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Abstract—In a knowledge discovery process, interpretation and
evaluation of the mined results are indispensable in practice.
In the case of data clustering, however, it is often difficult to
see in what aspect each cluster has been formed. This paper
proposes a method for automatic and objective characterization
or “verbalization” of the clusters obtained by mixture models,
in which we collect conjunctions of propositions (attribute-
value pairs) that help us interpret or evaluate the clusters.
The proposed method provides us with a new, in-depth and
consistent tool for cluster interpretation/evaluation, and works
for various types of datasets including continuous attributes and
missing values. Experimental results exhibit the utility of the
proposed method, and the importance of the feedbacks from the
interpretation/evaluation step.
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I. INTRODUCTION

In a knowledge discovery process, interpretation and evalu-
ation of the mined results are indispensable in practice. In the
case of data clustering, however, it is often difficult to see in
what aspect each cluster has been formed, only from a list of
the instances in the cluster. Visualization is a natural way for
understanding things, and particularly in text clustering, Hotho
et al. applied formal concept analysis with Hasse diagrams to
visualize the similarity and dissimilarity among the obtained
clusters [1]. On the other hand, since there would generally
be a physical limitation or a high implementational cost in
visualization, we would rather like to “verbalize” the clusters,
i.e. we associate an intuitive descriptive label (or a set of such
labels) with each cluster. Additionally it seems desirable that
the labels are chosen objectively and automatically from the
clusters. So far, there have been only a few labeling methods,
e.g. LabelSOM [2] and Mei et al.’s automatic labeling for
topic models [3]. CLIQUE [4] also has a similar motivation
to ours in that it performs hyper-rectangular clustering and at
the same time produces comprehensible descriptions of the
obtained clusters.

In this paper, we propose a new labeling method that
associates conjunctions of propositions (attribute-value pairs),
called propositional labels, with the clusters obtained by mix-
ture models. To find these propositional labels objectively and
automatically, we conduct an Apriori-style breadth-first search
for minimal propositional labels that discriminate the cluster
of interest from the others. Due to these features, as we will

see later, the proposed method can provide us with a new, in-
depth and consistent tool for cluster interpretation/evaluation.
It is also notable that, unlike the previous attempts, the pro-
posed method is fully applicable to various types of datasets
including continuous attributes and missing values. Another
novel contribution of this paper is to show empirically the
importance of the feedbacks from the interpretation/evaluation
step in achieving a reasonable clustering result.

The rest of this paper is structured as follows. In Section II,
we describe the details of the proposed method. Section III
then reports the experimental results. Finally, we conclude the
paper in Section IV. A full description of the proposed method,
experimental results and related work is described in [5].

II. PROPOSED METHOD

A. Preliminaries

First, we roughly introduce some terminology and notation.
Suppose that we have a dataset D of N instances which are
described by m discrete attributes A1, A2, . . . , Am, and refer
to each instance by a = (a1, a2, . . . , am), where aj is a value
of Aj . Also we write V(Aj) as the set of possible values
of Aj . We now introduce a propositional label (or a label,
for short) “X1 = x1” ∧ “X2 = x2” ∧ · · · ∧ “Xn = xn” such
that {X1, X2, . . . , Xn} ⊆ {A1, A2, . . . , Am}, Xi and Xi′ are
distinct (i 6= i′), and xi ∈ V(Xi). In a probabilistic context,
p(“X1 = x1” ∧ · · · ∧ “Xn = xn”) = p(X1 = x1, . . . , Xn =
xn) holds. Also, p(Z = z, . . .) for a random discrete vari-
able Z and its value z is generally abbreviated as p(z, . . .)
if the context is clear. Furthermore, a label “X1 = x1” ∧
· · · ∧ “Xn = xn” is simplified as x = (x1 ∧ · · · ∧ xn) or
x = (x1, . . . , xn). For a label x and its subconjunction (resp.
proper subconjunction) x′, we denote x′ ⊆ x (resp. x′ ⊂ x).

B. Overview

In this paper, we consider probabilistic clustering based
on a simple mixture model called a naive Bayes model. A
naive Bayes model has a latent class variable C taking on
the identifiers {1, 2, . . . ,K} of K clusters, and represents
a simple joint distribution: p(C = k,A1 = a1, . . . , Am =
am) = p(C = k)

∏m
j=1 P (Aj = aj | C = k), or equivalently

p(k,a) = p(k)
∏

j p(aj | k). Here the probabilities p(k) and
p(aj | k) are treated as the model parameters. Given a dataset
D of instances and the number K of clusters, we do:

1) Estimate the parameters in a model p(k,a) from D.



2) Assign the most probable class k∗(a) = argmax1≤k≤K

p(k | a) to each instance a based on the estimated
parameters. The k-th cluster Ck is then formed as a set
of instances a such that k∗(a) = k.

