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Abstract—In knowledge discovery from real-valued time series,
discretization is often a key preprocessing that extends the
applicability of sophisticated tools for symbolic data mining or
logic-based machine learning. For finding meaningful discrete
values that can be directly translated into some intuitive symbols,
this paper proposes a novel discretization method based on
density estimation using a two-dimensional (measurement vs.
time) histogram of variable-width bins. We extend Kontkanen
and Myllymäki’s histogram construction method into our two-
dimensional case, keeping the efficiency brought by dynamic pro-
gramming. Experimental results with artificial and real datasets
show the robustness and the usefulness of the proposed method.
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I. INTRODUCTION

Oftentimes we face with real-valued data which are obtained
by experiments or from sensors. For knowledge discovery
from such raw data, discretization [1], [2], [3] is occasionally
performed as preprocessing to make applicable a variety of
sophisticated tools for symbolic data mining (such as frequent
pattern mining) or logic-based machine learning (such as in-
ductive logic programming). There have also been applications
where discretized data are used for qualitative reasoning [4],
[5], and now discretization can be viewed as one of the basic
components in symbolic AI tools that are required to handle
real-valued data. Real-valued time series are typically given as
time series with no class annotation, and hence in this paper,
we focus on unsupervised discretization of time series data.

Although discretization has not been paid much attention
compared to the mining step for patterns or clusters, several
authors proposed unsupervised discretization methods for time
series, further to traditional equal-width/frequency binning.
For example, Geurts uses a regression tree that segments the
time axis to find the flat portions in the input time series [6].
SAX [7] combines a smoothing method called piecewise
aggregate approximation (PAA) and equal-frequency binning
under a Gaussian assumption on the distribution of the mea-
surements. In the Persist algorithm [8], the measurement axis
is segmented based on an information-theoretic score, where
the segmented sections form a state space of a Markov process.
Continuous hidden Markov models (HMMs) [8], [9] can also
be used by regarding the most probable state sequence for the
input time series as a sequence of discretized values.
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Fig. 1. A two-dimensional (time vs. measurement) histogram. The bins with
higher density are highlighted by brighter colors.

In this paper, we aim to find meaningful discrete values
that can be directly translated into some intuitive symbols
such as “low,” “medium” and “high.” For this purpose, the
boundaries among discrete values need to be determined
adaptively from the input time series. Besides, in the present
paper, we will take a non-parametric approach, since it seems
more suitable for discretization methods to be neutral. In other
words, we would like to avoid the preprocessing step from
having extra assumptions, like the Gaussian assumption in
SAX and continuous HMMs, and the Markov assumption in
the Persist algorithm and continuous HMMs. In particular,
we focus on histogram density estimation, a popular non-
parametric modeling method, to capture the axis-parallel sub-
regions in the measurement-time space where the data points
are densely distributed. Also, for having more meaningful
discrete values, we also prefer the histogram to be constructed
to have variable-width bins, while many previous methods
concentrate on histograms with equal-width bins (e.g. [10]).

Kontkanen and Myllymäki [11] proposed a method for
construction of a single-dimensional histogram of variable-
width bins that optimize a minimum description length (MDL)
score using the normalized maximum likelihood (NML). Their
histogram construction method, hereafter called the K&M
method, efficiently finds the optimal set of bin boundaries,
with respect to NML, in a dynamic programming manner.
Based on the K&M method, this paper proposes an unsu-
pervised discretization method for time series data, which
adopts a two-dimensional (time vs. measurement) histogram
illustrated in Fig. 1. More specifically, a two-dimensional



histogram is first constructed from an input time series by an
extended K&M method, and the time series is then discretized
using the density information from the constructed histogram.
The extended K&M method we develop is also designed in a
dynamic programming manner, and runs in polynomial time.

