
Dynamic Re-ordering in Mining Top-k Productive
Discriminative Patterns

Yoshitaka Kameya
Department of Information Engineering

Meijo University

Email: ykameya@meijo-u.ac.jp

Ken’ya Ito
Department of Information Engineering

Meijo University

Abstract—Discriminative patterns are the patterns that dis-
tinguish transactions in two different classes, one of which is
typically of our particular interest. They are also known under
the names of emerging patterns, contrast patterns, subgroup
descriptions, and so on. In order to reduce the search space for
top-k productive discriminative patterns, this paper proposes to
re-order sibling patterns dynamically according to their quality.
It is formally shown that the “sub-patterns first” property, which
makes it easy to test the productivity of patterns, still holds
for a re-ordered enumeration tree. Moreover, in an extensive
experiment, we observed that the proposed method shows a stable
performance in various settings, and reduces the search space
drastically for some burdensome situations. It is also found that
the proposed algorithm works well as an anytime algorithm.

I. INTRODUCTION

Discriminative patterns are the patterns that distinguish

transactions in two different classes, one of which is typically

of our particular interest. For example, some may wish to find

characteristic patterns in votes by Republicans for various key

issues at United States House of Representatives. Thanks to the

annotated class information, discriminative patterns tend to be

more informative than frequent patterns, and can be a basis of

precise rule-based classifiers [1]. Discriminative patterns are

also known under the names of emerging patterns, contrast

patterns, subgroup descriptions, and so on [2], [3]. Throughout

the paper, we focus on mining itemset patterns.

In discriminative pattern mining, the top-k constraint [4]

and branch-and-bound pruning have been exploited for miti-

gating the difficulty in handling the quality function violating

anti-monotonicity [5]. Another difficulty, redundancy among

patterns, has also been mitigated by introducing set-inclusion-

based constraints among patterns. For example, under the

productivity constraint [6], [7], [8], patterns to be output (e.g.

{A,C,D}) must be of higher quality than all of its sub-patterns

({A}, {C}, {D}, {A,C}, {A,D} and {C,D}).

One convenient fact about the productivity constraint is

that it is easily tested in a depth-first search over a suffix
enumeration tree [9]. To illustrate, Fig. 1 (a) and (b) present

two enumeration trees for patterns made up of items A, B,

C and D. Fig. 1 (a) (resp. Fig. 1 (b)) is called a prefix

(resp. suffix) enumeration tree because the parent of each

pattern x is the immediate prefix (resp. suffix) of x. In both

trees, we typically insert eligible single items into each parent

pattern following some pre-defined or static total order ≺.

For example, letting ≺ be the alphabetical order, in Fig. 1 (b),

we prepend A, B and C (which precede D w.r.t. ≺) into a

parent {D} and obtain sibling patterns {A,D}, {B,D} and

{C,D} in turn. FP-growth [10] is known to run over a suffix

enumeration tree [11], and what is less known is that, in a
depth-first and left-to-right traversal over a suffix enumeration
tree, at the moment we visit a pattern x, all the sub-patterns
of x have been visited. We call this property the “sub-patterns

first” property. For example, in Fig. 1 (b), {A,C,D} is visited

after {A}, {C}, {D}, {A,C}, {A,D} and {C,D} have been

visited, but this is not the case with Fig. 1 (a). Since a pattern’s

quality is usually evaluated when the pattern is visited, the

“sub-patterns first” property enables us to compare the quality

of the pattern x we are visiting with the qualities of all the

sub-patterns of x, which have already been evaluated, and then

to judge on the fly whether x is productive. To the best of our

knowledge, the “sub-patterns first” property was introduced

first in selecting frequent minimal generators [12], but has not

been certified in a formal sense.

Suffix enumeration trees are also beneficial when combined

with the top-k constraint [4]. In top-k mining, we often

prepare a candidate list of size k, into which a pattern x
of higher quality than the k-th pattern z in the list will be

added. Furthermore, a pattern x whose descendants cannot

have higher quality than z is safely pruned [9]. Here, let us see

the suffix enumeration tree in Fig. 1 (b) again and suppose that

items A, B, C and D have higher quality in this order (an item

is often seen as a pattern that contains only the item itself). One

may find that, in this suffix enumeration tree, we visit patterns

containing items of higher quality (such as {A,B}) earlier,

and hence in top-k mining, the k-th pattern’s quality tends

to be raised more quickly. This phenomenon makes effective

the pruning based on the k-th pattern’s quality, and eventually

reduces the search space.

