Time Series Discretization via MDL-based Histogram Density Estimation

Yoshitaka Kameya Tokyo Institute of Technology

- Background: Unsupervised discretization of time series data
- Our proposal: Histogram-based discretization
- Experiments
- Conclusion/Future work

- Background: Unsupervised discretization of time series data
- Our proposal: Histogram-based discretization
- Experiments
- Conclusion/Future work

Discretization

• ... converts numeric data into symbolic data

• ... is a *preprocessing* task in knowledge discovery

- ... may lead to noise reduction and data abstraction
 - We wish to have *interpretable* discrete levels
- ... may help *symbolic* data mining
 - Frequent pattern mining
 - Inductive logic programming

Unsupervised discretization of time series data

- Clustering:
 - Hierarchical clustering [Dimitrova et al. 05]
 - K-means
 - Gaussian mixture models [Mörchen et al. 05b]
 - ...
- Smoothing:
 - Regression trees [Geurts 01]
 - Smoothing filters
 - Moving averaging
 - Savitzky-Golay filters [Mörchen et al. 05b]

- All-in-one methods:
 - SAX [Lin et al. 07]
 - Persist [Mörchen et al. 05a]
 - Continuous hidden Markov models [Mörchen et al. 05a]

✓ Background: Unsupervised discretization of time series data

- Our proposal: Histogram-based discretization
- Experiments
- Conclusion/Future work

Histogram-based discretizer

9/Nov/2011

ICTAI-2011

Histogram-based discretizer (cont'd)

- Advantages over previous methods:
 - More neutral ... less assumptions are required (discretization is just a preprocessing)
 - More intuitive ... bins are understood as propositions like " $a < X \le b''$
 - More robust ... smoothing along with x-axis would get stronger (continuous time is taken into account)

ICTAI-2011

Basis: the K&M method

- Efficient optimization of a 1-D histogram [Kontkanen and Myllymäki 07b]
 - Variable-width bins are allowed
 - # of bins and bin-widths are optimized based on an MDL score: normalized maximum likelihood (NML)
 - No hyperparameters need to be specified

Basis: the K&M method (cont'd)

- Efficient optimization of a 1-D histogram [Kontkanen and Myllymäki 07]
 - Dynamic programming
 - $\rightarrow O(KE^2)$ -time (K: max. # of bins, E: # of candidates for cut points)
 - $\rightarrow \approx 1.5$ sec with K = 5, E = 100 (Intel Core i7 2.66GHz)

ICTAI-2011

Proposed method

- Main task: Density estimation by a 2D histogram
- We extend the K&M method into the 2D case

- Major modifications:
 - Computation of NML in the 2D case (following [Kontokanen et al. 05])
 - Iterative optimization of the bins between time-axis and mesurement-axis

Proposed method: Dynamic programming

• Simultaneous finding of the cut points at both axes seems intractable

Proposed method: Time complexity

- Computation of NML: $O(n^2 \log \min\{K_{\max}, K'_{\max}\})$
- Iteration for finding the cut points: $O(\{E^2 + E'^2\} K_{\max} K'_{\max})$

	n	# of data points
	E	# of candidates for the cut points at the measurement (y) axis
	<i>E</i> '	# of candidates for the cut points at the time (x) axis
	K _{max}	max. # of bins at the measurement (y) axis
	K' _{max}	max. # of bins at the time (x) axis

Control parameters

 (determined by the trade-off between time and quality)

Background: Unsupervised discretization of time series data
 Our proposal: Histogram-based discretization

- Experiments
- Conclusion/Future work

Experiment 1: enduring-state dataset

- Originally introduced in [Mörchen et al. 05]
- Comparison on the predictive performance among the discretizers

of discrete levels = 2

of discrete levels = 3

of discrete levels = 4

18

of discrete levels = 5

of discrete levels = 6

9/Nov/2011

ICTAI-2011

of discrete levels = 7

Histogram-based discretizer works quite robustly than existing discretizers due to capturing the global behavior and strong smoothing

9/Nov/2011

Experiment 2: Background

- Also used in [Mörchen et al. 05a]
- Data on muscle activation of a professional inline speed skater
 - Nearly 30,000 points recorded in log-scale
 - Time series is compressed by PAA (piece-wise approximate aggregation)
 [Lin et al. 07]

9/Nov/2011

Experiment 2: Result

- A plausible # of discrete levels is *automatically* estimated with NML
- Cyclic behavior is clearly uncovered

ICTAI-2011

Last kick to the ground

to move forward

- ✓ Background: Unsupervised discretization of time series data
- ✓ Our proposal: Histogram-based discretization
- ✓ Experiments
- Conclusion/Future work

Conclusion

- Histogram-based discretizer for time series data
 - Based on the K&M method for finding optimal 1D histograms
 - More neutral, more intuitive and more robust
 - Polynomial-time complexity

Future work

- Handling long trends
- Applying pattern mining to discretized time series
- Histogram-based discretization of supervised tabular data