In addition to neutrality described above, our proposed
method has a couple of advantages. First, using axis-parallel
bins of variable-width, we can introduce the notion of continu-
ous time and perform stronger smoothing (or noise reduction)
along with the time axis, considering a global nature of the
input time series. By this feature, the proposed method would
work for noisy time series that continuous HMMs under a
discrete-time Markov process cannot precisely deal with. Sec-
ondly, there is a representational merit in axis-parallel bins that
they give us readable propositions of the form “α < X ≤ β”
where α and β are bin boundaries, and X is a random
variable for measurement. The last advantage of the proposed
method is that the extended K&M method only requires
easily-specifiable control parameters, compared to Bayesian
discretizers [9]. Indeed, under the MDL framework using
NML, we have a promising built-in penalty factor that works
as well as a ‘tuned’ prior distribution or hyperparameters in
Bayesian learning methods.

The rest of this paper is structured as follows. Section II
presents an overview and details of the proposed method. In
Section III, we show some experimental results that exhibit
the robustness and the usefulness of the proposed method.
Section IV concludes the paper.

II. PROPOSED METHOD

First of all, in the proposed method, the input time series
s of length n is simply seen as a set of data points {(x1, t1),
(x2, t2), . . . , (xn, tn)}, where xi and ti are the measurement
and the time at the i-th observation, respectively, and for
simplicity, we assume that ti < ti′ holds when i < i′. As
mentioned above, we are considering continuous time, so both
xi and ti are real numbers. Then, we perform a discretization
of the time series s, where each raw measurement xi is
replaced by a plausible discrete value ki. In the paper, these
discrete values are numbered as integers from 1 to K, and
called discrete levels. We map higher raw measurements
(except noises) into higher discrete levels. The number K
of discrete levels is also determined from the input s in our
method.

In outline, the proposed method runs in two steps:
1) Conduct a density estimation of the time series s in the

measurement-time space.
2) Discretize s using the estimated density.

In the first step, a two-dimensional histogram like Fig. 1 is
constructed using the extended K&M method. On the other
hand, the second step is illustrated in Fig. 2. We start from the
input time series in Fig. 2 (a), and consider a grid comprised
of bin boundaries in the constructed histogram, as shown in
Fig. 2 (b). The measurement axis is segmented into discrete
levels by the bins, and there are 11 discrete levels in Fig. 2 (b).
Then, for each 1 ≤ i ≤ n, the bin with the largest probability
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Fig. 2. Discretization using the estimated density.

mass covering ti indicates the most probable discrete level ki
at the time point. Such bins are shaded in Fig. 2 (c). Finally,
we suppress the discrete levels that have not been chosen at
any time point, and return the most probable discrete levels
(with new indices) as the output. For example, as shown in
Fig. 2 (d), we finally have five discrete levels, and return a
sequence 〈1, 4, 5, 2, 3, . . .〉 of the most probable discrete levels.
It is remarkable in Fig. 2 (d) that, despite the many outliers in
the input, discretization is done quite robustly thanks to strong
smoothing along the time axis.

In the remainder of this section, we describe the details of
the first step. Specifically, our histogram model and a MDL-
based setting for histogram construction in Section II-A and
Section II-B, respectively. Then, the detailed procedure of the
extended K&M method will be presented in Section II-C.
Lastly in Section II-D, we discuss the computational com-
plexity of the extended K&M method.

A. Histogram model

Now we formulate our histogram model. The formulation
here is actually an extension of the one given in [11] into
our two-dimensional case. First, as written before, the input
time series s of length n is given by s = {x1,x2, . . . ,xn}
where xi is a pair of the time ti and the measurement xi at
the i-th observation (1 ≤ i ≤ n). We assume that data points
are recorded at a finite accuracy ε (so ti’s and xi’s are all
divisible by ε), and a discrete measurement-time space X ×T
is introduced by a fine-grained ‘pre-discretization’ where:

X = {xmin + jε | j = 0, . . . , (xmax − xmin)/ε},
T = {tmin + j′ε | j′ = 0, . . . , (tmax − tmin)/ε},

xmin = mini xi, xmax = maxi xi, tmin = mini ti and
tmax = maxi ti. We also consider that the candidates of bin
boundaries, or cut points, are given as the neighbors of quantile



values excluding the minimum and the maximum:

C =
{
Q
(m
M
, {x1, . . . , xn}

)
+
ε

2

∣∣∣ m = 1, . . . ,M − 1
}
,

D =

{
Q

(
m′

M ′ , {t1, . . . , tn}
)
+
ε

2

∣∣∣∣ m′ = 1, . . . ,M ′ − 1

}
,

where Q(q, Z) is the q-quantile value of the values in Z,1

and both M and M ′ are the control parameters that determine
the granularity of the cut points. In our histogram model, the
measurement axis and the time axis are segmented into K
intervals and K ′ intervals, respectively. So the cut points C =
{c1, c2, . . . , cK−1} and D = {d1, d2, . . . , dK′−1} are chosen
from C and D, respectively (C ⊆ C and D ⊆ D). We also
define c0 = xmin − ε/2, cK = xmax + ε/2, d0 = tmin − ε/2
and dK′ = tmax+ε/2. For each 1 ≤ k ≤ K and 1 ≤ k′ ≤ K ′,
the (k, k′)-th bin covers the region [ck−1, ck] × [dk′−1, dk′ ],2

and the widths along the measurement axis and the time axis
of this region are respectively denoted by Lk = ck−ck−1 and
L′
k′ = dk′ − dk′−1. Furthermore, the (k, k′)-bin is assigned a

probability mass θkk′ such that 0 ≤ θkk′ ≤ 1 and
∑

k,k′ θkk′ =
1. Here θkk′’s are also considered as the parameters of the
histogram model. For a data point x = (x, t) ∈ [ck−1, ck] ×
[dk′−1, dk′ ], the density3 is:

f(x | θ, C,D) =
ε2θkk′

LkL′
k′

(1)

and the likelihood of s is computed as:

f(s | θ,M) =
K∏

k=1

K′∏
k′=1

(
ε2θkk′

LkL′
k′

)hkk′

(2)

where hkk′ is the number of data points falling into the (k, k′)-
th bin, and M indicates the model, i.e. M = (C,D) in
our case. After estimating the maximum likelihood parameters
θ̂kk′ = hkk′/n, we have the maximized likelihood:

f(s | θ̂(s),M) =

K∏
k=1

K′∏
k′=1

(
ε2hkk′

LkL′
k′n

)hkk′

. (3)

B. MDL-based histogram construction

Finding the optimal cut points C and D of a histogram
can be translated into a model selection problem where we
choose the optimal histogram model M = (C,D), which is
formulated above. MDL is a general framework for model
selection, and following [11], now we will describe the settings
for our histogram construction problem under the MDL frame-
work. First, we introduce the normalized maximum likelihood
(NML):

fNML(s | M) =
f(s | θ̂(s),M)

RM
(4)

1For example, the median is 0.5-quantile value, and the first quartile value
is 0.25-quantile value.

2The overlaps on the bin boundaries can be ignored since it is guaranteed
that there are no data points on the bin boundaries.

3More precisely, f(x | θ, C,D) is the probability of x falling into the
region [x − ε/2, x + ε/2] × [t − ε/2, t + ε/2], which has an area of ε2.
Besides, the (k, k′)-th bin has an area of LkL

′
k′ and thus we have Eq. 1.

where RM is the normalizing constant called the parametric
complexity or minimax regret, which is defined as:

RM =
∑

s∈S f(s | θ̂(s),M). (5)

Here, S is a set of possible time series of length n, i.e.
S = (X × T )n. The stochastic complexity SC (s | M) is
then defined as the negative of the logarithm of the NML.
Furthermore, following [11], we add the code length for the
model index, and finally obtain the following MDL score:

B(s | M) = SC (s | M) + log
(

E
K−1

)(
E′

K′−1

)
= − log fNML(s | M) + log

(
E

K−1

)(
E′

K′−1

)
= − log f(s | θ̂(s),M)

+ logRM + log
(

E
K−1

)(
E′

K′−1

)
= −

∑
k,k′

hkk′ log
ε2hkk′

LkL′
k′n

+ logRM + log
(

E
K−1

)(
E′

K′−1

)
(6)

where E = |C| and E′ = |D|. Note here that, in Eq. 6, the
term depending on ε is constant to the model M = (C,D),
and so is ignorable in choosing the model.