3) Find propositional labels x that characterize well each
cluster Ck.

In the first two steps, we perform clustering, and the third step
is called labeling. As is well-known, the first step is realized
by the EM (expectation-maximization) algorithm. From the
second step, clustering can be casted as an unsupervised
classification task, and we call p(k | a) the (class) membership
probability of an instance a. The last step will be described
in the next two sections.

C. Characteristic propositional labels

1) Relevance scores: To choose suitable propositional la-
bels x of a cluster Ck objectively and automatically, we
introduce a scoring function that measures how relevant x
and Ck are. Previously, several relevance scores have been
proposed in various statistical/data-mining tasks (e.g. [6], [7]
for comprehensive surveys). In this paper, we choose p(k | x)
as the relevance score for two reasons on intuitiveness for
the end users. First, we can of course interpret p(k | x) as
discriminative probabilities, by which we classify an instance
satisfying x. As mentioned in Section II-B, clustering is
performed based on the membership probabilities p(k | a),
which are a special case of p(k | x). The second reason
is more practical: p(k | x) is inherently normalized (i.e.
0 ≤ p(k | x) ≤ 1). From this nature, we can use a threshold
r ∈ (0, 1] and is commonly applied to all clusters, to filter out
x such that p(k | x) < r.

2) Minimality: For two labels x1 and x2 such that p(k |
x1) ≥ r and p(k | x2) ≥ r for some threshold r, we favor x1

over x2 if x1 ⊂ x2, because the longer one may have some
redundant information which hinders us from understanding
the cluster. In other words, we would like to have only minimal
labels. Minimality is also taken into account in the literature
on emerging pattern mining (e.g. [8]).

3) Model-based computation of relevance scores: We have
introduced several relevance scores which are based on prob-
abilities. In most of the previous work, these probabilities
are directly estimated from a given dataset D of instances.
For example, membership probabilities are estimated as p̂(k |
x) = |{a ∈ Ck | x ⊆ a}| / |{a ∈ D | x ⊆ a}|. In our
method, on the other hand, relevance scores are computed from
the model parameters via the joint distribution (Section II-B).
This model-based approach has a couple of advantages. First,
as seen later, we can efficiently compute the scores, exploiting
the conditional independence in the model, without scanning
the whole dataset D. In many cases, the space for the model
parameters is much smaller than the dataset. The second
advantage is that the model parameters are well-abstracted data
as long as the model fits to D, and there would be less chance
to be affected by noise. Finally, there is a positive side-effect
that we need not care about missing values in D since we only
use the parameters estimated by the EM algorithm.

4) Selecting characteristic propositional labels: Now based
on the discussions above, we define characteristic proposi-
tional labels, which characterize well the obtained clusters. A
propositional label x of the cluster Ck is characteristic iff:

1) p(k | x) ≥ r,
2) p(x) ≥ sglobal,
3) p(x | k) ≥ slocal, and
4) There is no x′ ⊂ x that satisfies 1∼3 above,

where r, sglobal and slocal are user-specified thresholds.
While frequent pattern mining algorithms run based on the

guide from the threshold for p(x | k) or p(x), we treat the first
and the fourth conditions as the primary filters. The second
and the third conditions are introduced to remedy the problem
that we often obtain unintuitive characteristic labels with very
low global/local support, and also to reduce the burden in
the exhaustive search for characteristic labels, which will be
described in the next section. So currently we do not consider
to put a tight restriction on global/local support.1

D. Exhaustive search for characteristic propositional labels

All possible propositional labels form a lattice, and on this
structure, we conduct an Apriori-style breadth-first search for
the entire set of characteristic labels for each cluster.2 We take
a breadth-first style because, as seen later, it is easier to check
the minimality of characteristic labels in a breadth-first style,
and because we do not necessarily need long characteristic
labels that are difficult to read. It should also be remarked
that our search algorithm can deal with both discrete and
continuous attributes in a uniform fashion.

III. EXPERIMENTS

In this section, we show an experimental result with the
flags dataset.3 Since the flags dataset does not contain the
class information, we explore a plausible number of clusters by
characteristic labels together with a Bayesian score for model
selection called the Cheeseman-Stutz score [9]. We tried 1,000
re-initializations in the EM algorithm not to get trapped into
unwanted local optima. The flags dataset contains the details
of 194 national flags, originally described by 30 attributes. In
this experiment, we focused on the clusters of national flags
grouped on their visual aspects, and hence non-visual attributes
(landmass, zone, area, population, language and religion) were
removed in advance. Since the class information is not given
in this dataset, we first estimated the number K̂ of clusters
by the Cheeseman-Stutz score, as a starting point. Another
point in this dataset is that discrete attributes and continuous
attributes are mixed. That is, all of eight integer attributes (e.g.
the number of circles in the flag) were treated as continuous
attributes. We used a threshold r = 0.75 for p(k | x) and
conducted a greedy pruning, whose description is omitted.