In this paper, for further reduction of the search space for

top-k productive discriminative patterns, we propose to re-

order sibling patterns dynamically according to their quality

(a detailed illustration will be given in Section II). A formal

contribution of this paper is to show that the “sub-patterns

first” property still holds for a re-ordered version of suffix

enumeration trees, and therefore it is still easy to examine

the productivity constraint. Moreover, in an extensive experi-

ment, we observed that the proposed method shows a stable

(a) (b)

(d) (e)

(c)

TID Class Transaction
1 + {A,B}
2 + {A,C,E}
3 + {A,D}
4 + {B,C,E}
5 + {B,D}
6 − {A,B,C}
7 − {B,E}
8 − {C,D}
9 − {C,D,E}
10 − {E}

Fig. 1. (a) A typical prefix enumeration tree, (b) a typical suffix enumeration tree, (c) an exemplar transactional database, (d) a suffix enumeration tree for
finding discriminative patterns in the exemplar database, and (e) its dynamically-reordered version. Patterns are considered to be visited in a depth-first and
left-to-right manner. For space limitation, each pattern {x, y, z, . . .} in enumeration trees is abbreviated as xyz · · · , where x, y, z, . . . are items.

performance in various settings, and reduces the search space

drastically in some burdensome situations. It is also found that

the proposed algorithm works well as an anytime algorithm,

i.e. it can output patterns of satisfactory quality even after an

early interruption by the user.

This paper is structured as follows. In Section II, we

show an example that illustrates our proposed method. Then,

Section III briefly introduces several background notions and

notations used in the paper. Section IV describes the details

of our proposed method, and Section V presents the results

of our experiments. Lastly, Section VI concludes the paper,

mentioning some related work.

II. AN ILLUSTRATIVE EXAMPLE

Let us consider a database containing five transactions in

class + and five transactions in class − in Fig. 1 (c). Also

suppose that class + is of our interest. Then, we have a suffix

enumeration tree in Fig. 1 (d),1 where items to be prepended

are chosen firstly in the descending order of their quality, say,

F-score, and secondly in the alphabetical order (i.e. in order of

A, B, D, C and E). For the class c of interest, the F-score of a

pattern x is defined as the harmonic mean of (positive) support

p(x | c) and confidence p(c | x). For c = + and x = {A},

we have p(x | c) = 3/5 = 0.6 and p(c | x) = 3/4 = 0.75,

and thus x’s F-score is computed as 2 × 0.6 × 0.75/(0.6 +
0.75) = 0.67. During the search, each pattern’s F-score is

compared with the F-scores of all its sub-patterns, and finally,

only patterns {A}, {B}, {C,E}, {D}, {C} and {E} are output

as productive ones. Now one may find that the combination

of C and E has something meaningful for class +.

As said before, we propose to re-order sibling patterns (or

equivalently, items to be prepended) dynamically according

to their quality. The re-ordered version of Fig. 1 (d) is

given in Fig. 1 (e). The difference between them lies in the

subtree rooted by pattern {E}, where pattern {C,E} is visited

1The patterns that do not occur in the transactions in class + do not appear
in the enumeration tree.

earlier than {A,E} and {B,E}. This is because the F-score of

{C,E} is evaluated as higher than the F-scores of {A,E} and

{B,E}. It is obvious that the re-ordered version can collect

patterns of higher quality earlier, and is beneficial for top-k
mining. Interestingly, whereas the parent-child relations among

patterns below {E} have been changed significantly, the “sub-

patterns first” property is still kept. Later, we formally show

that the “sub-patterns first” property is guaranteed even with

dynamic re-ordering of sibling patterns, as in this example.

III. BACKGROUND

A. Preliminaries

We first consider a dataset D = {t1, t2, . . . , tN}, where ti
(1 ≤ i ≤ N) is a set of items called a transaction. Each

transaction belongs to one of pre-defined classes C, and let ci
be the class of transaction ti. A pattern x is a subset of items

appearing in D. Items are usually referred to by variables x,

y, z, and so on, while concrete items are named A, B, C, and

so on. We will interchangeably denote a pattern as a vector

x = (x1, x2, . . . , xn), as a set x = {x1, x2, . . . , xn}, or as a

conjunction x = (x1 ∧ x2 ∧ . . . ∧ xn) of items. An item x is

often considered as a singleton pattern {x}.

We further define Dc = {ti | ci = c, 1 ≤ i ≤ N},

D(x) = {ti | x ⊆ ti, 1 ≤ i ≤ N} and Dc(x) = {ti |
ci = c,x ⊆ ti, 1 ≤ i ≤ N}, where c is the class of interest. A

symbol ¬ is used for negation, e.g. D¬c = D\Dc, D¬c(x) =
D(x)\Dc(x) and so on. Probabilities are computed from D. A

joint probability p(c,x) is obtained as |Dc(x)|/N . Similarly

we have p(¬c,x) = |D¬c(x)|/N and so on. Marginal and

conditional probabilities are computed in a standard way, e.g.

p(x) = p(c,x) + p(¬c,x) and p(c | x) = p(c,x)/p(x). We

call conditional probabilities p(x | c), p(x | ¬c) and p(c | x)
positive support, negative support and confidence, respectively.