Computing the normalizing constant RM is not feasible in
general, so it has been one of the main concerns in MDL
researches how to compute RM [12], [13], [14]. As a special
case of [12], we can derive an efficient way for computing
RM for our purpose. The derivation is given in the appendix
of this paper. Eventually RM only depends on K, K ′ and n,
so we write RM = R(K,K ′, n) and obtain its recursive form
as follows:

R(K,K ′, n) =
∑

r1+r2=n

n!

r1!r2!

(r1
n

)r1 (r2
n

)r2
·

R(K∗,K ′, r1)R(K −K∗,K ′, r2). (7)

We choose K∗ in Eq. 7 from 1 ≤ K∗ < K so that the depth
of recursion is small, and the following properties also hold:

R(1,K ′, n) = R0(K
′, n),

R(K,K ′, 0) = 1,

R(K,K ′, n) = R(K ′,K, n). (8)

Here R0(K,n) is the parametric complexity used for single-
dimensional histogram models [11], and can be efficiently
computed in a recursive form [13]:

R0(K + 2, n) = R0(K + 1, n) +
n

K
R0(K,n)

R0(1, n) = 1

R0(2, n) =
∑

r1+r2=n

n!

r1!r2!

(r1
n

)r1 (r2
n

)r2
.

Also it is easy to see from above that R0(K, 0) = 1 holds.
To summarize, based on B(s | M) (computed from Eqs. 6

and 7), we choose plausible cut points C and D from the
candidates C and D, respectively. This can be seen as a model
selection problem, and we will solve it efficiently in a dynamic
programming manner as described in the next section.



C. Iterative histogram construction

For a single-dimensional case, the K&M method is designed
to find the optimal histogram in a dynamic programming
fashion. However, in our two-dimensional case, it does not
seem easy to simultaneously optimize all cut points at the
measurement axis and the time axis, since the configuration
of cut points at one axis globally influences the configuration
of those at the other axis. Instead, we propose an extended
version of the K&M method that takes an approximate and
iterative approach. That is, in this extended K&M method,
we alternately optimize the cut points at one axis, fixing the
configuration of cut points at the other axis, until reaching
some locally optimal MDL score. The optimization at each
axis is efficiently done in a dynamic programming fashion, as
in the single-dimensional case. In what follows, we describe
the details of the extended K&M method.

Before starting, let us introduce some notations. we consider
to have at most (Kmax − 1) cut points at the measurement
axis, and at most (K ′

max − 1) cut points at the time axis.
Then, there can be Kmax ×K ′

max bins in total at maximum.
The elements in C are enumerated as c̃1, c̃2, . . . , c̃E so that
c̃e1 < c̃e2 when e1 < e2, and we let c̃E+1 = xmax + ε/2.
We also enumerate D as d̃1, d̃2, . . . , d̃E′ where d̃e′1 < d̃e′2
when e′1 < e′2, and let d̃E′+1 = tmax + ε/2. The prefixes of
C and D are then introduced as Ce = {c̃1, c̃2, . . . , c̃e−1} and
De′ = {d̃1, d̃2, . . . , d̃e′−1}. Besides, for 1 ≤ e ≤ E + 1 and
1 ≤ e′ ≤ E′ + 1, we define partial datasets se = {(x, t) ∈
s | x ≤ c̃e} and s′e′ = {(x, t) ∈ s | t ≤ d̃e′}, and their sizes
ne = |se| and n′e′ = |s′e′ |.

