 4. Section 5
concludes the paper with some discussions on open problems and related work.

2 Background

2.1 Preliminaries

We begin by introducing some background notions and notations used in the
paper. The dataset we consider is a tabular classification dataset of size N with
M attributes. We also consider a null value ⊥j at the j-th attribute. In addition,
C is a set of pre-defined classes, and Vj is a set of discrete non-null values of the
j-th attribute. Then, a tuple is comprised of M attribute values and a class label
from C, i.e. it is an element of V ′

1 × V ′
2 × · · · × V ′

M × C, where V ′
j = Vj ∪ {⊥j}.

A tuple t is written as (y, c), where y of a vector (y1, y2, . . . , yM ) of attribute
values. A dataset D is a multiset {t(1), t(2), . . . , t(N)} of tuples. Throughout the
paper, i indicates the index of a tuple in a dataset (1 ≤ i ≤ N), and j indicates
the index of an attribute (1 ≤ j ≤ M).

Suppressing a non-null attribute value is to replace it with a null value ⊥j . It
is obvious that suppression is exactly a generalization along a two-level hierarchy
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where the top-level corresponds to ⊥j , and the bottom-level only includes raw
values from Vj . In incomplete data analysis [17], null or suppressed values are
called missing values. A tuple t = (x, c) is complete if it contains no missing
values, i.e. is an element of V1×V2×· · ·×VM ×C. A dataset is complete if it has
no incomplete tuples. For non-classification datasets, it is sufficient to consider
that C only contains one dummy class.

Given a complete dataset D, we may use statistics such as N(y, c) = |{t(i) ∈
D | t(i) = (y, c)}|, N(c) = |{t(i) ∈ D | t(i) = (·, c)}|, N(y) = |{t(i) ∈ D | t(i) =
(y, ·)}|, N(yj , c) = |{t(i) ∈ D | yj is the j-th attribute value of t(i) = (·, c)}| and
so on. In a probabilistic setting, we introduce a probability distribution p(x, c)
over complete tuples (x, c) = (x1, x2, . . . , xM , c) and compute empirical probabil-
ities p̂(c) = (N(c) + α)/(N + α|C|) and p̂(xj | c) = (N(xj , c) + α)/(N(¬⊥j , c) +
α|Vj |) for each class c and non-null value xj . Here, α is non-negative num-
ber called the pseudo count, and α prevents the empirical probabilities from
being zero when α > 0. Throughout the paper, we configure α = 1, which
results in so-called Laplace smoothing. On the other hand, N(¬⊥j , c) denotes
the sum of the occurrences of non-null values together with class c, i.e. we have
N(¬⊥j , c) =

∑
x∈Vj ,x̸=⊥j

N(x, c) = N(c)−N(⊥j , c). Furthermore, a null or sup-

pressed value ⊥j means taking any value in Vj , so its (conditional) probability
should always be one. Specifically, we have p(⊥j | c) = p̂(⊥j | c) = 1.

2.2 k-Anonymity

Here, we describe k-anonymity formally with some additional notations. First,
for simplicity, we assume that all attributes y except the class label c in a tuple
t are QIDs and focus on reducing the risk of re-identification of a person from
QIDs. Whereas D was defined as a multiset, it is often convenient to transform D
into a pair of a tuple set S and a count table N . S is defined as {y | (y, c) ∈ D},
i.e. an ordinary set of distinct tuples. The count table N , on the other hand,
stores N(y, c), N(c), N(y) and N(yj , c) in the previous section when needed. It
is straightforward to generate an equivalent dataset from S and N . From the
settings above, k-anonymity of a dataset D is restated as min(y,·)∈S N(y) ≥ k.