B. Dual-monotonicity

The quality of a pattern x for class c is written as Rc(x),
and most of popular quality functions are defined using

Algorithm 1 GROW(T0, x0)

Require: T0: the current FP-tree, x0: the current pattern
1: H0 := the header table associated with T0

2: for all x in the key items of H0 enumerated in the ascending order w.r.t. ≺ do � Branching by an item preceding all items in x0

3: x := {x} ∪ x0 � A new pattern we are visiting
4: z := the pattern having the k-th highest quality in L
5: Construct an FP-tree T conditioned on x from T0, computing Rc(x), Rc(x) and p(c | x) from the statistics stored in T , and

removing every item y such that Rc({y} ∪ x) < Rc(z) � Constructing a new FP-tree with branch-and-bound pruning based on z
6: if p(c | x) ≥ p(c) and x is not weaker than any pattern in L then � Adding x as a top-k productive pattern if it is qualified
7: Insert x into L following the descending order of Rc

8: Remove the patterns of the (k + 1)-th highest quality (if any) from L
9: end if

10: GROW(T , x) if x is not prunably weaker than any pattern in L � Recursion or branch-and-bound pruning based on productivity
11: end for

positive support p(x | c) and negative support p(x | ¬c) [13].

Hereafter we regard the quality of an item x for c as Rc({x}).
As an instance of Rc, throughout the paper, we use F-score
Fc(x) = 2p(c | x)p(x | c)/(p(c | x) + p(x | c)). Since

we seek for the patterns characterizing c, we focus on the

patterns x such that p(x | c) ≥ p(x | ¬c) or equivalently

p(c | x) ≥ p(c). Recently, a relaxed condition called dual-
monotonicity was introduced in [13]. That is, a quality function

Rc for a class c is dual-monotonic iff, for any pattern x, Rc(x)
is monotonically increasing w.r.t. p(x | c) and monotonically

decreasing w.r.t. p(x | ¬c) wherever p(x | c) ≥ p(x | ¬c).
Several popular quality functions including F-score, χ2, infor-

mation gain and support difference are all dual-monotonic.

C. Branch-and-bound Pruning in Top-k Mining

Suppose that we perform a branch-and-bound search for

top-k patterns under a dual-monotonic quality function Rc,
and consider an anti-monotonic upper bound Rc(x) of Rc(x)
for a pattern x. Then, if Rc(x) < Rc(z), where z is the pattern

of the k-th highest quality at the moment, we can safely prune

the subtree rooted by x in the enumeration tree. This pruning

exploits the anti-monotonicity of Rc w.r.t. pattern-inclusion,

which guarantees Rc(x
′) ≤ Rc(x

′) ≤ Rc(x) < Rc(z) for

any super-pattern x′ of x. If Rc is dual-monotonic, an anti-

monotonic upper bound Rc(x) is obtained by substituting

p(x | ¬c) := 0 into the definition of Rc(x) [13].

D. The Productivity Constraint

Here we will formally give a definition of the productivity

constraint, whose previous versions are given together with

confidence as a quality function [6], [7]. To be specific, for

a class c of interest and a pair of patterns x and x′, we say

that x is weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x
′).

A pattern x is then said to be productive iff x is not weaker

than any pattern.

Moreover, we can conduct an aggressive pruning based on

an extended notion of weakness. First, we say that a pattern x
is prunably weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′).
Then, if x is prunably weaker than some pattern x′ in the

current top-k candidates, any super-pattern of x is also weaker

than x′, and so we can safely prune the subtree rooted by x.

E. FP-growth for Discriminative Pattern Mining

Based on the notions above, now we introduce a variant

of the FP-growth algorithm [10] that finds top-k productive

patterns highly relevant to the class c of our interest. This

variant conducts a depth-first and left-to-right search over a

suffix enumeration tree and branch-and-bound pruning. To be

more specific, we introduce a list L that stores the candidates

for top-k patterns, construct an initial FP-tree Tinit from the

input dataset D, prepare an initial, empty pattern ∅, and run

GROW(Tinit, ∅), which is shown in Algorithm 1.

Remark here that the order ≺ among items is referred to as

static information. To make branch-and-bound pruning effec-

tive, under ≺, we usually order items firstly by their quality

and secondly by their alphabetical order. For instance, the

items in the original transactions in D and in the conditional

transactions, that form a new FP-tree, are always placed in the

ascending order w.r.t. ≺. Also, in Line 2 of GROW, we pick up

items to be prepended according to the ascending order w.r.t.

≺. As a result, a new FP-tree T conditioned on x (Line 5)

and its header table contain only the items that precede all

items in x = {x} ∪ x0 w.r.t. ≺, and the enumeration tree

followed by GROW turns to be a suffix enumeration tree like

Fig. 1 (b). In our proposed method described next, instead of

the static order ≺, we introduce a dynamic order ≺x among

items conditioned on the pattern x currently we are visiting.

IV. THE PROPOSED METHOD

To accelerate GROW above, we propose to re-order sibling

patterns dynamically according their quality. The resulting

algorithm is GROW-AND-REORDER in Algorithm 2. Here, we

introduce an order ≺x among items conditioned on x. For

two items x and y that are not the members of x, “x ≺x y”

states that Rc({x} ∪ x) > Rc({y} ∪ x), or x precedes y
alphabetically when Rc({x} ∪ x) = Rc({y} ∪ x). Such a

conditional order makes promising items come earlier, and is

used in enumerating the key items in the header table (Line 2),

and in sorting items in conditional transactions (Line 5).