1For example, slocal = 1/(|D|/K) = K/|D|, which implies that each
of equally-sized clusters should contain at least one instance. We often set a
small value (e.g. 1/|D|) to the threshold sglobal, so that sglobal is negligible.

2The details of the search algorithm are presented in the full paper [5].
3The flags dataset is provided at the UCI ML Repository (http://archive.ics.

uci.edu/ml/). For three other experiments, refer to the full paper [5]. Clustering
is done by NBCTK available at http://sato-www.cs.titech.ac.jp/nbctk/ .
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Fig. 1. The Cheeseman-Stutz scores with various numbers of clusters.

TABLE I
THE CHARACTERISTIC LABELS FOR C1 , . . . , C6 IN THE FLAGS DATASET.

labels for C1 p(k|x) p(x|k)
#saltires=1 1.000 0.900
topleft=white ∧ #quarters=1 0.817 0.622
stripes=0,1,2 ∧ #quarters=1 0.827 0.540

: : :
labels for C2 p(k|x) p(x|k)

#bars=1,2,3,4 0.782 0.800
labels for C3 p(k|x) p(x|k)

#circles=1,2 ∧ #crosses=0 0.781 0.540
#circles=1,2 ∧ #quarters=0 0.781 0.540
black=T ∧ #circles=1 0.766 0.225

: : :
labels for C4 p(k|x) p(x|k)

#crosses=1 ∧ #saltires=0 0.810 0.81003
#crosses=1 ∧ #quarters=0 0.829 0.81002
#crosses=1 ∧ #sunstars=0 0.751 0.720
#circles=0 ∧ #crosses=1 0.768 0.640

: : :
labels for C5 p(k|x) p(x|k)

#bars=0 0.803 0.900
#circles=0 0.752 0.900
#crosses=0 0.755 0.600
#quarters=0 0.752 0.400
triangle=T 0.889 0.240

: : :
labels for C6 p(k|x) p(x|k)

#saltires=0 ∧ #quarters=1 0.960 0.360
topleft=blue ∧ #quarters=1 0.875 0.320

Fig. 1 shows the curve of the Cheeseman-Stutz score with
various numbers of clusters, and we have K̂ = 5 as a peak of
this curve. We further continued to compute characteristic la-
bels with the number K of clusters being around K̂, and found
that readable characteristic labels are obtained when K = 6.
Table I presents these labels.4 The shortest characteristic label
for the cluster C1 says that the national flags in C1 (and none in
the other clusters) have one saltire (diagonal cross). A typical
example of such flags is the Union Jack, and actually many
flags in C1 have one quartered section (i.e. #quarters=1) for
the Union Jack. Similarly, the clusters C2 and C3 contain the
flags with vertical bars and with circles, respectively. The label
(#saltires=0 ∧ #quarters=1) for C6 distinguishes C1 and C6, and
similarly the labels (#crosses=1 ∧ #saltires=0) and (#crosses=1
∧ #quarters=0) for C4 jointly work for distinguishing C4 from
C1 and C6, where #crosses indicates the number of upright
crosses. Indeed, C6 contains the flag of the United States, and

4Since each continuous attribute Aj is originally an integer attribute, a
proposition “α < Aj ≤ β” (assume here that α and β are not integers,
for simplicity) was translated back into “Aj = dαe, dαe + 1, . . . , bβc” in
Table I. Non-minimal labels produced by this translation were then removed.

C4 contains the flags of several Scandinavian countries (note
that the Union Jack also contains upright crosses). From the
labels for C5, one may see that C5 is a cluster of miscellaneous
flags. On the other hand, when the number K of clusters is set
at K̂ = 5, the clusters C2 and C3 are merged into one cluster,
whose characteristic labels are not so intuitive as in Table I.
These results imply that a plausible number of clusters can
be determined by interactively consulting characteristic labels,
with a help from model selection techniques, and clearly
show how the feedbacks from the interpretation/evaluation step
contribute in knowledge discovery.

IV. CONCLUSION

In this paper, we proposed a new labeling method that
associates propositional labels (conjunctions of attribute-value
pairs) with the clusters obtained by mixture models, to help
us interpret or evaluate the clusters. As shown in the experi-
mental results, the proposed method finds a set of intuitive
descriptive labels that characterize well or “verbalize” the
clusters. The proposed method is fully applicable to various
datasets including continuous attributes and missing values,
and can be a new, in-depth and consistent tool for cluster
interpretation/evaluation. Experimental results show that the
feedbacks from the interpretation/evaluation step can play an
important role for achieving a reasonable clustering result.
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