2.3 Bottom-up Cell Suppression

In this paper, we adopt a bottom-up, greedy algorithm for local recoding k-
anonymization algorithm, which is a simplified adaptation of the one used in
[7, 21] into the case of cell-suppression in classification datasets. The algorithm,
shown in Algorithm 1, 2 and 3, resembles agglomerative clustering.1

The Anonymize procedure is the main routine of the algorithm. The proce-
dure takes as input the anonymity threshold k and the original dataset D and
returns a k-anonymized version of D. The tuple set S and the count table N
1 Agglomerative clustering is a typical hierachical clustering in which we start with
initial clusters containing single tuples and merge the closest pair of clusters in a
bottom-up manner [10].
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Algorithm 1 Anonymize(k,D)

Require: k: the anonymity to achieve, D: the original dataset
1: Construct the tuple set S and the count table N from D
2: Obtain the empirical probability function p̂ from S and N
3: while min(y,·)∈S N(y) < k do
4: Pick up t = (y, c) such that N(y) < k randomly from S
5: t∗ := argmint′=(y′,c)∈SΓ (t, t′, p̂,N )
6: u := Suppress(t, t∗)
7: Update(u, t, t∗,S,N )
8: end while
9: Construct D′ from S and N
10: return D′

Algorithm 2 Suppress(t, t′)

Require: t, t′: tuples of the same class c to be suppressed
1: Let t be (y1, y2, . . . , yM , c) and t′ be (y′

1, y
′
2, . . . , y

′
M , c)

2: return u = (u1, u2, . . . , uM , c) s.t. uj = yj (if yj = y′
j) or uj = ⊥j (if yj ̸= y′

j)

of D are used inside the procedure (Line 1). Empirical probability function p̂
w.r.t. the original dataset D, which will be referred to in computing the suppres-
sion cost, is then obtained from S and N (Line 2). The procedure repeatedly
chooses two tuples and merges them by suppression until no tuple violates the
k-anonymity requirement (Lines 3–8). Specifically, we randomly pick up a tuple
t from violating tuples (Line 4) and choose the best counterpart t∗ of the same
class (Line 5) that minimizes the suppression cost Γ in the case of t and t∗ be-
ing suppressed and merged. The suppression is actually done by the Suppress
procedure (Line 6). Then, the Update procedure replaces two chosen tuples (t
and t∗) in S with the merged one (u) and updates the count table N (Line 7).

The choice of the cell-suppression cost Γ is crucial since it reflects the utility
of the dataset which we wish to exploit. One simple cost function is Γham, the
one based on the Hamming distance, which is computed as:

Γham(t, t
′, p̂,N )

def
= N(y, c)H(y,u) +N(y′, c)H(y′,u), (1)

where t = (y, c), t′ = (y′, c), u = (u, c) is the tuple to be generated by
Suppress(t, t′), and H(a, b) is the number of conflicting elements between a
and b (null values and non-null values are considered distinct). Γham is exactly
the total number of cells to be suppressed further and does neither use the em-
pirical probabilities p̂ in the original dataset nor the current counts from N . We
may also use a cost function Γinfo, which is based on information loss [7]:2

Γinfo(t, t
′, p̂,N )

def
= −

∑
j:yj ̸=y′

j

(
N(y, c) log p̂(yj | c) +N(y′, c) log p̂(y′j | c)

)
, (2)

2 To be precise, the original definition by Harada et al. [7] does not consider classifi-
cation datasets.
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Algorithm 3 Update(u, t, t′,S,N )

Require: u: a new tuple, t and t′: old tuples, S: a tuple set, N : a count table
1: Remove t and t from S
2: Let u be (u, c), t be (y, c) and t′ be (y′, c)
3: if u ∈ S then
4: N(u, c) := N(u, c) +N(y, c) +N(y′, c)
5: else
6: N(u, c) := N(y, c) +N(y′, c)
7: S := S ∪ {u}
8: end if
9: Remove all entries of N concerning t and t′

where t = (y1, y2, . . . , yM , c) and t′ = (y′1, y
′
2, . . . , y

′
M , c). Γinfo uses empirical

probabilities p̂(yj | c) (yj is a non-null value xj or a null value ⊥j) computed
from the original dataset as shown in Section 2.1. The term − log p̂(yj | c) is the
self-information of the j-th attribute taking yj . Since the self-information of the
j-th attribute taking ⊥j is − log p̂(⊥j | c) = − log 1 = 0, replacing a non-null
value xj with ⊥j loses the information − log p̂(xj | c). As a result, Γinfo(t, t

′, p̂,N )
measures the total amount of information loss in suppressing and merging t and
t′. Obviously, the k-anonymization procedure in Section 2.3 tends to suppress
frequent attribute values when combined with Γinfo.