Finally the new conditional order is passed into the recursive

call (Line 10). At the top level, similarly to GROW, we run

GROW-AND-REORDER(Tinit, ∅, ≺), where the third argument

≺ is the order among items which is statically referred to in

GROW, but just works as an initial order ≺∅ here.

Algorithm 2 GROW-AND-REORDER(T0, x0, ≺x0)

Require: T0: the current FP-tree, x0: the current pattern, ≺x0 : the order among items conditioned on x0

1: H0 := the header table associated with T0

2: for all x in the key items of H0 enumerated in the ascending order w.r.t. ≺x0 do
3: x := {x} ∪ x0 and let ≺x be the order conditioned on x
4: z := the pattern having the k-th highest quality in L
5: Construct an FP-tree T conditioned on x from T0, removing every item y such that Rc({y} ∪ x) < Rc(z), computing Rc(x),

Rc(x) and p(c | x) from the statistics stored in T , and placing items in each conditional transactions in the ascending order w.r.t. ≺x
6: if p(c | x) ≥ p(c) and x is not weaker than any pattern in L then
7: Insert x into L following the descending order of Rc

8: Remove the patterns of the (k + 1)-th highest quality (if any) from L
9: end if

10: GROW-AND-REORDER(T , x, ≺x) if x is not prunably weaker than any pattern in L
11: end for

(a) (b)

Fig. 2. (a) A Hasse diagram depicted as a directed acyclic graph, and (b) the
trace of a topological sorting over the Hasse diagram, in which solid lines
indicate the caller-callee relations in recursive calls of VISIT, and the number
associated with each pattern is the position in the output sequence.

To make dynamic re-ordering work efficiently with the

productivity constraint, the “sub-patterns first” property intro-

duced before must be guaranteed in GROW-AND-REORDER.

As a starting point, using the notion of topological sorting [14],

we show that the “sub-patterns first” property holds in GROW,

which only refers to a static order ≺ among items.

First, let us consider a Hasse diagram in the form of a

directed acyclic graph, having edges from patterns to their

immediate super-patterns (Fig. 2 (a)). Then, by a traversal over

the Hasse diagram from an empty pattern, a topological sorting

generates a sequence of patterns in which any pattern cannot

be a sub-pattern of its preceding patterns. A key observation

here is that the “sub-patterns first” property holds for the
enumeration tree of a depth-first search if there exists a
topological sorting over a Hasse diagram that generates a
sequence in the same order as the visiting order of the search.

To be specific, suppose A ≺ B ≺ C ≺ D, and consider a

topological sorting over the Hasse diagram in Fig. 2 (a), which

is realized by Algorithms 3 and 4. In Algorithm 4, head(x) is

defined as a set of items that precede all items in x w.r.t. ≺,

and by PUSH(S, x) we prepend x into a sequence S. Then,

the trace of VISIT’s right-to-left recursive calls are highlighted

in Fig. 2 (b), together with the positions of the patterns in the

output sequence S. Since the order of patterns in S is exactly

the same as the visiting order in GROW’s depth-first and left-
to-right traversal over the suffix enumeration tree in Fig. 1 (b),

we can say that there certainly exists a topological sorting that

Algorithm 3 TOPOLOGICALLY-SORT

1: S := an empty sequence
2: VISIT(∅, S)
3: return S

Algorithm 4 VISIT(x, S)

Require: x: the current pattern, S: a sequence of patterns
1: for all x in head(x) in the descending order w.r.t. ≺ do
2: VISIT({x} ∪ x, S)
3: end for
4: PUSH(S, x)

guarantees the “sub-patterns first” property in GROW.

Let us further see this formally, from the order of recursive

calls and the way of inserting patterns into S. We first note

that, in Algorithm 4, VISIT(x, S) calls VISIT({xm} ∪ x, S),

VISIT({xm−1} ∪ x, S), . . . , VISIT({x1} ∪ x, S) in turn, and

then prepends x into S, where x1, x2, . . . , xm are the items

in head(x) and xi ≺ xj if i < j. Let σ(x) be the sequence of

the patterns prepended into S during the call of VISIT(x, S),

and see that σ(x) is a concatenation of x, σ({x1} ∪ x), . . . ,

σ({xm−1} ∪ x) and σ({xm} ∪ x). Also note that head(x)
is identical to the set of key items in the header table in

GROW(·, x). Then, we see that the order among patterns in

σ(x) is exactly the same as the visiting order in the subsequent

recursive calls of GROW. Branch-and-bound pruning does not

affect the visiting order, and we can say that the “sub-patterns

first” property is generally guaranteed in GROW.