Now consider to find the optimal cut points C at the mea-
surement axis, with the cut points D = {d1, d2, . . . , dK′−1} at
the time axis being fixed. For a partial (k,K ′)-bin histogram
H that covers se (1 ≤ k ≤ Kmax, 1 ≤ e ≤ E + 1), we
introduce its MDL score B(se | Ĉ,D) like Eq. 6, focusing on
the region [xmin−ε/2, c̃e]×[tmin−ε/2, tmax+ε/2], where the
cut points Ĉ are chosen from Ce and |Ĉ| = k−1. Furthermore,
for k > 1 and along the measurement axis, we consider an
H’s sub-histogram of (k − 1,K ′) bins where its cut points
Ĉ− is the immediate prefix of Ĉ, i.e. Ĉ− = Ĉ \ {c̃e∗} and
c̃e∗ = max Ĉ. Then, the MDL score of H can be computed
using the MDL score of this sub-histogram:

B(se | Ĉ,D)

= B(se∗ | Ĉ−, D)−
K′∑

k′=1

ĥkk′ log
ε2ĥkk′

(c̃e − c̃e∗)L′
k′n

+ log
R(k,K ′, ne)

R(k − 1,K ′, ne∗)
+ log

E − k + 2

k − 1
(9)

where the last term in the right hand side of Eq. 9 is obtained
from log

((
E

k−1

)
/
(

E
k−2

))
, and ĥkk′ is the number of data points

falling into the (tentative) (k, k′)-th bin which covers the
region [c̃e∗ , c̃e]× [dk′−1, dk′ ].

To realize dynamic programming in finding the optimal C,
we introduce the following intermediate optimal MDL score

for each 1 ≤ k ≤ Kmax and 1 ≤ e ≤ E + 1:

B̂(k, e) = minĈ:Ĉ⊆Ce,|Ĉ|=k−1B(se | Ĉ,D). (10)

Note here that D is implicitly given behind B̂(k, e) for
notational brevity. Since CE+1 = C and sE+1 = s by
definition, it is easy to see from Eq. 10 that minkB̂(k,E+1)
is the optimal MDL score, and the number K of bins on
the measurement side is determined as its minimizer, i.e.
K = argminkB̂(k,E + 1). A similar discussion is also
possible in finding the optimal cut points D at the time axis
with the cut points C at the measurement axis being fixed,
and using the property in Eq. 9, we finally obtain the extended
K&M method as shown in Fig. 3. In Fig. 3, ψ(k, e) is used for
keeping track the minimizer e∗ of B̂(k, e, e∗) in the induction
phase. In the backtrack phase, on the other hand, we build the
optimal cut points by tracing back ψ.

It is important to note that each optimization at one axis
basically decreases, and does never increase the MDL score
B(s | C,D). Hence, the extended K&M method is guaranteed
to find some locally optimal cut points with respect to the
MDL score, after several alternate updates of C and D.

D. Computational complexity

By introducing an iterative strategy, the extended K&M
method achieves polynomial computation time. The main
computational burden often lies in computing the paramet-
ric complexity R(K,K ′, n), and its computation time is
evaluated as O(n2 logmin{Kmax,K

′
max}) from Eq. 7 and

Eq. 8 (symmetry).4 Here n is the number of data points in
the input time series, and Kmax and K ′

max are the control
parameters of the extended K&M method (i.e. we potentially
have (Kmax,K

′
max)-bin histogram at maximum). The term

logKmax or logK ′
max corresponds to the depth of recursion

in Eq. 7.
In addition to computing the parametric complexity, as

can be seen from Fig. 3, the computation of B̂(k, e, e∗)
and B̂′(k′, e′, e∗) respectively take O(E2KmaxK

′
max) and

O(E′2KmaxK
′
max) time, and are computationally dominant in

the extended K&M method. Here E and E′ are also the control
parameters of the extended K&M method, which indicate the
number of candidate cut points at the measurement axis and
the time axis, respectively.

Finally, letting U be the number of iterations until
convergence, the total computation time of the extended
K&M method is O(n2 logmin{Kmax,K

′
max} + U(E2 +

E′2)KmaxK
′
max). Furthermore, we specify Kmax � K ′

max

and E � E′ in many cases, and then the computation time
will be O(n2 logKmax + UE′2KmaxK

′
max). In our experi-

ments described later, U is not so large (typically U ≤ 10).
Obviously, larger Kmax, K ′

max, E and E′ produce a more
precise histogram, so we can specify these control parameters,
just balancing the time and the quality of the histogram.