3 The Proposed Method

As said before, we propose a cell-suppression based k-anonymization method
which keeps minimal the loss of utility using the notion from incomplete data
analysis. In this method, we consider that anonymization is an artificial process
that forces the original dataset D to be ambiguous so as to avoid re-identification
of persons. It is then desirable to control such an anonymization process for
ensuring the soundness of later statistical inferences such as classification. In
the literature of incomplete data analysis, it is proved that, under the missing-
at-random (MAR) condition [15, 17], the process where some portion of the
original dataset D turns to be missing is ignorable in the inference related to
the empirical probability distribution of D. In our context, the MAR condition
allows us to obtain empirical probabilities from an anonymized dataset ignoring
the anonymization process without distortion.

From the observations above, our k-anonymization method attempts to pre-
serve the MAR condition as well as possible. More precisely, we present a cell-
suppression cost function reflecting the deviation from the MAR condition and
use it in the k-anonymization procedure introduced in Section 2.3. To measure
the deviation from the MAR condition, we consider the Kullback-Leibler (KL)
divergence in naive Bayes classifiers. In the rest of this section, we will describe
these relevant notions in turn.
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3.1 Naive Bayes Classification

In classification, we use Naive Bayes [20] as a primary classifier. Naive Bayes
assumes that attributes in a classification dataset are conditionally indepen-
dent of each other, given the class. Despite its strong independence assumption,
naive Bayes often works surprisingly well in classifying real datasets [4]. For-
mally, it is assumed that the probability that a complete tuple t = (x, c) =
(x1, x2, . . . , xM , c) occurs is simplified as p(t) = p(x, c) = p(c)

∏
j p(xj | c). Typ-

ically, classification is performed in two steps: we first learn the empirical prob-
abilities p̂(c) and p̂(xj | c) from the complete training dataset, and then predict
the most plausible class c∗ = argmaxc∈C p̂(c | x) = argmaxc p̂(c)

∏
j p̂(xj | c)

for an unseen data having attribute values x.

The independence assumption in naive Bayes also makes it simple to handle
incomplete data. That is, noting that p(⊥j | c) = 1, the probability that an
incomplete tuple (y1, y2, . . . , yM , c) occurs, where yj is a non-null value from
Vj or a null value ⊥j , is obtained as p(c)

∏
j:yj ̸=⊥j

p(yj | c), where null values

are all ignored. Similarly, one may learn the empirical probabilities p̂(xj | c)
as described in Section 2.1 for a non-null value xj , as if there are no missing
values from the beginning. This is a standard way of learning called maximum
likelihood (ML) estimation,3 which is also applicable to anonymized datasets.
However, in general, justifying ML estimation requires some extra condition on
the process how missing data are generated. The MAR condition explained next
is one of such conditions.

3.2 The Missing-at-random Condition

The Process of Anonymization. As said before, under the MAR condition,
a standard learning procedure of naive Bayes classifiers is justified even with
anonymized datasets. Conversely, to obtain a naive Bayes without distortion
brought by anonymization, it is reasonable to anonymize the original dataset so
that the MAR condition is preserved.

First, let us model our anonymization process by an analogy to the process
of generating missing data [17]. We focus on classification datasets where no
class labels will be missing or suppressed. Given an original dataset D having
a complete tuple (x, c) = (x1, x2, . . . , xM , c), we may anonymize it into an in-
complete dataset having (y, c) = (y1, y2, . . . , yM , c) by suppressing some part of
x. A binary indicator r = (r1, r2, . . . , rM ) says which part has been suppressed,
i.e. yj = xj iff rj = 1, or yj = ⊥j iff rj = 0. Note that, given an incomplete at-
tribute values y, the indicator r is uniquely determined. The joint probability of
the whole anonymization process behind y is then introduced and we decompose