Next, for the case with dynamic re-ordering, we can intro-

duce Algorithms 5 and 6 as another routine for topological

sorting. Here, head∗(x) is defined as a set of items that

precede all items in x w.r.t. ≺x′ for any suffix x′ of x. Then, a

similar discussion is also possible for GROW-AND-REORDER,

and consequently, the “sub-patterns first” property is guaran-

teed in GROW-AND-REORDER.

V. EXPERIMENTAL RESULTS

We conducted an extensive experiment in order to measure

the effect of dynamic re-ordering in reducing the search space.

The target datasets are the datasets available from http://dtai.cs.

kuleuven.be/CP4IM/datasets/. The statistics on the datasets are

summarized in Table I. With these datasets, we compare the

Algorithm 5 TOPOLOGICALLY-SORT-AND-REORDER

1: S := an empty sequence
2: VISIT-AND-REORDER(∅, S, ≺)
3: return S

Algorithm 6 VISIT-AND-REORDER(x0, S, ≺x0)

Require: x0: the current pattern, S: a sequence of patterns, ≺x0 :
the order among items conditioned on x0

1: for all x in head∗(x0) in the descending order w.r.t. ≺x0 do
2: x := {x} ∪ x0 and let ≺x be the order conditioned on x
3: VISIT-AND-REORDER(x, S, ≺x)
4: end for
5: PUSH(S, x0)

search space (the number of visited patterns in the enumeration

tree) and the running time among a variant of FP-growth with

static ordering based on the quality of items (named “Static”),

the one with static random ordering (“Random”), and the

one with dynamic re-ordering (“Dynamic”). In static random

ordering, we first decide the order among items at random,

and always refer to it during the search. In the experiment, we

used F-score as the quality function of a pattern. The number

k of output patterns was chosen from 1, 10 and 50. We tried

30 ways of static random ordering for each dataset and each

setting. All runs were conducted on Intel Core i7 3.6GHz and

we terminated the runs that had exceeded 15 minutes.

In addition, it would be interesting to see whether the

proposed method (GROW-AND-REORDER) can work as an

anytime algorithm, i.e. whether it can output patterns of

satisfactory quality even after an early interruption by the

user. To answer this question, in a retrospective fashion, we

identified the true top-k pattern xlast found lastly, and recorded

the effective number of visited patterns, i.e. the number of

patterns visited until xlast has been visited.

Here we add some notes on our implementation. GROW in

Algorithm 1 is in fact a simplified version of the original one

presented in [9]. The original version introduces some further

improvements (such as the translation of the upper bound of

quality into the minimum support threshold) which may affect

the running time, though it traverses the same search space.

In our Java implementation, the variants of FP-growth above

inherit all the improvements from the original version.

The results of the runs with k = 1, k = 10 and k = 50
are shown in the top, the center and the bottom of Table II,

respectively.2 In this table, the figures captioned by “#Visited

patterns (entire)” measure the entire search space traversed.

Besides, the figures captioned by “#Visited patterns (effec-

tive)” are the effective numbers of visited patterns, which are

introduced above, and measure the search space that suffices to

find true top-k patterns. The rightmost part of Table II shows

the time required for traversing the entire search space. The

captions “Static,” “Dynamic” and “Random” are the names of

the variants of FP-growth performed, and the column “Ratio”

2For the audiology dataset, no run finished within 15 minutes. For the
hypothyroid dataset, the runs with k = 50 did not finish within 15 minutes.
So, in Table II, the statistics on these runs are omitted.

TABLE I
STATISTICS ON THE DATASETS USED IN THE EXPERIMENT.

Dataset #Trans. #Items Dataset #Trans. #Items
anneal 812 93 lymph 148 68
audiology 216 148 mushroom 8,124 119
australian-credit 653 125 primary-tumor 336 31
german-credit 1,000 112 soybean 630 50
heart-cleveland 296 95 splice-1 3,190 287
hepatitis 137 68 tic-tac-toe 958 27
hypothyroid 3,247 88 vote 435 48
kr-vs-kp 3,196 73 zoo-1 101 36

presents the reduction ratios of the search space of “Dynamic.”

to that of “Static.” Some of the figures in the table take an

exponential form, i.e. “fE ± i” stands for f × 10±i.
From the results in Table II, we first see that the variant

“Dynamic” shows a stable performance, even in burdensome

situations where the search space is inherently large, e.g. in

the runs for german-credit and hepatitis with k = 50. On

the other hand, as for the running time, “Dynamic” often runs

slightly slower than “Static” in lightweight situations. This is

presumably because there is some overhead in dynamic re-

ordering, such as sorting items in conditional transactions. Of

course, such an overhead seems ignorable in lightweight situ-

ations. Lastly, by comparing the results in “#Visited patterns

(entire)” and “#Visited patterns (effective),” we see that all

of true top-k patterns are often found much earlier than the

entire search finishes, and again, for burdensome situations,

dynamic re-ordering contributes to deriving a better anytime

mining algorithm.