4The computation of R0(K,n) takes only O(n+K) time [11], [13], and
so is negligible.



1) Choose initial cut points D ⊆ D which have as equal intervals as possible at time axis.
2) Alternate the following two steps until B(s | C,D) converges:

a) Choose the optimal cut points C ⊆ C at the measurement axis, with D (accordingly K ′ and E′) being fixed:
(Induction)

B̂(k, e, e∗) := B̂(k − 1, e∗)−
K′∑

k′=1

ĥkk′ log
ε2ĥkk′

(c̃e − c̃e∗)L′
k′n

+ log
R(k,K ′, ne)

R(k − 1,K ′, ne∗)
+ log

E − k + 2

k − 1

(for 1 < k ≤ Kmax, 1 ≤ e ≤ E + 1 and k − 1 ≤ e∗ < e),

B̂(k, e) := mink−1≤e∗<e B̂(k, e, e∗) (for 1 < k ≤ Kmax and 1 ≤ e ≤ E + 1),

ψ(k, e) := argmink−1≤e∗<eB̂(k, e, e∗) (for 1 < k ≤ Kmax and 1 ≤ e ≤ E + 1),

B̂(1, e) := −
K′∑

k′=1

ĥ1k′ log
ε2ĥ1k′

(c̃e − (xmin − ε
2 ))L

′
k′n

+ logR0(K
′, ne) + log

(
E′

K ′ − 1

)
(for 1 ≤ e ≤ E + 1).

(Backtrack) Let C := {c̃e1 , c̃e2 , . . . , c̃eK−1} after computing:

K := argmin1≤k≤Kmax
B̂(k,E + 1),

eK−1 := ψ(K,E + 1),

ek := ψ(k, ek+1) (for 1 ≤ k ≤ K − 2).

b) Choose the optimal cut points D ⊆ D at the time axis, with C (accordingly K and E) being fixed:
(Induction)

B̂′(k′, e′, e∗) := B̂′(k′ − 1, e∗)−
K∑

k=1

ĥkk′ log
ε2ĥkk′

Lk(d̃e′ − d̃e∗)n
+ log

R(K, k′, n′
e′)

R(K, k′ − 1, n′
e∗)

+ log
E′ − k′ + 2

k′ − 1

(for 1 < k′ ≤ K ′
max, 1 ≤ e′ ≤ E′ + 1 and k′ − 1 ≤ e∗ < e′),

B̂′(k′, e′) := mink′−1≤e∗<e′ B̂
′(k′, e′, e∗) (for 1 < k′ ≤ K ′

max, 1 ≤ e′ ≤ E′ + 1),

ψ′(k′, e′) := argmink′−1≤e∗<e′B̂
′(k′, e′, e∗) (for 1 < k′ ≤ K ′

max, 1 ≤ e′ ≤ E′ + 1),

B̂′(1, e′) := −
K∑

k=1

ĥk1 log
ε2ĥk1

Lk(d̃e′ − (tmin − ε
2 ))n

+ logR0(K,n
′
e′) + log

(
E

K − 1

)
(for 1 ≤ e′ ≤ E′ + 1).

(Backtrack) Let D := {d̃e′1 , d̃e′2 , . . . , d̃e′K′−1
} after computing:

K ′ := argmin1≤k′≤K′
max

B̂′(k′, E′ + 1),

e′K′−1 := ψ(K ′, E′ + 1),

e′k′ := ψ(k′, ek′+1) (for 1 ≤ k′ ≤ K ′ − 2).

Fig. 3. The extended K&M method.

III. EXPERIMENTS

In this section, we present two experimental results. The
dataset in the first experiment is an artificial dataset, which is
originally used in a comparative study by Mörchen et al. [8]. In
this paper, we call this dataset the enduring-state dataset. The
second experiment uses a real dataset on muscle activation of a
professional inline speed skater [15],5 which is also originally
provided by Mörchen et al. Throughout these experiments, we
will show the robustness and the usefulness of the proposed
method.

5The dataset is included in the package of the Persist algorithm’s MATLAB
implementation (http://www.mybytes.de/persist.php).