3 To be precise, learning empirical probabilities using the pseudo count α, shown in
Section 2.1, is called maximum a posteriori (MAP) estimation. ML estimation is a
special case of MAP estimation where α = 0. The following discussions can be easily
extended to the case of MAP estimation.
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it into two factors:4

p(r,x, c | θ, ϕ) = p(r | x, c, ϕ)p(x, c | θ). (3)

Here, p(x, c | θ) is the probability that a complete, original tuple (x, c) occurs,
and p(r | x, c, ϕ) is the probability that the suppressed pattern is r given such a
complete tuple. The latter is called the missing-data mechanism and models our
choice in anonymization. θ denotes the parameters of the probability distribution
over complete tuples, and ϕ denotes the parameters for the missing-data mech-
anism. Since anonymization is an artificial operation subsequently performed
after the original dataset has been obtained, it is natural to think that there is
no overlap between θ and ϕ.

Learning under the MAR Condition. Given an incomplete values y, we
define xobs as a collection of xj ’s where rj = 1, and xmis as a collection of xj ’s
where rj = 0. Thus, xobs (resp. xmis) denotes the observed or non-suppressed
(resp. missing or suppressed) part of x. The probability that an incomplete tuple
(y, c) occurs is then computed as p(y, c | θ, ϕ) =

∑
xmis

p(r,xobs,xmis, c | θ, ϕ)
where r is compatible with y, and x = (xobs,xmis).

Next, let us consider the procedure for learning a naive Bayes classifier from
the dataset {(y, c)} which contains only one tuple.5 As said earlier, one standard
learning procedure is ML estimation, where we attempt to maximize the likeli-
hood of the whole process L(θ, ϕ) = p(y, c) by adjusting the parameters θ and

ϕ. In other words, we obtain (θ̂, ϕ̂) = argmaxθ,ϕL(θ, ϕ). Now we assume that the
MAR condition is satisfied. The MAR condition states that the choice in sup-
pression does not depend on the value to be suppressed itself. This condition is
formally written as ∀x, c p(r | x, c, ϕ) = p(r | xobs,xmis, c, ϕ) = p(r | xobs, c, ϕ).
Then, the likelihood L(ϕ, θ) is transformed as follows:

L(ϕ, θ) = p(y, c | ϕ, θ) =
∑

xmis
p(r,xobs,xmis, c | ϕ, θ)

=
∑

xmis
p(r | xobs,xmis, c, ϕ)p(xobs,xmis, c | θ) (4)

=
∑

xmis
p(r | xobs, c, ϕ)p(xobs,xmis, c | θ) (5)

= p(r | xobs, c, ϕ)
∑

xmis
p(xobs,xmis, c | θ)

= p(r | xobs, c, ϕ)L
′(θ), (6)

where L′(θ) =
∑

xmis
p(xobs,xmis, c | θ) = p(xobs, c | θ) is the likelihood of the

anonymized dataset, ignoring the anonymization process. The MAR condition
derives Eq. 5 from Eq. 4. Since p(r | xobs, ϕ) is constant w.r.t. θ, Eq. 6 says that,
for any ϕ, maximizing L(ϕ, θ) and maximizing L′(θ) yield the same parameters

θ̂, i.e. our anonymization is not influential on learning θ̂, as long as the MAR

4 Joint distributions decomposed in this way are called selection models [17].
5 Extending the discussion to the case with multiple i.i.d. (independent and identically
distributed) tuples {(y(1), c(1)), (y(2), c(2)), . . . , (y(N), c(N))} is fairly straightforward,
since the likelihood can be transformed as L(θ, ϕ) =

∏
i p(y

(i), c(i)) = (
∏

i p(r
(i) |

x(i), c(i), ϕ))(
∏

i p(x
(i), c(i) | θ)), where x(i) is the original of y(i).
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condition is preserved. The probability p(. . . | θ̂) under the learned parameters

θ̂ coincides with the empirical probability p̂(. . .) used throughout the paper.

