
Background

• Inconvenience in frequent pattern mining:

– Flood of common, uninformative patterns

– Difficulty in finding an appropriate min-sup

• Remedies:

– Top-k mining

– Discriminative pattern mining
• Subgroup discovery

• Contrast set mining

• Emerging pattern mining

• Supervised descriptive rule discovery

• Cluster grouping

• ...

milk=True  aquatic=False

 C+

Discriminative pattern x

Class c of interest

C-:Negative classC+:Positive class

RP-growth: Top-k mining of relevant patterns
with minimum support raising

Yoshitaka Kameya and Taisuke Sato (Tokyo Tech)

Relevance scores

• Positive support (Recall)

• Confidence (Precision)

• F-score

• c2-score

• Support difference

Relevance Rc(x) between
class c of interest and pattern x

• Most of these relevance scores do not satisfy anti-monotonicity

• Branch and bound strategy:

– Computes an upper bound of

– Prunes the search space based on

• Previous methods:

– Subgroup discovery [Wrobel 97], AprioriSMP [Morishita & Sese 00],
CG algorithm [Zimmermann & De Raedt 09]

RP-growth (our proposal)

• Finds top-k pattern x’s according to Rc for class c of interest

under the constraints:

– Support p(x | c)  smin（default: smin = 1/|D|）

– Confidence p(c | x) bmin（default: bmin = 0.5 or p(c)）

– x and x’ are not weaker than each other

Rc({A}) = 0.6

Rc({B}) = 0.8

Rc({A, B}) = 0.9

:

Rc({A, B, C}) = 0.7

not weaker
than

weaker
than

not weaker
than

x’ is weaker than x 

x  x’ but Rc(x) Rc(x’)

cx

Top-k frequent pattern mining

• Base strategy: Depth-first search + Minimum support raising

{A} {B} {C} {D}



{A,B} {B,C} {C,D}{A,C} {A,D} {B,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}

Minimum support raising: smin := p({A, D} | c)

smin := some small value

(typically 1/ |D|)

{A,D}

:

k

1

2

Candidate list

B&B pruning translated into min-sup raising

• Definition of the F-score:

• An anti-monotonic upper bound of Fc(x) by substituting p(c | x) := 1
(or substituting p(x | c) := 0, etc.)

• Pruning: Patterns including x will never remain in the candidate list if:

• Min-sup raising:
• Applicable to non-convex relevance scores
such as F-score

• Applicable to (sequence|tree|graph) mining

• Can benefit from FP-growth’s dynamic
shrinking of conditional databases

iff
z: k-th pattern

• Key point: Use of suffix enumeration trees

– “When visiting x, any sub-pattern x’ of x has already been visited”

– FP-growth (implicitly) uses a suffix enumeration tree

– When ，all patterns including x’ are guaranteed

to be weaker than x  Patterns below x’ are prunable

Handling weakness

{A} {B} {C} {D}



{A,B} {A,D} {C,D}{A,C} {B,C} {B,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}
Canonical order:
A < B < C < D

{A,C}: F=0.9

{B,D}: F=0.6
:

k

1

2

Candidate list
New pattern:
{B,C,D}: F=0.8

New pattern:
{B,C,D}: F=0.2

 Pruned

RP-trees: Extension of FP-trees

...

E
C

Conditional pattern bases are
shrinked dynamically (recursively)
 The remaining search is accelerated

Negative count
Positive count

A[0,2] is removed due to min-sup

Experiments: 20 news group dataset

comp.graphics rec.sport.hockey talk.politics.guns

- Relevance score: F-score

- Constraint: p(c | x) 0.5

• Preprocessed data: 17,930 articles consisting of 5,666 words

• Top-25 non-weak relevant patterns:

Experiments: Feature construction in text classification

• Classifier: SVM (LIBSVM)

• The features constructed from relevant patterns give a good
performance even with linear kernels

Single features Single + combined features

Linear kernel RBF kernel Linear kernel

c2 F-score Support diff.

83.88±0.20 84.95±0.22 84.48±0.13 84.73±0.22 84.73±0.23

Experiments: Search space

With c2, the search space can be huge
（the search did not finish in 2 hours on

CPU: Core i7 2.66GHz）

With F-score, the search finished in one minute
except it takes 17 minutes
for comp.os.ms-windows.misc

x-axis: #patterns to find
y-axis: #visited-patterns

Future work: Extension to sequences

• Strong points of RP-growth also apply to sequences, though
projection seems to get more complicated

A B C



AB AC BC

ABC

BA CBCA

BAC BCA ACB CAB CBA

Enumeration tree
for permutations:

Discussion: ROC analysis
Recall Precision SupDiff F-score c2

TPR = p(x | c)
FPR = p(x |c)

c2 prefers highly discriminative patterns

 Our upper bound tends to be loose

Condition: p(c) = 0.5