A. Enduring-state dataset

In the experiment with the enduring-state dataset, we com-
pare the proposed method with the previous discretization
methods including SAX [7], the Persist algorithm [8], contin-
uous HMMs, a Bayesian hybrid method of continuous HMMs
and the Persist algorithm [9], according to the predictive
performance. The hybrid method is trained under a recently
developed Bayesian learning framework called variational
Bayes [16]. On the other hand, non-hybrid continuous HMM
is trained under maximum likelihood estimation. The detailed
behaviors of the previous methods are reported in [9].

In the enduring-state dataset, raw time series of length 1,000
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Fig. 4. Predictive performance in the enduring-state datasets with five discrete
levels. “Persist,” “HMM,” “HMM+Persist,” and “Histogram” respectively
indicate the Persist algorithm, continuous HMM, the hybrid of continuous
HMMs and the Persist algorithm, and the proposed method.

are generated by a state machine which randomly changes its
state after a random duration. At each state, the data points
(the measurements) are generated with Gaussian noises around
the mean proper to the state. The generation process is thus
close to a hidden Markov process, but additionally, some of
the data points are replaced with outliers. The ratio of these
outliers varies from 0% to 10%. Actually, Fig. 2 (a) shows an
instance of enduring-state time series with five states and 5%
outliers. Each state during the generation process corresponds
to a discrete level, and hereafter the state sequence obtained in
the generation process of a raw time series is called the answer
sequence, and the output of a discretizer is referred to as the
predicted sequence. [8] gives more details on the generation
process of the enduring-state dataset. Furthermore, following
[9], we use accuracy and normalized mutual information
(NMI) [17] as evaluation criteria on predictive performance.
NMI is frequently used in evaluation of a clustering result.

The goal here is to see how well the discretizers recover
the answer sequence from (very) noisy time series. We tested
the discretization methods above on 100 time series for
each number K = 2, 3, . . . , 7 of discrete levels and ratio
R = 0%, 1%, . . . , 10% of outliers. We follow [9] as to the
detailed experimental procedure. In particular, in SAX, we
picked up the frame width from {1, 2, 3, 5, 10, 20, 50} that
works best for each pair of K and R. Also for the hybrid
method, we choose the best hyperparameter, which works as
weights for prior knowledge brought by the Persist algorithm,
from {0.5, 1, 5, 10, 20, 50, 70, 100}. The proposed method is
tested under the control parameters Kmax = 15, K ′

max = 50,
E = 100 and E′ = 1000.

Fig. 4 shows the median accuracy (left) and the median
NMI (right) for the time series with five discrete levels and
various ratios of outliers. The error bars indicate the 95%

TABLE I
WILCOXON’S RANK SUM TEST ON ACCURACY BETWEEN THE HYBRID

METHOD AND THE PROPOSED METHOD.

# of discrete levels Ratio R of outliers
K 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
2 x x x x x x x x x x x
3 x x x x x - - - - - -
4 x x x - o - o o o o o
5 x x - - o o o o o o o
6 x - - o o o o o o o o
7 x - o o o o o o o o o

median absolute deviation (MAD) t confidence interval [18].
From these graphs, we can see that non-hybrid continuous
HMMs work nearly perfectly for time series with no outliers
(this is not surprising since the generation process is an hidden
Markov process), but their performance quickly degrades as
the ratio of outliers increases. On the other hand, the Persist al-
gorithm robustly works, but constantly makes errors, since the
Persist algorithm only finds the cut points at the measurement
axis and many small Gaussian noises (which are not outliers)
easily go across these cut points [9]. The Bayesian hybrid of
continuous HMMs and the Persist algorithm surely combines
the strong points of the base discretizers, but its performance
still degrades when we have many outliers. Compared to these
previous methods, the proposed discretization method is quite
robust against small noises and outliers. As visually illustrated
in Fig. 2, this robustness seems to come from strong smoothing
along the time axis, and from precise identification of the cut
points at the measurement axis, which takes into account a
global nature of the input time series.