The KL Divergence for Examining the MAR Condition. The next ques-
tion is how to preserve the MAR condition in anonymization. First, the MAR
condition ∀x, c p(r | xobs,xmis, c, ϕ) = p(r | xobs, c, ϕ) can always be rewritten
as ∀x, c p(xmis | xobs, r, c, ϕ) = p(xmis | xobs, c, ϕ). By the independence as-
sumption in naive Bayes, this is simplified as ∀xmis, c p(xmis | rmis = 0, c, ϕ) =
p(xmis | c, ϕ), where xobs and xmis are independent given c, and rmis is the por-
tion of r corresponding to xmis which is necessarily all zero. Furthermore, this
statement is satisfied when p(xj | rj =0, c, ϕ) = p(xj | c, ϕ) for all xj such that
rj = 0 (yj is a suppressed value), using naive Bayes’s assumption again. The re-
sulting statement says that the missing part of the j-th attribute must follow the
same distribution as the one over all j-th attribute values of original tuples. Since
the observed part and the missing part are mutually exclusive and collectively
exhaustive, this statement must also apply to the observed part. Eventually we
see that, when the empirical distribution from the original dataset is identical
to those from an anonymized dataset, the MAR condition is preserved.

To measure the deviation from the MAR condition, we consider the Kullback-
Leibler (KL) divergence, which was firstly introduced by Kifer and Gehrke [11]
in the literature of anonymization. The KL divergence is defined and simplified
under the independence assumption in naive Bayes:

KL(p̂, q̂) =
∑
x,c

p̂(x, c) log
p̂(x, c)

q̂(x, c)
=

∑
c

p̂(c)
∑
j

∑
xj

p̂(xj | c) log
p̂(xj | c)
q̂(xj | c)

(7)

=
∑
c

p̂(c)
∑
j

KLj,c(p̂, q̂) where KLj,c(p̂, q̂) =
∑
xj

p̂(xj | c) log
p̂(xj | c)
q̂(xj | c)

(the derivation is presented in the appendix). Here p̂ is the empirical probabil-
ity distribution from the original dataset, and q̂ is the one from an anonymized
dataset, which may be unfinished one in theAnonymize procedure (Section 2.3).
KLj,c(p̂, q̂) is the class- and attribute-wise version of the KL divergence. It
is known that the KL divergence is non-negative, and hence making KL(p̂, q̂)
smaller implies making each KLj,c(p̂, q̂) smaller. This further implies making
p̂(xj | c) and q̂(xj | c) closer, which leads to the preservation of the MAR condi-
tion. In addition, the summation in Eq. 7 is taken over all classes and distinct
attribute values and so is costly to compute. Next, we plug the KL divergence
above into the Anonymize procedure as a new cost function which is efficiently
computed.

3.3 Cell-suppression Cost for Preserving the MAR Condition

To introduce a light-weight cost function that reflects the MAR condition, we
consider the difference between two KL divergences before and after a cell sup-
pression in the Anonymize procedure. Cell suppression is a local operator, so
the difference between these two quantities will also be rather limited.
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More formally, let D(ℓ) be the dataset obtained at the end of the ℓ-th loop in
the Anonymize procedure. We apply a cell suppression once to the dataset at
each loop. The difference is then written as ∆KL = KL(p̂, q̂′)−KL(p̂, q̂), where
p̂ is the empirical distribution from the original dataset D = D(0), q̂ is the one
from D(ℓ), and q̂′ is the one from D(ℓ+1) (ℓ ≥ 0). Here we easily have:

∆KL =
∑
c

p̂(c)
∑
j

∆KLj,c where ∆KLj,c =
∑
xj

p̂(xj | c) log
q̂(xj | c)
q̂′(xj | c)

. (8)

Let us consider next a more specific case in which the j-th non-null attribute
value xj of a tuple t = (y, c) is suppressed in D(ℓ). Also suppose that q̂(xj | c) has
been obtained from D(ℓ) as (N(xj , c)+α)/(N(¬⊥j , c)+α|Vj |). Then, q̂′(xj | c) is
obtained from D(ℓ+1) as (N(xj , c)−N(y, c)+α)/(N(¬⊥j , c)−N(y, c)+α|Vj |),
in which the count of the suppressed non-null value is decreased by N(y, c).
Substituting these empirical probabilities into Eq. 8 results in:

∆KLj,c = p̂(xj | c) log
N(xj , c) + α

N(xj , c)−N(y, c) + α
+log

N(¬⊥j , c)−N(y, c) + α|Vj |
N(¬⊥j , c) + α|Vj |

(9)
(the derivation is presented in the appendix).