VI. CONCLUDING REMARKS

In this paper, for reducing the search space for top-k
productive discriminative patterns, we proposed to re-order

sibling patterns dynamically according to their quality, and

confirmed in an extensive experiment that the search space can

surely be reduced by dynamic re-ordering, and the resulting

algorithm can work well as an anytime algorithm.

Nowadays the idea of dynamic re-ordering in branch-and-

bound search seems not novel itself. For instance, in the

literature related to discriminative pattern mining, dynamic re-

ordering was adopted in the OPUS [15] algorithm family for

subset selection problems including feature selection, and in

SD-Map* [16] for subgroup discovery for continuous target

concepts. This paper, however, further introduced the produc-

tivity constraint in order to achieve non-redundancy among

patterns, and showed formally that the “sub-patterns first”

property, which makes it easy to test productivity, is guaran-

teed even with dynamic re-ordering. In addition, guaranteeing

the “sub-patterns first” property using the notion of topological

sorting would also bring benefits with well-foundedness to

the cases that require some minimality of patterns [12], or to

the cases in which a domain-dependent concept hierarchy is

exploited for producing generalized patterns [17].

REFERENCES

[1] F. Thabtah, “A review of associative classification mining,” Knowledge
Engineering Review, vol. 22, no. 1, pp. 37–65, 2007.

TABLE II
COMPARISON ON SEARCH PERFORMANCE (TOP: k = 1, CENTER: k = 10, BOTTOM: k = 50).

#Visited patterns (entire) #Visited patterns (effective) Running time (in seconds)
Dataset Static Dynamic Random Ratio Static Dynamic Random Ratio Static Dynamic Random Ratio

anneal 2.4E+5 2.4E+5 2.5E+5 (2.1E+4) 0.00 2.5E+1 2.5E+1 5.9E+4 (6.4E+4) 0.00 1.11 1.30 1.15 (0.30) −0.17
australian-credit 5.1E+3 5.1E+3 1.1E+4 (1.0E+4) 0.00 1.0E+0 1.0E+0 6.6E+3 (1.2E+4) 0.00 0.49 0.64 0.64 (0.24) −0.29
german-credit 3.4E+2 3.4E+2 3.6E+2 (1.6E+1) 0.00 1.0E+0 1.0E+0 1.4E+2 (9.8E+1) 0.00 0.40 0.40 0.44 (0.07) 0.01
heart-cleveland 5.7E+3 5.7E+3 7.1E+3 (1.5E+3) 0.00 5.7E+2 5.3E+2 3.8E+3 (3.0E+3) 0.06 0.45 0.45 0.61 (0.09) −0.01
hepatitis 8.0E+1 8.0E+1 9.0E+1 (5.5E+0) 0.00 1.0E+0 1.0E+0 5.3E+1 (2.1E+1) 0.00 0.06 0.07 0.08 (0.00) −0.07
hypothyroid 1.2E+3 1.2E+3 2.5E+3 (2.2E+3) 0.00 1.0E+0 1.0E+0 1.5E+3 (2.5E+3) 0.00 0.73 0.76 0.77 (0.11) −0.03
kr-vs-kp 2.0E+5 2.0E+5 2.6E+5 (1.1E+5) 0.00 9.9E+2 9.9E+2 1.4E+5 (1.6E+5) 0.00 0.86 1.52 1.71 (0.47) −0.76
lymph 1.1E+4 1.1E+4 1.2E+4 (2.6E+2) 0.00 1.0E+0 1.0E+0 9.5E+2 (2.1E+3) 0.00 0.44 0.48 0.44 (0.03) −0.08
mushroom 1.2E+2 1.2E+2 1.4E+2 (2.0E+1) 0.00 1.0E+0 1.0E+0 6.4E+1 (4.8E+1) 0.00 0.21 0.21 0.44 (0.09) 0.01
primary-tumor 8.8E+2 8.8E+2 1.1E+3 (4.6E+2) 0.00 1.8E+1 1.8E+1 4.7E+2 (6.7E+2) 0.00 0.09 0.10 0.11 (0.02) −0.13
soybean 4.3E+3 4.3E+3 5.1E+3 (6.0E+2) 0.00 2.1E+2 2.1E+2 2.7E+3 (1.6E+3) 0.00 0.21 0.23 0.24 (0.02) −0.09
splice-1 2.5E+2 2.5E+2 2.5E+2 (2.5E+0) 0.00 1.0E+0 1.0E+0 1.3E+2 (7.7E+1) 0.00 0.65 0.65 0.66 (0.01) 0.00
tic-tac-toe 2.7E+1 2.7E+1 2.8E+1 (1.0E+0) 0.00 1.0E+0 1.0E+0 1.2E+1 (7.4E+0) 0.00 0.05 0.04 0.05 (0.00) 0.17
vote 4.8E+1 4.8E+1 5.1E+1 (2.0E+0) 0.00 1.0E+0 1.0E+0 3.0E+1 (1.4E+1) 0.00 0.05 0.05 0.05 (0.00) 0.06
zoo-1 5.4E+1 5.4E+1 7.2E+1 (2.9E+1) 0.00 1.0E+0 1.0E+0 4.0E+1 (4.1E+1) 0.00 0.03 0.02 0.03 (0.00) 0.18