Furthermore, we conducted Wilcoxon’s rank sum test with
the significance level 0.01 on predictive performance. Then,
the proposed method is shown to be better than SAX and
the Persist algorithm for all cases with K = 2, 3, . . . , 7 and
R = 0%, 1%, . . . , 10% under accuracy and NMI. Table I
shows the result of comparison under accuracy between the
hybrid method and the proposed method. In this table, “x”
indicates that the hybrid method works significantly better
than the proposed method, “o” indicates that the proposed
method works significantly better than the hybrid method, and
“-” indicates that the difference between these two methods is
not significant. We obtained a similar result under NMI, and
Table I clearly exhibits the robustness of the proposed method.

B. Muscle dataset

In the second experiment, we use a real dataset to show the
usefulness of the proposed method in a knowledge discovery
task. In this dataset, the measurement is the muscle activation
calculated from the original EMG (Electromyography) as the
logarithm of the energy, and nearly 30,000 measurements are
recorded. Since the time series contains numerous measure-
ments, we first compressed the time series by the smoothing
method called piecewise aggregate approximation (PAA) used
in SAX [7].

PAA takes as input a discrete-time raw time series s =
(x1, x2, . . . , xT ) of length T , and compresses s into a new
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Fig. 5. Discretized muscle data. The x-axis indicates the time, and the y-axis indicates the measurement.

time series s̄ = (x̄1, x̄2, . . . , x̄T ′) where T ′ < T . In a simple
case that T = wT ′ holds where w is some positive integer
which indicates the frame width (the other case is described
in [7]), each x̄t′ is computed as x̄t′ = 1

w

∑wt′

t=w(t′−1)+1 xt , the
average of the measurements in the t′-th frame (t′ ∈ [1, T ′]).

Fig. 5 shows the time series compressed by PAA with
w = 20, and bin boundaries found by the proposed method.
In the proposed method, we used the control parameters
Kmax = 50, K ′

max = 500, E = 1000 and E′ = 1000. The
shaded regions in Fig. 5 indicate the most probable bins at each
time point. From this result, we can observe a cyclic pattern of
muscle activation in Fig. 5, and in some cycles, there are high
activities at the end. This result is similar to the one reported in
[8] and [9], where the second level (from −17.46 to −11.16)
corresponds to the gliding phase for stabilizing the body’s
center of gravity, and the third and the fourth levels correspond
to the last kick to the ground for moving forward. Fig. 5 shows
that the proposed method can reveal the characteristics of the
target time series as a symbolic sequence, in a well-founded
manner under the MDL principle.

IV. CONCLUSION

This paper proposed a novel unsupervised discretization
method for time series data, based on density estimation
using a two-dimensional histogram under the MDL model
selection framework. To realize this, we extend Kontkanen
and Myllymäki’s histogram construction method into the two-
dimensional case. Histogram models, the base model class of
the proposed method, are non-parametric, and hence require
less assumptions on the input time series. This neutrality would
enable the proposed method to be a ubiquitous preprocessing
tool for AI tasks including knowledge discovery. Also, our
extended histogram construction method achieves a polyno-
mial computation time, and guarantees local optimality of the
obtained histogram. Furthermore, as shown in the experimental
results, the proposed method is more robust than the previous
methods for noisy time series data, and would be useful for
knowledge discovery tasks.
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APPENDIX

For self-containedness, following the detailed descriptions
in [11], [12], we derive a recursive form (Eq. 7) of the
parametric complexity R(K,K ′, n) for our case. First, from
the definition of R(K,K ′, n) (Eq. 5) and the maximized
likelihood of a histogram model (Eq. 3), we have:
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Here, the term (LkL
′
k′/ε2)hkk′ considers all the possibilities

where each of hkk′ data points appears in one of (LkL
′
k′/ε2)

pre-discretized regions in the (k, k′)-th bin. We further sim-
plify the right hand side by introducing new intermediate
variables h1, h2, . . . , hK :
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At this point, the sum in the last equation still requires expo-
nential time. To avoid the problem, as described in [12], we
consider to obtain a double recursive formula by introducing
two new intermediate variable r1 and r2:
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