Based on the above, consider an extended case where two incomplete tuples
t = (y1, y2, . . . , yM , c) and t′ = (y′1, y

′
2, . . . , y

′
M , c) are suppressed and merged.

Suppressions occur at yj and/or y′j in the j-th attribute such that yj and y′j are
distinct. An extension of Eq. 9 to this case is derived as:

∆KLj,c = p̂(yj | c) log
N(yj , c) + α

N(yj , c)− wj(t) + α
+ p̂(y′j | c) log

N(y′j , c) + α

N(y′j , c)− wj(t′) + α

+ log
N(¬⊥j , c)− (wj(t) + wj(t

′)) + α|Vj |
N(¬⊥j , c) + α|Vj |

. (10)

Note here that p̂(⊥j | c) = 1 and we define wj(t) = N(y, c) (if yj ̸= ⊥j) or
wj(t) = 0 (if yj = ⊥j) for an incomplete tuple t = (y, c). Finally, a cost function
Γmar which measures the deviation from the MAR condition is introduced as:

Γmar(t, t
′, p̂,N )

def
= ∆KL =

∑
c p̂(c)

∑
j ∆KLj,c, (11)

where ∆KLj,c is the one defined in Eq. 10. One may find from Eq. 10 that we
have only to refer to the quantities related to the suppressed attribute values
and hence computing ∆KLj,c just requires a constant time. Lastly, we see from
Eqs. 8 and 11 that Γmar can be negative. This case happens when the empirical
distribution q̂′ after the suppression gets closer than q̂ to the original one p̂.

4 Experimental Results

We tested the proposed method using the adult dataset available from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/
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Fig. 1. The KL divergence (left) and the ratio of suppressed cells (right) in k-
anonymized datasets, with various k (indicated by the x-axis) and cost functions. In
the case of the KL divergence, lines mar and hybrid overlap almost entirely.

Adult). Specifically, we compare cost functions Γham, Γinfo and Γmar plugged
into the Anonymize procedure in Section 2.3. We additionally introduced a
cost function Γhybrid as a simple hybrid of Γham and Γmar, defined as follows:

Γhybrid(t, t
′, p̂,N )

def
=

{
Γmar(t, t

′, p̂,N )/Γham(t, t
′, p̂,N ) (Γmar(t, t

′, p̂,N ) ≤ 0)

Γmar(t, t
′, p̂,N )Γham(t, t

′, p̂,N ) (Γmar(t, t
′, p̂,N ) > 0).

(12)
In this hybrid function, Γmar works as a base cost function, and Γham plays a
role of a penalty function which increases the cost according to the Hamming
distance, i.e. the total number of suppressed cells.

The adult dataset has two classes: salary above or below 50,000 dollars.
Furthermore, following the previous work [2, 9, 19], we used eight attributes for
a person: age, work class, education, marital status, occupation, race, gender and
native country. All attribute except age are discrete, and we discretized the age
attribute as [15, 20), [20, 25), [25, 30), . . . , [70, 75), [75, 80) and [80, 95), where
we first split the whole range into the ranges of five years and then merged the
last three to ensure that each range includes more than 100 tuples.

The classifiers we used are naive Bayes classifiers and C4.5, implemented in
Weka [20]. Each classifier is evaluated by average error rate in stratified 10-fold
cross validation. Before evaluation, we first anonymized the original datasets, and
in each fold of cross validation, we use the anonymized version for the training
dataset and the original version for the test dataset. All classifiers were run under
Weka’s default setting. Since the Anonymize procedure runs in a randomized
way, the obtained results were averaged over 30 trials.