#Visited patterns (entire) #Visited patterns (effective) Running time (in seconds)
Dataset Static Dynamic Random Ratio Static Dynamic Random Ratio Static Dynamic Random Ratio

anneal 3.9E+5 3.9E+5 4.0E+5 (2.4E+4) 0.00 2.7E+2 2.7E+2 1.7E+5 (1.1E+5) 0.03 1.58 1.08 1.34 (0.27) 0.32
australian-credit 7.1E+4 6.7E+4 8.5E+4 (4.9E+4) 0.06 2.6E+3 1.8E+3 5.6E+4 (4.8E+4) 0.31 0.96 0.51 1.18 (0.38) 0.47
german-credit 9.9E+2 8.4E+2 3.0E+3 (9.9E+2) 0.15 6.0E+2 5.4E+2 2.7E+3 (1.0E+3) 0.09 0.43 0.46 0.60 (0.16) −0.06
heart-cleveland 1.2E+4 1.2E+4 1.4E+4 (2.1E+3) 0.00 7.6E+2 6.9E+2 8.6E+3 (3.9E+3) 0.09 0.61 0.60 0.74 (0.10) 0.02
hepatitis 2.1E+2 2.0E+2 3.0E+3 (4.0E+3) 0.02 6.7E+1 6.3E+1 3.0E+3 (4.0E+3) 0.06 0.08 0.08 0.23 (0.11) 0.00
hypothyroid 3.0E+4 2.9E+4 7.2E+5 (6.8E+4) 0.02 2.3E+4 2.3E+4 5.9E+4 (6.9E+4) 0.02 1.17 0.83 1.15 (0.40) 0.29
kr-vs-kp 2.9E+5 2.9E+5 3.7E+5 (9.2E+4) 0.00 1.6E+3 1.6E+3 2.4E+5 (1.4E+5) 0.00 1.14 1.12 2.28 (0.79) 0.01
lymph 1.4E+4 1.4E+4 1.5E+4 (7.9E+2) 0.00 5.8E+2 5.5E+2 8.7E+3 (4.0E+3) 0.05 0.47 0.48 0.43 (0.03) −0.03
mushroom 9.5E+2 8.1E+2 1.1E+3 (1.7E+2) 0.14 2.7E+2 2.3E+2 9.2E+2 (2.3E+2) 0.15 0.23 0.23 0.57 (0.09) 0.00
primary-tumor 4.1E+3 4.1E+3 4.8E+3 (7.0E+2) 0.00 2.1E+2 2.1E+2 3.2E+3 (1.5E+3) 0.02 0.23 0.24 0.27 (0.03) −0.01
soybean 5.9E+3 5.9E+3 7.8E+3 (1.1E+3) 0.00 4.6E+2 3.8E+2 5.2E+3 (2.0E+3) 0.17 0.27 0.28 0.31 (0.02) −0.02
splice-1 2.9E+2 2.9E+2 5.9E+2 (2.5E+2) 0.00 4.4E+1 4.4E+1 5.7E+2 (2.5E+2) 0.00 0.65 0.66 0.67 (0.01) −0.01
tic-tac-toe 5.6E+2 4.3E+2 2.0E+2 (1.5E+2) 0.23 5.5E+2 4.3E+2 2.0E+2 (1.5E+2) 0.23 0.10 0.11 0.06 (0.01) −0.12
vote 9.5E+1 9.5E+1 9.3E+2 (6.6E+2) 0.00 4.6E+1 4.6E+1 9.2E+2 (6.6E+2) 0.00 0.05 0.06 0.12 (0.03) −0.15
zoo-1 3.4E+2 3.3E+2 4.9E+2 (1.9E+2) 0.01 2.1E+2 2.0E+2 4.6E+2 (2.1E+2) 0.02 0.04 0.05 0.06 (0.02) −0.09

#Visited patterns (entire) #Visited patterns (effective) Running time (in seconds)
Dataset Static Dynamic Random Ratio Static Dynamic Random Ratio Static Dynamic Random Ratio