Fig. 1 (left) shows the KL divergence between the empirical distribution
from the original dataset and the one from the datasets k-anonymized by the
Anonymize procedure with k = 2, 5, 10, 15, . . . and cost functions. Fig. 1 (right)
shows the number of suppressed cells in the k-anonymized datasets. In all graphs
presented in the paper, the lines labeled ham, info, mar and hybrid correspond to
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Fig. 2. The average error rate (%) of naive Bayes (left) and C4.5 (right) for k-
anonymized datasets, with various k (the x-axis) and cost functions. In the case of
naive Bayes, lines mar and hybrid overlap almost entirely.

the cases with Γham, Γinfo, Γmar and Γhybrid, respectively. It is found in Fig. 1
(left) that, as expected, the KL divergence is smaller with Γmar and Γhybrid.
Fig. 1 (right), on the other hand, exhibits a contrasting behavior that Γham

yields a smaller number of suppressed cells, which is also expected. In addition,
the error bars in the graphs indicate the 95% confidence intervals. The error bars
are narrow, so we can see that the Anonymize procedure works stably.

Fig. 2 shows the average error rate (%) of naive Bayes (left) and C4.5 (right)
for k-anonymized datasets. The horizontal line indicates the average error rate for
the original dataset. In these graphs, Γmar and Γhybrid give the least degradation
of error rate when combined with naive Bayes, as the theory suggests. However,
C4.5 did not work well with Γmar. From the fact that Γhybrid which brings less
suppressions reduces error rate, the number of suppressed cells seems to give a
highly negative impact on the classification performance of C4.5.

5 Concluding Remarks

This paper proposed a cell-suppression based k-anonymization method which
keeps minimal the loss of utility. The proposed method aims to preserve the
MAR condition and uses the KL divergence as a utility measure. From the
discussions and the experimental results presented in this paper, our approach
is shown to be statistically promising in both formal and practical senses. On
the other hand, there remain a couple of open problems. Here we conclude the
paper by discussing such open problems and related work in the literature.

First, a newly introduced cost function Γmar, which is based on the KL di-
vergence and the independence assumption in naive Bayes, only considers at-
tributes individually. This also applies to most of the existing work, e.g. Γinfo

used in [7], but some authors take multi-dimensional approaches, in which two
or more attributes are jointly taken into account. For instance, given a classifi-
cation dataset, kACTUS [12] performs cell suppression based on a decision tree
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built in advance. Relaxing the independence assumption in naive Bayes would
be one possible extension of the proposed method.

There have been several methods targeting classification datasets. Many of
such methods [2, 6, 9, 19], as well as kACTUS above, exploit classification-centric
heuristic scores such as information gain. Although out target is not limited
to classification datasets, as a simple hybrid cost Γhybrid used in our experi-
ment suggests, some classification-centric cost function would contribute to the
improvement of classification performance. In addition, anonymization may be
performed in big data environments consisting of, for example, data providers,
data collectors and data users who have different requirements [22]. To balance
several cost functions, multi-objective optimization techniques look attractive.
Dewri et al. [3] explored an evolutionary multi-objective optimization to deter-
mine a suitable anonymity threshold k.

As mentioned earlier, one advantage of cell suppression is that it requires no
hierarchical knowledge. If such knowledge is available, the coarsening-at-random
(CAR) condition [8] would be a key notion since it is a generalization of the MAR
condition considering partial information loss in each cell. In addition, Harada
et al. proposed a way for automatically constructing hierarchical knowledge [7].
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Appendix: Derivation of the Proposed Suppression Cost

Here, we complete the derivation of the cost function Γmar by showing how to
obtain Eqs. 7 and 9. First, let us note that p̂(c) = q̂(c) holds since the class
label c is initially non-null and will be never suppressed. Eq. 7 is then derived
as follows:

KL(p̂, q̂)

=
∑
x,c

p̂(x, c) log
p̂(x, c)

q̂(x, c)
=
∑
x,c

(
p̂(c)

M∏
j′=1

p̂(xj′ | c)
)
log

p̂(c)
∏M

j=1 p̂(xj | c)
q̂(c)

∏M
j=1 q̂(xj | c)

=
∑
c

p̂(c)
∑
x1

∑
x2

· · ·
∑
xM

( M∏
j′=1

p̂(xj′ | c)
) M∑

j=1

log
p̂(xj | c)
q̂(xj | c)

=
∑
c

p̂(c)

M∑
j=1

∑
x1

· · ·
∑
xj−1

∑
xj

∑
xj+1

· · ·
∑
xM( j−1∏

j′=1

p̂(xj′ | c)
)
p̂(xj | c)

( M∏
j′=j+1

p̂(xj′ | c)
)
log

p̂(xj | c)
q̂(xj | c) (13)

=
∑
c

p̂(c)

M∑
j=1

∑
xj

p̂(xj | c) log p̂(xj | c)
q̂(xj | c) ·

∑
x1

· · ·
∑
xj−1

∑
xj+1

· · ·
∑
xM

( j−1∏
j′=1

p̂(xj′ | c)
)( M∏

j′=j+1

p̂(xj′ | c)
)

(14)
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=
∑
c

p̂(c)

M∑
j=1

∑
xj

p̂(xj | c) log p̂(xj | c)
q̂(xj | c)

( j−1∏
j′=1

∑
xj′

p̂(xj′ | c)
)( M∏

j′=j+1

∑
xj′

p̂(xj′ | c)
)

=
∑
c

p̂(c)

M∑
j=1

∑
xj

p̂(xj | c) log p̂(xj | c)
q̂(xj | c) . (15)

In Eqs. 13 and 14, we carefully reordered summations and moved irrelevant
factors outside the summations wherever possible. Eq. 15 was finally derived
using

∑
xj′

p̂(xj′ | c) = 1 since p̂ is a probability function.

On the other hand, for Eq. 9, we have been considering a specific case where
the j-th non-null attribute value xj of a tuple t = (y, c) is suppressed. We
have q̂(xj | c) = (N(xj , c) + α)/(N(¬⊥j , c) + α|Vj |) and q̂′(xj | c) = (N(xj , c)−
N(y, c)+α)/(N(¬⊥j , c)−N(y, c)+α|Vj |) as already mentioned, and additionally,
for each value x′

j of j-th attribute which is not suppressed this time (i.e. x′
j ̸= xj),

we have q̂′(x′
j | c) = (N(x′

j , c) + α)/(N(¬⊥j , c)−N(y, c) + α|Vj |). Substituting
these probabilities into Eq. 8 results in Eq. 9 as follows:

∆KLj,c

= p̂(xj | c) log q̂(xj | c)
q̂′(xj | c) +

∑
x′
j :x

′
j ̸=xj

p̂(x′
j | c) log

q̂(x′
j | c)

q̂′(x′
j | c)

= p̂(xj | c) log
(

N(xj , c) + α

N(¬⊥j , c) + α|Vj |
· N(¬⊥j , c)−N(y, c) + α|Vj |

N(xj , c)−N(y, c) + α

)
+∑

x′
j :x

′
j ̸=xj

p̂(x′
j | c) log

(
N(x′

j , c) + α

N(¬⊥j , c) + α|Vj |
· N(¬⊥j , c)−N(y, c) + α|Vj |

N(x′
j , c) + α

)
= p̂(xj | c) log N(xj , c) + α

N(xj , c)−N(y, c) + α
+ p̂(xj | c) log N(¬⊥j , c)−N(y, c) + α|Vj |

N(¬⊥j , c) + α|Vj |
+∑

x′
j :x

′
j ̸=xj

p̂(x′
j | c) log N(¬⊥j , c)−N(y, c) + α|Vj |

N(¬⊥j , c) + α|Vj |

= p̂(xj | c) log N(xj , c) + α

N(xj , c)−N(y, c) + α
+

log
N(¬⊥j , c)−N(y, c) + α|Vj |

N(¬⊥j , c) + α|Vj |

(
p̂(xj | c) +

∑
x′
j :x

′
j ̸=xj

p̂(x′
j | c)

)

= p̂(xj | c) log N(xj , c) + α

N(xj , c)−N(y, c) + α
+ log

N(¬⊥j , c)−N(y, c) + α|Vj |
N(¬⊥j , c) + α|Vj |

.