anneal 9.0E+5 7.6E+5 7.5E+6 (9.1E+6) 0.16 8.9E+5 7.5E+5 7.1E+6 (9.1E+6) 0.15 2.69 2.93 45.76 (45.28) −0.09
australian-credit 1.7E+5 1.4E+5 1.1E+7 (2.1E+6) 0.17 1.4E+4 6.6E+3 1.0E+7 (2.1E+7) 0.54 0.89 0.83 44.12 (68.77) 0.06
german-credit 2.3E+6 1.1E+6 3.2E+5 (1.9E+5) 0.51 2.3E+6 1.1E+6 3.2E+5 (1.9E+5) 0.51 20.16 5.15 6.42 (2.18) 0.74
heart-cleveland 3.2E+4 2.7E+4 4.5E+6 (4.7E+6) 0.16 1.8E+3 8.8E+2 4.5E+6 (4.7E+6) 0.50 0.70 0.70 17.39 (15.83) 0.01
hepatitis 3.1E+7 1.4E+7 7.7E+6 (6.2E+6) 0.54 3.1E+7 1.4E+7 7.7E+6 (6.2E+6) 0.54 117.56 42.75 20.52 (13.79) 0.64
kr-vs-kp 4.3E+5 4.3E+5 9.8E+5 (8.6E+5) 0.00 1.8E+3 1.7E+3 8.1E+5 (9.0E+5) 0.03 2.07 2.21 8.29 (8.41) −0.06
lymph 2.1E+4 1.9E+4 4.4E+4 (1.5E+4) 0.06 3.3E+3 2.6E+3 3.8E+4 (1.6E+4) 0.21 0.51 0.52 1.01 (0.26) −0.03
mushroom 2.0E+4 1.7E+4 1.0E+4 (3.0E+3) 0.16 2.0E+4 1.7E+4 1.0E+4 (3.0E+3) 0.16 1.02 0.93 1.40 (0.31) 0.09
primary-tumor 3.8E+4 2.4E+4 2.4E+4 (5.7E+3) 0.37 3.8E+4 2.4E+4 2.1E+4 (4.9E+3) 0.37 0.96 0.70 0.74 (0.20) 0.27
soybean 1.4E+4 1.4E+4 1.6E+4 (2.0E+3) 0.00 1.3E+4 1.3E+4 1.3E+4 (3.9E+3) 0.00 0.44 0.47 0.46 (0.04) −0.05
splice-1 1.5E+3 1.5E+3 1.0E+4 (3.2E+3) 0.01 1.3E+3 1.3E+3 1.0E+4 (3.2E+3) 0.02 1.21 1.33 1.69 (0.29) −0.10
tic-tac-toe 2.0E+3 1.4E+3 1.3E+3 (3.6E+2) 0.30 2.0E+3 1.4E+3 1.2E+3 (3.4E+2) 0.30 0.18 0.19 0.17 (0.02) −0.06
vote 1.6E+5 8.0E+4 4.6E+4 (1.1E+4) 0.49 1.6E+5 7.9E+4 4.0E+4 (1.2E+4) 0.50 1.61 1.45 0.88 (0.16) 0.10
zoo-1 2.7E+3 2.6E+3 2.1E+3 (5.3E+2) 0.01 2.2E+3 2.2E+3 1.9E+3 (5.4E+2) 0.02 0.17 0.19 0.18 (0.03) −0.09

[2] G. Dong and J. Bailey, Eds., Contrast Data Mining: Concepts, Algo-
rithms, and Applications. CRC Press, 2012.

[3] P. Kralj Novak, N. Lavrač, and G. I. Webb, “Supervised descriptive
rule discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining,” J. of Machine Learning Research, vol. 10, pp. 377–
403, 2009.

[4] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, “Mining top-k frequent closed
patterns without minimum support,” in Proc. of ICDM-02, 2002, pp.
211–218.

[5] S. Morishita and J. Sese, “Traversing itemset lattices with statistical
metric pruning,” in Proc. of PODS-00, 2000, pp. 226–236.

[6] R. Bayardo, R. Agrawal, and D. Gunopulos, “Constraint-based rule min-
ing in large, dense databases,” Data Mining and Knowledge Discovery,
vol. 4, pp. 217–240, 2000.

[7] W. Li, J. Han, and J. Pei, “CMAR: Accurate and efficient classification
based on multiple class-association rules,” in Proc. of ICDM-01, 2001,
pp. 369–376.

[8] G. I. Webb, “Discovering significant patterns,” Machine Learning,
vol. 68, pp. 1–33, 2007.

[9] Y. Kameya and T. Sato, “RP-growth: Top-k mining of relevant patterns
with minimum support raising,” in Proc. of SDM-12, 2012, pp. 816–827.

[10] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proc. of SIGMOD-00, 2000, pp. 1–12.

[11] C. C. Aggarwal, Data Mining: The Textbook. Springer, 2015.
[12] J. Li, H. Li, L. Wong, J. Pei, and G. Dong, “Minimum description

length principle: generators are preferable to closed patterns,” in Proc.
of AAAI-06, 2006, pp. 409–414.

[13] Y. Kameya and H. Asaoka, “Depth-first traversal over a mirrored space
for non-redundant discriminative itemsets,” in Proc. of DaWaK-13, 2013,
pp. 196–208.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

[15] G. I. Webb, “OPUS: An effficient admissible algorithm for unordered
search,” J. of Artificial Intelligence Research, vol. 3, pp. 431–465, 1995.

[16] M. Atzmueller and F. Lemmerich, “Fast subgroup discovery for contin-
uous target concepts,” in Proc. of ISMIS-09, 2009, pp. 35–44.

[17] R. Srikant and R. Agrawal, “Mining generalized association rules,” in
Proc. of VLDB-95, 1995, pp. 407–419.

